6,840 research outputs found

    An information assistant system for the prevention of tunnel vision in crisis management

    Get PDF
    In the crisis management environment, tunnel vision is a set of bias in decision makers’ cognitive process which often leads to incorrect understanding of the real crisis situation, biased perception of information, and improper decisions. The tunnel vision phenomenon is a consequence of both the challenges in the task and the natural limitation in a human being’s cognitive process. An information assistant system is proposed with the purpose of preventing tunnel vision. The system serves as a platform for monitoring the on-going crisis event. All information goes through the system before arrives at the user. The system enhances the data quality, reduces the data quantity and presents the crisis information in a manner that prevents or repairs the user’s cognitive overload. While working with such a system, the users (crisis managers) are expected to be more likely to stay aware of the actual situation, stay open minded to possibilities, and make proper decisions

    CRiBAC: Community-centric role interaction based access control model

    Get PDF
    As one of the most efficient solutions to complex and large-scale problems, multi-agent cooperation has been in the limelight for the past few decades. Recently, many research projects have focused on context-aware cooperation to dynamically provide complex services. As cooperation in the multi-agent systems (MASs) becomes more common, guaranteeing the security of such cooperation takes on even greater importance. However, existing security models do not reflect the agents' unique features, including cooperation and context-awareness. In this paper, we propose a Community-based Role interaction-based Access Control model (CRiBAC) to allow secure cooperation in MASs. To do this, we refine and extend our preliminary RiBAC model, which was proposed earlier to support secure interactions among agents, by introducing a new concept of interaction permission, and then extend it to CRiBAC to support community-based cooperation among agents. We analyze potential problems related to interaction permissions and propose two approaches to address them. We also propose an administration model to facilitate administration of CRiBAC policies. Finally, we present the implementation of a prototype system based on a sample scenario to assess the proposed work and show its feasibility. © 2012 Elsevier Ltd. All rights reserved

    Semantic reasoning for intelligent emergency response applications

    Get PDF
    Emergency response applications require the processing of large amounts of data, generated by a diverse set of sensors and devices, in order to provide for an accurate and concise view of the situation at hand. The adoption of semantic technologies allows for the definition of a formal domain model and intelligent data processing and reasoning on this model based on generated device and sensor measurements. This paper presents a novel approach to emergency response applications, such as fire fighting, integrating a formal semantic domain model into an event-based decision support system, which supports reasoning on this model. The developed model consists of several generic ontologies describing concepts and properties which can be applied to diverse context-aware applications. These are extended with emergency response specific ontologies. Additionally, inference on the model performed by a reasoning engine is dynamically synchronized with the rest of the architectural components. This allows to automatically trigger events based on predefined conditions. The proposed ontology and developed reasoning methodology is validated on two scenarios, i.e. (i) the construction of an emergency response incident and corresponding scenario and (ii) monitoring of the state of a fire fighter during an emergency response

    A robust, reliable and energy-aware urgent computing framework for ensembles of forecasts

    Get PDF

    Crowdsourcing as a tool for urban emergency management: lessons from the literature and typology

    Get PDF
    Recently, citizen involvement has been increasingly used in urban disaster prevention and management, taking advantage of new ubiquitous and collaborative technologies. This scenario has created a unique opportunity to leverage the work of crowds of volunteers. As a result, crowdsourcing approaches for disaster prevention and management have been proposed and evaluated. However, the articulation of citizens, tasks, and outcomes as a continuous flow of knowledge generation reveals a complex ecosystem that requires coordination efforts to manage interdependencies in crowd work. To tackle this challenging problem, this paper extends to the context of urban emergency management the results of a previous study that investigates how crowd work is managed in crowdsourcing platforms applied to urban planning. The goal is to understand how crowdsourcing techniques and quality control dimensions used in urban planning could be used to support urban emergency management, especially in the context of mining-related dam outages. Through a systematic literature review, our study makes a comparison between crowdsourcing tools designed for urban planning and urban emergency management and proposes a five-dimension typology of quality in crowdsourcing, which can be leveraged for optimizing urban planning and emergency management processes

    A Bespoke Workflow Management System for Data-Driven Urgent HPC

    Get PDF
    In this paper we present a workflow management system which permits the kinds of data-driven workflows required by urgent computing, namely where new data is integrated into the workflow as a disaster progresses in order refine the predictions as time goes on. This allows the workflow toadapt to new data at runtime, a capability that most workflow management systems do not possess. The workflow management system was developed for the EU-funded VESTEC project, which aims to fuse HPC with real-time data for supporting urgent decision making. We first describe an example workflow from the VESTEC project, and show why existing workflow technologies do not meet the needs of the project. We then go on to present the design of our Workflow Management System, describe how it is implemented into the VESTEC system, and provide an example of the workflow system in use for a test case

    Emergent Groups for Emergency Response – Theoretical Foundations and Information Design Implications

    Get PDF
    Experience from recent crises strongly suggests that involvement of ordinary individuals or groups of people in emergency response is a critical contribution to large-scale disaster relief, especially at the beginning of the crisis. While not meant to displace response from trained authorities, they should not be regarded as a liability but as immediately available assets. Instead, the issue is to find ways to support these emergent groups in the middle of a large-scale disaster, when formal responders have yet to arrive at the scene and information is scarce, confusing, depressing, and not informative enough to support rescue work. In this paper, we investigate theoretical foundations that explain the motivational basis, group dynamics and information and communication needs of a helping community. Given the central role of information and communication technologies (ICT), we suggest how critical information should be gathered, presented and disseminated using a workflowbased template design to assist emergent groups to help others
    corecore