
A Robust, Reliable and Energy-aware
Urgent Computing Framework

for Ensembles of Forecasts

Siew Hoon Leong

München 2016

A Robust, Reliable and Energy-aware
Urgent Computing Framework

for Ensembles of Forecasts

Siew Hoon Leong

Dissertation

an der Informatik

der Ludwig–Maximilians–Universität

München

vorgelegt von

Siew Hoon Leong

München, den Abgabedatum

First Reviewer (Erstgutachter): Prof. Dr. Dieter Kranzlmüller

Second Reviewer (Zweitgutachter): Prof. Dr. Hans-Joachim Bungartz

Tag der mündlichen Prüfung: 13.06.2016

Contents

List of Figures x

List of Tables xi

Abstract xiii

Zusammenfassung xv

1 Introduction 1
1.1 Motivation and Research Question . 1
1.2 Research Methodology and Contribution 6
1.3 Publications . 10

1.3.1 Personal and Main Contributions 10
1.3.2 Collaborative Contributions . 13

1.4 Outline . 14
1.5 Terminology . 16

2 Related Work and Analysis 19
2.1 Overview of Urgent Computing . 19

2.1.1 Related Computing Paradigms . 21
2.1.2 Definition of Urgent computing . 25
2.1.3 Urgent computing use cases and challenges 28
2.1.4 Urgent Computer Systems . 30

2.2 Resource Allocation . 30
2.2.1 Resource Allocation Strategies in Urgent Computing 30
2.2.2 Resource Allocation Heuristics . 31

2.3 Ensemble of Forecasts . 32
2.3.1 Flooding . 33

3 Urgent Computing Definition 35
3.1 Requirements . 35

3.1.1 Functional Requirements . 36
3.1.2 Non-functional Requirements . 38

vi CONTENTS

3.2 Characteristics . 40
3.2.1 Pre-computation Characteristics . 40
3.2.2 Post-computation Characteristics 42

3.3 Deadline . 44
3.4 Cost . 46
3.5 Classes of Computing Resources . 47

3.5.1 Selection of Resource Class . 48
3.5.2 Policy Recommendations for Public Resource Providers 53

4 An Urgent System & A Task-based Ubiquitous Framework 57
4.1 Urgent System . 58
4.2 Task-based Ubiquitous Framework . 59

4.2.1 Architecture . 59
4.2.2 Design of the Urgent Computer System 66

5 Resource Allocation Heuristics 69
5.1 Obligations and Objectives of Resource Allocation Heuristics 70
5.2 Robustness and Reliability Models . 71

5.2.1 Robustness Model . 71
5.2.2 Reliability Model . 75

5.3 Ensembles of Forecasts Allocation Patterns 76
5.3.1 Independent Consecutive Forecast Allocation Pattern 78
5.3.2 Independent Concurrent Forecast Allocation Pattern 78
5.3.3 Independent Concurrent and Consecutive Forecast Allocation Pattern 79

5.4 Resource Allocation Heuristics . 80
5.4.1 Minimise Makespan . 81
5.4.2 Minimise Makespan-Minimise ETS 82
5.4.3 Minimise Makespan-Maximise Resource Reliability 82
5.4.4 Minimise Makespan-Maximise Resource Reliability-Minimise ETS . 83
5.4.5 Minimise Makespan-Maximise Site Reliability 83
5.4.6 Minimise Makespan-Maximise Site and Resource Reliability-Minimise

ETS . 84
5.5 Assessment Model . 84

5.5.1 Obligation 1 – Meeting the Stipulated Deadline 84
5.5.2 Obligation 2 – Maximising the Number of Successfully Allocated and

Completed Forecasts . 85
5.5.3 Heuristic Objectives . 85

5.6 Summary . 87

6 Implementation and Result 89
6.1 Case Study 1 - Gamma distribution . 91

6.1.1 Independent Consecutive Forecast Allocation Pattern 91
6.1.2 Independent Concurrent Forecast Allocation Pattern 94

Contents vii

6.1.3 Independent Concurrent and Consecutive Forecast Allocation Pattern 95
6.1.4 Assessment of Results . 97

6.2 Case Study 2 - Flash flood . 98
6.2.1 Minimise Makespan . 100
6.2.2 Minimise Makespan-Minimise ETS 102
6.2.3 Minimise Makespan-Maximise Resource Reliability 102
6.2.4 Minimise Makespan-Maximise Resource Reliability-Minimise ETS . 103
6.2.5 Minimise Makespan-Maximise Site Reliability 104
6.2.6 Minimise Makespan-Maximise Site and Resource Reliability-Minimise

ETS . 105
6.2.7 Assessment of Results . 105
6.2.8 Visualisation of Ensemble of Flash Flood Forecasts 107

7 Conclusion and Future Work 109
7.1 Summary of Findings . 110
7.2 Future Work . 113

Appendices 115

A An Urgent Computing Visualistion Service 117
A.1 Architecture . 117
A.2 Implementation with TbU Approach . 119

B Preemption Approaches 121
B.1 Least Cost Approach . 121
B.2 Least Disruptive Approach . 122

C Minimum and Maximum Values of Assessment Model 125
C.1 Minimum and Maximum Values of Makespan Robustness Metric 125
C.2 Minimum and Maximum Values of Site and Resource Reliability Metric . . 126
C.3 Minimum and Maximum Values of ETS 126

Bibliography 127

Acknowledgement 138

viii Contents

List of Figures

1.1 Disaster Trend between 1900 to 2015 . 3
1.2 Forecast Confidence versus Lead Time (NOAA/NWS) 4
1.3 Ensemble Forecast of a Storm with 50 ECMWF Model Runs [1, p. 431] . . 5
1.4 Research Methodology . 7
1.5 Process Model . 8

2.1 Real-time System [2] . 22
2.2 Venn diagram of Real-time Computing and Urgent computing 23
2.3 Crisis Management Computing Categorisation 24
2.4 Venn Diagram of CDM Computing and Urgent Computing 25

3.1 Tree Diagram of Urgent Computing Requirements 36
3.2 Overview of Pre-Computation Characteristics 41
3.3 Overview of Post-Computation Characteristics 43
3.4 Overview of Common Characteristics among the Deadlines 45
3.5 Estimated Deadlines . 46

4.1 An Urgent System . 58
4.2 Three-Layer Architecture . 60
4.3 Relationship among Processes, Activities, Tasks and Subtasks 62
4.4 Process Model of Information Manager . 63
4.5 Process Model of Resource & Environment Manager 64
4.6 Process Model of Schedule Manager . 64
4.7 Process Model of Fault Manager . 65
4.8 TbU Compute Process for Ensembles of Forecasts 67
4.9 TbU Task Diagrams of the Urgent Software Component Managers 67

5.1 Urgent Computing Timing Variables . 72
5.2 Area Chart of Forecast Allocation Patterns 77
5.3 Evolution of Resource Allocation Heuristics 81

6.1 Gamma Distribution of Execution Times for 30 Ensembles Forecasts on each
Resource . 92

6.2 Execution Time and ETS Data . 100

x List of Figures

6.3 Makespan Robustness, ETS, and Resource and Site Reliability Measurements101
6.4 Ensemble of Forecasts at 12:00:00 UTC . 107
6.5 Ensemble of Forecasts at 24:00:00 UTC . 108

7.1 Advanced 3D Visualisation in CAVE-like Virtual Environment 114

A.1 Ubiquitous Visualisation Service at LRZ 118
A.2 Ubiquitous Visualisation Client Interface at LRZ 118
A.3 TbU Analyse Process of Ubiquitous Visualistion Service 119

B.1 Least Cost Algorithm . 122
B.2 Least Disruptive Algorithm . 123

List of Tables

2.1 Urgent Use Cases, Challenges and Solutions 28
2.2 Result of Flood Risk Assessment Study for Year 2015, 2050 and 2080 . . . 34

3.1 Economic Loss of Some of the Most Severe Disasters in Recent Years . . . 42
3.2 Cost of SuperMUC and AWS . 52
3.3 SuperMUC and AWS EC2 C3 Cluster . 52
3.4 Computation Cost on SuperMUC and AWS EC2 C3 Cluster 53

5.1 Relationship between Resource Allocation Heuristics and their Objectives . 82

6.1 Execution Time and Robustness Metric of a Thirty Forecast Applications
Allocation for Each Computing Resource 92

6.2 Consecutive Applications on Each Resource 93
6.3 Concurrent Applications on Multiple Resources 94
6.4 Concurrent Applications on Multiple Resources with Constraint (3 Concur-

rent Application Per Resource) . 95
6.5 Concurrent and Consecutive Applications on Multiple Resources 96
6.6 Assessment Metrics for Obligations . 97
6.7 Targeted HPC Resources . 99
6.8 Minimise Makespan Resource Allocation 101
6.9 Minimise Makespan-Minimise ETS Resource Allocation 102
6.10 Minimise Makespan-Maximise Resource Reliability Resource Allocation . . 103
6.11 Minimise Makespan-Maximise Resource Reliability-Minimise ETS Resource

Allocation . 104
6.12 Minimise Makespan-Maximise Site Reliability Resource Allocation 105
6.13 Minimise Makespan-Maximise Site and Resource Reliability-Minimise ETS

Resource Allocation . 106
6.14 Assessment Metrics of the Heuristics . 106

C.1 Minimum and Maximum Values of Makespan Robustness Metric 125
C.2 Minimum and Maximum Values of Site Reliability Metric 126
C.3 Minimum and Maximum Values of Site Reliability Metric 126
C.4 Minimum and Maximum Values of ETS 126

xii List of Tables

Abstract

Events like disasters can cause major economic losses and casualties and pose a challenge
to political leaders to take appropriate prevention and mitigation actions. Forecasts of
time-critical events such as flash floods and tsunamis must be completed before a stipu-
lated deadline. The simulated results are required by relevant authorities to make timely
educated decisions to mitigate the economic losses and reduce casualties. Due to the in-
herent uncertainties in most forecast models, stochastic methods based on an ensemble of
forecasts are prevalent. Urgent computing intends to enable multiple forecasts with vary-
ing execution time to complete within a deadline. Consequently, a substantial number of
different resources and an adaptable framework that can swiftly and effectively manage
and allocate multiple resources for such computations is required.

This dissertation presents a comprehensive definition of urgent computing, a generic
framework for managing its processes, and a set of robust, reliable and energy-aware re-
source allocation heuristics. The original definition of urgent computing has been evalu-
ated in depth and extended to formalise its unique characteristics and requirements that
were not clearly described in the original definition. A generic framework, consisting of
four software component urgent managers, information, resource & environment, sched-
ule and fault, is correspondingly designed to guide the fulfilment of these characteristics
and requirements. A set of robust, reliable and energy-aware resource allocation heuristics
integrated within the framework ensures that the most crucial requirement, the deadline,
is met. Two models, robustness and reliability, are defined to quantify the heuristics.
Energy-awareness is included to manage the energy constraints of resource providers when
frequency scaling is adopted to improve total time required for the urgent computations.
An assessment model is also introduced to evaluate and compare the allocation results
among the heuristics.

The framework is verified with a real flash flood ensemble forecast where the required
environment is prepared in advance. The verification environment includes a mix of real
production and hypothetical high performance computing resources. The use of the hy-
pothetical resources serves to increase the stress on the heuristics by including selected
controlled variables into the experiment. Potential future work includes the addition of
another criterion, computation cost, to the resource allocation heuristics, prediction mod-
els to evaluate the results of the computations and/or the use of advanced 3D visualisation
to assist the decision making and coordination of mitigation activities.

xiv Abstract

Zusammenfassung

Naturkatastrophen und ähnliche Ereignisse können zu großen ökonomischen Verlusten und
vielen Toten führen, und stellen politische Verantwortungsträger vor die Herausforder-
ung, angemessene vorbeugende und lindernde Maßnahmen zu treffen. Vorhersagen von
zeitkritischen Ereignissen wie z.B. Überschwemmungen oder Tsunamis müssen bis zu einer
vorgegebenen Frist abgeschlossen sein. Die zustndigen Behörden benötigen Simulation-
sergebnisse, um rechtzeitig sachgerechte Entscheidungen zur Schadensminimierung treffen
zu können. Aufgrund der inhärenten Unsicherheiten in den meisten Vorhersagemodellen
werden oft stochastische Methoden verwendet, die auf einem Ensemble an Vorhersagen
basieren. Mithilfe des Urgent Computing sollen mehrere Vorhersagen mit unterschied-
lichen Laufzeiten bis zu einer vorgegebenen Frist ermöglicht werden. Daher braucht es
eine Vielzahl an unterschiedlichen Ressourcen sowie ein adaptives Framework, das diese
Ressourcen schnell und effektiv für solche Berechnungen zur Verfügung stellen und verwal-
ten kann.

Diese Dissertation beginnt mit einer umfassenden Definition des Urgent Computing,
und präsentiert dann ein generisches Framework zur Verwaltung seiner Prozesse, sowie
mehrere robuste, verlässliche und energiebewusste Heuristiken zur Ressourcenzuteilung.
Die ursprüngliche Definition des Urgent Computing wird im Detail untersucht und er-
weitert, um ihre spezifischen Charakteristiken und Anforderungen zu formalisieren, die
in der ursprnglichen Definition nicht klar beschrieben wurden. Dementsprechend wird
ein generisches Framework entworfen, das aus vier Software-Komponenten besteht (Ur-
gent Managers, Information, Ressourcen und Umwelt, Scheduling und Strung), um diese
Charakteristiken und Anforderungen zu erfüllen. Die Integration einer Reihe von robusten,
zuverlässigen und energiebewussten Heuristiken zur Ressourcenzuteilung in das Framework
stellt sicher, dass die Deadline als wichtigste Rahmenbedingung eingehalten wird. Es wer-
den zwei Modelle definiert, Robustheit und Zuverlässigkeit, um die die Heuristik zu quan-
tifizieren. Energiebewusstsein wird miteinbezogen, um die energetischen Rahmenbedin-
gungen der Ressourcenanbieter zu erfüllen, wenn Frequenzskalierung verwendet wird, um
die Gesamtlaufzeit der Urgent Computing-Rechnungen zu verringern. Schließlich wird ein
Analyse- und Bewertungsmodell eingeführt, um die Zuteilungsergebnisse der verschiedenen
Heuristiken einschtzen und zu vergleichen zu können.

Das Framework wird mithilfe eines realen Überschwemmungsvorhersage-Ensembles veri-
fiziert, in dem die nötige Umgebung im Voraus präpariert wurde. Die Verifikationsumge-
bung besteht aus einer Mischung aus echten Produktionssystemen und hypothetischen High

xvi Zusammenfassung

Performance Computing-Ressourcen. Die hypothetischen Ressourcen werden hinzugezo-
gen, um die Belastung der Heuristiken zu erhöhen, was durch Einbeziehen ausgewählter
Kontrollvariablen in das Experiment erreicht wird. In möglichen Folgearbeiten knnte als
zusätzliches Kriterium der Rechenaufwand in die Zuteilungsheuristik miteinbezogen wer-
den, es könnten Vorhersagemodelle zur Auswertung der Berechnungsergebnisse erstellt wer-
den, oder es knnten hochentwickelte 3D-Visualisierungstechniken verwendet werden, um
Entscheidungsprozesse sowie die Koordination der Schadensbegrenzungsanstrengungen zu
unterstützen.

Chapter 1

Introduction

Disaster mitigation [3] is critical to individuals and nations in the world. When dis-
asters like earthquakes, tsunamis, forest fires, storms, floods, radiological accident, epi-
demic outbreaks, etc., are expected or have taken place, it is of utmost importance to
make timely decisions for managing the affected areas and reduce casualties and economic
losses. Numerical forecasts can generate information and provide predictions to facilitate
this decision-making process. If the forecasts have to be initiated and computed within a
(short) required timeframe as input data for the computations are only available shortly
before/when/after the event strikes, this class of computing is referred to as urgent com-
puting. Urgent computing enables responsible authorities to make educated decisions by
providing simulated predictions/forecasts of disasters, the impact and required evacuation
zones, etc., before a stipulated deadline. The applications of urgent computing are not
limited to disaster scenarios and are relevant in a wider context, e.g. medical applications
for in-surgery support and financial applications for crisis analysis, where imminent losses
are expected. In this dissertation, we will focus on disaster scenarios.

1.1 Motivation and Research Question

Disasters often occur unexpectedly anywhere and anytime, and frequently have devastating
impact economically and can result in loss of human lives. Based on the data collected
by EM-DAT’s International Disaster Database1 shown in Figure 1.1, there is an increasing
trend in the number of reported natural disasters and economic damage.

Figure 1.1a illustrates the total number of disasters per continent (y-axis) from the
year 1900 to 2015 (x-axis). No data is available before 1900. The Asia continent has the
most significant increase in the number of disasters. The Africa, Americas and Europe

1http://www.emdat.be

2 1. Introduction

continents have also seen a marked increase while the Oceania continent faces a gradual
increase. The green line with square markers shows the number of disasters across all
continents, revealing an exponential increase in natural disaster occurrences over the last
century.

Figure 1.1b depicts the total economic damage in USD (billion) (y-axis) from the year
1900 to 2015 (x-axis) for different natural disaster types. The most damaging disasters,
earthquakes, floods, storms, droughts and epidemics are highlighted as separate plots.
Other disaster types (yellow line with star markers) include animal accidents, insect in-
festations, wildfires, extraterrestrial impacts, mass movement (dry), volcanic activities,
landslides and extreme temperatures. All six plots exhibit exponential increases in the
total economic damage over the years.

The 2015 annual Global Assessment Report [4] from the United Nation office further
shows that economic losses from disasters are in fact reaching 250 to 300 billion USD each
year and 42 million life years were lost in disasters from 1980 to 2012. In spite of the
technological and scientific advances in recent decades, it is still a challenge to accurately
forecast the onset and/or advancement of many natural disasters. The main issues are as
follows:

(i) Inaccuracy in observational data

(ii) Limitations of forecast models

Inaccuracy in observational data can be attributed to data errors, missing data and
conflicting observed data. Core limitations in forecast models are related to the incomplete
understanding and modelling of the underlying science, e.g. the physics, and the simplified
numerical representations of complex processes. To tackle the impact of both issues, the
following solutions are proposed:

(i) Leverage on zero hour (shortly before/when/after the disaster strikes) data

(ii) Utilise stochastic forecast methods

The accuracy of observational data is improved when more data is collected as the
disaster approaches or develops. Figure 1.2 is redrawn from the figure2 provided by Na-
tional Oceanic and Atmospheric Administration (NOAA) and National Weather Service
(NWS). It illustrates the relationship between the forecast confidence (x-axis) and forecast
lead time (y-axis). Forecast lead time represents the amount of time left after computing
the forecasts for issuing warnings and carrying out mitigation activities. The forecast lead
time in the time scope from years to minutes (gray rectangular boxes) is illustrated. The
longer the lead time, the lower the forecast confidence.

The forecast uncertainty is also illustrated in Figure 1.2 with the space between the two
curved lines for a specific set of forecast confidence and forecast lead time. The forecast
uncertainty reduces as the forecast lead time reduces and the forecast confidence increases.

2http://www.crh.noaa.gov/Image/lmk/pdf/WeatherForecastUncertainty.pdf

1.1 Motivation and Research Question 3

1900 1910 1920 1930 1940 1950 1960 1970 1980 1990 2000 2010

0

100

200

300

400

500

Year

N
u
m
b
e
r
o
f
d
is
a
st

e
r
s
p
e
r
c
o
n
t
in
e
n
t

All Continents
Africa

Americas
Asia

Europe
Oceania

(a) Total Number of Reported Natural Disasters (EM-DAT)

1900 1910 1920 1930 1940 1950 1960 1970 1980 1990 2000 2010
−20

0

20

40

60

80

100

120

140

160

180

200

220

240

YearT
o
ta

l
e
c
o
n
o
m
ic

d
a
m
a
g
e
(U

S
D

b
il
li
o
n
)
p
e
r
d
is
a
st

e
r
t
y
p
e

Earthquake
Flood
Storm
Drought
Epidemic

Other types

(b) Total Economic Damage caused by Reported Natural Disasters (EM-DAT)

Figure 1.1: Disaster Trend between 1900 to 2015

4 1. Introduction

When only a few days, hours and/or minutes of lead time are left, the forecast uncertainty
can potentially be completely eliminated. The forecast confidence becomes correspondingly
high. Forecast confidence is thus achieved at the expense of lead time by leveraging on
zero hour data to improve the accuracy of forecasts.

In this dissertation, we are interested in the high forecast confidence forecasts with zero
or low forecast uncertainty as illustrated in the circled area in Figure 1.2. Zero hour data
represents the most up-to-date input data that is only available shortly before/when/after
the event strikes.

F
o
re

c
a
s
t

L
e
a
d

 T
im

e
Forecast ConfidenceLow High

Years

Months
8 - 14 Days

6 - 10 Days

Days

Hours

Minutes

SeasonsForecast
Uncertainty

Figure 1.2: Forecast Confidence versus Lead Time (NOAA/NWS)

However, zero hour data alone is insufficient to ensure a high fidelity forecast. The
limitations of forecast models have to be tackled too. Stochastic prediction methods [5]
where an ensemble of forecasts [6] is leveraged upon for probabilistic forecasting is thus
adopted as opposed to a deterministic approach.

Figure 1.3 illustrates an ensemble forecast of storms that began on 24 December 1999.
It shows the surface pressure results of a forecast using a deterministic prediction method
(first map from top left), the actual verification (second map from top left) and fifty
different forecasts (bottom five rows of the maps) at 42 hours after the event commenced.
The “Deterministic Prediction” indicated that no storms were expected in France and
Germany but in reality as illustrated by “Verification”, both countries were significantly
hit by the storms. The ensemble of forecasts each depicts a different forecast with a varying
intensity and spatial scope. Forecast 50 for instance indicates that the storm would likely
only affect a very small area shown in the map. Forecast 41 however shows otherwise and

1.1 Motivation and Research Question 5

Figure 1.3: Ensemble Forecast of a Storm with 50 ECMWF Model Runs [1, p. 431]

is arguably one of the most accurate forecasts among the ensemble. What was particularly
insightful in this case was that almost 50% of the ensemble of forecasts predicted that the
storms would arrive in France and Germany, thus justifying the issuing of a storm warning.
By utilising an ensemble of forecasts, the inaccuracy is distributed across all models and a
higher fidelity forecast can thus be achieved.

To adopt both solutions, leveraging on zero hour data and utilising stochastic forecast
methods, there is a need to confront the challenge in enabling multiple computational
jobs simultaneously. These jobs have to run on one or more distributed heterogeneous
computing resources while ensuring that the (short) stipulated deadline is met. Urgent
computing, which targets time critical computations utilising data that are only available
on short order to facilitate responsible authorities, e.g. civil defence services, to better
understand a disaster and support in the making of educated decisions to manage affected
areas to reduce casualties and losses, provides the research scope to solve this challenge.

Consequently, this dissertation aims to answer the following research question:

How to effectively enable urgent computing on a set of distributed heterogeneous resources
while addressing the limitations of event domain sciences, uncertainty in forecast models
and inaccuracy in observational data, by leveraging on an ensemble of forecasts that has

to be computed before a stipulated deadline?

In order to answer the above question, the requirements and characteristics of urgent
computing must be thoroughly understood. This dissertation thus also seeks a comprehens-

6 1. Introduction

ive definition of urgent computing. It is the first known urgent computing work addressing
ensembles of forecasts. Public infrastructures, which can potentially offer a wide array of
computing resources, will be the main targeted class of resource.

1.2 Research Methodology and Contribution

The combined quantitative and qualitative research methodology adopted in this disserta-
tion, a result of the natural process while pursuing the research activities, is summarised
in Figure 1.4. The circular ring represents the four main research steps in the following
order:

(i) Survey

(ii) Definition

(iii) Gather use cases

(iv) Ensemble of forecasts

The research goal, the Urgent Computing Framework, is depicted with a gray circle
in the middle. The texts outer wrapping the respective research steps illustrate the cor-
responding research approaches and their findings. The bold texts inner wrapping the
respective steps/approaches present the final research outcomes, which are then included
in the Urgent Computing Framework. The detailed research activities based on this re-
search methodology will be described in this section.

A (i) survey on urgent computing use cases [7] was conducted to gather the generic
challenges and solutions. Based on the knowledge gained from the survey, the initial
definition of urgent computing, offered by N. Trebon [8], was meticulously analysed. It was
found to be too usage context specific and was thus unsuitable for general applications.
To address the shortcomings, the (ii) definition is refined and extended [9]. Functional
and non-functional requirements, an urgent system and its pre- and post-computation
characteristics, deadline, cost and suitable classes of computing resources are additionally
construed. Two particularly unique characteristics, non-deterministic deadlines and loss
mitigation as opposed to loss prevention, are identified.

However, since urgent computing is dependent on the event (disaster) it is comput-
ing, the requirements from the event domain science are also required. Two groups of
event domain scientists, hydro-meteorologists and seismologists, who were collaborating
with Ludwig-Maximilians-Universität (LMU Munich) and Leibniz Supercomputing Centre
(LRZ) in the EU projects, Distributed Research Infrastructure for Hydro-meteorology
(DRIHM)3 and Virtual Earthquake and seismology Research Community e-science en-
vironment in Europe (VERCE)4, were consulted on the potential (iii) use cases. The

3http://www.drihm.eu/
4http://www.verce.eu/

1.2 Research Methodology and Contribution 7

qualitative approach was chosen due to the inherent complexity of the domain sciences. It
requires an understanding of the underlying sciences, e.g. physics, to gain insights into their
issues/problems and to obtain the opinions on the potential use cases. A questionnaire
and an interview were thus conducted with each of the scientists. The questionnaire serves
to elicit use case specific requirements, e.g. algorithmic solutions, suitability of different
computing resources and computational requirements, while the interview captures the
scientific requirements of the event domain science. This led to the very valuable insight
on the common challenges, i.e. data inaccuracies and forecast models limitations, faced.

(iv) Ensembles of forecasts have thus to be incorporated to manage the uncertainty and
improve the forecast confidence. The underlying framework has to coordinate multiple, typ-
ically tens of, forecasts simultaneously in order to meet the (short) deadline. Additionally,
each forecast is a computing job which can utilise hundreds to thousands of cores on a
parallel computing resource. This increases the computation requirements and illustrates
a need to integrate distributed heterogeneous resource sets. The reliability of a system is
improved by having distributed resources since “a single point of failure” can be avoided.
Heterogeneous resources are expected as it is highly unlikely to find multiple distributed
resources that are homogeneous in both hardware and computing environments.

Urgent
Computing
Framework

Gather u
se

 c
a
se

s

D
efinition

Survey

E
n
se

m
bl

e

of
 fo

recasts

Quantitative research approach
: G

e
n
e
ric R

e
q
u
irem

ents & Characteristics
Qualit

at
iv

e
re

se
ar

ch
 a

p
p
ro

a
ch

:
D

o
m

ai
n

Re
qu

ire
m

ents

heuristics

u
rg

e
n

t m
a
n

a
g
e
rs

TbU

Figure 1.4: Research Methodology

In order to address the identified requirements and challenges, an urgent computing
framework with a three-layer architecture was designed. This architecture allows a separ-
ation of concerns between the requirements and challenges, and the use case specific pro-
cesses such as the pre- and post-processing. Four urgent software component managers,
information, resource & environment, schedule and fault, are incorporated to administer
the requirements, challenges and processes. To realise each of the managers, an analytical

8 1. Introduction

approach consisting of a process model as shown in Figure 1.5, is employed. This model
is composed of three phases in the following order, data collection, criterion function and
utility function, with reference to the analytic hierarchy process (AHP) [10] where the
decision-making processes of the manager are organised based on decision objectives, cri-
teria and constraints in a hierarchy. Each phase aims to simplify the work processes by
reducing the amount of information that has to be processed so that they can be carried
out swiftly. The identification, collection and assessment of data based on the decision
objective is the initial phase to enable each manager to gather relevant information on
the prevalent state of a given resource set and/or user requirements. The second phase,
criterion function, refines the data based on the mandatory criteria/requirements that the
manager is entrusted to satisfy. In the final phase, the utility function performs a filtering of
the data to find all the possible alternatives which might satisfy the defined non-mandatory
constraints. The use of this model will be elaborated in Section 4.2.1.

Data collection

Refine

Criterion function

Identify, collect and assess

Phase 1 Phase 2

Finalise

Utility function

Phase 3

Figure 1.5: Process Model

The need to access the framework from anywhere and at anytime, leads to the con-
struction and implementation of a Task-based Ubiquitous (TbU) approach [11] on top of
the architecture. This approach facilitates access to the underlying distributed resource
sets from ubiquitous end user devices, which have the highest probability of being readily
available in event of a disaster. Backup resources that are spatially distributed are also cru-
cial in the chaotic environment which entails a disaster since the inherent unpredictability
of disasters can render any best-made plans futile, e.g. with a power failure. Finally, the
ability to swiftly organise resources for an ensemble of forecasts such that the stipulated
deadline can be met is of utmost importance.

The coordination of multiple heterogeneous distributed resources for an ensemble of
forecasts before a deadline is realised by introducing a set of resource allocation heuristics.
The heuristics have to ensure that the following two obligations are realised.

(i) Meeting the stipulated deadline

(ii) Maximising the number of successfully allocated and completed forecasts

Additionally, three objectives that have to be optimised by the heuristics to satisfy the
requirements of urgent computing and the constraints of the targeted class of resources
(refer to Chapter 5 and 6) are identified. The objectives are as follows:

1.2 Research Methodology and Contribution 9

(i) Makespan robustness

(ii) Reliability

(iii) Energy-To-Solution (ETS)

Makespan robustness refers to the tolerance of an urgent system to perform faithfully in
event of perturbations such that the length of the schedule of a resource allocation adheres
to the deadline. Maximising makespan robustness will implicitly imply minimising the
makespan of an allocation, which will result in more lead time for mitigation activities.
This is the most important objective among the three, since late results are useless as
mitigation activities can no longer be carried out. This objective is thus fulfilling the most
crucial timing criterion of urgent computing while optimising a resource allocation such
that the lead time is maximised. In order to effectively quantify makespan robustness in
urgent computing, a mathematical model to define the robustness radius and metric is
developed.

Reliability aims to address the challenge of utilising multiple heterogeneous distributed
computing resources for the ensembles of forecasts. Reliability of a resource allocation can
be improved by avoiding a single point of failure, i.e. by not allocating all forecasts to only
one resource or one resource site, and by selecting resources that will enable a maximum
number of forecasts to successfully complete before the deadline. The aim of the reliability
objective in a resource allocation is thus to select reliable resources for the forecasts and to
distribute them among many such resources across multiple sites. A mathematical model
to quantify the reliability, i.e. reliability radius and metric, across resources and computing
sites is formulated.

Finally, the last objective, ETS, takes into consideration the realistic energy constraint
of computing resource providers in supporting such computations. ETS is the total energy
required for a computation to arrive at its solution. Frequency scaling options (the use
of higher processor clock frequencies at the expense of energy), are now a commonality in
modern high performance computing (HPC). By using higher frequencies, the makespan
of an allocation can be significantly reduced. However, as the amount of energy required
to power the computing resources is steadily increasing. This pushes the limits of resource
providers, particularly the public ones, to foot the power bills and in some cases to operate
within the power capacity limits of their centres. Thus the frequency scaling options are
not available to users by default. Additionally, as the computing budget that each resource
provider can dedicate to urgent computing is fixed and limited, the more energy efficient
an allocation is, the more urgent computations each provider can support. There is thus a
need to minimise the energy usage when appropriate.

An assessment model with reference to the identified obligations and objectives is de-
signed to evaluate and compare the results of the allocation among the heuristics. The
heuristics will function on the implicit requirement that the selected resources in a given
resource allocation have sufficient free computing nodes/cores to start the assigned com-
putations immmediately or in short order. However, this is typically not the case if ad-
vance reservations (long-term) or preemption of running jobs are not allowed. The project

10 1. Introduction

SPRUCE (Special PRiority and Urgent Computing Environment) [12] has demonstrated
the difficulties of resource providers in supporting preemption due to policy restrictions [7].
Thus the cost of preemption [13] on a top-tier production HPC resource is studied. Two
cost models, least cost and least disruptive, were developed. The cost of preemption is
then compared to the cost of some disasters that occurred in the last decade. Preemp-
tion cost is shown to be insignificant as compared to the economic losses caused by these
disasters. Therefore, the benefit far outweighs the cost to support preemption on public
HPC resources. To facilitate the adoption of preemption into the usage policy of such HPC
centres, a set of policy recommendations is also provided.

In summary, to answer the research question in this dissertation, a combined qualitative
and quantitative research methodology is used to uncover the requirements and challenges
of urgent computing and event domain sciences. Consequently, a comprehensive definition
of urgent computing, an urgent computing framework with a three-layer architecture, four
urgent software component managers, a TbU approach, a set of robust, reliable and energy-
aware heuristics to allocate ensembles of forecasts to multiple computing resources, two
mathematical models to quantify the robustness and reliability in the heuristics and an
assessment model to evaluate and compare the allocation results among the heuristics are
presented. A study to evaluate the cost of preemption was carried out to help justify the
use of public HPC infrastructures for urgent computing.

1.3 Publications

The publications published in the context of this dissertation are arranged in chronolo-
gical order based on the submission dates. The first list consists of work where the content
contributes directly to the research findings of the dissertation. The second list involves col-
laborations with domain scientists, seismologists, and workflow computer scientists, which
influence the research direction undertaken within the dissertation.

1.3.1 Personal and Main Contributions

As the first author, this list of publications illustrates not only how the research is conduc-
ted but also the achievements on each step of the way.

(i) S. H. Leong, A. Frank and D. Kranzlmüller. “Leveraging e-Infrastructures for
Urgent Computing” [7]— This conference paper attempts to provide a survey and
carry out an evaluation of the technical challenges faced and the improvements re-
quired to support urgent computing on existing e-Infrastructures in order to identify
what are lacking and what are already available. The co-author, A. Frank, contrib-
uted by sharing his view on available practical policy issues faced by LRZ, a resource
provider, which is a member of two European e-Infrastructures, Partnership for Ad-

1.3 Publications 11

vanced Computing in Europe (PRACE)5 and European Grid Infrastructure (EGI)6.
The findings of this paper are presented in Section 2.1.3.

(ii) S. H. Leong, D. Kranzlmüller and A. Frank. “A data management system to
enable urgent natural disaster computing” [14]— This poster presents an initial
design and implementation of the urgent computing framework as a data management
system. The co-author, A. Frank, contributed once again by sharing his view on
practical policy restrictions that can influence the success of such a system. This
initial setup helps in defining the architecture of the urgent system as shared in
Chapter 4.

(iii) S. H. Leong and D. Kranzlmüller. “Advance Visualisation and Urgent Com-
puting” [15]— This short paper evaluates the compatibility of advance visualisation
and urgent computing. The current shortcomings in advance visualisation are high-
lighted since they conflict with the deadline criterion of urgent computing. However,
the importance of visualisation to assist in evaluating the computed data is also
emphasised.

(iv) S. H. Leong and D. Kranzlmüller. “Towards a General Definition of Urgent
Computing” [9]— This conference paper aims to extend and refine the existing
urgent computing definition to provide a comprehensive general version to aid in
the identification of its unique challenges. The requirements of urgent computing,
the urgent system and its characteristics, deadline, cost and classes of computing
resource are elaborated in Chapter 3.

(v) S. H. Leong and D. Kranzlmüller. “A Case Study - Cost of Preemption for
Urgent Computing on SuperMUC” [13]— This conference paper investigates the
cost of preemption on a petaflop operational HPC resource, SuperMUC, by using two
specially designed and implemented cost algorithms, least cost and least disruptive.
It demonstrates that the cost of preemption is in fact much lower in comparison to
the loss mitigation that can be achieved by allowing an urgent computation. The
ultimate aim is to provide evidence to convince policy makers on the feasibility and
benefits of supporting urgent computing on public resources. The cost equation
defined in [9] formed the basis for computing the cost of preemption on SuperMUC.
Consequently, the resource allocation heuristics proposed in [16] are designed on the
assumption that preemption can be realised.

(vi) S. H. Leong and D. Kranzlmüller. “A Task-based Ubiquitous Approach to
Urgent Computing for Disaster Management” [11]— This conference paper
focuses on elaborating the urgent computing framework, a three-layer architecture,
based on a task-based ubiquitous approach where four urgent software compon-

5http://http://www.prace-ri.eu/
6http://www.egi.eu/

12 1. Introduction

ent managers are also introduced to administer the urgent computing requirements
defined in [9] and are described in Chapter 4.2.

(vii) S. H. Leong and D. Kranzlmüller. “A Hydro-meteorological Urgent Com-
puting Ubiquitous Framework for an Ensemble Forecast” [17]— This short
paper shows the first attempt to elaborate the entire urgent computing framework
by illustrating the TbU approach, the urgent managers and the robust, reliable and
energy-aware resource allocation heuristics as one urgent computer system.

(viii) S. H. Leong and D. Kranzlmüller. “Urgent Computing - A General Makespan
Robustness Model for Ensembles of Forecasts” [18] — This conference paper
presents a general mathematical makespan robustness model for urgent computing
to allocate ensembles of forecasts to computing resources such that small perturba-
tions in the resources will not adversely influence the ability to meet the stipulated
deadline. It illustrates the need for additional objectives, e.g. reliability, to enable
an effective resource allocation. Consequently, a follow-up paper [16] is prepared.

(ix) S. H. Leong and D. Kranzlmüller. “An Urgent Computing Framework for En-
sembles of Forecasts on HPC Infrastructure” [19] — This short paper presents
the final design and implementation of the urgent computing framework based on
the TbU approach for an ensemble of forecasts. The chosen heuristic from [16] will
be included in one of the four urgent software component managers, the schedule
manager, as defined in [11].

(x) S. H. Leong, A. Parodi and D. Kranzlmüller. “A Robust Reliable Energy-Aware
Urgent Computing Resource Allocation for Flash Flood Ensemble Fore-
casting on HPC Infrastructures for Decision Support” [16] — This journal
paper shares a set of robust, reliable and energy-aware allocation heuristics for en-
sembles of flash flood forecasts to tackle the requirements and challenges of urgent
computing and the event domain sciences. The co-author, A. Parodi, contributed
by sharing his expert knowledge on hydro-meteorology, the flash flood problem and
provided an expert analysis of the visualised ensemble results. The makespan ro-
bustness model in [18] is extended to include frequency scaling, which can improve
the makespan of an allocation. A reliability model to quantify site and resource re-
liability is also developed to support a good distribution of the forecasts on reliable
resources across computing sites and resources. ETS is also included in the heuristics
to ensure that the realistic power constraints of resource providers are also taken into
consideration. An assessment model to evaluate and compare the allocation results
among the heuristics is also introduced. The robustness and reliability models, the
set of proposed heuristics and the assessment model will be shared in Chapter 5.

1.3 Publications 13

1.3.2 Collaborative Contributions

This list of publications contains mainly publications from the European Union’s Seventh
Framework Programme project, VERCE. All publications are a collaborative effort between
the event domain scientists, i.e. seismologists, and computer scientists who specialised in
either workflow management or infrastructure integration. As an infrastructure specialist,
my main contributions in all associated papers revolve around enabling and integrating
the defined seismological use cases and corresponding workflows effectively on European
e-Infrastructures.

(i) M. Carpene, I. Klampanos, S. H. Leong, E. Casarotti, P. Danecek, G. Ferini, A.
Gemnd, A. Krause, L. Krischer, F. Magnoni, M. Simon, A. Spinuso, L. Trani, M.
Atkinson, G. Erbacci, A. Frank, H. Igel, A. Rietbrock, H. Schwichtenberg and J.-P.
Vilotte. “Towards Addressing CPU-Intensive Seismological Applications
in Europe” [20]— This conference paper illustrates the VERCE platform for the
forward simulation use case that is to be integrated to the European e-Infrastructure,
PRACE and EGI. It facilitates the identification of the common pitfalls that ulti-
mately contributes to the design and implementation of the urgent system architec-
ture and TbU approach.

(ii) M. Simon and S. H. Leong and K. H. Zad and L. Krischer and M. Carpene and G.
Ferini and L. Trani and A. Spinuso and F. Magnoni and E. Casarotti and A. Gemünd
and D. Weissenbach and I. Klampanos and H. Igel. “VERCE - CPU-intensive
Applications in Seismology” [21]— This short paper shares the initial platform
as a model framework that has the potential to fulfil different use cases on various
e-Infrastructures like PRACE and EGI by leveraging on the open standard, A Simple
API for Grid Applications (SAGA) [22].

(iii) A. Spinuso, A. Krause, C.R. Garcia, E. Casarotti, F. Magnoni, I.A. Klampanos, L.
Frobert, L. Krischer, L. Trani, M. David, S. H. Leong, V. Muraleedharan. “The
VERCE Science Gateway: enabling user friendly seismic waves simula-
tions across European HPC infrastructures” [23]— This short paper describes
the technological choices within the VERCE Platform to enable the Science Gateway
to integrate seamlessly with various EU e-Infrastructures, including EUDAT7.

(iv) A. Spinuso, A. Krause, C.R. Garcia, E. Casarotti, F. Magnoni, J. Matser, L. Krischer,
L. Trani, M. David, S. H. Leong and V. Muraleedharan. “The VERCE Sci-
ence Gateway: Interactive Forward Modeling and Metadata Manage-
ment” [24]— This short paper shares the common processing elements (PEs), data
and web services, utilised within the forward modelling workflow. Provenance data,
i.e. meta-data, is created, stored and can be browsed, queried and retrieved from the
gateway.

7http://eudat.eu/

14 1. Introduction

(v) E. Casarotti, A. Spinuso, J. Matser, S. H. Leong, F. Magnoni, A. Krause, C. R.
Garcia, V. Muraleedharan, L. Krischer and C. Anthes. “The VERCE Science
Gateway: Enabling User Friendly HPC Seismic Wave Simulations” [25]—
This short paper elaborates on how the VERCE Science Gateway enables the easy
setup of the forward modelling problem and to compute it on EU e-Infrastructures
from a seismologist’s point of view. It also shares the visualisation achievements
within the project.

(vi) S. H. Leong, C. Anthes, F. Magnoni, A. Spinuso and E. Casarotti. “Advance Visu-
alisation of Seismic Wave Propagation and Speed Model” [26]— This article
illustrates the advance visualisation of a seismic wave propagation and speed model
in the Virtual Reality installations, i.e. a 5 sided projection installation that is based
on the concepts of a Carolina Cruz-Neira’s CAVE Automated Virtual Environment
(CAVE)8.

(vii) M. Atkinson, M. Carpene, E. Casarotti, S. Claus, R. Filgueira, A. Frank, M. Galea,
A. Gemünd, H. Igel, I. Klampanos, A. Krause, L. Krischer, S. H. Leong, F. Magnoni,
J. Matser, A. Michelini, H. Schwichtenberg, A. Spinuso and J.-P. Vilotte. “VERCE
delivers a productive e-Science environment for seismology research” [27]—
This conference paper presents the motivation for building the VERCE platform to
support solid-Earth scientists to use established simulation codes on HPCs in conjunc-
tion with multiple sources of observational data, which can contribute significantly
to their researches. The architecture of the VERCE platform and the underlying
mechanisms are also shared.

1.4 Outline

The dissertation is organised as follows:

• Chapter 2 - Related Work & Evaluation
An overview of the related work in urgent computing and the proposed solution
in this dissertation is discussed in this chapter. A summary of urgent computing
research activities from 2006 until now is shared. The original definition of urgent
computing is also scrutinised to identify its shortcomings. Computing paradigms,
e.g. real-time computing, which share similar characteristics with urgent computing
are outlined. The importance of adopting a stochastic approach, i.e. an ensemble of
forecasts in the framework, is explained. Research activities in resource allocation,
in particular heuristics, are also elaborated.

• Chapter 3 - Urgent Computing Definition
In this chapter, the shortcomings in the original definition of urgent computing iden-
tified in Chapter 2 are extended and refined to provide a comprehensive general

8CAVE
TM

, a registered trademark of the University of Illinois’ Board of Trustees

1.4 Outline 15

version. The updated version includes a clarification on the requirements and char-
acteristics, i.e pre-computation and post-computation characteristics, deadline and
cost. The target classes of resources for urgent computations are described here. A
set of policy recommendations to enable urgent computing on shared resources is also
presented.

• Chapter 4 - An Urgent System & A Task-based Ubiquitous Framework
An urgent system consisting of four main components, the operator, the urgent com-
puter system, the decision & coordination system and controlled objects, is defined
in this chapter. A task-based ubiquitous framework based on a three-layer architec-
ture is presented to enable easy accessibility to the system in chaotic times when a
disaster is expected or occurring. The framework also offers the flexibility to adapt
the system according to dynamic use case specific requirements on heterogeneous
resources. Four urgent software component managers, information, resource & en-
vironment, schedule and fault, are designed to manage the requirements of urgent
computing.

• Chapter 5 - Resource Allocation Heuristics
One of the most crucial requirement, deadline, is realised in this chapter by intro-
ducing a set of resource allocation heuristics that will be a part of one of the urgent
software component managers, the schedule manager. Two obligations and three ob-
jectives, robustness, reliability and effective energy usage, of a resource allocation for
ensembles of forecasts are identified. Three resource allocation patterns are shared
to establish the most effective pattern for allocating resources to ensembles of fore-
casts. Two mathematical models are specially implemented to quantify reliability
and robustness. Energy-to-solution (ETS) is used to assess the energy usage of a
computation on a specific resource. An assessment model is also designed to organise
and evaluate the results of an allocation and to compare the results among different
allocations.

• Chapter 6 - Implementation and Result
In order to study the effectiveness of the designed heuristics, two case studies are
carried out. The first case study attempts to evaluate the three forecast allocation
patterns to identify the most time effective forecast pattern for an ensemble of fore-
casts. The second case study investigates a real flash flood that occurred in October
2014 in Genoa. A set of resource allocation heuristics is designed and leveraged upon
to schedule an ensemble of forecasts on a set of heterogeneous distributed resources
using the identified forecast pattern. Multiple objectives, i.e. reliability, robustness
and efficient ETS, are corresponding fulfilled in a balanced manner. The required
compromise among different heuristics is shared and the most optimal heuristic is
identified.

• Chapter 7 - Conclusion and Future Work
The work of this dissertation is summarised and concluded in this chapter. Potential

16 1. Introduction

future works that are closely related to this dissertation are proposed.

1.5 Terminology

Common terms used while defining urgent computing are clarified in the following list.

• An urgent use case is a description of a recurring issue, e.g. a flood, or a high
impact issue, e.g. a nuclear meltdown in a reactor, which is expected to potentially
result in extensive loss. The economic loss and human casualties are expected to be
mitigated with the support of time-critical computations.

• An urgent event is an occurrence at a point in space and time that can potentially
create an extensive loss situation, which requires immediate attention. An urgent
use case is thus a description of an urgent event.

• An urgent service is the act of the activities, i.e. computation, decision making
and coordination work, to fulfil the functions of an urgent system.

• An urgent computation is a computing activity that must commence in short
order, i.e. immediately or as soon as possible, to forecast the commencement and/or
progress of an urgent event. An urgent computation is triggered by an urgent event,
either the expectation or the commencement of it.

• An urgent product is the processed result of an urgent computation that can be
directly used for decision making and coordination activities to support loss mitiga-
tion.

• An urgent computer system is a component within an urgent system that is
in charge of the urgent computations. The computing resources are a part of this
component.

• An urgent system is a system to enable urgent computation(s) and support decision
making and coordination work such that loss mitigation is possible. The term “urgent
system” is selected as opposed to “urgent computing system” to take the cue from
real-time computing, where the system is known as “real-time system” as opposed
to “real-time computing system”.

• A lead time refers to the time left after the urgent computations are completed for
mitigation activities.

• Makespan is the length of a schedule of a resource allocation for the urgent compu-
tation(s). It represents the time from the start of the allocation to the point in time
when all assigned computations complete.

1.5 Terminology 17

• An event domain scientist in this dissertation refers to a domain specialist who
is an expert in a specific urgent event and can thus decide if an urgent computation
should be initiated and has the knowledge to evaluate urgent products to make
recommendations to decision makers. For convenience, an event domain scientist is
at times simply referred to as a domain scientist in this dissertation.

Finally when referring to the rows and columns, e.g. the first row, of a table, the header
row and column are excluded from the count.

18 1. Introduction

Chapter 2

Related Work and Analysis

The concepts behind urgent computing rely on a mixture of disciplines, services and
policies. As such, a variety of related work has to be evaluated. This chapter will be-
gin by providing an overview of urgent computing in Section 2.1 where the background of
the first known urgent computing project is shared. Next, related computing paradigms,
Real-Time Computing, Crisis and Disaster Management Computing and On-Demand Com-
puting, which have similarities to urgent computing are presented. This is followed by a
description and analysis of the existing and only definition of urgent computing from Tre-
bon [8]. Finally, the compiled results of existing urgent computing use cases and challenges,
and two urgent computer systems related to TbU are discussed. This section will help in
extending the definition of urgent computing as shown in Chapter 3 and assist in the design
of the architecture of an urgent system and the TbU approach in Chapter 4.

Section 2.2 describes the related work in resource allocation and resource allocation
heuristics. A set of resource allocation heuristics specifically designed for urgent computing
is elaborated in Chapter 5. Section 2.3 provides an overview of the worldwide adoption
of ensemble forecasting in weather prediction. The importance of the selected use case,
flooding, which is used to evaluate the solution presented in this dissertation (refer to
Chapter 6) is also shared.

2.1 Overview of Urgent Computing

Urgent computing first came into limelight in 2006 via the US project, SPRUCE (Special
PRiority and Urgent Computing Environment) [12]. Before that, urgent computations are
simply thought as time-critical computations, which can be categorised under e.g. real-
time computing, without carefully considering its unique requirements and characteristics.
Since many of the use cases require significant computation power, e.g. HPC, in order to

20 2. Related Work and Analysis

maximise the lead time, it was avoided and less time-critical forecasts utilising data from
days to weeks in advance were more common. SPRUCE provides an urgent computer sys-
tem to access an array of HPC resources within TeraGrid, predecessor project of Extreme
Science and Engineering Discovery Environment (XSEDE)1. It is arguably the most am-
bitious and complete urgent computing initiative ever attempted with the aim to support
urgent use cases from multiple event domain sciences.

An elevated priority, preemption and next-to-run, solution was implemented in SPRUCE
to handle urgent jobs by using the Right-of-Way tokens. Finer details were also considered
by having procedures to prepare in advance the required scientific applications on the re-
sources, easy to access web portals for administrators and users, etc. However, several
limitations hindered the success of SPRUCE. Preemption is hard to realise in the pro-
duction mode since existing policies make it impossible for resource providers to pause or
delete running jobs from the system to make way for urgent computations, as this would
violate the providers’ existing usage policies. Consequently, there was only one provider in
SPRUCE that supported preemption. The next-to-run strategy was more widely adopted
but could delay the urgent computations while waiting for running jobs to finish. There
is a known use case [28] that did not successfully leverage on the SPRUCE implement-
ation. The North Carolina storm surge forecast started by using the SPRUCE software
stack before switching to a dedicated computing system at RENCI2. Another development
was that when TeraGrid was ending, there was no longer any resource that supported
preemption [28].

SPRUCE faced another major challenge towards the end of its funding period due to the
pitfall in dynamism of computing environments. In order to ease the access to the different
resources in TeraGrid, an external open-source middleware tool, Globus Toolkit (GT)3,
was selected as the common toolkit to provide the required services. As a middleware,
GT hid the dynamism of computing environments by offering generic access interfaces for
many different services, e.g. interactive access, resource monitoring and discovery, and
data transfer management, across resources. This simplified the complexity in providing
urgent computing software tools and services within SPRUCE. The over-reliance on one
middleware however led to an unfortunate pitfall. During an upgrade in 2009, the de-
velopers of GT decided to make a major technology switch, rendering many of the crucial
services required by SPRUCE obsolete. Consequently, SPRUCE attempted to leverage on
on-demand resources, by beginning work to incorporate computational clouds as urgent
computing resources in the same year4. However due to the small set of offered cloud
resources and the fact that parallel computing was not supported on the cloud offered
within SPRUCE [28], many urgent use cases could not leverage on the provided cloud
infrastructure.

Cloud has since became the prevalent urgent computing resource choice, e.g. an urban
flood decision support system [29] and an early warning workflow-based framework [30].

1https://www.xsede.org/
2http://renci.org/
3http://toolkit.globus.org/
4http://spruce.teragrid.org/news.php

2.1 Overview of Urgent Computing 21

It is a highly valuable class of resources for use cases that do not require the computing
capability of expensive public HPC resources. The cloud is readily available, flexible to con-
figure and easier to maintain as a homogeneous environment that is independent of cloud
providers. This is a direct contrast to public HPC resources, where access policy, security,
specific environmental setup, etc. are challenges one has to contend with. However, there
is a significant number of public HPC resources that have more computation capabilities
than any cloud providers, and can thus realise a wide array of urgent use cases. They can
also be significantly cheaper than commercial on-demand HPC resources as demonstrated
in Section 3.5.1.

2.1.1 Related Computing Paradigms

Urgent computing is frequently being confused with other computing paradigms, in partic-
ular real-time computing (RTC), and crisis and disaster management computing (CDMC).
The timing characteristics of urgent computing brings to mind RTC while its application,
to manage loss from urgent events, hints a relationship to CDMC. Consequently, it prompts
some to propose inappropriate (near) real-time solutions for urgent computing challenges.
Non-time critical CDMC computations were also mistaken as urgent computations. On-
demand computing (ODC) is another paradigm, which is commonly associated with urgent
computing due to the requirement to have computing resource(s) on demand in short or-
der. This confusion among the paradigms obstructs the identification of unique challenges
and use cases, and impedes the progress of urgent computing. Thus, the differences among
urgent computing, RTC, CDMC and ODC will be presented in this section.

Real-time Computing

The use of computers for ”real-time” application was first proposed in 1950 by Brown
and Campbell [31]. In 1954, the first digital computers were developed for a real-time
system to provide an automatic flight and weapons control system. By 1974, a distrib-
uted computer control system was made possible. In comparison to urgent computing,
the research effort and achievement in real-time systems is extensive due to its longer his-
tory. Understanding the relationship between urgent and real-time systems will be greatly
beneficial in shaping the definition, characterisation and modelling of urgent systems.

Real-time computing is a computer science area where hardware and software systems,
e.g. brake systems in a automotive and air traffic control systems, are subjected to real-
time constraints. Although there is no single official definition of real-time system, the
following two definitions illustrate the most crucial characteristics of real-time computing.

”A system that performs its functions and responds to external, asynchronous events
within a predictable (or deterministic) amount of time.” [32]

”The correctness of the system depends not only on the logical result of the computation
but also on the time at which the results are produced” [2, p. 10]

22 2. Related Work and Analysis

The time constraint in real-time computing is annotated as a deadline, after which the
results are not longer useful even if they are correctly produced. Three type of deadlines
are defined in real-time systems, soft, firm and hard. A real-time system with a soft,
firm or hard deadline is correspondingly known as a soft, firm or hard real-time system
respectively. The definitions of the real-time deadlines as given by [33, p.7] are illustrated
with the following classifications.:

• A deadline is soft if the utility of results produced by a task decreases over time after
the deadline expires.

• A deadline is said to be firm if the results produced by the corresponding task cease
to be useful as soon as the deadline expires, but consequences of not meeting the
deadline are not very severe.

• A deadline is said to be hard if the consequences of not meeting it can be catastrophic.

Predictability is a crucial characteristic of a real-time system. Knowing the deadline
is thus a pre-requisite. A deadline is either fixed in advance or dynamic (dependent on
the event), but is known, i.e. predictable, when a computation is initiated. However, a
deadline of urgent computing can be an unknown, i.e. unpredictable, and even a target
result of an urgent computation. A real-time system is typically modelled for a specific use
case and the system is carefully “designed” to maintain predictability under pre-defined
conditions. In the case of urgent system, whether predictability can be “designed” into the
system is dependent on the urgent event.

Figure 2.1: Real-time System [2]

A real-time system is represented as shown in Figure 2.1 by [2] where it consists of
three building blocks, the operator, the real-time computer system and the controlled ob-
ject. Interactions between the neighbouring blocks occurred over the respective interfaces.
On the operator cluster, an operator can initiate a computation via the man-machine inter-
face. The real-time computations are then initiated on the computational cluster. Finally,
on the controlled cluster, the controlled object is precisely controlled, by consulting the
computation result, via the instrumentation interface.

Figure 2.2 summarises the relationship between real-time, distributed real-time and
urgent computing with a Venn diagram. The differences in the sizes of the circles aim to

2.1 Overview of Urgent Computing 23

Figure 2.2: Venn diagram of Real-time Computing and Urgent computing

represent the differences in the amount of research activities within each classification of
computing. A distributed real-time system, which consists of a set of (computer) nodes
that are interconnected by a real-time communication network [2, p. 2], is a subset of
a real-time system. As such, it has the same three classifications of deadlines, soft, firm
and hard (depicted by small black circles). An urgent system can take advantage of both
single resource and distributed resources (represented by the intersection among the three
biggest circles). In spite of sharing many traits, an urgent system has some fundamentally
distinct requirements and characteristics (refer to Chapter 3) and in particular its deadline
classifications. An urgent system has only firm and hard deadline classifications. Addi-
tionally, it has two special firm* and hard* deadlines (refer to 3.3) that are uniquely urgent
computing.

Crisis and Disaster Management Computing

Crisis management computing, disaster management computing, emergency computing,
computing for disasters and a few more variants containing the key terms, civil protection,
disaster, crisis and emergency, can be taken as synonymous in this context. Frequently
the two terms, disaster management and crisis management, come hand-in-hand since a
disaster can result in a crisis if it is sufficiently severe. In principle, CDMC includes the
following activities:

(a) Prevention - Reduce the risk of a crisis

(b) Preparation - Prepare for a crisis

(c) Response - Respond to a crisis

(d) Recovery - Recover from a crisis

The term crisis will also be used to represent the threat that triggers one or more
computations since the disasters, both natural and man-made, which urgent computing is

24 2. Related Work and Analysis

concerned with are those that will potentially result in a crisis. CDMC is thus a class of
computation activities to manage the potential crises.

Computations to reduce the risk of a crisis can include any computing that facilitates a
better understanding of a particular crisis in order to plan measures to reduce the possibility
of its occurrence. This class of computation takes place before a crisis occurs. An example
is the collection and computation of rainfall statistics in a high risk region to plan the
depth of drainage in order to reduce the likelihood of a flood.

In many crises, there are no ways to prevent them, e.g. storm and tsunami, from hap-
pening but the damages can be readily reduced by being more prepared. These preventive
activities can continue until the crisis strikes. Using the flood as an example, in regions
where one cannot prevent a flood, computations to predict the rain depth can help in early
evacuation and loss mitigation.

During a crisis, additional computations can be imperative for rescue work and loss
mitigation. After a severe earthquake, there are typically strong aftershocks that can
hinder rescue work and result in further losses. Computations to check the structural
soundness of bridges can support the rescue work and protect rescue workers.

Finally, after a crisis, recovery activities must be carried out. An example of a recovery
activity was the simulation of the anticipated path of the oil spill after the Deepwater
Horizon oil rig explosion [34] in 2010.

The crisis management activities mentioned in the list above can thus be further cat-
egorised based on when they take place as shown in Figure 2.3. (a)Prevention and (b)
preparation, are a part of pre-disaster activities. (c) Response and (d) recovery are a part
of the in-disaster and post-disaster activities respectively.

Figure 2.3: Crisis Management Computing Categorisation

The main difference between CDMC and urgent computing is the urgency factor.
CDMC includes activities, particularly activities to reduce the risk of a crisis, which can
have the luxury of time to be computed when the conditions permit. Urgent computing
however includes only activities that have a bounded time constraint where waiting for
computing resources to become available is infeasible.

Figure 2.4 summarises the relationship among the CDMC activities and urgent com-
puting. Urgent computing can be seen as a subset of CDMC, which is concerned only with
activities that have challenging time constraints. Its activities thus centre around some
of the preparation activities (refer to gray circle (b)) that are happening shortly before
the crisis (pre-disaster), all response activities (refer to gray circle (c)) during the crisis
(in-disaster) and some of the recovery activities (refer to gray circle (d)) happening shortly
after the crisis (post-disaster).

2.1 Overview of Urgent Computing 25

Figure 2.4: Venn Diagram of CDM Computing and Urgent Computing

On-Demand Computing

ODC is a class of computing where one does not purchase the computing resources but
instead “leases” it on demand, usually with a cost, based on the computational needs.
Cloud computing and utility computing are considered as implementations of this class of
computing.

In order to realise urgent computing, resources have to be available on short notice,
which is in line with one of the core features of on-demand computing. In contrast, shared
public resources will require intrusive measures, e.g. preemption, which are likely to conflict
with the operational policies of resource providers. On-demand computing is potentially
cheaper than owning dedicated resources, particularly if it is leveraged upon by rarely oc-
curring urgent events. It can serve as a backup resource for frequently occurring urgent
events with dedicated resources, in the event of unforeseeable outage or planned mainten-
ance.

Due to the ease of usage, there is an increasing dominance of cloud-based [29][30]
systems for urgent computing. Such systems leverage on the fact that virtualisation enables
the required computing environments to appear as homogeneous resources. Consequently
the integration effort to computing resources is greatly simplified. On-demand computing
should be regarded as a class of resource that is suitable and useful for urgent computing
and in particular rarely occurring urgent events. Section 3.5 shares more about each class
of computing resources.

2.1.2 Definition of Urgent computing

The first SPRUCE publication was a whitepaper [35] in 2006, describing SPRUCE’s user
workflow, portal, resource providers and implementation status. The first conference pub-
lication [12] from the same authors occurred in 2007 by focusing on SPRUCE as an urgent
high performance computing system. The term ”urgent computing” was introduced on the
pretext that it was self-explanatory and was thus without a definition or reference. Four
implementation requirements for supporting urgent computing were stated as follows:

(i) Job sessions

26 2. Related Work and Analysis

(ii) Policy framework among resource providers

(iii) Permission for priority jobs

(iv) User authorisation for priority jobs

The next paper [36] from 2008 clarified the needs and requirements of an urgent system,
i.e. the SPRUCE system. The implementation requirements were further elaborated in
the descriptions of the urgent computing framework. Urgent computing (system) was not
formally defined but was hinted at with examples illustrating its usage, and keywords and
phrases like ”immediate attention”, ”event-driven”, ”deadline-based” and ”late results are
useless”.

The first comprehensive and only definition of urgent computing was penned by Tre-
bon [8] in his dissertation work to enable urgent computing within the existing distrib-
uted computing infrastructure, i.e. SPRUCE. Understandably, his work was influenced by
SPRUCE’s requirements, leading to a usage context specific definition of urgent comput-
ing. It imposed a number of restrictions in the requirements, which were considered as
unnecessary and are discussed in detail in the following section.

Now, there are numerous urgent computing related publications for specific use
cases [28][37], addressing specific challenges such as knowledge-based structures for simula-
tion within computing tasks [38] and data management [14], and sharing an early warning
system framework [30]. In these works, there were no attempts to refine the definition
of urgent computing and use cases [39] that did not require significant resource usage or
long computation time, i.e. violating the requirements defined by Trebon, were accepted
as urgent use cases.

Trebon’s Definition of Urgent Computing

There is thus a need to evaluate the existing definition of urgent computing and refine it
such that it is applicable in a more general context while conforming with requirements
of existing urgent work. Since the aim of Trebon’s work was to design and implement
an urgent computing environment that took advantage of the HPC resources within the
TeraGrid, urgent computing was defined with the following three requirements [8, p.2]:

(req. 1) The computation operates under a strict deadline after which the computation
results may give little practical value.

(req. 2) The onset of the event that necessitates the computation is unpredictable.

(req. 3) The computation requires significant resource usage.

This set of requirements provides a good hint to what urgent computing is but is too
specific to SPRUCE’s requirements and is thus unsuitable for general application. The
shortcomings with each requirement is summarised respectively in the following list.

(sc. 1) The deadline classification, strict, is imprecise and too SPRUCE specific.

2.1 Overview of Urgent Computing 27

(sc. 2) The identification of onset as the characteristic of the events, which triggers
urgent computations is inaccurate.

(sc. 3) The use of the term, significant, to quantify resource usage is imprecise.

In requirement (req. 1), the deadline was defined to be “strict” but the term “strict”
was not explained or defined. Instead Trebon shared that an urgent system falls somewhere
between a soft and a hard real-time system [8, p.9], raising the question of whether a strict
deadline corresponds to a firm deadline since it is the intermediate deadline classification
between soft and hard.

Trebon was thus consulted via a written correspondence where he confirmed our suspi-
cion. Since SPRUCE only requires the computations to aid in the decision making [8, p.11]
as one of the information sources, the consequence of missing the deadline is expected to
be not as severe, because mitigation activities can still be planned and carried out using
other information sources. This led to the firm deadline classification. However, this is too
restrictive for general application. In cases where decisions are only dependent on urgent
computing as the only source of information, the deadline should be hard. Thus, both
firm and hard deadlines should be included to have a complete urgent computing deadline
classification.

The requirement (req. 2) is arguably the most insightful requirement among the three.
It describes the unpredictable nature of an urgent event, albeit just the onset, and thus
the rationale behind the urgency, i.e. time criteria, in urgent computing. However, rather
than the unpredictability of the onset, the urgency is a result of the lack of or late arrival
of more accurate data until zero hour. In case of a storm, the onset of the event is known
but due to its dynamic and long lasting nature, urgent computations have to be performed
as the event develops, i.e. as the most up-to-date data become available. This requirement
must thus be extended to accurately reflect the characteristics of urgent computing and
the cause behind the urgency of computations.

The requirement (req. 3) is set up such that the impressive array of expensive HPC
resources, which SPRUCE had access to, can be efficiently utilised. In principle, there is
no scientific or technical need to set a quantitative limit on the amount of resource usage.
In fact, if a computation can use less cores/nodes while meeting the deadline, there is no
reason not to accept it as an urgent computation. Trebon shared that it is simply more
interesting, i.e. challenging, to address use cases requiring significant resource usage.

The use of the phrase “significant resource usage” is also imprecise. Significant resource
usage depends on the amount of resources an infrastructure has and is also dependent on
the technological advancement at that point in time. A computing centre with a cluster
of 100 cores will see 50 cores as a significant resource usage while a computing centre with
a cluster of 10,000 cores would probably interpret it differently. A simulation application
that uses tens of thousands of cores was a major achievement a decade ago but is now
simply a well-scaled application due to the technological advances in HPC and algorithmic
optimisation.

In our view, the requirements of urgent computing from Trebon are found to contain
imprecise terms that require clarifications, inaccurate representation on the characteristics

28 2. Related Work and Analysis

of urgent computing and requirements that are too specific to SPRUCE for general ap-
plication. The shortcomings in the three requirements are addressed in Chapter 3 with a
refined and extended definition of urgent computing.

2.1.3 Urgent computing use cases and challenges

There are a variety of use cases worldwide that can benefit from urgent computing to
compute high fidelity forecasts. Depending on the use case and the classes of computing
resources used, the challenges can differ and thus a diverse set of solutions are proposed.
Table 2.1 shows a selection of use cases and challenges, and the solutions found in a
research [7] over the Internet that are suggested or implemented. It includes use cases
from different origins to demonstrate a global coverage.

Use case/Challenge Origin
Regular
computation

Solution/Suggested solutions

Flash flood [40] Italy (Genoa) No HPC resources
Weather forecast on PLX [41] Italy Yes Dedicated HPC resource
Earthquake early warning system [42] Japan Yes Dedicated resources
Tracking real-time storms in project
LEAD [43]

USA No Elevated priority (shared HPC resources)

Storm surge computation [28] USA Yes Dedicated HPC resource

Forest fire propagation [44] Spain No
Generic algorithm (possible with both
dedicated and shared resources)

Using smartphones on cloud [39] USA No Mobile phone and/or cloud resources
Implementing computing on
HPC system [45]

USA No
Innovative allocation policies and
scheduling strategies (shared resources)

High-level knowledge based structures
for simulations [38]

Russia Not applicable
Build decision support systems (shared
resources)

Interactive Workflow Infrastructure [46] Russia No
Reactive programming paradigm with
interactive workflow model based on
blocks (Shared resources)

Resource management for flood
decision support [47]

Poland No
Timely data acquisition and delivery
with holistic approach (cloud resource)

Table 2.1: Urgent Use Cases, Challenges and Solutions

Three classes of resources are utilised by the above use cases and challenges and are
shown as follows:

• Public (Shared) resources

• Dedicated resources

• On-demand resources

Table 2.1 shows that the dedicated resources (fourth column) are chosen when regular
urgent computations (third column), frequently occurring use cases, are required. Public
and on-demand (cloud) resources are used when urgent computations are required less
regularly (rarely occurring use cases). Public resources in the form of e-Infrastructures
are particularly useful for urgent computing. The term e-Infrastructure refers to “a new
way of conducting scientific research by the creation of a new environment for academic

2.1 Overview of Urgent Computing 29

and industrial research in which virtual communities have shared access to unique or
distributed scientific facilities (including data, instruments, computing and communica-
tions), regardless of their type and location in the world.” [48]. In Europe, examples of
such e-Infrastructures are PRACE and EGI. PRACE provides leading HPC resources for
European scientists while EGI coordinates and manages a large number of distributed Grid
and Cloud resources for various research communities. In the US, XSEDE provides an e-
Infrastructure supporting more than 2000 projects [49]. More details on different classes
of computing resources are shared in Section 3.5.

It is also worthwhile to note that among the use cases shown in Table 2.1, only one use
case, forest fire propagation in the sixth row, proposed an algorithmic solution. This is
not reflective of the importance of algorithmic solutions in urgent computing. The event
domain scientists with whom we work clarified that they have only in the recent decades
begin to actively use HPCs for their research works. The exciting possibility of computing
at zero hour has only been newly introduced to them. Thus, commonly used research
codes, e.g. SPECFEM3D Cartesian5, are still unsuitable for urgent computing in terms of
performance and functionalities. Urgent computing will require fast performance to meet
the stipulated deadline. Required urgent computing functionalities, e.g. fault tolerant
and adaptive ability to handle evolving zero hour data, will also be useful to improve the
reliability and also the accuracy of forecasts.

In principle, there are already algorithmic research activities that are beneficial to
urgent computing. In Japan, a real-time inundation forecast system for tsunami [50] was
developed. The forecasts can be computed under eight minutes [51, p.26] by scaling up
the TUNAMI (Tohoku University’s Numerical Analysis Model for Investigating Tsunami)
code with a staggered leap-frog 2-D finite difference numerical scheme [52] on the targeted
computing resources. Fault tolerant algorithms that are able to recover from faults are
particularly useful to avoid compromising the timing constraints of urgent computations
in event of faults. Possible strategies include the combination use of chaotic relaxation
and meshless methods [53], and sparse grid combination technique [54]. When applied
appropriately, these methods can potentially allow a computation to continue without
compromising the result when a certain number of tasks/cores, limited by a threshold,
fail during runtime. Adaptive algorithms that handle evolving data can also contribute
to improving the convergence and the accuracy of urgent computing by incorporating
new/updated data in running computations. Numerous adaptive algorithms have been
proposed for evolving data, e.g. performing only a partial update of the coefficients in
a given iteration while using the nonlinear Volterra filter [55] and the use of CVFDT
(Very Fast Decision Tree learner from continuously-changing data streams) algorithm to
perform data mining on time-changing data streams [56]. Such algorithms can potentially
assist urgent computations to arrive at more reliable and accurate results and/or for the
numerical solutions to converge faster. However, these advancements have yet to make
their way into the event domain science forecast models. More effort is still required in
incorporating such algorithmic solutions, which is outside of the scope of this dissertation.

5https://geodynamics.org/cig/software/specfem3d/

30 2. Related Work and Analysis

2.1.4 Urgent Computer Systems

There are currently a number of urgent computing systems, e.g. SPRUCE and UrbanFlood
Common Information Space (CIS) [30]. CIS is a part of an early warning system that works
on top of the Web Services Business Process Execution Language (WS-BPEL). It is argued
that the CIS framework is potentially applicable to other early warning systems, which will
not have similar workflows, but could potentially benefit by reusing sub-workflows that have
a high repeatability rate. Since the underlying computing resources are cloud resources,
heterogeneity is not an issue as the urgent computing environment, e.g. operating system,
available libraries, and software applications and their versions, can be fixed by having
virtual images of the urgent computer system and the targeted computing resources. This
differs from our proposed approach, which requires a wide array of computing resources
such that the ensembles of forecasts can be completed simultaneously within the time
constraint. E-Infrastructures, which offer a wide array of heterogeneous resources, are our
targeted class of resources. Due to the heterogeneity of such computing resources and their
environments, the “sub-workflow”, i.e. tasks/subtasks, are environment/resource specific
and non-repeatable.

An interactive workflow model [46] based on a reactive programming model was also
proposed. The aim is to build a workflow-driven infrastructure to enable interactive cap-
abilities in soft real-time. The proposed model is a part of a bigger platform, CLoud
Applications VIRtual Environment (CLAVIRE) [57], to provide the complete urgent sys-
tem. It was assumed that the most crucial criterion, deadline, can be met by making
predictions on the calculation time for the specific problem statement. Computing re-
sources are assumed to be limited but sufficient. The approach shares some similarities
with our proposed solution. Both aim to provide flexibility to cater for inevitable modi-
fications to the workflow or work process. Our proposed solution is additionally able to
fulfil the requirement to support ubiquitous devices during chaotic times when a disaster is
impending or has struck. Practical security concerns, which have been a major road block
to many proposed solutions are also taken into consideration in our solution.

2.2 Resource Allocation

In this section, resource allocation strategies in urgent computing and resource allocation
heuristics are discussed. These researches are related to the proposed research allocation
heuristics in Chapter 5.

2.2.1 Resource Allocation Strategies in Urgent Computing

Resource allocation within SPRUCE was based on an opportunistic approach [28] and/or
on elevated-priority policies [12], i.e. next-to-run, preemption, etc. In spite of the efficiency
of preemption, it was not commonly adopted due the policies of providers. Next-to-run
and oportunistic scheduling were more common but were reported to cause delays [28] that

2.2 Resource Allocation 31

were detrimental to meeting the deadline.
In another related work [58], an attempt to study the impact of urgent computing on

resource management policies, schedules and resource utilisation on three resources was
carried out. Four different resource allocation strategies are proposed:

(i) Load-balancing via the minimum queue length

(ii) Dedicated (one) resource provider for urgent jobs

(iii) Combine the above two. If no dedicated resource is available, choose the resource
with the minimum queue length

(iv) Minimum completion time policy

In both works, a single job/forecast, as opposed to an ensemble of forecasts was ex-
amined. Both focused mainly on the computing resource challenges and not the common
limitations of the event domain sciences, which were insufficient for practical reasons. To
effectively allocate a set of heterogeneous resources for an ensemble greatly increases the
challenge since different forecasts and resources will have different execution time perform-
ances.

In another urgent computing related work for early warning system (EWS), a hybrid
scheduling algorithm for urgent workflows [59] based on traditional and meta-heuristic
approaches within cloud resources is developed. The EWS hybrid scheduling algorithm
manages multiple forecasts but since they are not a part of an ensemble, the requirements
are different.

2.2.2 Resource Allocation Heuristics

The decision to select an optimal resource allocation is typically either P-complete [60] or
NP-complete [61] as it involves a number of objectives, which cannot be simultaneously
optimal. Consequently, heuristic algorithmic approaches are prevalent to deal with such
decision problems.

Among the heuristic approaches for resource allocation, it can be further categorised
into those that optimise a single resource allocation [62][63] and those that manage dis-
tributed resource allocation [64]. Distributed resource allocation, which we are concerned
with, includes numerous robust resource allocation heuristics [60][65] where deadline as a
constraint is proposed. Most works focus on how to efficiently fit jobs/tasks onto a limited
set of resources, under the assumption that there are insufficient resources to execute all
jobs simultaneously. This differs from our requirement (refer to Chapter 5), which requires
all jobs to execute simultaneously to meet the stipulated deadline.

With rising energy costs, energy- and performance-aware resource allocations are gain-
ing importance to save energy and costs. At first glance, the cost of energy appears
trivial when compared to the potential losses of urgent events. However, studies [66][67]
have shown that the energy constraint faced by resource providers is very real. Energy con-
sumption has increased over the years and in 2010, between 1.1 to 1.5% of global electricity

32 2. Related Work and Analysis

use is believed to be from data/HPC centres. At LRZ, approximately a third of its funding
is used to foot the power bill. Intel Turbo Boost technology6, which uses the highest pos-
sible frequency achievable at the expense of energy, is unsupported (disabled on purpose)
during day-to-day operations. The existing power capacity, 10 MW, of LRZ does not offer
the possibility to host the current (November 2015) top HPC resource, Tianhe-2, in the
Top500 list7, which requires 17.8 MW of electrical power to have a peak performance of
54.9 PFlop/s. The upcoming Exascale systems [68][69] are expected to require even more
electric power. As the budget dedicated to urgent computing is expected to be fixed and
limited, the more energy efficient an resource allocation is, the more urgent computations
can be supported.

There is thus a need to minimise the energy usage such that the resource providers
can readily support urgent computing without adding unnecessary burden and strain to
their existing power infrastructures. A variety of heuristics [70] for scheduling of tasks is
proposed. Most approaches leverage on single resource, i.e. a single process platform [62]
or a multi-core platform [71]. The main concern is to find an optimal compromise between
power and the defined performance constraints, e.g. deadline, timing, job completion time,
quality of service. The most common technique used is to manipulate the energy consumed
by adjusting the voltage or frequency of nodes/cores/processes of resources within the
application source codes or via system specific kernels/software. In our solution, the ETS
values are assumed to be known. The heuristic algorithms are independent of the actual
technique used.

In the works [72][73], heuristic/algorithmic approaches to reliably allocate tasks on
distributed systems and heterogeneous clusters are proposed respectively. Both attempt
to allocate the tasks, which require interprocessor communication, within a single job to
various processors of a system. This differs from our requirement where the targeted
set of resources is made up of independent dynamic heterogeneous HPC systems, e.g.
resources on e-Infrastructure like PRACE. Multiple independent jobs can thus be scheduled
simultaneously. This is also the first heuristic algorithmic attempt in urgent computing to
optimise the following multi-objectives, robustness, site and resource reliability, and ETS
for ensembles of forecasts.

2.3 Ensemble of Forecasts

There are many urgent computing events, e.g. storms and wildfires, which are very loc-
alised in space and in time, making them hard to predict. In such cases, there is no
single forecast model or set of conditions, i.e. physical parameters, initial and boundary
conditions, which can guarantee a high-fidelity forecast. The inherent limitations of most
observational data and forecast models, forecast uncertainties [74][75] are generally un-
avoidable even at zero hour. Main limitations in observational data can be attributed to

6http://www.intel.com/content/www/us/en/architecture-and-technology/turbo-boost/turbo-boost-
technology.html

7http://top500.org/list/2015/11/

2.3 Ensemble of Forecasts 33

data errors, missing data and/or conflicting observed data while core limitations in fore-
cast models are related to the incomplete understanding and modelling of the underlying
science, e.g. the physics, and the simplified numerical representation of complex processes.
Consequently, stochastic [5] as opposed to deterministic forecast methods are increasingly
prevalent. Ensemble forecasting [6], which can include the simulations of a number of
numerical models, and/or perturbations in initial conditions and/or physical parameters,
provides the basis for stochastic predictions.

Currently, there are many operational weather prediction services worldwide that take
advantage of ensembles of forecasts. The list below illustrates a selected set of these systems
and centres, and there are many others.

• European Commission’s Flood Awareness Systems [76] [77]

• European Centre for Medium-Range Weather Forecasts (ECMWF) [78]

• Germany’s Deutscher Wetterdienst (DWD) [79]

• The US’s National Centers for Environmental Prediction (NCEP) [80]

• China Meteorological Administration (CMA) [81]

• Australia’s Bureau of Meteorology [82]

• Japan Meteorological Agency (JMA) [83]

Consequently, our proposed urgent computing solution will support ensembles of fore-
casts to improve the fidelity of the computed predictions. The number of forecasts required
per ensemble varies and is dependent on the use case.

2.3.1 Flooding

Flooding is an example of an urgent event that can greatly leverage on urgent computing.
According to the findings of an ensemble flood risk assessment study [84] that was car-
ried out by the European Commission (EC) Joint Research Centre (JRC), the frequency
and damage of floods in Europe are expected to increase sharply over the next decades.
Table 2.2 shows the current (Year 2015) and projected figures (Year 2050 and Year 2080)
on population affected and economic loss. A range is presented for the projected figures
to provide room for variation in future economic growth. Both the number of popula-
tion affected and economic loss are expected to increase. By 2080 (refer to the last row
in Table 2.2), the number of affected population is expected increase by 2- to 4-fold as
compared to now while the cost of damages is expected to increase by 5- to 18-fold. In
Germany alone, 170,000 to 323,700 of the population are expected to be affected by floods
with a damage of 5.3 to 33.9 billion euros in 2080.

Consequently, EC developed services like the European Flood Awareness System
(EFAS) [76] to provide early warnings from three to ten days by monitoring and fore-
casting floods across Europe. Naturally, the flood threat is not restricted to Europe. Thus,

34 2. Related Work and Analysis

Year Population Affected Economic Loss

2015 216,000 5.3 BAC
2050 500,000 - 640,000 20 - 40 BAC
2080 540,000 - 950,000 30 - 100 BAC

Table 2.2: Result of Flood Risk Assessment Study for Year 2015, 2050 and 2080

the EC also developed a Global Flood Detection System (GFDS) [85] and Global Flood
Awareness System (GIoFAS) [77] by leveraging on satellite-based microwave observational
data to produce near real-time maps and alerts for major floods, and an integrated hydro-
meteorological forecasting chain and a monitoring system to forecast flood events with a
lead time of up to 30 days respectively.

One form of flood, flash flood [86][87][88][89][90], receives additional attention. It is
arguably the most dangerous type of floods as it can form swiftly due to high or extremely
high rainfall rates with little or no prior warning and with devastating consequences es-
pecially in urban regions. Consequently, JRC carried out additional studies [91][92] to
understand the feasibility of increasing the lead time using probabilistic methodologies to
enable early warning. However, due to the limited spatial scope of flash floods, Global
Climate Models (GCMs), which are in the scale of 15-25 km have difficulties in detecting
them. In such cases, Limited Area Models (LAMs) operating at cloud permitting grid
spacing (5-1 km) had to be used [86][88].

One example of LAMs is the THORPEX8 (a World Weather Research Programme) In-
teractive Grand Global Ensemble-Limited Area Model (TIGGE-LAM)9. It is an extension
of the TIGGE archive to include regional weather forecasts from LAM ensembles with grid
spacing of 12 and 2 km resolution to provide detailed information up to a few days ahead
to complement the larger-scale information provided by the global data in the established
TIGGE archive.

A flash flood that occurred on 9 October 2014 in Genoa, Italy within a spatial scope
of less than 15 km2 is an example requiring a LAM. This particular event will be used to
demonstrate the proposed heuristics in Section 6.2. Both EFAS and GIoFAS systems do
not have a record of this flash flood, i.e. the flood was not detected by either system. The
national weather service in Italy only issued a heavy rain and storm weather forecast. No
flood warning was issued. Unfortunately, there were one death and an estimated damage
of 303 million USD based on data from the International Disaster Database (EM-DAT)10.

Flash floods [87] are thus events that can greatly leverage on urgent computing, due
to their particularly short lead times. There are also a number of flood related urgent
computing research work [47][30] for decision support and early warning. Support for
ensembles of forecasts are not mentioned in these approaches. There is no known urgent
computing research work on enabling ensembles of forecasts.

8http://www.wmo.int/pages/prog/arep/wwrp/new/thorpex new.html
9https://software.ecmwf.int/wiki/display/TIGL/Home

10http://emdat.be

Chapter 3

Urgent Computing Definition

Urgent computing requires computations to commence in short order and complete before
a stipulated deadline so as to support mitigation activities in preparation, response and re-
covery from an event that requires immediate attention. In order to understand and tackle
its unique requirements and challenges, a comprehensive definition is required. In this
chapter, a refined and extended urgent computing definition is shared. We begin by gath-
ering the requirements, both functional and non-functional, in Section 3.1 to understand
what needs to be done. This is followed by the identification of the characteristics, pre-
computation and post-computation, in Section 3.2 to help identify urgent computations.
In the next two sections, deadline and cost of urgent computing are shared. Finally, the
different classes of computing resource, public, dedicated and on-demand, which influence
the cost of urgent computations, are classified in Section 3.5. A set of policy recommend-
ations that are required to successfully realise urgent computing on our targeted resource
class, public resources, is also shared.

3.1 Requirements

In this section, the requirements of urgent computing are presented. Figure 3.1 provides an
overview of the functional and non-functional requirements. The functional requirements
consist of data collection, human machine interface (HMI) and data evaluation, which are
discussed in more detail in Section 3.1.1. Non-functional requirements consist of robustness,
reliability, maintainability, availability and security, which are shared in Section 3.1.2. The
functional requirements are made up of practical functionalities that are required to realise
urgent computing. These requirements are rather generic and are in fact also applicable
to real-time systems (RTS) and non-urgent computing systems, e.g. CDMC systems.
The non-functional requirements are more crucial in highlighting the unique and more

36 3. Urgent Computing Definition

stringent requirements of urgent computing. These requirements are the de facto qualities
of a well-design system but are typically relegated to a lower priority or ignored since
the cost of fulfilling them are perceived to outweigh the benefits. However, in the case of
urgent computing, they are imperative requirements. SPRUCE was not concerned with this
aspect of urgent computing and thus there was no mention of functional and non-functional
requirements in their research works. We however believe it to be very important and have
thus defined them in this dissertation.

Figure 3.1: Tree Diagram of Urgent Computing Requirements

3.1.1 Functional Requirements

The functional requirements of urgent computing are gathered by analysing the functional
requirements of the very similar paradigm, real-time computing [2], and evaluating the
requirements of the urgent use cases, e.g. [40][27][42][45]. It is thus comprised of data
collection requirements and human machine interface (HMI) requirements. Additionally,
to facilitate decision-making, data evaluation functionality must also be included. These
three functionalities are elaborated as follows:

Data Collection

Data collection is arguably one of the most fundamental requirement of urgent computing.
Data is essential to determine if an urgent computation should be triggered, and where
and how it should be initiated. Urgent event data, i.e. observational data, is the most
crucial input to forecast models and is typically only available in short order before/when
the event strikes. Computing resource data is indispensable to determine the available and
most suited set of resources for urgent computations within the stringent time constraints.

3.1 Requirements 37

Data can be collected via two mechanisms, time-triggered and event-triggered. Time-
triggered mechanism, e.g. system/service monitoring, is the most common method due
to its simplicity to implement. However, depending on the scheduled time-interval, a
delay, equivalent to the prescribed time-interval, can ensue. For example, if a failure
occurred right after the time-triggered monitoring is performed, the failure will not be
recognised until the next time-triggered monitoring occurs. Time-triggered data collection
is an important mechanism to detect abnormalities in a system in advance to facilitate
both the efficient resolution and avoidance of failing components during an urgent event.

Event-triggered mechanism represents a “real-time” method where observed irregular-
ities/abnormalities and non-regular activities trigger appropriate activities. Examples of
such triggers are an irregularity in observational data that can indicate the onset of an
urgent event and an update of the operating system of a computing resource that can
limit its availability and/or reliability. Event-triggered mechanism is particularly useful
for non-deterministic triggers, which cannot be easily designed into time-triggered mech-
anism. The use of sensors is a method to provide automatic event triggers where time
delay can potentially be minimised to near zero.

Human Machine Interface

Human machine interface represents the interface between an urgent system and its op-
erators. If irregularities/abnormalities are observed in the data collection activity that
indicate an impending or occurring urgent event, it enables the operators to trigger urgent
computations on the urgent system. Such an interface is required be it that an urgent
system is non-autonomous, partially autonomous or fully autonomous. In the case where
the system is fully autonomous, an HMI interface is required to override the system when
necessary.

Unlike RTC, this interface is not as safety-critical since the decision-making and co-
ordination system is mostly a separate component (refer to Section 4.1). However, an
incorrectly implemented HMI interface can still lead to an interruption of services on pub-
lic shared resources or leasing of substantial cloud resources that can be financially costly.

Due to the chaotic environment that frequently accompanies an impending or occurring
urgent event, there are several HMI design criteria that are essential. The interface has to
be simple and easy to interpret even in chaotic circumstances. Since the operator(s) might
not be in the vicinity or have difficulties travelling to their workplace in chaotic times, the
integration of the interface on ubiquitous devices is thus crucial. Finally, the flexibility to
update the forecast models via the interface must be included. This is to accommodate
possible modifications to the configurations of forecast models or the addition of new
forecast models. Modifications are typically performed to refine the forecast models as a
result of additional insights from zero hour data.

38 3. Urgent Computing Definition

Data Evaluation

Data evaluation is another core functionality of urgent computing. The urgent products
from computations have to be evaluated to provide authoritative information on the urgent
event for educated decision-making and mitigation activities. If ensemble of forecasts are
involved, this function will have to leverage on forecast evaluation/prediction models, e.g.
forecast probabilities [93] and bayesian forecast evaluation [94]. Depending on the event
and its physical environment, there will be some forecast models with a higher forecast
confidence when compared to others. Consequently, there is no single evaluation/prediction
model that can be applicable across the board. Machine learning methods [95][96] can
potentially help in automating this and/or to provide additional insights as to which models
are most effective under which set of conditions.

Since decisions and mitigation activities are tightly coupled with this function, mistakes,
e.g. the failure to issue a warning or the publication of an incorrect forecast, can have
catastrophic consequences. Instead of the desired loss mitigation, it could potentially
cause more casualties as in the case of the L’Aquila earthquake in 20091 where seven
scientists shared an incorrect prediction and consequently caused avoidable deaths. The
Italian court thus gave them an initial conviction for manslaughter. This particular event
took a mere twenty seconds to cause 297 deaths, more than a thousand injured and around
70,000 people to become homeless2. Inaccurate/incorrect predictions have far-reaching
effects, in particular a loss of public confidence, which can result in civilians ignoring
crucial warnings and thus cause more casualties. It is particularly challenging to rectify a
loss of public confidence. It is thus imperative to ensure that computed data is correctly
and accurately evaluated.

To facilitate the evaluation, the forecast results, i.e. urgent products, have to be pro-
cessed and reorganised in a useful manner for easy analysis such that appropriate decisions
and mitigation activities can be taken before the stipulated deadline. Data analytic and
scientific visualisation are important mechanisms to efficiently support this function.

3.1.2 Non-functional Requirements

Non-functional requirements relate to the success of urgent computing. They are the un-
derlying criteria determining the effectiveness and efficiency of an urgent system. These
are also the requirements that set urgent systems apart from many other computing sys-
tems that do not have stringent non-deterministic timing constraints. The non-functional
requirements are gathered by analysing the non-functional requirements of real-time com-
puting [2], evaluating the urgent computing constraints, in particular the time constraints,
and the requirements and policies of computing resources.

1http://www.foxnews.com/science/2012/10/22/italian-court-convicts-7-scientists-for-failing-to-
predict-earthquake.html

2http://www.360cities.net/image/terremoto-aquila-casa-dello-studente

3.1 Requirements 39

Robustness

Robustness is defined as the tolerance of a computing system to perform faithfully in
event of perturbation(s). In the case of urgent computing, it denotes the tolerance of
the selected computing resources, services and tools to support the completion of required
forecast simulations within a stipulated deadline, in spite of possible (minor) changes in the
computing system. It can be seen as the most crucial attribute that dictates the success
of an urgent system by ensuring that timing constraints are fulfilled in case of failures.
Robustness can be improved by designing tolerance into the system.

Reliability

Reliability is the ability of a computing system to perform the required functions correctly
within a specified time period. Unlike robustness, reliability does not manage perturba-
tions in the computing system but is mainly concerned with the trustworthiness of a system
during normal, i.e. expected, operation. In the case of urgent computing, the reliability of
an urgent system is the probability that a specified urgent service is carried out correctly
before an instance in time, the urgent deadline. Reliability of urgent services is depend-
ent on the selection of reliable computing resources, the correctness and accuracy of the
simulated forecast results and derived decisions, etc. Reliability in computing resources is
dependent on the condition that the resources are operational, i.e. available, at the time
when they are initiated. Reliability can be improved by provisioning alternative failover
components and should ideally be in different localities, i.e multiple resource providers
from different spatial locations. In event of a natural disaster, there could be a chance
that a particular resource in the affected region becomes unavailable. In the aftermaths
of the March 2011 tsunami in Japan, the damage to the power grid and rolling blackouts
rendered their computing resources non-operational [97]. A cloud outage caused by an
electrical storm at the Amazon Web Services resulted in the shutdown of hardware in an
entire region [98].

Reliability in simulated results and the derived decisions is crucial since it is tied to
the success of urgent computing. It is dependent on the forecast models, the adopted
prediction models and frequently the experience of decision makers in interpreting the
results. Incorrect and/or inaccurate forecasts can erode the confidence of civilians and
have far-reaching effects that can ultimately lead to a loss of human lives if accurate
warnings are ignored. Thus it is critical to stress the importance of reliability of forecast
models and the decision-making process even if it is outside the scope of this dissertation.

Maintainability

Maintainability of an urgent system is the probability that the full system is recovered
within a specified time interval after a failure or change. Similar to RTS, there is a funda-
mental conflict in reliability and maintainability [2]. The need to have failover components
for reliability increases the complexity of the system and thus the maintainability. One

40 3. Urgent Computing Definition

factor contributing to the failure of SPRUCE can be attributed to the failure to achieve
maintainability upon a change in a key tool, Globus (refer to Section 2.1).

Availability

Availability of an urgent system is the probability that an operational system, albeit not
fully, is available over the planned operational time interval of the system. It can be
measured by the fraction of time that the urgent system is ready to provide the urgent
services [2]. Availability can be used to represent the reliability of a computing resource as
shown in Section 5.2.2. The choice of higher availability computing resources will improve
the overall reliability of an urgent system. The availability of services and tools running on
the selected computing resource that is required to support urgent computations can also
influence on the availability of an urgent system. If these services and tools are unavailable,
the computing resource is correspondingly unavailable. This could potentially reduce the
availability and reliability of the urgent system.

Security

Security of an urgent system pertains to the “trustworthiness” of the system. It is a key
attribute that influences the integrity of the system and its associated components. In
order to ensure that the results and time constraints are not adversely influenced due to
security breaches, designing strong and comprehensive security mechanisms into the urgent
system is crucial. Security concerns can result in resource providers, in particular the public
ones that we are targeting, to limit or refuse to support urgent computations. It is thus
important to ensure sound security concepts are implemented in urgent systems.

3.2 Characteristics

There are two observed groups of characteristics, pre- and post-computation, which can
be used to differentiate urgent computations from related computing paradigms (refer to
Section 2.1.1) computations. The definitions of the two groups and their respective char-
acteristics are in the following subsections. All pre- and post-computation characteristics
have to be fulfilled for a computation to be considered as an urgent computation.

3.2.1 Pre-computation Characteristics

Pre-computation characteristics describe the conditions surrounding an event that indicates
an urgent computation(s) is required.

An overview of the five identified pre-computation characteristics is shown in Figure 3.2.
They include (i) potential extensive loss, (ii) data unavailability until zero hour, (iii) expect
improved accuracy results, (iv) computations to start immediately or asap and (v) errors
from estimated time constraints. The details of these characteristics are shown in the same
order as follows:

3.2 Characteristics 41

Figure 3.2: Overview of Pre-Computation Characteristics

(i) The urgent event is expected to potentially result in extensive loss to multiple stake-
holders and should include at least one government/government-authorised agency.

(ii) Data required to set up the initial condition of an urgent computation is unavailable
until zero hour, i.e. shortly before/when/after the urgent event is observed.

(iii) Simulation results with improved accuracy are expected by using zero hour data.

(iv) Computations must commence immediately or as soon as possible in order to meet
the deadline and thus computing resources must be available on short notice.

(v) Provided time constraints, i.e. the deadlines, are estimates and the error can be in
seconds, minutes, hours or even days.

One important characteristic of urgent computing is the (i) potential extensive loss,
typically in the range of multiple millions to billions of euros. Table 3.1 shows the estimated
economic loss in tens to hundreds of billions of euros (last column) of four severe but
different disasters (first column) worldwide (third column) in recent years (second column).
Typically, it will take a number of years before the full extent of the loss can be collected.
Multiple stakeholders, including the government agencies, are expected to be affected.
When compared to such losses, the cost of urgent computations (refer to Section 3.4) is
typically insignificant. The use of the term ”extensive loss” raises the question of how
extensive a loss must be to warrant urgent computations. A common question posed is “Is
a single human life a sufficiently extensive loss?”. In the US, the Environment Protection
Agency set the value of a human life at 9.1 million US dollars in 2011 while the Food
and Drug Administration declared life was worth 7.9 million US dollars in 20103. It is
thus a philosophical and political question that is outside the scope of this dissertation. In
principle, the decision lies in the hands of the decision makers.

3http://www.nytimes.com/2011/02/17/business/economy/17regulation.html?
pagewanted=all&_r=1

http://www.nytimes.com/2011/02/17/business/economy/17regulation.html?pagewanted=all&_r=1
http://www.nytimes.com/2011/02/17/business/economy/17regulation.html?pagewanted=all&_r=1

42 3. Urgent Computing Definition

Table 3.1: Economic Loss of Some of the Most Severe Disasters in Recent Years

Disasters Year Country Estimated Loss (AC)
Flood [99] 2013 Germany 15 billion
Tōhoku Earthquake/Tsunami [100] [101] 2011 Japan 273 billion
Deepwater Horizon Oil Spill [34] 2010 Gulf of Mexico 53 - 88 billion
Hurricane Katrina [102] 2005 United States 88 billion

The main motivation to perform urgent computations is the expectation of improved
accuracy in the simulation results by using “live” data at zero hour. The next two char-
acteristics, (ii) and (iii), help to filter out use cases that do not require zero hour data
for the computation and/or will not benefit with an improved accuracy. An example from
CDMC is the Forecast Propagation Database for Tsunami [103], a non urgent computing
solution, where an exhaustive set of possible scenarios are pre-simulated and the results
kept. Upon an impending tsunami, the best match simulation from the database is used to
predict the event. This solution is currently one of the most valuable solution for tsunami
early warning system. The scientist we work with explain that although it does not have
the expected accuracy that one can possibly achieve with urgent computing, the inherent
uncertainties in locating the seismic source and understanding the geological properties
make it less significant to use approximated data as opposed to zero hour data.

Characteristic (iv) shares that to satisfy the time constraint, i.e. deadline, the com-
putations must commence swiftly upon getting the required data. Computation resources
should thus be available in short notice correspondingly. If the computations do not have
to commence in short order, it is not an urgent computation.

Finally characteristic (v) shows that as opposed to most real-time computing events
where time constraints/deadlines are known, i.e. deterministic, the time constraints of
urgent computing are often unknown and are a part of the targeted computation results.
As such, they are typically estimates and errors are expected. In the best case scenario,
the errors can be in the range of seconds or minutes but they can be also in the range of
hours and even days in the worst case scenarios. This unpredictable characteristic makes
the realisation of urgent computing more challenging than hard real-time computing.

3.2.2 Post-computation Characteristics

Post-computation characteristics describe the conditions surrounding an urgent event after
the computation(s) are completed.

An overview of the four identified post-computation characteristics are shown in Fig-
ure 3.3. They include (i) computation completes before deadline, (ii) mitigation activities
to start immediately, (iii) urgent products used for mitigation and (iv) direct loss expected.
The details of these characteristics are shown in the same order as follows:

(i) An urgent computation must generate urgent product(s) before a stipulated deadline
for it to be useful.

3.2 Characteristics 43

Figure 3.3: Overview of Post-Computation Characteristics

(ii) Decision and coordination activities commence or recommence immediately upon the
availability of the urgent product(s).

(iii) The decision makers use the urgent product(s) to make informed decision(s) to mit-
igate the loss of the event.

(iv) Direct loss of the event can be expected though mitigated upon meeting the stipulated
deadline, and after making and carrying out the informed decisions.

Meeting the stipulated deadline, (i), in urgent computing is crucial to the success of
system. Lateness may imply that no mitigation effort can be carried out. Meeting the
deadline thus constitutes one of the most crucial and yet fundamental requirements to the
post-computation characteristics.

Decision and coordination activities, (ii), have to immediately commence upon the
availability of the urgent product(s) for urgent computing to make sense. If the decision
and coordination activities can wait then it does not require urgent computations. The
importance of meeting the stipulated deadline originates from the need for decision-making
such that mitigation activities can be carried out. Naturally, the more lead time there is
for mitigation activities, the better can be the plan and the overall reduction in severity of
the loss (refer to Figure 3.5).

Characteristic (iii) shows an important difference, whether direct loss of the event will
be incurred upon meeting a deadline, between urgent computing and real-time computing.
A RTS is designed such that in a deterministic set of scenarios, if a deadline is met, no direct
loss/cost is incurred. However, in the case of urgent system, even in an ideal prescribed
scenario, direct loss can still be expected upon meeting the deadline. The main aim is to
mitigate the loss since complete avoidance is likely to be impossible.

Finally characteristic (iv) shares that urgent product(s) should provide the necessary
information to support the decision makers in making informed decisions to reduce the
severity, i.e. the loss, of the event. If urgent products are unnecessary for the decision-
making process or mitigation effort, then the urgent computations are correspondingly
unnecessary.

44 3. Urgent Computing Definition

3.3 Deadline

A deadline is a point in time where a predefined task(s) has to be completed. The time
constraints or “in time” requirements of urgent computing can be expressed in terms of
deadlines. A deadline thus helps to define the minimum lead time required for decisions
to be made and carried out, which in turn contributes to a positive loss mitigation.

To manage the unpredictable timing characteristic, a refined definition of urgent system
deadlines is required. Urgent computing deadlines can be either firm or hard. If the urgent
products are helpful, e.g. not the only source of information, for the decision-making, the
deadlines are firm. If the urgent products are crucial, e.g. the only source of information,
for the decision-making, the deadlines are hard.

The deadlines of urgent systems are defined as such:

• Firm deadline: A deadline is firm if not meeting it renders the result useless but
the consequences are not very severe.

– Deterministic firm deadline: A deadline is deterministic firm if the deadline
is predictable and not meeting it renders the result useless but the consequences
are not very severe.

– Non-deterministic firm deadline: A deadline is non-deterministic firm if
the deadline is unpredictable and not meeting it renders the result useless but
the consequences are not very severe.

• Hard deadline: A deadline is hard if the consequences of not meeting it can be
catastrophic.

– Deterministic hard deadline: A deadline is deterministic hard if the dead-
line is predictable and the consequences of not meeting it can be catastrophic.

– Non-deterministic hard deadline: A deadline is non-deterministic hard if
the deadline is unpredictable and the consequences of not meeting it can be
catastrophic.

Figure 3.4 shows an overview of the common characteristics shared among the deadline
definitions. In the first and second columns, the characteristics of deterministic deadlines
and non-deterministic deadlines are shown respectively. In the first and second rows, the
firm and hard characteristics of the deadlines are elaborated and highlighted with cor-
responding pink and gray hexagons respectively. In the first and second columns, the
deterministic and non-deterministic characteristics are illustrated with corresponding yel-
low and gray hexagrams respectively. The characteristic of urgent computing, which is
common among all urgent deadlines, is shown with blue crescents. For example, the top
left rectangle contains the characteristics of a deterministic firm deadline.

In summary, deterministic deadlines are predictable while non-deterministic ones are
unpredictable. Firm deadlines imply not very severe consequences while hard deadline

3.3 Deadline 45

indicates possible catastrophic consequences. All urgent deadlines share the common char-
acteristics where results become useless if deadlines are missed.

Deterministic Non-deterministic

Firm

Hard

Deadline is predictable

Deadline is predictable

Deadline is unpredictable

Deadline is unpredictable Legend

 Deterministic Characteristic

 Non-deterministic Characteristic

 Firm Characteristic

 Hard Characteristic

 Common Characteristic for All

Missing deadline implies useless
results

Conseqences are not very severe Conseqences are not very severe

Missing deadline implies useless
results

Conseqences are can be catastrophic

Missing deadline implies useless
results

Conseqences are can be catastrophic

Missing deadline implies useless
results

Figure 3.4: Overview of Common Characteristics among the Deadlines

One crucial difference between urgent deadlines and real-time deadlines is the expect-
ation of consequences even under ideal conditions where an urgent system is functioning
as expected and the stipulated deadline is met. This is as opposed to a hard RTS where
meeting the deadline under pre-defined scenarios means avoiding catastrophe consequences.
Urgent systems are frequently only attempting to mitigate the consequences such that it
will not be catastrophic. For instance, the early earthquake warning system is only useful
to those who are of a certain distance from the epicentre of an earthquake. The warning
is useless to the civilians living close to the epicentre. Additionally even though determin-
istic firm and hard deadlines of urgent computing are synonymous with the firm and hard
deadlines of RTS respectively, non-deterministic deadlines are unique and more common
to urgent computing. This further differentiates it from real-time computing. The non-
deterministic deadlines of urgent computing are the deadlines there are highlighted with
the * symbol in Figure 2.2.

Due to the lack of information until zero hour and the dynamic nature of many urgent
events, determining a deadline is frequently impossible. Such deadlines can only be estim-
ated and the models used are typically best estimations. A significant inherited error is
thus expected. The non-deterministic characteristic invalidates many well-proven solutions
of hard RTS since it is impossible to design a system to exhaustively handle dynamic and
unpredictable scenarios.

Three deadline variables are thus defined to express the characteristics of urgent dead-
lines as follows:

• tideal illustrates a point in time where the required minimum lead time for maximum
mitigation activities, i.e. minimum loss, can be achieved. After this point in time,
the loss is expected to increase exponentially.

46 3. Urgent Computing Definition

• tdeadline illustrates a point in time where only the minimum mitigation activities, e.g.
evacuate civilians, defined by the decision makers are possible.

• tterminus illustrates a point in time where there is no longer any lead time for any
mitigation activities, i.e. maximum loss.

starting
computations

tideal tdeadline

maximum mitigation possible decreasing mitigation

zero m
itigation

tterminus

Figure 3.5: Estimated Deadlines

Figure 3.5 illustrates the relationship among the three deadline variables. Maximum
mitigation activities to minimise loss are possible if computations are completed before
tideal. If computations are completed after tideal, the amount of mitigation activities that can
be carried out is increasingly reduced. From the time tterminus and beyond, no mitigation
activities are possible. Maximum loss is to be expected. Typically, tdeadline is set to be
between tideal and tterminus.

3.4 Cost

Cost is an important characteristic of urgent computing to quantify loss. It helps to
determine if an urgent computation is worth carrying out. Two costs, computation cost and
event cost, are crucial to urgent computing. Generally, the cost of an urgent computation
(Cc) should be less than or equal the cost incurred from an urgent event (Ce), i.e. Cc ≤ Ce,
for a computation to be considered as worthwhile. However, this is only true in the ideal
situation where the actual cost of the event is zero as a result of perfect mitigation activities.
As we have established earlier, in the case of urgent computing, that is not likely. A more
appropriate representation of the computation and event costs is shown in equation (3.4.1).
Cme refers to the cost of the event after mitigation activities are carried out by relying on
the urgent products from the computation.

Cc ≤ Ce − Cme (Cme ≤ Ce) (3.4.1)

The relationship between Cme and Ce can be further expressed by providing a mitigation
factor, α as shown in equation (3.4.2). α will be in the range zero and one. Zero represents
the ideal scenario where there is no event cost due to perfect mitigation activities while one
represents the worst case scenario where no mitigation activities can be made to reduce
the event cost, i.e. after tterminus (refer to Figure 3.5).

Cme = αCe (0 ≤ α ≤ 1) (3.4.2)

3.5 Classes of Computing Resources 47

α is to be derived e.g. from previous events of similar nature. By combining equations
(3.4.1) and (3.4.2), the relationship between Cc and Ce is thus simplified:

Cc ≤ (1− α)Ce (0 ≤ α ≤ 1) (3.4.3)

Equation 3.4.3 provides a mechanism to assist decision makers in measuring whether
urgent computing is worthwhile for a particular urgent use case or event. Event cost (Ce)
can be estimated in advance using information from similar events that have occurred
previously. Cost of an event includes both direct and indirect cost. Examples of direct
cost are damages in infrastructures and loss of human lives. Indirect cost can include
economic losses from a loss of investment and tourism after the event. The exact cost of
an event is hard to estimate due to the difficulties in quantifying some losses, e.g. human
lives, and the determination of whether a particular indirect cost is a result of the urgent
event [104].

3.5 Classes of Computing Resources

Urgent computing is realised on top of three classes of computing resources, public, dedic-
ated and on-demand, as shown earlier in Table 2.1. Choosing an appropriate resource class
will influence the computation costs of urgent events. In this section, resource classes are
clarified and three criteria for selecting the most appropriate resource class are shared. A
comparison between an on-demand resource and a public resource with similar hardware
profiles is performed to illustrate the computation cost. Finally, a set of policy recom-
mendations for the public resource class is shared. These recommendations aim to enable
public resource providers to readily support urgent computing.

The three classes of computing resources are illustrated in the following list.

(class 1) Public (Shared) Resources - State-owned or research community re-
sources that are freely available and shared among researchers.

(class 2) Dedicated Resources - Resources that are purchased for the specific pur-
pose of a particular use case of urgent computing.

(class 3) On-demand Resources - Pay-as-you-use resources that are typically
offered by profit-oriented entities.

These classes of resources can change with the advent of technology. Within each re-
source class, there are different resource types, e.g. a HPC resource, a serial cluster and
a single workstation. Ideally, the resource type is selected by considering the computa-
tional requirements, i.e. parallel or serial computation, number of compute cores, memory,
wallclock time, etc., and computational performance. Logically, a top-tier HPC resource
with expensive interconnects that can perform serial programming, task-farming and par-
allel computing is probably the ideal resource to own and utilise for any urgent computing
use cases. However, this is unrealistic since cost is also one of the deciding factors for the

48 3. Urgent Computing Definition

resource class that will be adopted. In the following subsection, the selection of resources
will be elaborated.

3.5.1 Selection of Resource Class

Selecting an appropriate resource class is one of the initial challenges of urgent computing.
The choice is typically based on the following three criteria and in this order:

(i) Computation Requirements

(ii) Cost and Frequency of Computations

(iii) Intangible Criteria

The computation requirements will determine the resources that can be utilised. The
resource class with the appropriate resources will then be checked for cost. Cost is de-
pendent on the frequency of computations and the corresponding resource class. In event
that cost is comparable among the classes, intangible criteria like preference, control, etc.,
will guide the selection. Generally, the resource class with the least cost while fulfilling the
computation requirements should be chosen.

(i) Computation Requirements

Computational requirements determine the resource type and thus the resource class. Ur-
gent use cases that have very modest computing requirements, which can be satisfied by
a single workstation, utilise the dedicated resource class. Use cases that have moderate
computing requirements and require a cluster of serial or parallel computers might take
advantage of on-demand resources. Use cases that require the highest computing power
will have to leverage upon HPC resources. As the cost of top-tier HPC resources is ex-
tremely high and difficult to operate, it is frequently not owned as a dedicated resource and
is more cost effective as a shared public resource. There are currently very few on-demand
resource providers that can provide high performance computing resources for parallel
computations. If the computation requirements require top tier, e.g. top ten percent,
HPC resources that are listed on the TOP500 supercomputing sites4, the selection option
becomes very restricted. In such cases, public resources will triumph over on-demand re-
sources simply due to availability. Towards the end of this section, a comparison between
a public HPC resource, SuperMUC, and Amazon’s HPC cluster is performed to illustrate
the differences in computing power and cost.

(ii) Cost and Frequency of Computations

The cost of the resource includes both the hardware and software cost, the physical in-
frastructure to house the resource and the miscellaneous cost to operate the resource, e.g.

4http://top500.org/

http://top500.org/

3.5 Classes of Computing Resources 49

the electricity bill, cooling system, the personnel, insurance, etc. However, depending
on the resource class, the provision of the exact same resource can have an effect in ur-
gent computing cost. The cost of dedicated resource is mostly fixed but the cost of each
urgent computation is related to the frequency of the computations and the number of
cores/nodes used. In the case of public and on-demand resources, the cost is also related
to the frequency of computations and the number of cores/nodes used.

In order to evaluate the cost of urgent computing on each resource class, the following
symbols are defined. Cr represents the cost of a resource over a fixed period of time, e.g.
a year. Nr represents the total number of cores-hours/nodes-hours used during the fixed
time period. Thus, the computation cost of each core/node, Cn, is represented as follows:

Cn =
Cr

Nr

(3.5.1)

Cost will be expressed in terms of an agreed upon cost unit, e.g. euros or US dollars.
Cost per computation will be expressed in compute units. A compute unit refers to the
minimum standard unit that a user will be charged for, e.g. one core per hour.

(class 1) Public Resources are an important class of resources that urgent computing
can utilise. In order to leverage on such resources on demand, there is a high probability
that existing running jobs have to be preempted to make way for the urgent jobs. The
cost of urgent computation on such resources is represented as follows:

Cc = Cp + Cqos + Cu (3.5.2)

Cp, Cqos and Cu refer to the cost of preemption, loss in quality of service (QoS) and
urgent job respectively. The cost of preemption and loss of QoS are dynamic and are
dependent on the running state of the targeted resource. Cp can be represented as shown
in equation (3.5.3) and is strongly dependent on the jobs that will be preempted. Thus
the decision on which jobs to preempt can strongly influence Cp. ni and ti refer to the
number of cores/nodes used and the current wallclock time used by job i respectively. Cp

is thus a sum of the cost of these preempted jobs. Cp can be simply seen as the direct cost
of preemption.

Cp = (
∑

ni · ti)Cn (3.5.3)

Cqos is the indirect cost of preemption and is a more difficult cost to measure and
quantify. Generally, if more jobs and thus users are disrupted, the higher the perceived
incurred indirect cost. Naturally other factors, e.g. time left until job is completed, possib-
ility of resuming job instead of a complete restart, number of jobs per user being preempted,
frequency of preemption, when the preempted jobs are restarted, will also influence the
perceived loss of quality of service.

Cu can be similarly expressed as shown in equation (3.5.5). If all three classes of
resources have the same resource type, Cn is typically the lowest for the public resource
class. For a particular urgent event, Cu is dependent on the number of cores/nodes used

50 3. Urgent Computing Definition

and the cost of each core/node. Since this resource class is shared, the cost per core/node
is not greatly dependent on the urgent jobs since there are typically other jobs utilising the
cores when urgent jobs are not active. However, there exist two additional costs Cp and
Cqos, which are dependent on the Cn. Thus, the cost increases with increased frequency of
urgent jobs. Consequently, public resources are more suitable for rarely occurring urgent
events.

(class 2) Dedicated Resources are the most common class of resources that urgent use
cases leverage upon. The cost of an urgent computation on such resources is represented
as follows:

Cc = Cu (3.5.4)

Cu refers to an urgent job. Cu is illustrated in equation (3.5.5) where n is the number
of cores/nodes used, t is the wallclock time used (typically rounded up to next hour) and
Cn is the computation cost of each core/node.

Cc = Cu = n · t · Cn (3.5.5)

The cost Cn is dependent on Nr (refer to equation (3.5.1)). Since the resource class is
dedicated, only urgent jobs will utilise the resource. Thus if more jobs and more cores are
used, the cost per core/node Cn will be correspondingly be lowered. Dedicated resources
are consequently most suitable for frequently occurring urgent events.

(class 3) On-demand Resources are pay-per-use resources where profit is expected
since most resource providers are commercial entities. As such, in addition to the cost
of resources, a profit variable, Pj , is included. Pj is modelled as a variable attribute
that is dependent on the particular instance of computation since the cost of on-demand
resources are dependent on the resource type, e.g. cores, memory and storage used, which
is dependent on each computation. Similar to dedicated resources, there is no need to
cancel/suspend computations. Thus, no Cp and Cqos are expected. Cu can also be similarly
expressed as shown in equation (3.5.5). If all three classes of resources have the same
resource type, Cn is typically the most expensive for the on-demand resource class .

Cc = Cu

= n · t · Cn

= n · t · (Pj + Can)

(3.5.6)

where Can refers to the actual cost per core/node without profit
Similar to public resources, Cc is directly proportional to the frequency of computations.

The more you use, the more you pay. In principle, on-demand resources are also more useful
for rarely occurring urgent events. If n · t · Pj < Cc + Cqos, on-demand resource is more
cost effective than public resource and thus should be the selected resource class.

3.5 Classes of Computing Resources 51

(iii) Intangible Criteria

Naturally, the choice of resource is often also swayed by the intangible criteria, e.g. personal
preference, control, flexibility, etc. Assuming in the case where the cost of all three resource
classes is the same and can fulfil the computation requirements, how should the resource
classes be chosen? This is where the intangibles come in. Dedicated resources seem to be
the preferred choice in such cases. This can be attributed to benefits such as ownership,
direct control, flexibility to change configurations and the lack of usage restrictions, which
is a common limitation of public resources. The need to serve multiple user groups led
most public resources to impose user policies that restrict flexible usage of the resources.
As such, to fulfil urgent computing on public resources, one has to adapt to the unique
policies of each resource provider, leading to a significant overhead, in particular when
more than one resource is involved. On-demand resource is thus arguably the second best
class in terms of intangible criteria since it offers benefits similar to dedicated resource,
with exception of ownership and direct control as in the case of dedicated resources. It
shares also the benefits of public resources, where the maintenance and upgrade of the
hardware are taken care of by a third party.

A Public Resource versus an On-demand Resource

In this dissertation, we will be targeting urgent uses where the frequencies of occurrences
are low. Consequently, two classes of resources, public and on-demand, are appropriate
candidates. Assuming that the computational requirements can be met by both classes
due to similar hardware profiles, cost and frequency are the next deciding factors.

The costs of a public HPC resource, SuperMUC thin islands, from LRZ and two on-
demand cluster options from Amazon Web Services (AWS)5 that are hosted in the region
EU (Frankfurt) in January 2015 with similar processor type, i.e. Sandy Bridge processors,
are compared in Table 3.2. There are minor differences in the hardware profiles, number
of cores or vCPU per node (third column), processor type (fourth column) in terms of
versions, processor frequency (fifth column), memory (sixth column) and storage (seventh
column).

The cost of a core per hour on the thin node island on SuperMUC is estimated (rounded
up) to be 0.016 euros, i.e. 0.256 euros per node per hour. This estimation is calculated using
the average annual funding for the system, its system software, direct system personnel,
electricity, cooling system and mandatory independent commercial software, i.e. compilers,
debuggers, etc. The total core-hours SuperMUC can offer per year is approximated from
the usage statistic collected in 2014. This estimated cost does not include the building
cost, non-system support personnel, extra commercial software, e.g. MATLAB, etc.

The information collected from AWS is known to be correct and up-to-date on 23
January 2015. Since the cost offered by AWS is based on US dollars, the cost is converted
to euros using the exchange rate of 1 US dollars to 0.88 euros. This is the rounded live

5http://aws.amazon.com/ec2/instance-types

http://aws.amazon.com/ec2/instance-types

52 3. Urgent Computing Definition

exchange rate provided by XE.com6 on 23 January 2015.

Site Type
Cores
or
vCPU

Processor
Type

Processor
Frequency
(GHz)

Memory
(GB)

Storage
(GB)

Cost per
Hour

LRZ
SuperMUC
thin island

16
Intel Xeon
E5-2680 8C

2.7 32
100 (NAS) +
1000 (GPFS)

0.256 AC

AWS m3.2xlarge 8
Intel Xeon
E5-2670 v2

2.6 30 160 (SSD) 0.665 US$ (≈0.585 AC)

AWS c4.4xlarge 16
Intel Xeon
E5-2680 v2

2.8 30 - (EBS)
1.032 US$
(≈0.909 AC)

Table 3.2: Cost of SuperMUC and AWS

The per node-hour cost at LRZ is comparatively cheaper (refer to the last column of
Table 3.2) than that offered by AWS since LRZ is a public resource provider and is thus
not expecting a profit. However AWS resources have many intangible advantages and in
particular the ability to be available on demand and thus swiftly without any additional
and in particular manual interference from AWS. It also offers the flexibility and ease of
setting up and configuring scalable resources as required by the user/use case without
common policy restrictions that one expects from public resource providers. Naturally, the
flexibility comes with some work. In the case of public resources, the maintenance of the
resources, e.g. operating system updates, security patches, etc., are taken care of by the
resource providers. In the case of AWS, they have to be managed by e.g. the operators.

Site Type
Nominal
Frequency

Peak
Performance

Cores Memory

LRZ
SuperMUC thin islands
(Intel Xeon E5-2680 8C)

2.7 GHz 3.185 PFlop/s 147,156 288 TB

AWS
Amazon EC2 C3 Instance Cluster
(Intel Xeon E5-2680v2)

2.8 GHz 0.59351 PFlop/s 26,496 0.105984 TB

Table 3.3: SuperMUC and AWS EC2 C3 Cluster

Table 3.3 further compares SuperMUC thin islands and the HPC machine AWS made
in November 2014 for the Top500 list7 in terms of nominal frequency, peak performance,
number of cores and memory. In spite of the many advantages of on-demand resources,
when HPC resources are required, public HPC resources like SuperMUC thin islands are
simply computationally more powerful, i.e. significantly bigger number of cores, faster
network, bigger and faster storage. As such, public HPC resources are a highly valuable
class of resources for urgent computing.

Using the scenario presented in Genoa flash flood in 2014, Case Study 2 (refer to
Section 6.2), where eight ensemble of forecasts requiring 640 cores each with a deadline
of 3 hours. The computational cost Cc on the two resources, SuperMUC thin islands and
Amazon EC2 C3 Instance Cluster, can be computed with equations (3.5.3) and (3.5.6)
respectively.

6http://www.xe.com/
7http://top500.org/system/178321

http://www.xe.com/
http://top500.org/system/178321

3.5 Classes of Computing Resources 53

Table 3.4 shows the resulting computation cost Cc (fifth column). The different cost
components, Cu, Cp and Cqos, that contributed to Cc are illustrated in the second, third and
fourth columns respectively. Since there is no QoS penalty at this moment for preempting
jobs on SuperMUC, Cqos is not applicable. In the best cast scenario (first row), no jobs
have to be preempted on SuperMUC (Cp = 0) if there are sufficient free slots for the eight
ensemble forecasts to begin computing immediately. In the worst cast (second row), there
are no free slots and the most expensive possible job, running its 48th (maximum wallclock
limit) computing hour and using the maximum number of nodes, 512, on the corresponding
queue, has to be preempted. Naturally, the worst case can typically be avoided as shown
in our work [13] since they are usually jobs that have just started and are using a smaller
number of nodes to preempt. In the case of AWS EC2 C3 Cluster (last row), Cp and Cqos

are not applicable. As such, the computation cost consists only of Cu, at 872.64 euros.
The computation costs of both resources are insignificant when compared to the cost of
the disaster, 303 million US dollars.

Resource Cu Cp Cqos Cc

SuperMUC thin islands (Best case) 245.76 AC 0 - 245.76 AC
SuperMUC thin islands (Worst case) 245.76 AC 6291.46 AC - 6537.22 AC
Amazon EC2 C3 Instance Cluster 872.64 AC - - 872.64 AC

Table 3.4: Computation Cost on SuperMUC and AWS EC2 C3 Cluster

In spite of the possible hurdles one has to overcome, the potential benefits of public
HPC resources are too valuable not to investigate further. Consequently, this dissertation
targets in particular this challenging class of resources. In order to facilitate the support of
urgent computing on public resources, a fundamental change in policies is required, which
can possibly only be achieved by political influences. A set of policy recommendations are
thus included in Section 3.5.2 to establish a platform to initiate these policy changes.

3.5.2 Policy Recommendations for Public Resource Providers

The existing policies of most public resource providers are too restrictive to effectively
support urgent computing. One of the crucial services, preemption, cannot be readily
supported due to the policy restrictions. Concerns about security result in great resistance
towards providing ubiquitous interfaces to expensive HPC resources. In fact, giving access
to users outside the usage scope defined by the funding agency is in principle not allowed.
In spite of the usefulness of frequency scaling (refer to Section 5.2.1) to urgent computing,
due to high energy cost, evidence of application scalability is required before the option is
activated. In order to address these restrictions, the following recommendations on three
levels, funding agency, resource providers and users, are proposed. For urgent computing
to be effectively supported, the funding agency needs to indicate the intent of supporting
this class of computing. Next, the resource providers have to be involved to modify
existing usage models and policies to enable urgent computing. Finally, the affected users

54 3. Urgent Computing Definition

and urgent users must have up-to-date information on what system behaviour to expect
and how to effectively use such resources.

Funding Agency

(i) Establish funding to enable public resource providers to allocate a part of the com-
puting and human resources for urgent computing

(ii) Support policy changes that permit public resource providers to enable prioritised
support to urgent computing

• Pool of urgent computing resources

• Facilitate worldwide accessibility when required

– Establish guidelines for a generic public interface

Resource Providers

(i) Establish clear acceptable use policy for urgent computing

• Access requirements, regulations and policies

• Storage allocations and policies

• Computing resource limitations and policies

• Resource management system requirements and policies

(ii) Continuous monitoring and sharing of system status data, e.g. availability and reli-
ability, of the computing resources and services

(iii) Enable usage of crucial services for urgent computing

• Preemption

• Frequency scaling

• Ubiquitous secured access

(iv) Regular testing of services and procedures utilised by urgent computing

(v) Establish clear security guidelines and rules to strengthen the protection without
restricting usability

(vi) Establish a priority queue for urgent jobs where preemption is supported and jobs
will start immediately

Users

(i) Clear documentation on use policy for normal users for a system or a part of system
where urgent computing is enabled

3.5 Classes of Computing Resources 55

• Possible job cancellation/suspension

• Accounting compensation and/or reduction rates

• Estimated delay

• Job restart/resumption

(ii) Clear documentation on use policy for urgent computing users to activate an urgent
computation(s)

• Emergency contacts

• Technical documentation of the resource

(iii) Clear documentation from urgent computing users on their urgent system design

• Validation on scalability

• Possible risks, particular security, of the designed system

• Technical requirements on the resource

• List of services, tools and applications required on the resource

In this dissertation, the urgent system is designed while adhering to the recommend-
ations. Best effort is made to ensure that the limitations, policies and requirements of
the resources and resource providers are reasonably adhered to without compromising the
core needs of the urgent system. This is to motivate public resource providers to readily
support urgent computing by ensuring that there will not be major disruptions to their
operation models.

56 3. Urgent Computing Definition

Chapter 4

An Urgent System & A Task-based
Ubiquitous Framework

The design of an effective urgent system is crucial to the success of urgent computing
where completing the computations not only correctly but within the stipulated deadlines
is required. In this chapter, an urgent system consisting of four components is shared in
Section 4.1. To realise the urgent system, a task-based ubiquitous (TbU) framework as
described in Section 4.2 is designed. This framework aims to address the chaotic and fre-
quently unpredictable circumstances that entail disasters, and the need to manage multiple
distributed heterogeneous computing resources to swiftly carry out the required computa-
tions, i.e. ensembles of forecasts.

Despite the advances in science and technology, it is still a challenge to accurately
predict the onset and progress of many disasters. Thus, when a disaster occurred or is
expected to occur in short order, the surrounding environments are expected to be dynamic
and chaotic. It is thus reasonable to consider that a decision maker(s) who has to decide
whether to initiate an urgent computation, analyse the urgent products and make crucial
decisions to mitigate the loss, might not be in the vicinity of his/her work environment in
these time-critical moments. Instead, easy to carry ubiquitous end user devices like mobile
phones and tablets are more practical and have a higher chance of being readily available.
The TbU framework thus aims to support such devices to enable urgent computing.

Additionally, the success of urgent computing depends on how swiftly the ensembles of
forecasts can be prepared and initiated on multiple distributed heterogeneous computing
resources. The TbU framework is thus designed with a three-layer architecture as shown
in Section 4.2.1 to allow a separation of concerns, ubiquitous access, urgent computing and
use case requirements, and heterogeneity of computing resources and their environments.
The design of the urgent computer system based on the TbU framework is described in
Section 4.2.2.

58 4. An Urgent System & A Task-based Ubiquitous Framework

4.1 Urgent System

An urgent system is a system to enable urgent computing to support decision-making and
coordination work such that loss mitigation is possible. This system can be represented
as shown in Figure 4.1, consisting of four components, the operator, the urgent computer
system, the decision & coordination system and controlled objects. The operator interacts
directly with the urgent computer system and decision & coordination system, which have
to share information with each other. The decision & coordination system has to also
manage the controlled objects. The urgent system is designed with reference to the real-
time system shown in Figure 2.1 [2]. The presence of multiple controlled objects and the
non-deterministic characteristics of urgent computing imply a more complex decision and
coordination process. Thus, a specific component for decision-making and coordination is
designed.

Figure 4.1: An Urgent System

The operator is typically an event domain scientist and/or civil protection officer who
will decide if an urgent computation should be initiated. It is also possible for the operator
to be an automated machine but due to the uncertainty in computing requirements until
zero hour, it is more reasonable to anticipate a human operator.

The urgent computer system consists of computing resources to carry out urgent com-
putations, i.e. forecasts. The requirements of urgent computing and computational require-
ments of each forecast are handled within this component. The underlying resources can be
a single workstation, on-demand, HTC and/or HPC depending on the expected workload.
Security and administrative requirements between the operators and the resources, data
collection for computations, allocating resources to urgent computations, etc. are some
of the important functions under the urgent computer system’s jurisdiction. SPRUCE,

4.2 Task-based Ubiquitous Framework 59

UrbanFlood Common Information Space (CIS) [30] and TbU framework implementation
illustrated in Section 4.2.2 are examples of an urgent computer system.

The decision & coordination system is another critical component of the system. It
assists the operator in making informed mitigation decisions supporting the evaluation of
urgent products from the urgent computer system. Once a decision is made, it facilitates
the operator to effectively disseminate the decision to the controlled objects such that
mitigation activities are carried out. Since the circumstances entailing an urgent event are
often very dynamic and chaotic, decisions need to be updated as new information comes
in. Thus, this component must be able to coordinate live updates to all controlled objects.

The controlled objects can be mechanical (sensors) or humans. Examples of controlled
objects are civil protection services, i.e. firefighters, police and doctors, evacuating civilians,
disaster alert systems, news agency, etc. Information exchange between the controlled
objects and the decision & coordination system is crucial to ensure that errant controlled
objects and unforeseeable developments are appropriately managed.

4.2 Task-based Ubiquitous Framework

A generic TbU framework is correspondingly designed to realise the urgent computer sys-
tem, the focus of this dissertation. This framework will enable ubiquitous access to the
underlying heterogeneous distributed computing resources, easy management of their dy-
namic environments and the swift adoption of new resources and use cases while ensuring
the stipulated deadlines are met. It allows urgent computing and use case specific comput-
ing requirements to be handled separately such that the use case specific activities, which
are expected to require zero hour modifications as requirements may vary from event to
event, can be independently updated.

4.2.1 Architecture

The architecture of the urgent computer system based on the TbU framework is illustrated
in Figure 4.2. It is based on top of a three-layer architecture consisting of a ubiquitous
process orchestrator (Layer 1), an activity & task manager (Layer 2) and a subtask co-
ordinator (Layer 3) illustrated with pink, green and yellow rectangles respectively. Within
the activity & task manager, four urgent software component managers (the blue rect-
angles), information, resource & environment, schedule and fault, are designed to enable
the framework to manage the requirements, in particular the time constraints, of urgent
computing.

The three layers are specifically designed to enable a separation of concerns when en-
abling the following functionalities.

(i) Layer 1 – To provide an HMI interface for operators to swiftly and easily access the
computing resources.

60 4. An Urgent System & A Task-based Ubiquitous Framework

Figure 4.2: Three-Layer Architecture

(ii) Layer 2 – To provide an easy to configure and adaptable platform for urgent com-
puting requirements and use case specific workflows to be represented.

(iii) Layer 3 – To provide a simple integration interface to manage the heterogeneity of
computing resources and their environments.

Layer 1 manages the client requirements while Layer 2 handles the use case and urgent
computing specific requirements. Layer 3 takes care of the heterogeneity of the distributed
computing systems and their environments.

To assist each layer in functioning effectively, the work steps within this architecture
are further represented by processes, activities, tasks and subtasks based on the concepts
of work breakdown structure [105] in systems engineering and the IEEE standard for
developing software life cycle (SLC) processes [106, p. 11-12]. The incremental breakdown
of a system into smaller components enables better organisation and management of each
identified functionality. It also complements the layered architecture such that the lower
layers get an incrementally refined division of work to address the requirements from urgent
computing, use cases and heterogeneous computing resources.

The IEEE standard for SLC processes is also leveraged on to define the work steps
breakdown. In this standard, a process is defined to be composed of activities, an activity is
a constituent task of a process and a task is the smallest unit of work subject to management
accountability. Since 1997, the standard [107] is updated to use the term “activity group”
as opposed to “process”.

The breakdown of work steps in this dissertation are defined as such.

• A process consists of a sequence of general activities to fulfil the main functionality
of a system.

• An activity is a major piece of general work that contributes to the
goal/functionality of a process.

4.2 Task-based Ubiquitous Framework 61

• A task is a minor piece of work, i.e. coarse grain task, which describes an activity
specific to its application, e.g. to the use case and/or urgent computing requirements.
An activity can consist of many tasks. In addition, a task can be further extended
into one or many subtasks, i.e. a fine grain instance of a task.

• A subtask represents a technical implementation of a task for a specific work as-
signment.

The processes represent the main functionalities, e.g. start urgent computations and
analyse urgent products, which the operators are required to manage within Layer 1 via
ubiquitous end user devices. Activities are used to describe the processes in more de-
tails in Layer 2 without considering the underlying resources. Tasks are then introduced
to describe the activities based on urgent computing and use case specific requirements.
General descriptions with reference to the computing resources are introduced to ease the
integration with Layer 3. Sub-tasks in Layer 3 represent the resource specific implement-
ations of the tasks where the heterogeneity of distributed computing resources and their
environments are managed.

The relationship among processes, activities, tasks and subtasks is elaborated in Fig-
ure 4.3 using the same colour scheme as the layer they belong to in the three-layer ar-
chitecture. 1 to n processes (refer to the pink rounded rectangles) can be defined for a
use case. These processes correspond to Layer 1 of the TbU architecture and will thus be
orchestrated by the ubiquitous process orchestrator. Each process can be refined into 1 to
n activities (refer to the green rectangles), which can take place sequentially or in parallel.
Each activity can be further broken down to 1 to n tasks (refer to the blue elongated
hexagons), which can run sequentially or in parallel. The activities and tasks are a part of
Layer 2 of the TbU architecture and are managed by the activity & task manager. Finally,
each task can be further decomposed into 1 to n subtasks (refer to the yellow ovals). The
subtasks are coordinated by Layer 3 of the TbU architecture, the subtask coordinator.

The three-layer architecture allows a separation of concerns to enable extensibility and
maintainability. Details of each layer will be elaborated in the following subsections.

Layer 1 – Ubiquitous Process Orchestrator

Layer 1, the ubiquitous process orchestrator, administers the human-machine interface
(HMI). The crucial ubiquitous feature facilitates interaction with a variety of heterogeneous
computing resources via ubiquitous end user devices, which have the highest probability
of being readily available in the event of a disaster. This enables the urgent system to be
accessible from anywhere at anytime.

The ubiquitous process orchestrator does not manage any client software and will only
provide generic ubiquitous process interfaces to orchestrate the processes and activities of
urgent use cases. There is an implicit requirement that the selected client software must
function on selected ubiquitous end user devices but that is outside the jurisdiction of the
ubiquitous orchestrator. The clear separation of concerns between the layers ensures that
there is no direct coupling between the ubiquitous orchestrator and the subtask coordinator.

62 4. An Urgent System & A Task-based Ubiquitous Framework

rocess 2

Activity 1

Activity 2

Activity 3

Activity 4

Activity n

Process nProcess 1

Layer

Task 1
Task 2

Task n

Task 3

Subtask 1 Subtask 2 Subtask n

Layer

Layer

Figure 4.3: Relationship among Processes, Activities, Tasks and Subtasks

Thus, any changes on the underlying resources, will have minimal impact on this layer and
the clients.

Layer 2 – Activity & Task Manager

Layer 2, the activity & task manager, provides the interface to marshal any combination
of tasks to realise the activities of urgent use cases. Each activity will be described as
a sequence of tasks in this layer. Existing work steps of event domain scientists will be
defined as tasks to be managed by this manager.

The most crucial components within this layer are the four urgent software component
managers, information manager, resource & environment manager, schedule manager and
fault manager. These managers are responsible for ensuring that the urgent computing
requirements are fulfilled within the urgent system. They consist of mandatory tasks that
have to be utilised by all use cases. Their main responsibility is to ensure that the defined
activities are completed by adhering to the urgent computing requirements before the
stipulated deadline. The duties of each manager are elaborated as follows:

(i) Information Manager

The function of the information manager is to administer the task to collect data.
The process model of this task is shown in Figure 4.4. Information about the computing
resources and requirements of the urgent use cases has to be identified, collected, processed
and stored via time-triggered monitoring in Phase 1. The requirements of the use case, e.g.
the required number of computing nodes per resource, are used to make an initial selection
on the set of appropriate resources in Phase 2. The resource set is further refined with the

4.2 Task-based Ubiquitous Framework 63

constraints given by the operator, e.g. choose resources where the application required is
pre-installed, in Phase 3. The criterion function fulfils mandatory requirements while the
utility function manages preferable constraints.

Data collection

Refine resource selections
based on the use case
requirements

Criterion function

Identify, collect, process and
store resource and use case
information to guide
selections

Phase 1 Phase 2

Finalise selection based on
the constraints given by the
operator

Utility function

Phase 3

Figure 4.4: Process Model of Information Manager

Phase 1 of this manager typically takes place in advance. Data collected is processed
and stored in information systems for easy retrieval. Phase 2 and 3 are initiated by an
operator when an urgent event is expected.

(ii) Resource & Environment Manager

The resource & environment manager administers the prevalent statuses, e.g. availab-
ility, of resources and their dynamic environments. The process model of this manager is
shown in Figure 4.5. Pre-collected data on the selected resource set is retrieved from the
information manager in Phase 1. Each resource in the resource set is additionally veri-
fied by the resource & environment manager on the fly, i.e. event-triggered monitoring,
to ensure that the existing statuses are still adhering to the requirements and constraints
provided by the operator. This is crucial as the environments on resources are typically
dynamic. Resources that no longer satisfy the requirements, in particular the criterion
function, e.g. partial maintenance of the resource and consequently insufficient nodes for
the urgent computation, will be removed from the resource set in Phase 2. In phase 3,
the constraints set by operators are used to finalise the selection. The three phases in this
manager are triggered by the information manager.

(iii) Schedule Manager

The schedule manager is responsible for scheduling the urgent computations, e.g. pree-
mptive scheduling [13], on the given resource set provided by the resource & environment
manager. The process model of this manager is shown in Figure 4.6. This manager will
evaluate the information collected by the information manager and the resource set given
by the resource & environment manager in Phase 1. The most crucial urgent computing

64 4. An Urgent System & A Task-based Ubiquitous Framework

Data collection

Refine resource selections
based on the use case
requirements

Criterion function

Retrieve data from information
manager, and identify, collect
and process from each
resource and its environment

Phase 1 Phase 2

Finalise selection based on
the constraints given by
the operator

Utility function

Phase 3

Figure 4.5: Process Model of Resource & Environment Manager

requirement, deadline, is used by the criterion function to select the the most appropriate
resources from the set in Phase 2. The utility function is used additionally to ensure that
the non-mandatory constraints, e.g. reliability and energy usage, are also fulfilled in Phase
3. The final selected resources will be assigned the urgent computations.

Data collection

Refine resource selections
based on the deadline
criterion

Criterion function
(Deadline)

Retrieve given resource set and
use case requirements from
the resource & environment
and information managers

Phase 1 Phase 2

Allocate resources to
computations based on utitility
constraints, e.g. reliability,
energy usage and cost

Utility function

Phase 3

Figure 4.6: Process Model of Schedule Manager

The three phases of this manager are triggered by the resource & environment manager.
This manager will in turn trigger the fault manager.

(iv) Fault Manager

The fault manager improves the reliability of the urgent system by providing mechan-
isms to recover from pre-defined faults. The faults are classified into two categories, benign
and malignant, based on on their impact on meeting the stipulated deadline. These two
categories are then refined to include the characteristics, recoverable and irrecoverable, to
reflect the ease of recovery. They are defined as shown in the following list.

• Benign faults are harmless faults that will not have an adverse impact on meeting
the stipulated deadline.

4.2 Task-based Ubiquitous Framework 65

– Benign recoverable faults are harmless faults that can be easily recovered
and will not have adverse impact on meeting the stipulated deadline.

– Benign irrecoverable faults are harmless faults that cannot be recovered
and have to be rescheduled by the schedule manager but will not have adverse
impact on meeting the stipulated deadline.

• Malignant faults are harmful faults that will result in missing the stipulated dead-
line.

– Malignant recoverable faults are harmful faults that upon recovery will
result in missing the stipulated deadline.

– Malignant irrecoverable faults are harmful faults that cannot be recovered
and have to be rescheduled by the schedule manager, which result in missing
the stipulated deadline.

Undefined faults will be classified as benign irrecoverable faults and will be rescheduled.
The process model of this manager is shown in 4.7. When a fault is detected, the inform-
ation manager and the resource & environment manager are contacted to collect more
information about the fault in Phase 1. The list of pre-defined faults will be retrieved from
the information manager while the resource & environment manager will check the affected
computing resource and its environment for more data about the fault. The gathered data
will be used to analyse the fault based on the deadline, benign or malignant, criterion in
Phase 2. Finally the fault is classified in Phase 3 and appropriate recovery measures are
carried out. If a reallocation of the affected application(s) is necessary, e.g. irrecoverable
benign faults, the schedule manager will be contacted. All three phases of this manager
are triggered when a fault is detected.

Data collection

fault based on
criterion

Criterion function
(Deadline)

tion about
e information and

resource & environment
manager e

lt list

Phase 1 Phase 2

e fault based on
lt classification and

perform appropriate recovery
measures

Utility function

Phase 3

Figure 4.7: Process Model of Fault Manager

Layer 3 – Subtask Coordinator

Layer 3, the subtask coordinator, coordinates the complex interactions with the heterogen-
eous computing resources and their environments. Four fundamental subtask functions,

66 4. An Urgent System & A Task-based Ubiquitous Framework

AUTH, EXEC, TRAF and TERM, are defined to describe and execute each task. These
subtask functions are identified by reviewing the workflow of different use cases, both ur-
gent and non-urgent, while collaborating with different domain scientists in projects, e.g.
EGI, DRIHM and VERCE. Most if not all urgent computing activities can arguably be
described with this set of subtask functions.

(i) AUTH – Authenticate

(ii) EXEC – Execute

(iii) TRAF – Transfer

(iv) TERM – Terminate

The AUTH function manages the connection and authentication to the underlying
computing resources. The EXEC function executes the tasks required by the use cases. The
TRAF function coordinates data transfers and exchanges. The TERM function manages
the termination of ongoing AUTH, EXEC and TRAF activities. The tasks, work steps of
scientists, will be expressed and implemented via these subtask functions. These functions
will enable a rapid integration of existing work steps of an urgent use case into the TbU
framework. Heterogeneity in computing resources and their environments will be handled
within these functions.

4.2.2 Design of the Urgent Computer System

To enable the urgent computer system to support ensembles of forecasts, the TbU
framework is used to design the prototype. The resulting TbU compute process is shown
in Figure 4.8. The urgent software component managers, Information, Resources & Envir-
onment, Schedule and Fault managers, will be abbreviated as Info Manager, R&EManager,
Sched Manager and Fault Manager respectively in the figures.

The urgent workflow can be generalised into three processes, compute, analyse and
decide (refer to the pink rounded rectangles in Figure 4.8). The compute process describes
the allocation of ensembles of forecasts on a given set of computing resources while the ana-
lyse process shows the evaluation activities of the computed results. The decide process,
the final step of the workflow, represents the mitigation decision-making activities. The
compute process will be the main focus of this dissertation. The analyse process is real-
ised with a ubiquitous visualisation service1 (refer to Appendix A), which has since been
adopted as a production service at LRZ. The decide process is assumed to be a manual
process that is performed by the event domain scientists and/or civil protection officers by
evaluating the urgent products.

The compute process is broken further into three activities, collect, allocate and re-
trieve as elaborated in Figure 4.8 with green rectangles. The collect activity represents

1https://rvs.lrz.de

4.2 Task-based Ubiquitous Framework 67

AnaCompute

Collect te

R&E
Manager

Fault
Manager

Sched
Manager

Figure 4.8: TbU Compute Process for Ensembles of Forecasts

the collection of data, e.g. use case and resource requirements from the operator, and
information of the computing resources and their environments from the information and
resource & environment managers (blue elongated hexagons on the left). The allocate
activity describes the work performed by the schedule manager to allocate resources for
the ensemble of forecasts. The fault manager will monitor the computing resources for
faults and rectify them when possible. Finally, upon the completion of the computations,
the results are retrieved for the analyse process.

UTH EXEC r
Model

TRAF
information

R&E
Manager

 AUTH EXEC Pr
l

 TRAF

Manager
Sched

Manager

 EXEC Pr
l

 TERM

 EXEC
Faults

 EXEC Pr
l

Fault
Manager

Figure 4.9: TbU Task Diagrams of the Urgent Software Component Managers

The core tasks performed on the computing resources are enclosed within the gray box

68 4. An Urgent System & A Task-based Ubiquitous Framework

in Figure 4.8. Multiple concurrent instances of the task thread, connect, schedule, get
data and disconnect, are initiated by the schedule manager (refer to the blue elongated
hexagons in the gray box). Each instance represents a forecast in the ensemble. For each
forecast, a connection is initiated on the allocated computing resource and the forecast
job is scheduled on it. In the case of using shared resources, if there are insufficient
available cores/nodes, running jobs will be preempted to free cores/nodes, i.e. preemptive
scheduling, for the allocated forecast to commence immediately. Two possible approaches
to realise preemptive scheduling are shared in Appendix B [13]. Data is retrieved to check
the status of the job and for possible faults. Once the job is completed, the result is
retrieved and the connection is terminated. Each of the core tasks is further described
by the fundamental subtasks. This allows the heterogeneity of computing resources to be
managed within the subtasks.

The TbU task diagram illustrating the interactions among the four urgent component
managers (blue elongated hexagons) is shown in Figure 4.9. Each manager is presented as
a task that is refined into a number of subtasks (yellow ovals). To simplify the illustration,
the defined process models of the managers are depicted as subtasks. Both the information
manager and resource & environment manager are expected to provide information of the
resources and their environments, and resource allocation requirements to the schedule
manager. The resource & environment manager is additionally expected to manage the
dynamism of resources and their environments, and to provide the schedule manager with
the most current information and requirements. The fault manager also receives updates
of the allocated resources and forecasts from the resource & environment manager. If
faults that require reallocation are detected, the fault manager will provide the schedule
manager with updated information on the resources and their environments, and resource
allocation requirements. The schedule manager thus manages the dynamism in resources
and environments based on the inputs it received. It will allocate the required forecasts
to computing resources swiftly while ensuring that the timing constraints and other re-
quirements it received are taken into consideration. A set of resource allocation heuristics,
which is discussed in detail in Chapter 5, is designed to enable the schedule manager to
manage ensembles of forecasts.

In summary, the TbU approach enables the urgent computing framework to coordinate
multiple forecasts simultaneously under time constraints on multiple distributed hetero-
geneous computing resources. It supports ubiquitous access to facilitate the interactions
with multiple forecasts and resources from anywhere anytime. Ubiquitous access is con-
sidered as crucial in view of the chaotic environments that typically accompany an urgent
event. The task-based feature provides the adaptability to refine the forecast models when
additional insights are gained from zero hour data.

Chapter 5

Resource Allocation Heuristics

Enabling multiple forecasts with varying execution times to complete within a deadline
is a challenging task. As such, a heuristic approach is employed to manage the resource
allocation. In Section 5.1, the obligations of urgent computing for ensembles of forecasts
and the objectives of the resource allocation heuristics, maximising makespan robustness,
minimising energy usage and maximising reliability across resources and/or sites, are iden-
tified.

The allocation must meet the deadline in face of perturbations and reliability issues of
using multiple computing resources while adhering to the realistic resource requirements,
i.e. efficient energy usage when frequency scaling options are used. Two mathematical
models to quantify robustness in terms of makespan, and reliability in terms of resource
and site are also developed and shared in Section 5.2. The influence of frequency scaling
and thus energy usage is modelled within the robustness model.

The makespan of an allocation is however dependent on the forecast allocation patterns,
concurrently, consecutively or a combination of both, which are utilised. The allowed
allocation pattern is in turn dependent on the number and size of computing resources
available. Section 5.3 thus illustrates the three possible allocation patterns, the associated
resource numbers and sizes, and how they influence makespan.

A set of resource allocation heuristics is shared in Section 5.4 to incrementally fulfil the
identified objectives based on priority. The effectiveness of an allocation is quantified using
the robustness and reliability models and the calculated ETS values for a distributed set of
computing resources. In order to allow further assessment and comparison of the derived
results and metrics, an assessment model is introduced in Section 5.5. The final aim is to
provide a robust and reliable resource allocation heuristic for ensembles of forecasts that
enables efficient energy usage under time constraints.

70 5. Resource Allocation Heuristics

5.1 Obligations and Objectives of Resource Alloca-
tion Heuristics

The decision to select an optimal resource allocation for ensembles of forecasts is either
P-complete or NP-complete as it involves a number of objectives, which cannot be sim-
ultaneously optimal. Thus a heuristic algorithmic approach is applied to deal with this
allocation problem. In principle, the resource allocation must ensure that the following
practical obligations are met.

(obligation 1) Meeting the stipulated deadline

(obligation 2) Maximising the number of successfully allocated and completed fore-
casts

Meeting the stipulated deadline (obligation 1) is the most fundamental criterion of ur-
gent computing. However, the earlier the forecasts complete their computations, the more
lead time there will be for decision-making and mitigation activities. As such, minimising
the makespan (refer to Section 1.5 for definition) of a resource allocation is a natural ob-
jective. Since the makespan is estimated by considering the execution time of each forecast
on the allocated resource, errors have to be expected. The resources in question can have
perturbations that affect the actual execution times. To minimise the effect of such errors,
makespan robustness, which takes into consideration the errors introduced due to perturb-
ations is used instead as one of the objectives for the heuristics to optimise. Makespan
robustness refers to the tolerance of an urgent system to perform faithfully in event of
perturbations such that the length of the schedule of a resource allocation adheres to the
deadline.

Frequency scaling, a technique to ramp up the processor frequency to improve the
computing performance (faster) at the expense of electrical power (energy), is an option
available on many modern computers. Levering on this option will have a positive influence
on the makespan of an allocation and is thus a valuable feature to be utilised. However,
since it comes at the expense of energy (increasing energy cost), most public resource
providers are either reluctant to offer this functionality or are offering this functionality
with prerequisites due to their power constraints. At LRZ, the efficient use of the particular
resource and thus energy has to be proven before this option is activated for a particular
user. Consequently, the selection of an optimal frequency while minimising energy usage
is another objective of the heuristics.

Maximising the number of successfully allocated and completed forecasts (obligation
2) before a stipulated deadline is a basic criterion while coordinating ensembles of forecasts
with timing constraints. The realisation of this obligation is dependent on the available
resource set, the number of resources available and the sizes of the resources (refer to
Section 5.3). There is an obvious and yet practical method to improve the success rate
by selecting more reliable resources for the forecasts. However, this can lead to an over-
subscription of a few resources, which can result in a single point of failure. Thus, reliability

5.2 Robustness and Reliability Models 71

of a resource allocation has to take into consideration the distribution of forecasts across
resources and/or computing sites as the final objective to optimise via the heuristic ap-
proach.

In summary, the objectives to fulfil are as follows:

(obj. 1) Maximise makespan robustness

(obj. 2) Minimise energy usage

(obj. 3) Maximise reliability across resources and/or computing sites

In order to quantify makespan robustness, a robustness model specific to urgent com-
puting is developed. Within this model, the frequency scaling option is included since it
influences the makespan. Similarly, a reliability model is also implemented to quantify
the reliability of an allocation across resources and sites based on our requirements. Both
models are elaborated in the next section.

5.2 Robustness and Reliability Models

Both models are expressed mathematically based on the research work in [108][65] and ap-
plied specifically to urgent computing. The robustness model aims to quantify the robust-
ness of an allocation in terms of makespan. The characteristic of the targeted computing
resources, frequency scaling (energy usage), is included in the the makespan robustness
model as they influence the makespan of the selected allocation. The reliability model
attempts to measure the reliability of an allocation to enable a distribution of forecasts
across resources and sites.

5.2.1 Robustness Model

Robustness is defined as the tolerance of a computing system to perform faithfully in
event of perturbation(s). Perturbations, e.g. network issues resulting in reduced input-
output read/write speed, can lead to performance degradation that affects the execution
times of computations and consequently the makespan of allocations. This can cause dire
consequences as a result of missing deadlines. Makespan refers to the length of a schedule,
i.e. from the start of an allocation, ts, to the point in time when all allocated urgent
computations complete, for a given resource allocation while execution time refers to the
amount of time a single forecast takes to complete its computation on a given resource.

To ensure that the impact of perturbations is minimised, designing robustness into
the system is of utmost importance. Based on [108], a mathematical metric to measure
robustness can be designed via a four-steps FePIA (named after the steps as created by
the authors of [108]) procedure as shown in the list below. The FePIA procedure is thus
applied to enable urgent computing to support ensembles of forecasts.

(i) Identify the system performance features Φ based on the selected robustness criterion.

72 5. Resource Allocation Heuristics

(ii) Identify possible system and environment perturbation parameters.

(iii) Identify the impact of perturbation parameters.

(iv) Determine the smallest collective variation in perturbation parameter values.

ts tideal

øk

tdeadline

maximum mitigation possible decreasing mitigation

zero m
itigation

tterminus

Figure 5.1: Urgent Computing Timing Variables

The most crucial robustness criterion in urgent computing is deadline. The timing
variables, tideal, tdeadline and tterminus (refer to Section 3.3), of urgent computing deadlines
will be utilised in the model. Makespan φk is identified as the system performance fea-
ture to limit such that the deadline criterion can be met robustly. Maximising makespan
robustness will implicitly imply minimising the makespan of an allocation. The selected
resource allocation µ must satisfy the initial condition as shown in equation (5.2.1). Fig-
ure 5.1, which is based on Figure 3.4, summarises the relationship among the defined timing
variables and the variables in the model, ts and φk.

ts + φk < tdeadline and tdeadline < tterminus (5.2.1)

where
φk represents the kth performance feature in Φ.

In principle, the equation can accommodate more than one performance feature. How-
ever, if more performance features are included, i.e. k > 1, the computation complexity
will increase exponentially. Consequently, only one performance feature is included in each
model and near-optimal heuristics are leveraged on instead.

System and environment conditions of each computing resource cj contribute to the set
of identified perturbation parameters πj that can adversely influence makespan as shown
in equation (5.2.2).

φkj = f(πj) and πj ∈ Π (5.2.2)

where
φkj refers to the makespan of a given computing resource cj for resource allocation µ.
f(πj) represents the maximum execution time of the allocated forecast applications ai

on a given computing resource cj

5.2 Robustness and Reliability Models 73

Some examples of pertubations are “bad” computing nodes with lower computing per-
formances than average and faulty batch schedulers, which under-allocate the required
number of computing nodes leading to simultaneous multithreading (SMT). Both can res-
ult in lower computing performance, i.e. longer execution time, without affecting the ability
to complete the computation.

The maximum execution time f(πj) of a computing resource is dependent on how the
computations are allocated, consecutively and/or concurrently. Section 5.3 illustrates the
possible allocation patterns and how it affects f(πj) .

The makespan of a resource allocation µ on n resources is as follows:

φk = max
∀cj

f(πj) and j = 1..n (5.2.3)

In order to satisfy the identified system performance feature, makespan, the boundary
condition that illustrates the error tolerance has to be defined. The acceptable tolerance
has to satisfy equation (5.2.1). The ideal boundary condition is φk ≤ tideal. However
realistically, as long as the makespan is within the limits as shown in equation (5.2.4),
mitigation activities are possible.

ts < φk < tterminus (5.2.4)

The error tolerance has to be set within the above range, using the minimum case as
follows:

φactual
k = τφestimated

k and φactual
k ≤ tdeadline < tterminus (5.2.5)

where
φactual
k refers to the actual makespan of a resource allocation µ.

φestimated
k is makespan of a resource allocation µ by using pre-collected/computed data

of each forecast ai on each computing resource cj.
τ is the tolerance value, i.e. tolerable error, for a given resource allocation. τ is ≥ 1.

Finally, the Euclidean norm (l2-norm) is applied to find the largest distance between
the actual and estimated perturbation parameters, πactual

j and πestimated
j respectively. This

distance represents the tolerable error range while adhering to the deadline. Minimising it
will imply minimising makespan and maximising the tolerance towards perturbation errors
of a computation on a given resource. This distance will be referred as the robustness radius
rµ as shown in equation (5.2.6).

rµ(φk, πj) = min
πj :φk=τφestimated

k

∥ πestimated
j − πactual

j ∥2 (5.2.6)

The above equation can be further simplified since the actual makespan πactual
j can be

taken as a point while the estimated makespan πestimated
j as a hyperplane. Consequently, the

74 5. Resource Allocation Heuristics

right-hand-side of equation (5.2.6) can be solved by a point-to-plane distance formula [109,
p.22][108, p.633] as shown in equation equation (5.2.7).

rµ(φk, πj) =
τφk − f(πj)

√

number of consecutive applications allocated to cj

=
tdeadline − f(πj)

√

number of consecutive applications allocated to cj

(5.2.7)

Finally, to extend the above robustness radius equation for all φk ∈ Φ, the robustness
metric ρµ, which is the minimum of all robustness radii (the worst case robustness radius
for a given allocation) is defined as follows:

ρµ(Φ, πj) = min
φk∈Φ

rµ(φk, πj) (5.2.8)

The goal is to maximise makespan robustness radius for a given resource allocation µ.
Maximising the robustness radius is basically minimising makespan such that the stipulated
deadline is met (obligation 1) even in event of system perturbations. Additionally, it also
maximises the lead time for decision-making and mitigation activities.

Frequency Scaling and Energy Usage

Frequency scaling is a technique to ramp up the processor frequency to improve the com-
puting performance (faster) at the expense of electrical power (energy). It is an option
available on many modern computers. However, it is typically not enabled by default on
public resources due to the higher energy usage and thus higher energy cost. Only applica-
tions, which have proven that they can efficiently take advantage of higher frequencies will
be given the privilege.

In the case of urgent computing, higher frequencies can potentially minimise makespan
and result in more lead time for decision-making and mitigation activities. It is thus a
critical feature that cannot be ignored for computations with time constraints. Equa-
tion (5.2.7) is modified to include the frequency scaling as follows:

rµ(φ
makespan
k (freq), πj) =

tdeadline − f(πj)
√

number of consecutive applications allocated to cj
(5.2.9)

This however will be an incomplete representation if energy usage is not represented.
In order to minimise makespan (maximise makespan robustness), the highest frequency
of each resource will inevitably be chosen. This will lead to energy wastage since not all
computations need to run at the highest frequency to minimise the makespan (refer to
equation (5.2.8)).

For example, in the case where there are two computations to be performed, compu-
tation A is estimated to require 2 hours while computation B needs only 1 hour using
the maximum possible frequencies on the respective resources. If computation B uses the

5.2 Robustness and Reliability Models 75

default (the lowest) frequency, it will complete its computation in 1.5 hours. In this case, it
is unnecessary for computation B to utilise the highest frequency since it will have to wait
for computation A to complete before the decision-making and mitigation activities can
be carried out. Thus, better energy utilisation can be achieved by allocating computation
B with the default frequency.

To reflect this frequency scaling-energy relationship when allocating resources for en-
sembles of forecasts, energy usage is included as an objective in the heuristics defined in
Section 5.4. Energy usage is measured in terms of energy-to-solution (ETS) [110]. ETS
is the total energy in kilowatt hours (kWh) required for a computation to arrive at its
solution.

5.2.2 Reliability Model

Reliability is the ability of a computing system to perform the required functions correctly
within a specified time period. Unlike robustness, reliability does not manage perturbations
in the computing system but is mainly concerned with the trustworthiness of a system
during normal, i.e. expected, operation. A reliable resource allocation should avoid a
single point of failure by selecting a good distribution of forecasts across reliable resources
across sites.

Reliability in our reliability model will be a function of availability. If a system is
frequently unavailable over a planned operation period, i.e. a time period where no main-
tenances or downtimes are expected, reliability will correspondingly decrease. The reliab-
ility/availability of services, such as availability of the batch schedulers, which are required
to fulfil the urgent computations will not be considered in this dissertation but can be
included by an appropriate redefinition of φreliability

j . Reliability of a resource can be rep-
resented as shown in equation (5.2.10).

φreliability
j =

Aj(t)

Pj(t)
(5.2.10)

where

• φreliability
j (t) represents the performance feature, reliability, of a resource cj over a

time period t.

• Pj(t) refers to the planned operation of resource cj over time period t.

• Aj(t) denotes to the actual operation of resource cj over time period t.

The resource-based reliability radius and metric of a given allocation µ are defined by
using the same procedures as the robustness makespan [18] without a robustness criterion.
The corresponding reliability radius derived with Euclidean norm (l2 norm) is shown in
equation (5.2.11).

rresourceµ (φreliability, t) =
φreliability
j

√

number of applications allocated to resource cj
(5.2.11)

76 5. Resource Allocation Heuristics

where
rresourceµ (φreliability, t) refers to the reliability radius of a given resource allocation, µ, of

resource cj at time t.

Since one computing site can host more than one feasible resource, a site-based reliab-
ility radius equation is also defined. The reliability of a computing site sl can be computed
as shown in equation (5.2.12).

φreliability
l = min

∀callocatedj ∈sl

{φreliability
j } (5.2.12)

The site-based reliability radius equation is shown in equation (5.2.13). The reliability
radius of a site will decrease as more jobs are assigned to one single site. For instance, in
event of a power failure occurring in an area where the computing site is, all resources at
the site could become unavailable.

rsiteµ (φreliability, t) =
φreliability
l√

number of applications allocated to computing site sl
(5.2.13)

where
rsiteµ (φreliability, t) refers to the reliability radius of a given resource allocation, µ, of

computing site sl at time t.

The resource reliability metric ρresourceµ (φreliability, t) of an allocation µ is the minimum
reliability radii across all resources as shown in equation (5.2.14).

ρresourceµ (φreliability, t) = min
∀j∈n

{rresourceµ (φreliability, t)} (5.2.14)

The site reliability metric of an allocation µ is the minimum reliability radii across all
sites as shown in equation (5.2.15).

ρsiteµ (φreliability, t) = min
∀j∈n

{rsiteµ (φreliability, t)} (5.2.15)

The goal is to maximise both reliability radii, resource and site, for a given set of
resources. Maximising reliability radii will imply not only selecting the most reliable re-
sources for the allocation but also a good distribution of forecasts on different reliable
resources across sites. This will minimise the impact of a single site or resource failure and
ensure that a maximum number of resources are successfully completed (obligation 2).

5.3 Ensembles of Forecasts Allocation Patterns

5.3 Ensembles of Forecasts Allocation Patterns 77

Allocating resources to ensembles of forecasts is dependent on the number and size of
resources available. The more and bigger the resources are, the more allocation options
are available. More resources imply the possibility to choose the resources with the most
optimal criteria, e.g. computing performance and reliability, for the forecasts. The bigger
the resources, the higher the chances of finding sufficient cores/nodes for the allocated
forecasts and also the possibility to have multiple concurrent forecasts on one resource.

In addition to allocating forecasts concurrently, there are also the possibilities to allocate
forecasts consecutively and a combination of both, concurrently and consecutively. There
are thus three main forecast allocation patterns as follows:

• Independent Consecutive Forecast Allocation Pattern

• Independent Concurrent Forecast Allocation Pattern

• Independent Concurrent and Consecutive Forecast Allocation Pattern

e
ca

st
s

ces

22

3

2 3

Legend

rent

r sec

Figure 5.2: Area Chart of Forecast Allocation Patterns

Under the assumption that each resource has sufficient nodes/cores to compute only
one forecast at any point in time, the recommended allocation patterns are illustrated in
Figure 5.2. The gray area with stripes shows the case where there are only one forecast
(not an ensemble) and is thus not applicable to us. The consecutive (green) area shows
the scenario where there is only one resource but more than one forecast. The concurrent
(blue) area illustrates the scenario where there are the same number of or more computing

78 5. Resource Allocation Heuristics

resources as compared to the number of forecasts. Thus, all forecasts can compute concur-
rently. Consequently, all forecasts have to be computed consecutively. In the consecutive
(orange with polka dots) area where there are more forecasts than the number of resources,
forecasts have to be computed both concurrently and consecutively.

The pattern selected is dependent not only on the number of resources but also on the
size of the resources. An example is one big resource where all forecasts can run concur-
rently. In this section, the possible cases for each allocation pattern will be elaborated.
Depending on the pattern, the resulting execution time f(πj) on each resource cj will be
affected. Small size resources will refer to resources that can compute only one forecast at
any point in time. Big size resources will represent resources that can compute more than
one forecast at any point in time. It is assumed that all cores/nodes on a resource are
available for urgent computations. Reallocation of applications or moving of applications
from one resource to another upon failure will not be considered.

5.3.1 Independent Consecutive Forecast Allocation Pattern

The only possible combination for consecutive allocation pattern in terms of number and
size of resources is represented by one case as follows.

Case 1: One small resource with sufficient nodes/cores to compute one forecast at any
point in time. Forecasts thus are computed consecutively.

For the consecutive forecast allocation pattern, the execution time of the given re-
source is

f(π1, i) =
n

∑

i=1

φk1(i) (5.3.1)

where
i and n represent the instance and total number of applications assigned to the single

resource c1 respectively.
φk1(i) refers to the makespan of an application ai on the resource c1.

This is obviously the worst case forecast allocation pattern for ensemble of fore-
casts and should be avoided since makespan cannot be minimised. It also potentially
presents a single point of failure.

5.3.2 Independent Concurrent Forecast Allocation Pattern

The possible combinations for concurrent allocation pattern in terms of number and size
of resources can be summarised with four cases.

5.3 Ensembles of Forecasts Allocation Patterns 79

Case 1: One big resource with sufficient nodes/cores for all forecasts to compute con-
currently.

Case 2: Multiple small resources where there are sufficient number of resources for each
resource to compute one forecast.

Case 3: Multiple small and big resources where there are less number of resources as
compared to the number of forecasts. Each small size resource has to compute one forecast
while the big size resources will compute more than one forecasts concurrently.

Case 4: Multiple big resources where there are less number of resources as compared to
the number of forecasts. The big size resources will compute more than one forecasts and
all forecasts on all resources are computed concurrently.

For the concurrent forecast allocation pattern, the execution time of each given
resource is

f(πj, 1) = φkj(1) (5.3.2)

where
φkj(1) refers to the makespan of an application ai (i = 1 since all applications are

running concurrently) on resource cj .
In the case where multiple forecasts are running currently, i.e. concurrent slots, on a

big resource, each slot can be taken as if it is a single resource to simplify the equation.
This is obviously the ideal forecast allocation pattern for ensembles of forecasts since it
offers an allocation with the least makespan and should thus be adopted when possible.
The main challenge is from finding resource providers and corresponding resources, both
in numbers and sizes, to support and realise such an allocation. Case 1 should however be
avoided since it can potentially result in a single point of failure.

5.3.3 Independent Concurrent and Consecutive Forecast Alloc-
ation Pattern

The possible combinations for concurrent and consecutive allocation pattern in terms of
number and size of resources can be summarised with the three cases.

Case 1: One large resource with sufficient nodes/cores for more than one forecast but not
all to compute concurrently. Forecasts that cannot compute concurrently are computed
consecutively.

80 5. Resource Allocation Heuristics

Case 2: Multiple small and big resources where there are less number of resources as
compared to the number of forecasts. Each small size resource has to compute one fore-
cast while the big size resources will compute more than one forecasts concurrently. The
forecasts that are not computed concurrently are computed consecutively.

Case 3: Multiple big resources where there are less number of resources as compared to
the number of forecasts. The big size resources will compute more than one forecasts con-
currently. The forecasts that are not computed concurrently are computed consecutively.

For the concurrent consecutive forecast allocation pattern, the execution time of
the given resource is

f(πj, i) =
n

∑

i=1

φkj(i) (5.3.3)

This is a realistic forecast allocation pattern when only a limited set of resources is
available. Case 1 should be avoided due to the threat of a single point of failure.

Case Study 1 in Section 6.1 will evaluate the three forecast allocation patterns and
demonstrate how makespan is influenced. The limitations of using only makespan robust-
ness as an objective will also be shown.

5.4 Resource Allocation Heuristics

This section will elaborates the resource allocation heuristics that are developed to take
advantage of the most ideal forecast allocation pattern, concurrent. The heuristics are as
follows:

(i) Minimise Makespan (MM)

(ii) Minimise Makespan-Minimise ETS (MM-ME)

(iii) Minimise Makespan-Maximise Resource Reliability (MM-MRR)

(iv) Minimise Makespan-Maximise Resource Reliability-Minimise ETS (MM-MRR-ME)

(v) Minimise Makespan-Maximise Site Reliability (MM-MSR)

(vi) Minimise Makespan-Maximise Site and Resource Reliability-Minimise ETS (MM-
MSRR-ME)

This set of six heuristics best illustrates how the objectives are incrementally fulfilled as
illustrated in Figure 5.3. The (i) MM heuristic aims to only optimise the main objective,
makespan robustness, and will serve as the basis to additionally fulfil of all other objectives.

5.4 Resource Allocation Heuristics 81

(ii) MM-ME and (iii) MM-MRR will each realise one more objective, ETS and resource
reliability, respectively. (iv) MM-MRR-ME combines the MM-ME and MM-MRR heur-
istics to manage makespan robustness, resource reliability and ETS. The objective, site
reliability, is first included in the heuristic, (v) MM-MSR. The final heuristic, (vi) MM-
MSRR-ME, aims to optimise all identified objectives by combining MM-MRR-ME and
MM-MSR.

MM

RR

SRR

Figure 5.3: Evolution of Resource Allocation Heuristics

The priority for the objectives to be fulfilled is based on their importance to realise the
requirements of urgent computing. Makespan is the most crucial objective since late results
are useless as mitigation activities can no longer be carried out. Next, the reliability of an
allocation is critical as the accuracy of the ensembles of forecasts will be adversely affected
by the number of forecasts that fail to complete successfully. ETS is the least important
objective as it is a constraint that if not optimised will only lead to energy wastage but
will not directly influence the success and accuracy of forecasts.

The priority of the objectives is thus as follows:

(i) Robustness (makespan)

(ii) Reliability (site and/or resource)

(iii) ETS.

Table 5.1 shows the relationship between the heuristics and the objectives. The numbers
in brackets illustrate the priority of the objectives in the respective heuristic. Empty cells
imply that the corresponding objectives are not considered by the respective heuristics.

Case Study 2 in Section 6.2 evaluates these heuristics using a real flash flood use case
and compares their performances based on the three objectives.

5.4.1 Minimise Makespan

The first heuristic, Minimise Makespan (MM), aims to maximise robustness and thus min-
imise the makespan of an allocation. The application requiring the longest mean execution
time is assigned to the corresponding best performing computing resource.

82 5. Resource Allocation Heuristics

Heuristic/Objectives Makespan
Site
Reliability

Resource
Reliability

Energy-To-Solution
(ETS)

MM (1)
MM-ME (1) (2)
MM-MRR (1) (2)
MM-MRR-ME (1) (2) (3)
MM-MSR (1) (2)
MM-MSRR-ME (1) (2) (3) (4)

Table 5.1: Relationship between Resource Allocation Heuristics and their Objectives

The mean executive time χ for each application ai on n computing resources can be
calculated as follows:

χ =

n
∑

1
f(πj)

n
and j = 1..n (5.4.1)

Consequently, the main rules for the MM heuristic are:

(i) Allocation order is based on the mean execution time χ of applications in descending
order.

(ii) All applications are allocated to the fastest corresponding resources cj at maximum
frequency.

5.4.2 Minimise Makespan-Minimise ETS

This heuristic, Minimise Makespan-Minimise ETS (MM-ME), attempts to minimise both
makespan (maximise makespan robustness) and ETS. The allocation rules are:

(i) Allocation order is based on the mean execution time χ of applications in descending
order.

(ii) The application with the longest mean execution time χ is allocated to the fastest
corresponding resource at maximum frequency.

(iii) All other applications will select a corresponding resource cj that uses the least ETS,
typically at a lower frequency, while ensuring that the execution time is less than the
first allocated application.

5.4.3 Minimise Makespan-Maximise Resource Reliability

This heuristic, Minimise Makespan-Maximise Resource Reliability (MM-MRR), focuses on
minimising makespan while maximising resource reliability. ETS is ignored. The allocation
rules are:

5.4 Resource Allocation Heuristics 83

(i) Allocation order is based on the mean execution time χ of applications in descending
order.

(ii) The application with the longest mean execution time is allocated to the fastest
corresponding resource at maximum frequency.

(iii) All other applications will select a corresponding resource cj with a maximum re-
source reliability, while ensuring that the execution time is less than the first allocated
application.

5.4.4 Minimise Makespan-Maximise Resource Reliability-
Minimise ETS

This heuristic, Minimise Makespan-Maximise Resource Reliability-Minimise ETS (MM-
MRR-ME), focuses on minimising makespan while maximising resource reliability and
minimising ETS. The allocation rules are:

(i) Allocation order is based on the mean execution time χ of applications in descending
order.

(ii) The application with the longest mean execution time is allocated to the fastest
corresponding resource at maximum frequency.

(iii) All other applications will select a corresponding resource cj with a maximum re-
source reliability with minimum ETS, while ensuring that the execution time is less
than the first allocated application.

5.4.5 Minimise Makespan-Maximise Site Reliability

This heuristic, Minimise Makespan-Maximise Site Reliability (MM-MSR), will minimise
makespan, and maximise site and resource reliability. ETS is ignored. The allocation rules
are:

(i) Allocation order is based on the mean execution time χ of applications in descending
order.

(ii) The application with the longest mean execution time is allocated to the fastest
corresponding resource at maximum frequency.

(iii) All other applications will select a corresponding resource cj with a maximum site
reliability, while ensuring that the execution time is less than the first allocated
application.

84 5. Resource Allocation Heuristics

5.4.6 Minimise Makespan-Maximise Site and Resource
Reliability-Minimise ETS

This final heuristic, Minimise Makespan-Maximise Site and Resource Reliability-Minimise
ETS (MM-MSRR-ME), attempts to improve the previous MM-MRR heuristic by including
site reliability, i.e. all objectives. The rules are as follow.:

(i) Allocation order is based on the mean execution time χ of applications in descending
order.

(ii) The application with the longest mean execution time is allocated to the fastest
corresponding resource at maximum frequency.

(iii) All other applications will select the corresponding resource(s) cj with a maximum
site reliability, while ensuring that the execution time is less than the first allocated
application.

(iv) The resource with the maximum resource reliability and minimum ETS, i.e. lowest
frequency, on cj while maintaining the site reliability is selected for each application.

5.5 Assessment Model

An assessment model is introduced to provide a coherent framework to organise and
interpret the results and metrics of resource allocations. It also facilitates the evaluations
of different heuristics in meeting the defined obligations and objectives mentioned in Sec-
tion 5.1 to enable comparison among different resource allocations for a given set of re-
sources. In this model, all metrics are normalised to a range between zero and one to allow
easier comparison. Zero implies the worst case while one implies the best case.

5.5.1 Obligation 1 – Meeting the Stipulated Deadline

To assess if (obligation 1) Meeting the stipulated deadline is met, the following assessment
metric based on the signum (or sign) function is defined.

θµ(obligation
deadline) = sgn(ρµ(Φ, πj)) (5.5.1)

where
θµ(obligationdeadline) refers to the assessment metric for meeting a deadline for a resource

allocation µ.
sgn() represents the signum function.

The interpretation of the assessment metric is as follows:

• θµ(obligationdeadline) < 0 =⇒ Stipulated deadline is not met.

5.5 Assessment Model 85

• θµ(obligationdeadline) ≥ 0 =⇒ Stipulated deadline is met.

5.5.2 Obligation 2 – Maximising the Number of Successfully Al-
located and Completed Forecasts

To assess if (obligation 2) Maximising the number of successfully allocated and com-
pleted forecasts is met, the following assessment metric based on the minimum-maximum
normalisation [111] method is defined.

θµ(forecasts
allocated) =

number of allocated forecasts

n
(5.5.2)

where
θµ(forecastsallocated) refers to the assessment metric for the number of successfully

allocated forecasts for a resource allocation µ.
n refers to the total number of forecasts that has to be allocated in the ensemble.

Equation (5.5.2) will normalise the fraction of forecasts that are allocated to a range
between zero (worst case) and one (best case) to provide an easy way to assess the effect-
iveness of a resource allocation µ in terms of maximising the number of allocated forecasts.
This however does not imply that all allocated forecasts will be successfully completed.
The successful completion of these forecasts will be dependent on the reliability of the
resources that are selected. Thus the number of successfully completed forecasts will be
assessed via the reliability objective in Section 5.5.3.

5.5.3 Heuristic Objectives

To assess how well the three objectives (refer to Section 5.1) are met, the following
assessment metric based on the minimum-maximum normalisation [111] method is defined.

For a given set of resources,

θµ(objective) =
objµ − objmin

objmax − objmin

(5.5.3)

where
objective refers to the assessed heuristic objective of a particular resource allocation µ.
objµ represents the quantified value, e.g. makespan robustness metric, of the assessed

objective of a particular resource allocation µ.
objmin illustrates the lowest possible value of obj.
objmax is the highest possible value of obj.

Equation (5.5.3) will normalise the quantified values to a range between zero and one
to provide an easy way to assess the results across heuristics for a given set of resources.

86 5. Resource Allocation Heuristics

In order to ensure that zero implies the worst base and one the best case, for objective
values, e.g. energy usage, where the opposite is true (zero is the best case while one the
worst case), the following equation has to be applied instead.

For a given set of resources,

θµ(objective) = 1−
objµ − objmin

objmax − objmin

(5.5.4)

Equation 5.5.4 will ensure that the assessment metric for objectives such as energy
usage are normalised so that zero and one refer to the worst and best cases respectively.

The corresponding assessment metric for each defined objective is illustrated as follows:

Makespan Robustness

For a given set of resources,

θµ(φk) =
ρµ(Φ, πj)− ρ(Φ, πj)min

ρ(Φ, πj)max − ρ(Φ, πj)min

(5.5.5)

where
θµ(φk) refers to the makespan robustness assessment metric of a particular resource

allocation µ.
ρµ(Φ, πj) is the makespan robustness metric value of a particular resource allocation µ.
ρ(Φ, πj)min illustrates the lowest possible value of makespan robustness metric.
ρ(Φ, πj)max is the highest possible value of makespan robustness metric.

Reliability

For a given set of resources,

θµ(φ
reliability) =

θresourceµ (φreliability) + θsiteµ (φk)

2
(5.5.6)

where
θµ(φreliability) refers to the overall reliability assessment metric of a particular resource

allocation µ.
θresourceµ (φreliability) refers to the resource reliability assessment metric of a particular

resource allocation µ.
θsiteµ (φreliability) refers to the site reliability assessment metric of a particular resource

allocation µ.
Resource and site reliability will be given equal weight in the assessment model. The

resource and site assessment metrics are defined as follows:

(i) Resource Reliability

5.6 Summary 87

For a given set of resources,

θresourceµ (φreliability) =
ρresourceµ (φreliability, t)− ρresource(φreliability, t)min

ρresource(φreliability, t)max − ρresource(φreliability, t)min

(5.5.7)

where
ρresourceµ (φreliability, t) represents the resource reliability metric value of a particular re-

source allocation µ.
ρresource(φreliability, t)min illustrates the lowest possible value of resource reliability met-

ric.
ρresource(φreliability, t)max is the highest possible value of resource reliability metric.

(ii) Site Reliability

For a given set of resources,

θsiteµ (φk) =
ρsiteµ (φreliability, t)− ρsite(φreliability, t)min

ρsite(φreliability, t)max − ρsite(φreliability, t)min

(5.5.8)

where
ρsiteµ (φreliability, t) represents the site reliability metric value of a particular resource

allocation µ.
ρsite(φreliability, t)min illustrates the lowest possible value of site reliability metric.
ρsite(φreliability, t)max is the highest possible value of site reliability metric.

Energy Usage

For a given set of resources,

θµ(energy) = 1−
etsµ − etsmin

etsmax − etsmin

(5.5.9)

where
θµ(energy) refers to the the energy usage assessment metric of a particular resource

allocation µ.
etsµ represents the ETS value of a particular resource allocation µ.
etsmin illustrates the lowest possible value of ETS.
etsmax is the highest possible value of ETS.

5.6 Summary

In this chapter, the research work leading to the set of resource allocation heuristics is
presented. The two obligations, meeting the stipulated deadline and maximising the num-

88 5. Resource Allocation Heuristics

ber of successfully allocated and completed forecasts, and three objectives, makespan ro-
bustness, site and resource reliability, and energy usage that the heuristics have to fulfil
are identified.

In order to quantify these objectives, a robustness model and a reliability model are
implemented. The most crucial timing constraints of urgent computing has to be fulfilled
by minimising makespan, which is dependent on the selected forecast allocation patterns.
Thus, the patterns are studied and three patterns, consecutive, concurrent and a combined
concurrent and consecutive, are identified.

The appropriateness of a pattern is dependent on the number and size of resources
available corresponding to the number of forecasts required and the number of nodes/cores
each forecast needs. The concurrent pattern is the most ideal for minimising makespan as
will be illustrated in Section 6.1.

Consequently, a set of resource allocation heuristics to optimise the three identified
objectives in this order, makespan robustness, site and/or resource reliability and energy
usage. This order is designed to reflect their importance in realising the requirements of
urgent computing.

Finally, to assess and compare the results and metrics of the resource allocations, an
assessment model is defined in terms of the identified obligations and objectives. The
heuristics will be studied in Section 6.2 to understand the required compromises among
the objectives. The results will be quantified with the robustness and reliability models
and evaluated with the assessment model.

Chapter 6

Implementation and Result

Forecasting the onset and advancement of extreme events under time constraints re-
quires reliable and robust models, which should take into account energy-aware allocations
on HPC infrastructures. In this chapter, the forecast allocation patterns (Case Study
1), the robustness and reliability models, and the set of heuristics (Case Study 2) from
Chapter 5 are investigated in two case studies.

(i) Case Study 1 – Gamma distribution

(ii) Case Study 2 – Flash flood

The case studies are selected to overcome the difficulties faced during the search for
suitable use cases. Three use cases, earthquake, tsunami and flash flood, were originally
identified as potential case studies. Ultimately, only one, flash flood, was adopted in this
dissertation.

In the case of earthquakes, the seismologists with whom we are collaborating do not
have a forecast model that can meet the stringent timing requirements of urgent com-
puting and their domain science. Since earthquakes are in principle still considered by
seismologists as unpredictable, the onset of earthquakes are only known when they have
occurred, i.e. primary waves are detected by the seismic stations. However, the speed of
the wave propagations are so fast that even well-known forecast models, e.g. SPECFEM3D
Cartesian, are unable to compute fast enough to meet the stipulated deadline. The early
earthquake warning system [42] is also not applicable for our collaborators in Italy. Due to
their proximity to the fault, there is insufficient time to issue any warnings. Naturally, there
are other possible use cases, e.g. predicting the aftershocks, which can potentially lever-
age on urgent computing. Unfortunately, they are outside the scope of the collaborating
seismologists’ field of expertise.

90 6. Implementation and Result

In the case of tsunamis, another ideal use case of urgent computing, we consulted
the colleagues of our collaborators in Italy who are working on an early tsunami warn-
ing system, a candidate for the main Italian tsunami warning system. In this case, the
scientists decided to adopt a Forecast Propagation Database for Tsunami [103]. This ba-
sically means that “all” expected possibilities of a tsunami are computed in advance and
when the tsunami occurs, the best matched case is used to predict the advancement of the
tsunami. This method is possible for tsunamis as there are many inherent uncertainties in
the typically incomplete geophysical observational data and forecast models, making the
limitations from using only best-matched pre-computations less pronounced. The applica-
tion code, i.e. forecast model, used by this group of seismologists is private and not shared.
Consequently, we do not have the domain science code and knowledge required to adopt
this use case.

The flash flood use case that is provided by our collaborating hydro-meteorologist, per-
fectly demonstrates why urgent computing is necessary for disaster mitigation. However,
we face the following limitations.

• Insufficient available computing resources

• Small set of forecasts in the given ensemble

In order to overcome the limitations, we introduce a Gamma distribution equation in
Case Study 1 to generate experimental data for a set of thirty forecasts on ten resources.
The bigger set of forecasts and resources is necessary to enable a variety of resource al-
locations. This will support the investigation on how the forecast allocation patterns will
influence the makespan of an allocation and the effectiveness of a resource allocation with
only one objective, makespan robustness. The usefulness of the makespan robustness met-
ric in supporting the resource allocation is also studied. Other objectives, reliability and
energy usage, are ignored in this case study.

The best allocation pattern, concurrent, for makespan that is identified in Case Study
1 is used to evaluate the set of heuristics to find the optimal allocation on distributed HPC
resources for an ensemble of real hydro-meteorological, flash flood, forecasts in Case Study
2. The limited number of computing resources (two production HPC resources at one single
site) is overcome by introducing three hypothetical resources. These hypothetical resources
are necessary to simulate the required distribution of resources across sites and the different
computing behaviours of the resources and forecasts. The ensemble of forecasts for a flash
flood is allocated to this set of resources to compare and quantify the heuristics based on
the obligations and objectives. The effectiveness of the proposed heuristics is evaluated
and compared with the assessment model. The ultimate aim is to provide a robust and
reliable resource allocation heuristic that can minimise ETS while meeting the deadline of
an ensemble of forecasts in urgent computing.

6.1 Case Study 1 - Gamma distribution 91

6.1 Case Study 1 - Gamma distribution

Thirty ensembles of forecasts and ten resources will be available to this case study. The
given tdeadline is 3. The makespan of each forecast application on each resource is generated
with a Gamma distribution as follows:

φkj(i) = Gamma(shape, scale) ∗ 0.15 + β (6.1.1)

where

shape is set to 1 +
i− 1

10
, scale is set to 1.0 and β is set to 1 +

j − 1

10
.

Thus, all forecast applications on each given resource cj will have the same β value
while each forecast application i on all given resources will share the same shape value.
This is to produce realistic experimental data where β will represent the execution time
performance of a resource while shape will model the algorithmic execution time of a
specific application. The gamma distribution will provide the randomness to model the
compatibility between a resource and an application.

The resulting execution time (y-axis) distribution for each application (x-axis) is illus-
trated in Figure 6.1. Each symbol represents the execution time of a forecast application,
A1 to A30 (corresponding to a1 to a30), on a given computing resource cj (where j = 1..10).
In general, the resources with a smaller j will have a comparatively better execution time
performance.

Due to the computational complexity [108][p.636] involved in computing the robustness
radius, near-optimal heuristic [65] approaches are typically employed. In the following
subsections, the results are based on simple heuristic approaches.

6.1.1 Independent Consecutive Forecast Allocation Pattern

In the case of consecutive allocation pattern, there is only one single resource available
(refer to Section 5.3.1). The execution time f(π1, i) (first row) and makespan robustness
metric (second row) of the allocations on each of the ten resources is shown in Table 6.1.
In principle, resource R1 (first column) has the best makespan robustness metric (−6.84).
However since the value of the metric is negative, it means that the deadline is not met. In
fact, there are no resources that can fulfil the deadline requirement since all f(π1, i) < 0.

In a consecutive allocation pattern, the execution time of a resource is equivalent to
the the sum of execution times of all forecasts as they are computed one after another on
one resource. In such cases, best-effort allocations that attempt to maximise the number
of allocated application forecasts are recommended.

Table 6.2 shows the best effort resource allocations on each resource in event that only
one resource is available during the allocation. Each row represents an allocation µ when
only that resource is available. On resources R1 to R5 (first to fifth row), two forecasts are
allocated to each resource. The best makespan robustness metric for two allocated forecasts

92 6. Implementation and Result

A1 A6 A11 A16 A21 A26

1

1.5

2

2.5

3

3.5

Forecast Applications

E
x
e
c
u
t
io
n
T
im

e

c1
c2
c3
c4
c5
c6
c7
c8
c9
c10

Figure 6.1: Gamma Distribution of Execution Times for 30 Ensembles Forecasts on each
Resource

Resources/
Values

R1 R2 R3 R4 R5 R6 R7 R8 R9 R10

f(π1, i) 40.48 44.49 47.03 48.7 53.43 57.78 58.09 63.96 65.98 66.9
Robustness
Metric

-6.84 -7.58 -8.04 -8.34 -9.21 -10.00 -10.06 -11.13 -11.50 -11.67

Table 6.1: Execution Time and Robustness Metric of a Thirty Forecast Applications Al-
location for Each Computing Resource

6.1 Case Study 1 - Gamma distribution 93

is 0.65 on resource R1. This corresponds to the equation (6.1.1) and the findings from
Table 6.1, where R1 is the resource with the best execution time performance. Additionally,
there is an increasing trend in the magnitude of execution times (third column) and a
decreasing trend (fourth column) in the robustness metrics from R1 to R5. This shows
that the robustness metric is correctly illustrating that the smaller the execution time of
a forecast, the more time there is left for tolerating perturbations in makespan.

Resources
Allocated Forecast
Applications

Execution time
f(π1, i)

Robustness
Metric

R1 A4, A1 2.08 0.65
R2 A4, A12 2.33 0.48
R3 A12, A30 2.52 0.34
R4 A9, A3 2.72 0.20
R5 A3, A2 2.85 0.11
R6 A1 1.54 1.46
R7 A2 1.62 1.38
R8 A2 1.71 1.29
R9 A2 1.86 1.14
R10 A3 1.93 1.07

Table 6.2: Consecutive Applications on Each Resource

Resources R6 to R10 are allocated only one forecast per resource within the timing
constraint as shown in Table 6.2. Among these allocations, R6 has the best makespan
robustness metric (1.46). Similar to the trends illustrated by R1 to R5, R6 to R10 show a
decreasing tolerance for system perturbations as execution times on each resource increase.
What is interesting to note is that the metric of R6 is the best among all resources. In
fact, the metrics of R6 to R10 show significantly better makespan robustness performance
when compared to R1 to R5. Since R1 to R5 have two allocated forecasts, the execution
times are longer and thus their robustness metrics are reduced. However, they are in fact
better allocations since they will potentially result in more forecasts being allocated and
completed (one of the obligations of urgent computing) before the stipulated deadline.

In conclusion, consecutive forecast allocation pattern can significantly increase the exe-
cution times of an allocation. The makespan robustness metric is used to identify whether
the deadline is missed by checking the sign of the metric. If the metric is negative, the
deadline is missed. In cases where deadlines cannot be met, the maximum number of
forecasts should be allocated. In such cases, the computed makespan robustness metric
is insufficient to illustrate the effectiveness of an allocation since it cannot illustrate the
number of successfully allocated forecasts.

94 6. Implementation and Result

6.1.2 Independent Concurrent Forecast Allocation Pattern

From equations (5.2.2) and (5.3.2), it can be derived that to maximise robustness, the
forecast application with the longest execution time should be allocated to the fastest
resource. Thus, the adopted order of allocation is to give priority to applications with
higher mean execution times as in heuristic MM (refer to Section 5.4.1). Since ten resources
are available in this case study, it will be assumed that each resource can accommodate all
ensemble forecasts concurrently if required (Case 4 in Section 5.3.2).

Resources Allocated Forecast Applications
Execution
Time f(πj, 1)

Robustness
Radius

R1
A24, A14, A25, A28, A18, A11, A19,
A10, A15, A12, A3, A4, A6, A8, A1, A2

1.48 1.52

R2 A22, A23, A17, A26, A13, A7, A5 1.45 1.55
R3 A27, A20, A30, A21, A16, A9 1.47 1.53
R4 A29 1.62 1.38

Table 6.3: Concurrent Applications on Multiple Resources

The result of an allocation µ using the MM heuristic is shown in Table 6.3 where the
corresponding allocated applications, execution time and robustness radius of each resource
are shared. All thirty ensemble forecasts are assigned only to the first four resources, R1
to R4, in order to minimise makespan by utilising the best execution time performance
resource for each application. Since the robustness metric value is positive, the deadline is
successfully met in this allocation. The makespan robustness metric of this allocation (last
row) is 1.38 (highlighted in blue) with a makespan of 1.62. This metric value is better when
compared to the consecutive allocations shown in Table 6.2. Thus, concurrent allocation
pattern is beneficial to makespan robustness.

However the over-subscription of a few resources, four resources as shown in Table 6.3,
can potentially lead to reliability issues, i.e. “a single point of failure”. For example, if R1
fails, potentially 16 forecasts might not complete successfully.

Thus, another test (refer to Table 6.4) is conducted by adding a constraint of three
concurrent applications per resource so as to provide a good distribution of forecasts across
the ten resources using the MM heuristic. The resulting allocation has a lower robustness
metric (0.99 highlighted in blue), and a longer makespan (2.01). Makespan is thus sacrificed
for a more balanced load across all resources by allocating only three forecasts per resource.
This implies that risk of a single resource failure will have less impact on the number of
affected applications, i.e. three forecasts. Thus, this allocation is in fact better in terms of
reliability.

In conclusion, the concurrent forecast allocation pattern successfully allocated all fore-
casts within the deadline while minimising the makespan such that a good tolerance to per-
turbations is possible. However, it does not show the actual distribution of forecasts among
resources. Consequently, it can potentially create problems where the over-subscription of

6.1 Case Study 1 - Gamma distribution 95

Resources
Allocated Forecast
Applications

Execution
Time f(πj, 1)

Robustness
Radius

R1 A24, A14, A26 1.57 1.43
R2 A22, A23, A17 1.44 1.56
R3 A27, A20, A25 1.47 1.53
R4 A29, A21, A28 1.62 1.38
R5 A18, A11, A19 1.60 1.40
R6 A13, A16, A10 1.77 1.23
R7 A30, A9, A7 1.80 1.20
R8 A15, A3, A4 1.93 1.07
R9 A12, A5, A8 2.01 0.99
R10 A6, A1, A2 2.01 0.99

Table 6.4: Concurrent Applications on Multiple Resources with Constraint (3 Concurrent
Application Per Resource)

some resources results in a “single point of failure”. Nonetheless, a better distribution of
the forecasts might come at the expense of makespan and makespan robustness, which is
not preferred. Thus, a set of priority-based heuristics is developed as shown in Section 5.4.

6.1.3 Independent Concurrent and Consecutive Forecast Alloc-
ation Pattern

In the case of a concurrent and consecutive allocation pattern, we will assume a few initial
constraints that are based on case 2 in Section 5.3.3. The constraints are:

(i) The better performing resources R1 to R5 each allow 3 concurrent applications.

(ii) Resources R6 to R10 each allow only 1 concurrent application.

(iii) Consecutive applications are allowed on all resources as long as tdeadline is not violated.

Since the proposed heuristics, including MM, in Section 5.4 are meant for the preferred
concurrent forecast pattern, a heuristic with reference to MM to evaluate a concurrent and
consecutive allocation pattern is introduced as follows:

(i) Applications with the longest mean execution time are allocated first to available
concurrent slots.

(ii) The remaining applications are matched with free consecutive slots on available re-
sources while ensuring that the total execution times f(πj , i) are minimised and the
robustness radii are maximised.

96 6. Implementation and Result

Resources
(Concurrent Slot)

Allocated Forecast
Applications

Execution
Time f(πj, i)

Robustness
Radius

R1(1) A24, A15 2.72 0.20
R1(2) A14, A12 2.54 0.32
R1(3) A26, A3 2.66 0.24
R2(1) A22, A4 2.51 0.34
R2(2) A23, A7 2.55 0.32
R2(3) A17, A5 2.67 0.23
R3(1) A27, A8 2.81 0.13
R3(2) A20, A1 2.84 0.11
R3(3) A25, A6 2.69 0.22
R4(1) A29 1.62 1.38
R4(2) A21, A2 2.84 0.11
R4(3) A28 1.55 1.45
R5(1) A18 1.60 1.40
R5(2) A11 1.56 1.44
R5(3) A19 1.55 1.45
R6 A13 1.65 1.35
R7 A30 1.72 1.28
R8 A10 2.27 0.73
R9 A16 1.87 1.13
R10 A9 2.24 0.76

Table 6.5: Concurrent and Consecutive Applications on Multiple Resources

6.1 Case Study 1 - Gamma distribution 97

Forecast Allocation
Pattern

Meeting Deadline
θµ(obligationdeadline)

Allocated Forecasts
θµ(forecastsallocated)

Consecutive -1 0.03 or 0.07
Concurrent 1 1.0
Concurrent and
Consecutive

1 1.0

Table 6.6: Assessment Metrics for Obligations

Table 6.5 shows the resulting allocation µ and the corresponding allocated applications,
execution time and robustness radius of each resource. Each concurrent slot of a resource
is represented as a single resource since the influence on makespan and robustness radius
due to perturbations are per concurrent slot basis and not cumulative across slots. The
robustness metric (minimum of the fourth column) of this allocation is 0.11 (highlighted in
blue). There is a a good distribution of jobs across resources where each resource hosts at
least one application. Resources R1, R2 and R3 are allocated 6 applications each, which
can potentially result in reliability issues if they fail. In the case of R1 (first to third
row), applications A24, A14 and A26 are computed concurrently. Applications A15, A12
and A3 are computed consecutively after A24, A14 and A26 respectively. The resources
with more consecutive allocated applications have a significantly worse execution times
(third column), 2.51 to 2.84, as compared to 1.55 to 2.27 on resources with only concurrent
applications. Robustness radii (fourth column) are also significantly worse off, between
0.11 and 0.34, as compared to 0.73 to 1.45.

In conclusion, the concurrent and consecutive forecast allocation pattern successfully
enables the allocation of all forecasts but resulted in a worse off robustness metric when
compared to the concurrent forecast allocation pattern in the previous section. This shows
that concurrent allocation pattern is the most effective allocation pattern for makespan
when an ensemble of forecasts is allocated.

6.1.4 Assessment of Results

The assessment model defined in Section 5.5 for the two obligations can be applied to
this case study as shown in Table 6.6. The consecutive forecast pattern (first row) neither
meets the deadline obligation (deadline assessment metric is −1) nor maximises the num-
ber of allocated forecasts (allocated forecasts assessment metric < 1.0). If only one or two
forecasts are allocated on the given resource, the allocated forecasts assessment metric is
0.03 or 0.06 respectively. The concurrent forecast pattern (second row), and concurrent
and consecutive forecast pattern (third row) both manage to meet the stipulated deadline
(deadline assessment metrics are 1) and maximise the number of allocated forecasts (al-
located forecasts assessment metrics are 1.0). Thus, the concurrent forecast pattern, and
concurrent and consecutive forecast pattern are suitable patterns to support ensembles of
forecasts.

98 6. Implementation and Result

As the given set of resources and resource constraints for each resource pattern is differ-
ent, e.g. one single resource and a constraint of three concurrent applications per resource,
the assessment metric for makespan robustness will not be able to provide a fair compar-
ison among the different allocations. However, the makespan robustness metric of each
allocation offers an insight into the effectiveness of an allocation in minimising makespan.
The smaller the metric, the better is the robustness towards makespan perturbations. The
robustness model thus successfully helps to identify the most makespan effective forecast
allocation pattern, concurrent, (makespan robustness metric is 1.38 or 0.99 from Table 6.3
and 6.4 respectively) to support ensembles of forecasts.

In summary, the case study shows that the most efficient forecast allocation pattern in
terms of makespan robustness is the concurrent pattern. The robustness model is useful
not only to support the allocation of a forecast to the best execution time performance
computing resource, the metric is also useful to determine if the deadline is met (the sign
of the metric) and the tolerance of the allocation towards makespan perturbations (the
magnitude of the metric).

Additionally, the results of the case study highlight the limitations of using only
makespan robustness as an objective. Although makespan is successfully minimised, an
unbalanced distribution of forecasts among the available resources can occur. In some
allocations, most forecasts are allocated to a few resources with good execution time per-
formances. This potentially increases the risk of a “single point of failure” when one of
such resources fails.

There is thus a need to include other objectives, e.g. reliability, to improve the effective-
ness of an allocation. However, these additional objectives should not affect makespan, the
most crucial objective. Concurrent forecast allocation pattern should also be the adopted
pattern to minimise makespan.

In the next case study, a set of priority-based heuristics, which will incrementally adopt
the additional objectives on a set of resources where concurrent forecast allocation pattern
is possible, is studied. The effect of introducing the additional objectives will be evalu-
ated to ensure that makespan is not adversely affected while ensuring all objectives are
optimised.

6.2 Case Study 2 - Flash flood

The WRF-ARW (Weather Research & Forecasting-Advanced Research WRF) Model1

will be used to forecast the Genoa flash flood that occurred on 9th October 2014 where
no advance warning was given, and one death and a cost of 303 million USD2 ensued.
Each computation will use 640 cores to generate a 24 hours forecast with two domains,
5 and 1 km, within 3 hours, the stipulated deterministic deadline. An ensemble of fore-
casts with eight microphysics options, Kessler, WSM3, Ferrier, WSM5, WSM6, WSM6D,

1http://www.wrf-model.org/
2http://www.emdat.be/

6.2 Case Study 2 - Flash flood 99

Thompson and Morrison, have to be allocated to a set of predefined resources. Each micro-
physics option is a different representation of atmospheric heat and moisture tendencies,
microphysical rates and surface rainfall [112].

The evaluation of the effectiveness of the resource allocation will be performed with
two production petaflops HPC resources, SuperMUC and SuperMUC Phase 23, hosted at
Leibniz Supercomputing Centre (LRZ) and three hypothetical resources. All data from
the production resources are collected from real experiments.

The targeted HPC resources are shown in Table 6.7 with information about their re-
spective available cores, default frequency and availability. The hypothetical resources are
included to measure the proposed heuristics in terms of multiple sites, high and low re-
liability, etc., which are otherwise not possible since both real HPC resources are hosted
at one site with similar reliability values. Both SuperMUC and SuperMUC Phase 2 have
sufficient available cores (second column) such that all forecasts can potentially compute
concurrently on them. Resources RA, RB and RC have less available cores and can each
only accommodate three, four and seven concurrent forecasts respectively. The default
frequency (third column) of each resource is also shared. To introduce a variety of sites
(fourth column), Resource RA is assumed to be hosted at Site1 while resources RB and
RC are assumed to be hosted at Site2. SuperMUC and SuperMUC Phase 2 are hosted at
LRZ. The availability (fifth column) of the resources is such that RA is the worst, follow
by RB, then SuperMUC and SuperMUC Phase 2, and finally RC with the best availability.

Table 6.7: Targeted HPC Resources

Resource Available cores Default Freq.(GHz) Site Availability

SuperMUC 147,456 2.3 LRZ 0.85
SuperMUC Phase 2 86,016 2.2 LRZ 0.85
RA 3,000 2.6 Site1 0.70
RB 2,000 2.6 Site2 0.80
RC 5,000 2.5 Site2 0.90

Figure 6.2 shows the predicted execution time and ETS of SuperMUC, SuperMUC
Phase 2, and the hypothetical resources for eight microphysics options, i.e. eight different
forecasts. It represents the intitial condition of this case study. The execution times (first
and second chart in the first row) and ETS (first and second chart in the second row)
readings for SuperMUC and SuperMUC Phase 2, are collected at the default frequency,
i.e. 2.3 and 2.2 GHz respectively. The estimated execution time and ETS of the scaled-
up frequencies are computed with the LoadLeveler Prediction Model [110]. The available
frequencies for SuperMUC and SuperMUC Phase 2 are 2.3 to 2.7 GHz and 2.2 to 2.6 GHz
respectively. The execution time and ETS of hypothetical resources are correspondingly
chosen to serve as a contrast to the production resources. RA is the best performing
resource (third chart in the first row) in terms of execution time, follow by RB and then

3https://www.lrz.de/services/compute/supermuc/systemdescription/

100 6. Implementation and Result

2.3 2.4 2.5 2.6 2.7

0.7

0.8

0.9

1

1.1

1.2
·104

Frequency(GHz)

E
x
e
c
u
t
io
n
t
im

e
(s
)

SuperMUC: Execution Time

2.2 2.3 2.4 2.5 2.6

0.6

0.8

1

1.2

·104

Frequency(GHz)

SuperMUC Phase2: Execution Time

RA RB RC

0.7

0.8

0.9

1

1.1

·104

Resource

Hypothetical Resources: Execution Time

2.3 2.4 2.5 2.6 2.7

16

18

20

22

24

Frequency(GHz)

E
n
e
r
g
y
-T

o
-S
o
lu

t
io
n
(k

W
H
)

SuperMUC: Energy-To-Solution

2.2 2.3 2.4 2.5 2.6

10

12

14

16

Frequency(GHz)

SuperMUC Phase2: Energy-To-Solution

RA RB RC
9

10

11

12

13

Resource

Hypothetical Resources: Energy-To-Solution

Kessler WSM3 Ferrier WSM5 WSM6 WSM6D Thompson Morrison

Figure 6.2: Execution Time and ETS Data

RA. Resources RA, RB and RC will not offer frequency scaling and thus the respective
ETS (third chart in the second row) is based on their default frequencies. RA and RB
have similar ETS while RC requires the least ETS.

Evaluation of the six heuristics, MM, MM-ME, MM-MRR, MM-MRR-ME, MM-MSR
and MM-MSRR-ME, is performed by allocating eight flash flood ensemble forecasts to
the above mentioned resource set. Figure 6.3a and 6.3b show the summarised quanti-
fied performance, robustness metric and ETS, and site and resource reliability metrics of
the each heuristic respectively. All heuristics aim to maximise robustness by minimising
makespan, i.e. ensuring that the forecast with the longest mean execution time is the first
to be assigned to the corresponding best execution time performance resource at max-
imum frequency, as the first priority. The allocation details of each heuristic and analysis
of the results will be elaborated in the following subsections with the data from Figure 6.3a
and 6.3b.

6.2.1 Minimise Makespan

Table 6.8 illustrates the selected allocation with MM heuristic. It is a naive heuristic
that aims to minimise the makespan (10210 from the fifth column) by selecting the best
performing resource and frequency for each forecast. All forecasts except Morrison and

6.2 Case Study 2 - Flash flood 101

MM
MM-M

E
MM-

MRR
MM-

MRR
-M

E
MM-M

SR
MM-

MSR
R-

ME

100

200

300

400

500

600 590 590 590 590 590 590

106.62 100.62 110.12 107.92 102.45 101.13

Robustness
ETS

(a) Robustness Metric and ETS (kWH)

MM
MM-M

E
MM-

MRR
MM-

MRR
-M

E
MM-M

SR
MM-

MSR
R-

ME

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.35

0.4

0.6 0.6

0.46

0.5

0.32

0.35

0.43 0.43

0.46 0.46

Resource
Site

(b) Reliability Metric (Resource and Site)

Figure 6.3: Makespan Robustness, ETS, and Resource and Site Reliability Measurements

WSM6D are allocated to SuperMUC Phase 2 at maximum frequency of 2.6 GHz, leading
to the over-reliance of SuperMUC Phase 2. Morrison is assigned to SuperMUC at its
maximum frequency, 2.7 GHz, while WSM6D is allocated to RA at 2.6 GHz. This implies
only resources from two sites (second column), LRZ and Site1, are utilised.

Figure 6.3a and 6.3b show that although robustness metric (590) is good, reliability
(site reliability= 3.2 and resource reliability= 0.4) and ETS (106.62) are withheld. MM
will have the least average execution time among all heuristics and is arguably the best
heuristic for urgent use cases with non-deterministic deadline. In non-deterministic dead-
line cases, completing the maximum number of forecasts as soon as possible will be the
most crucial criterion since deadlines are unknown. Consequently, constraints like reli-
ability becomes less important and ETS can be ignored. In conclusion, MM manages to
minimise makespan of an allocation by allocating each forecast to its corresponding best
execution time performance resource.

Forecast Site Resource Frequency (GHz)
Execution
Time (s)

ETS (kWh)

Morrison LRZ SuperMUC 2.7 10210 23.602
Thompson LRZ SuperMUC Phase 2 2.6 9093 14.520
WSM6D Site1 RA 2.6 9058 12.825
Ferrier LRZ SuperMUC Phase 2 2.6 7321 11.682
WSM6 LRZ SuperMUC Phase 2 2.6 7728 12.467
WSM3 LRZ SuperMUC Phase 2 2.6 7733 10.829
WSM5 LRZ SuperMUC Phase 2 2.6 6535 10.860
Kessler LRZ SuperMUC Phase 2 2.6 6002 9.832

Table 6.8: Minimise Makespan Resource Allocation

102 6. Implementation and Result

6.2.2 Minimise Makespan-Minimise ETS

Table 6.9 illustrates the selected allocation with MM-ME heuristic. It is an energy efficient
version of MM where the objectives are to minimise both makespan (10210 from fifth
column) and ETS (sixth column). Forecasts Thompson, Ferrier, WSM6 and WSM3 are
allocated to resources RA and RC instead of SuperMUC Phase 2 when compared to MM.
WSM5 and Kessler are still allocated to SuperMUC Phase 2 but use a lower frequency, 2.2
GHz. Consequently, four resources from all three computing sites are utilised.

Figure 6.3a and 6.3b show that the makespan robustness (590) of MM-ME remains
unchanged while the ETS (100.62) is reduced by 6 kWh when compared to MM. This is
achieved by selecting resources that require less ETS and/or the same resource at a lower
frequency. Since the makespan is determined by the forecast with the maximum execution
time as all forecasts are running concurrently, there is in fact no need for forecasts with a
shorter execution times than the first allocated forecast (forecast with the longest execution
time in the allocation) to be allocated to the most efficient or expensive (in terms of ETS)
resource or at the highest frequency. Thus it is possible to reduce ETS at no expense
to makespan. The selection of more sites and resources led to an improvement in both
site (0.4) and resource reliability (0.35) when compared to MM. In conclusion, MM-ME
manages to reduce energy usage while ensuring that makespan remains unaffected.

Forecast Site Resource Frequency (GHz)
Execution
Time (s)

ETS (kWh)

Morrison LRZ SuperMUC 2.7 10210 23.602
Thompson Site1 RA 2.6 9747 13.148
WSM6D Site1 RA 2.6 9058 12.825
Ferrier Site2 RC 2.5 9996 10.809
WSM6 Site1 RA 2.6 8093 10.694
WSM3 Site2 RC 2.5 9954 9.973
WSM5 LRZ SuperMUC Phase 2 2.2 7386 10.261
Kessler LRZ SuperMUC Phase 2 2.2 6781 9.304

Table 6.9: Minimise Makespan-Minimise ETS Resource Allocation

6.2.3 Minimise Makespan-Maximise Resource Reliability

Table 6.10 illustrates the selected allocation with MM-MRR heuristic. It is a reliable
version of MM where the objectives are to minimise makespan and maximise resource
reliability. Forecasts WSM6D, Ferrier, WSM6, WSM3 and Kessler are allocated to different
resources when compared to MM. The forecasts, Morrison, Thompson, WSM5 and Kessler,
are allocated to the resources at LRZ at the maximum frequency since energy is not an
objective in this heuristic. All five resources are utilised as opposed to only three in the
case of MM. The forecasts have a better distribution on each resource and among the

6.2 Case Study 2 - Flash flood 103

resources. Each resource has only one to two allocated forecasts while each site has one
to four allocated forecasts. The site LRZ is allocated four forecasts. If LRZ becomes
unavailable due to unforeseen circumstances, e.g. power outage, half of the forecasts will
not complete. Thus, in addition to resource reliability, site reliability is also important.

Figure 6.3a and 6.3b show that the makespan robustness (590) remains unchanged
while the resource reliability metric is improved from 0.35 to 0.6 when compared to MM.
This implies that the risk of many forecasts being affected by a single resource failure is
reduced as compared to MM. The improvement in site reliability is attributed to a better
distribution of forecasts among resources, which leads to resources from all sites to be
chosen as compared to only resources from two sites in the case of MM. However, the
reliability improvement comes at an expense. ETS (110.12) is increased by 3.5 kWh when
compared to MM. In conclusion, MM-MRR manages to improve resource reliability while
ensuring that makespan remains unaffected.

Forecast Site Resource Frequency (GHz)
Execution
Time (s)

ETS (kWh)

Morrison LRZ SuperMUC 2.7 10210 23.602
Thompson LRZ SuperMUC Phase 2 2.6 9093 14.520
WSM6D Site2 RB 2.6 9782 12.825
Ferrier Site2 RC 2.5 9996 10.809
WSM6 Site1 RA 2.6 8093 10.694
WSM3 Site2 RC 2.5 9954 9.973
WSM5 LRZ SuperMUC Phase 2 2.6 6535 10.860
Kessler LRZ SuperMUC 2.7 7135 16.840

Table 6.10: Minimise Makespan-Maximise Resource Reliability Resource Allocation

6.2.4 Minimise Makespan-Maximise Resource Reliability-
Minimise ETS

Table 6.11 illustrates the selected allocation with MM-MRR-ME heuristic. It is an im-
proved version of MM-MRR where the objectives are to minimise makespan, maximise
resource reliability and minimise ETS. There is no change in the allocated resources and
sites when compared to MM-MRR. The main difference is the frequency choice of forecasts,
Thompson, WSM5 and Kessler, which are allocated to SuperMUC or SuperMUC Phase 2.
Reduced frequencies, 2.3 GHz, 2.2 GHz and 2.3 GHz for Thompson, WSM5 and Kessler
respectively, are selected to improve ETS.

Figure 6.3a and 6.3b show that the makespan robustness (590), resource reliability
(0.6) and site reliability (0.43) metrics remain unchanged but ETS (107.92) is reduced by
2.2 kWh when compared MM-MRR. ETS improvements are achieved by selecting a lower
frequency when appropriate. However, this ETS value is still higher when compared to MM
(refer to Table 6.8), which mainly utilises the more energy efficient resource, SuperMUC

104 6. Implementation and Result

Phase 2. In conclusion, MM-MRR-ME manages to reduce ETS while ensuring that resource
reliability and makespan robustness remain unaffected.

Forecast Site Resource Frequency (GHz)
Execution
Time (s)

ETS (kWh)

Morrison LRZ SuperMUC 2.7 10210 23.602
Thompson LRZ SuperMUC Phase 2 2.3 9988 14.02
WSM6D Site2 RB 2.6 9782 12.825
Ferrier Site2 RC 2.5 9996 10.809
WSM6 Site1 RA 2.6 8093 10.694
WSM3 Site2 RC 2.5 9954 9.973
WSM5 LRZ SuperMUC Phase 2 2.2 7386 10.261
Kessler LRZ SuperMUC 2.3 8100 15.732

Table 6.11: Minimise Makespan-Maximise Resource Reliability-Minimise ETS Resource
Allocation

6.2.5 Minimise Makespan-Maximise Site Reliability

Table 6.12 illustrates the selected allocation with MM-MSR heuristic. It is a reliable version
of MM where the objectives are to minimise makespan and maximise site reliability. It
differs from MM-MRR as it measures the reliability based on site as opposed to resource.
It attempts to minimise the risk of multiple forecasts not completing in event of a single
site failure, e.g. a power outage. All three sites are thus allocated with two to three
forecasts each. This leads to a better site distribution when compared to MM-MRR (refer
to Table 6.10) where LRZ is allocated four forecasts and Site1 is allocated only one forecast.
All five resources are utilised where each resource is allocated between one to three resources
each. This is a less effective resource distribution when compared to MM-MRR where each
resource has only one to two allocated forecasts each. If resource RB fails, three forecasts
will not complete. Thus, both site reliability and resource reliability are equally important.
As ETS is not an objective in this heuristic, forecasts that are allocated on SuperMUC
and SuperMUC Phase 2, i.e. resources that support frequency scaling, compute with the
maximum frequency of 2.7 GHz and 2.6 GHz respectively.

Figure 6.3a and 6.3b show that the makespan robustness (590) remains unchanged but
site reliability (0.46) is improved as compared to both MM (0.32) and MM-MRR (0.43).
The search for more reliable sites result in more energy efficient resources, a consequence of
the initial condition of the case study, to be selected and thus a lower ETS (102.45) when
compared to both MM (106.62) and MM-MRR (107.92). However, resource reliability
is reduced to 0.46 when compared to 0.6 of MM-MRR. Optimising site reliability does
not implicitly imply optimising resource reliability. In conclusion, MM-MSR manages to
improve site reliability while ensuring that makespan remains unaffected.

6.2 Case Study 2 - Flash flood 105

Forecast Site Resource Frequency (GHz)
Execution
Time (s)

ETS (kWh)

Morrison LRZ SuperMUC 2.7 10210 23.602
Thompson Site2 RB 2.6 10021 13.148
WSM6D Site1 RA 2.6 9058 12.825
Ferrier LRZ SuperMUC Phase 2 2.6 7321 11.682
WSM6 Site2 RB 2.6 9293 10.694
WSM3 Site1 RA 2.6 7183 10.16
WSM5 LRZ SuperMUC Phase 2 2.6 6535 10.86
Kessler Site2 RB 2.6 8005 9.484

Table 6.12: Minimise Makespan-Maximise Site Reliability Resource Allocation

6.2.6 Minimise Makespan-Maximise Site and Resource
Reliability-Minimise ETS

Table 6.13 illustrates the selected allocation with MM-MSRR-ME heuristic. It is arguably
the most optimal heuristic for deterministic deadlines among this set of heuristics. Its
objectives are to minimise makespan, maximise site and resource reliability, and minimise
ETS. Resources from all three sites are selected where each site is allocated with two to
three forecasts. Each resource has one to two allocated forecasts. This allocation offers the
best distribution of forecasts among both resources and sites. Since energy usage is one
of the objectives, the two forecasts, Ferrier and WSM5, which are assigned on SuperMUC
Phase 2, use the default frequency of 2.2 GHz to reduce energy usage.

Figure 6.3a and 6.3b show that the makespan robustness (590) remains unchanged
when compared to all other heuristics. Both resource reliability (0.5) and ETS (101.13)
are improved at no expense to site reliability (0.46) when compared to MM and MM-MSR.
Site reliability is improved or remains unchanged as compared to MM and MM-MSR
respectively. However, in comparison to MM-MRR, the resource reliability is reduced to
improve site reliability. ETS is the least in the heuristic set, with exception of MM-ME,
which has a lower ETS. The lower ETS can be seen as the required compromise to improve
site and resource reliability. MM-MSRR-ME has the best site reliability, and the second
best resource reliability and ETS among the heuristics. In conclusion, MM-MSRR-ME
manages to improve site and resource reliability, and ETS while ensuring that makespan
remains unchanged.

6.2.7 Assessment of Results

In order to have a better overview of the performance of each heuristic in terms of the
obligations and objectives defined, the assessment model defined in Section 5.5 is applied
to the results of the above heuristics. The maximum and minimum values of each objective
are computed from the given resource set, i.e. the two production resources and three

106 6. Implementation and Result

Forecast Site Resource Frequency (GHz)
Execution
Time (s)

ETS (kWh)

Morrison LRZ SuperMUC 2.7 10210 23.602
Thompson Site2 RB 2.6 10021 13.148
WSM6D Site1 RA 2.6 9058 12.825
Ferrier LRZ SuperMUC Phase 2 2.2 8308 11.138
WSM6 Site2 RB 2.6 9293 10.694
WSM3 Site1 RA 2.6 7183 10.160
WSM5 LRZ SuperMUC Phase 2 2.2 7386 10.261
Kessler Site2 RC 2.5 9152 9.307

Table 6.13: Minimise Makespan-Maximise Site and Resource Reliability-Minimise ETS
Resource Allocation

Heuristics
Meeting
Deadline
θµ(obligationdeadline)

Allocated
Forecasts
θµ(forecastsallocated)

Makespan
Robustness
θµ(φk)

Reliability
θµ(φreliability)

Energy
θµ(energy)

MM 1.0 1.0 1.0 0.19 0.76
MM-ME 1.0 1.0 1.0 0.28 0.84
MM-MRR 1.0 1.0 1.0 0.92 0.71
MM-MRR-ME 1.0 1.0 1.0 0.92 0.74
MM-MSR 1.0 1.0 1.0 0.68 0.82
MM-MSRR-ME 1.0 1.0 1.0 0.75 0.84

Table 6.14: Assessment Metrics of the Heuristics

hypothetical resources, by ignoring all other objectives (refer to Appendix C).
The resulting assessment metrics of the two obligations (second and third columns) and

three objectives (fourth to sixth columns) are shown in Table 6.14. All heuristics manage to
fulfil the two obligations and makespan robustness objective with the best possible results
(1). This implies that the stipulated deadline is met, all forecasts are successfully allocated
and makespan robustness is maximised. Thus, all six heuristics are effective for allocating
ensembles of forecasts on a given set of resources since the obligations are fulfilled and the
first priority objective is maximised.

The optimisation of the two objectives, reliability and energy usage, is however de-
pendent on the chosen heuristic. From Table 6.14, reliability is illustrated in the fifth
column. MM has the worst reliability assessment metric (0.19 from the first row) while
MM-MRR and MM-MRR-ME has the best reliability assessment metric (0.92 from the
third and fourth row) among this set of heuristics. For energy usage (last column), MM-
ME and MM-MSRR-ME offer the best energy assessment metric (third and last row) of
approximately 0.84 while MM-MRR (third row) has the worst (0.71).

In summary, with the priority based resource allocation approach, all heuristics man-
age to realise the obligations and the makespan robustness objective with the best possible
results. This implies that all heuristics can be used to enable urgent computing for an
ensemble of forecasts. However, to realise the other two objectives, reliability and energy

6.2 Case Study 2 - Flash flood 107

usage, compromises among these two objectives are necessary. Depending on the comput-
ing scenario faced, the most appropriate heuristic can be used. The assessment results
show that MM-MSRR-ME heuristic is the most optimal heuristic for fulfilling all three
objectives as it manages to optimise each objective with minimum adverse influence to
the other objectives. It is thus the recommended heuristic to enable a robust, reliable and
energy-aware resource allocation.

6.2.8 Visualisation of Ensemble of Flash Flood Forecasts

The visualised results of the ensemble of forecasts at the 12th hour and 24th hour after the
event occurred are shown in Figure 6.4 and 6.5 respectively. The different colours indicate
the different amount of rainfall where the amount increases from white (0 mm) to violet
(500 mm) (refer to the colour bar on the right of Figure 6.4a and 6.5a) . Accordingly, this
ensemble is a reasonably accurate forecast, where three ensemble members, WSM3, WSM5
and WSM6, provide relevant results for early warning.

However, there is no single forecast from Figure 6.4b to Figure 6.4i that reflects the
actual state of the event as shown in Figure 6.4a. In fact, by the 24th hour (Figure 6.5),
all models, Figure 6.5b to Figure 6.5i, show a significant underestimation in the severity of
the event when compared to the actual state (Figure 6.5a). This highlights the limitations
of forecast models and collected data. It is thus crucial in such cases to involve the event
domain scientist when evaluating the urgent products so that educated decisions can be
made for mitigation activities.

(a) Radar Verifica-
tion

(b) Kessler (c) WSM3 (d) WSM5 (e) Ferrier

(f) WSM6 (g) WSM6D (h) Thompson (i) Morrison

Figure 6.4: Ensemble of Forecasts at 12:00:00 UTC

In summary, the visualised findings of the ensemble of forecasts illustrate that there is
no single deterministic method to generate a high fidelity forecast. Ensembles of forecasts
are more useful in such cases to enable probabilistic forecasting. The results from an

108 6. Implementation and Result

(a) Radar Verifica-
tion

(b) Kessler (c) WSM3 (d) WSM5 (e) Ferrier

(f) WSM6 (g) WSM6D (h) Thompson (i) Morrison

Figure 6.5: Ensemble of Forecasts at 24:00:00 UTC

ensemble is expected to provide crucial inputs to facilitate decision support for an urgent
event.

Chapter 7

Conclusion and Future Work

This dissertation explores how to effectively enable urgent computing by allocating en-
sembles of forecasts on multiple distributed heterogeneous computing resources before a
stipulated deadline. The research problem originates from the timing constraints of urgent
computing when using zero hour data to improve prediction accuracy and the absence of
a single deterministic forecast model in many event domain sciences to generate a high
fidelity forecast. Consequently, supporting ensembles of forecasts (stochastic method) util-
ising zero hour data to produce multiple forecasts of the the same events for probabilistic
forecasting before the stipulated deadlines is the main research goal of this work. The
ensemble forecast results will facilitate decision support for loss mitigation.

The preferred targeted distributed resources are public IT infrastructures, e.g. super-
computers and grids, since they offer an array of distributed computing resources that are
the most cost effective to compute ensembles of forecasts. Alternatively, private and/or
public clouds can also be utilised. However, coordinating multiple forecasts simultaneously
under time constraints on numerous distributed computing resources is not trivial. This
dissertation sought to address the challenge as follows:

(i) Provide an urgent computing framework to coordinate multiple forecasts, and re-
sources and their environments simultaneously at zero hour from ubiquitous clients
in view of the chaotic environments that typically accompany urgent events.

(ii) Adopt a heuristic approach within the urgent computing framework to provide near-
optimal allocation of ensembles of forecasts to given sets of computing resources
within the deadline constraints while adhering to the defined obligations and object-
ives (refer to Section 5.1).

In conclusion, the research goal is successfully achieved with the urgent computing
framework and the heuristic approach. The research findings are summarised in Section 7.1.
Potential future work is shared in Section 7.2.

110 7. Conclusion and Future Work

7.1 Summary of Findings

The research work began with a combined quantitative and qualitative research methodo-
logy to investigate the characteristics and requirements of urgent computing and the event
domain sciences. This methodology successfully helps to identify the then prevalent in-
complete definition of urgent computing and the limited focus on the very real and crucial
challenge, an absence of a deterministic high fidelity forecast model, faced by event domain
scientists.

To tackle the incomplete definition, an in-depth analysis of the only definition of urgent
computing was conducted. The shortcomings in the definition were identified. Related re-
search activities were also revisited to gain a deeper understanding of the characteristics
and requirements of urgent computing. This eventually led to a first comprehensive defin-
ition where urgent computing specific challenges are clarified. This new definition helps
to demystify, in particular, the relationship of urgent computing and real-time computing
where despite having many similarities, in particular the time constraints, they are not the
same. The existence of non-deterministic deadlines and the need to still expect losses upon
meeting deadlines are two distinctive urgent computing characteristics. The new urgent
computing definition thus helps to align the focus of this dissertation to tackling the most
crucial urgent computing challenges.

The absence of a single high fidelity deterministic forecast model in many event domain
sciences resulted in a prevalence in stochastic methods where ensembles of forecasts are
leveraged on to perform probabilistic forecasting. In order to support ensembles of fore-
casts, there is a need to confront the challenge to coordinate multiple forecasts on multiple
distributed heterogeneous computing resources under time constraints. Despite the expec-
ted challenge, this event domain science requirement is considered as paramount and thus
cannot be ignored. Our work became the first in urgent computing to target ensembles of
forecasts.

Supporting ensembles of forecasts increase the challenge to design the urgent computing
framework. A Task-based Ubiquitous (TbU) approach is consequently designed to realise
the framework by providing ubiquitous access to manage multiple forecasts and resources
from anywhere anytime. Ubiquitous access is considered as crucial in view of the chaotic
environments that typically accompany an urgent event. The task-based feature provides
the adaptability to refine the forecast models when additional insights are gained from zero
hour data. A good indicator of the success of the TbU approach is the urgent computing
visualisation service (refer to Appendix A), which was realised with the TbU approach.
This service has since been adopted as a production service at LRZ.

The heuristic approach was additionally adopted within the urgent computing frame-
work to support near-optimal allocation of ensembles of forecasts to given sets of computing
resources while meeting the deadline constraints. Makespan robustness was identified as the
most crucial objective for the resource allocations to fulfil. In order to quantify makespan
robustness, a robustness model was applied to measure the makespan robustness of each
allocation. Three forecast allocation patterns, independent consecutive forecast allocation

7.1 Summary of Findings 111

pattern, independent concurrent forecast allocation pattern, and independent concurrent
and consecutive forecast allocation pattern, were identified. The makespan of an allocation
will be affected by the forecast allocation pattern used.

Case Study 1 successfully demonstrated the effects of the forecast allocation patterns
on makespan and makespan robustness, and the effectiveness and limitations of using
makespan robustness as the only objective for resource allocation. The usefulness of the
makespan robustness metric in supporting the resource allocation was also illustrated.
The results showed that consecutive allocation pattern would increase the makespan and
reduce the robustness of an allocation. Consequently, meeting the deadline and allocating
all forecasts to resources within the deadline could become challenging. It is thus the
least suitable forecast allocation pattern for ensembles of forecasts. Concurrent forecast
allocation pattern is the most optimal pattern for ensembles of forecasts. It enables the
most effective minimisation of makespan when sufficient computing resources, both in
numbers and sizes, are available. Concurrent and consecutive forecast allocation pattern is
the intermediate pattern in terms of makespan. It could potentially allocate all forecasts
within the deadline but would not be able to minimise makespan as optimally as the
concurrent forecast allocation pattern.

Case Study 1 also showed that the robustness model successfully supported the heur-
istic approach to quantify makespan robustness when selecting the best execution time
performance resource for each forecast. The makespan robustness metric can also be used
to determine if the deadline is met (the sign of the metric) and the tolerance of the al-
location towards makespan perturbations (the magnitude of the metric). However, an
unbalanced distribution of forecasts among the available resources occurred at times. In
such cases, most forecasts were allocated only to a few resources, which could potentially
increase the risk of “a single point of failure”. Thus other objectives, i.e. reliability, should
also be considered when allocating ensembles of forecasts to multiple resources.

A set of priority-based multi-objective heuristics for ensembles of forecasts within the
urgent computing framework was thus developed. The obligations of urgent computing
in supporting ensembles of forecasts, i.e. maximise the number of allocated forecasts be-
fore the deadline, and multi-objectives, i.e. makespan robustness, and site and resource
reliability and energy usage in this order of priority, of the heuristics were identified. Re-
liability was included as an objective as a result of the observation from Case Study 1.
A reliability model was thus developed to quantify resource and site reliability. As many
modern HPC centres host multiple HPC resources, we identified the need to include both
site and resource reliability. Since makespan is the most crucial objective, frequency scal-
ing options that could significantly reduce makespan is included in the robustness model.
Energy usage, the third objective, is used as a limiting factor to choose the frequency at
which a forecast will compute on a resource. Energy usage is necessary as it represents
the realistic power constraints of resource providers, and the fixed and limited computing
budget dedicated to urgent computing. Thus the more energy efficient an allocation is,
the more urgent computations each provider can support. Finally, an assessment model
to evaluate and compare the allocation results for a given set of resources based on the
defined obligations and objectives was introduced.

112 7. Conclusion and Future Work

Case Study 2 was carried out to evaluate and compare the effectiveness of the proposed
priority-based multi-objective heuristics in fulfilling the three objectives. All heuristics
managed to successfully allocate all forecasts within the deadline. The assessment metrics
for the two obligations were 1.0, the best possible result. The assessment metrics for
makespan robustness showed that all heuristics managed to minimise makespan (maximise
makespan robustness) and thus had a metric value of 1.0. Thus, all six heuristics were
effective in allocating ensembles of forecasts on a given set of resources since the obligations
were fulfilled and the first priority objective was maximised.

However, maximising makespan robustness does not imply that it is the best possible
allocation as shown in Case Study 1 since other objectives like reliability can potentially
become an issue. There is thus a need to also optimise the other two objectives, reliability
and energy usage. Reliability is improved by allocating forecasts to more reliable resources
and to have a balanced distribution of forecasts among the available resources and sites.
Efficient energy usage is achieved by allocating forecasts to more energy efficient comput-
ing resources and when possible, use a lower clock frequency to compute a forecast. The
assessment metrics for these two objectives were compared among the heuristics in Case
Study 2. The results showed that reliability and energy usage came at the expense of one
another. Additionally, since these two objectives have a lower priority when compared to
makespan robustness, it is difficult for them to achieve the best possible assessment metric
values, i.e. 1.0. However, the heuristics that included each or both of these two object-
ives managed to optimally increase the the assessment metric values accordingly. From
the results, MM-MSRR-ME heuristic is the most optimal heuristic for fulfilling all three
objectives as it managed to optimise each objective with minimum adverse influence on
the other objectives. Thus, a heuristic to enable a robust, reliable and energy-aware re-
source allocation for ensembles of forecasts on multiple distributed heterogeneous resources
is successfully provided.

In the course of carrying out this research work, a number of limitations were en-
countered, which needed to be addressed.

(i) Policy restrictions of resource providers affecting the support of urgent computing
activities

(ii) Insufficient collaborations among urgent computing and event domain scientists

While it is possible to have technical solutions to enable urgent computing, if pub-
lic resource providers cannot readily support such computations, it defeats the purpose.
Consequently, it is critical for the progress of urgent computing to tackle this prevailing
limitation. Section 3.5.2 thus offers a set of policy recommendations for public resource
providers.

Collaborations among urgent computing and event domain scientists are critical to
advance the applicability of urgent computing. The limitations faced by domain scientists,
can many times be complemented by the research work, e.g. optimising the algorithms
to improve makespan, of computer scientists. Thus, active collaborations among these
scientists are strongly encouraged to speed up the advancement of urgent computing.

7.2 Future Work 113

The current difficulties in finding event domain science experts to cooperate with is
seemingly not new. In Trebon’s urgent computing dissertation, he used a non-urgent
computing astrophysics code [8, p. 36] developed in his university for his case study.
It is of utmost importance to foster strong collaborations among the urgent computing
researchers and event domain scientists.

In summary, the research goal to support ensembles of forecasts utilising zero hour
data to produce multiple forecasts of the the same events for probabilistic forecasting
before the stipulated deadlines is successfully achieved. The application of the proposed
urgent computing framework for ensembles of forecasts is not limited to flash flood. It
can easily be extended to other urgent events, e.g. storms and wild fires, which require
ensemble forecasting.

7.2 Future Work

This dissertation has offered an urgent computing framework to realise urgent computing
for ensembles of forecasts on a set of distributed heterogeneous computing resources. Since
urgent computing is still a rather new field of research that requires the collaboration of
multiple disciplines, there is a wide array of potential future work. Here we recommend
three potential future works that can enhance and/or complement our current framework.

(i) Cost of Urgent Computations

(ii) Prediction Models

(iii) Advanced 3D Visualisation

The computation cost of a forecast typically differs from resource to resource due to
the differences in hardware, personnel cost, electricity cost, etc. This cost and the cost
of selecting the fully utilised computing resources, i.e. the cost of preemption to free
nodes/cores [13] immediately, are not included in the resource allocation heuristics presen-
ted. One future work is to include the computation cost in the resource allocation heuristics
when selecting the most appropriate resource for an ensemble of forecasts with a determ-
inistic deadline. The cost is also useful to help determine if the urgent computations are
”worthwhile”, i.e. the cost of urgent computations should optimally be less than or equal
to the expected savings in loss mitigation by using the urgent products for decision-making.

Prediction models [113][114][115] to evaluate the urgent products is another interesting
future work to fulfil the functional requirement, data evaluation. In spite of the use of
stochastic approach to compute the forecasts, there still exist inherent uncertainties that
will affect the accuracy of the forecasts [116]. There is thus a need for effective prediction
models to improve the interpretation of the forecasts. Prevalent techniques include the
adoption of artificial neural network, regression methodology, etc. Machine learning meth-
ods [95][96] can also useful in automating the interpretation and/or to provide additional
insight as to which prediction models are most effective under which set of conditions.

114 7. Conclusion and Future Work

The prediction models are expected to be a part of the decision & coordination system of
an urgent system. The collaboration with the event domain scientists will be particularly
crucial when developing such models.

Advanced 3D visualisation is another interesting area for future work within the de-
cision & coordination system to support the requirement, data evaluation. Visualising the
urgent products in CAVE-like virtual environment1 or with mobile virtual reality headsets
can enable the decision makers have a swift and deep insight into the simulated datasets
to make educated decision(s) effectively. Figure 7.1 illustrates a 3D visualisaton of an
earthquake [15] in the CAVE-like environment. Communication with on-site civil defence
services can also be potentially improved by using such techniques to share prevailing
ground conditions. Initial research work [117][15][26] has began in that direction.

Figure 7.1: Advanced 3D Visualisation in CAVE-like Virtual Environment

In summary, the robust, reliable and energy-aware urgent computing framework for
ensembles of forecasts can be improved by future work to include the cost of urgent com-
putations as another objective in the heuristics, automatic prediction models and advanced
3D visualisation.

1https://www.lrz.de/services/v2c en/installations en/

Appendices

Appendix A

An Urgent Computing Visualistion
Service

A production implementation of the above described ubiquitous remote visualisation ser-
vice, a Virtual Network Computing (VNC) Client1, was developed and is currently a
production service at Leibniz Supercomputing centre (LRZ). This production version is
developed based on the TbU approach. The service is currently offered to all LRZ local
users and European users via e-Infrastructure projects, e.g. PRACE and EGI . It provides
urgent users with a generic ubiquitous interface on powerful resources for evaluating urgent
products for time-critical decision making. Domain scientists and civil protection services,
e.g. fire-fighters, can thus access this service from their mobile devices or laptops to visu-
alise a forecast computed on one of the HPC resources at LRZ and decide on appropriate
mitigation activities or rescue plans.

A.1 Architecture

The architecture of this service is shown in Figure A.1 consisting of the ubiquitous clients,
the TbU framework and the graphics clusters. The powerful graphics clusters, Graphics
Cluster 1 and 2, have heterogeneous environments which can be securely accessed via this
single uniform service from ubiquitous clients. The ubiquitous orchestrator enables users
to have direct access to these expensive graphic clusters via any modern mobile devices,
laptops and workstations with a modern browser. Each cluster has a number of graphics
cards and a user will be allocated an entire graphic card while using the service.

The client front-end, which is not administered by TbU, i.e. ubiquitous orchestrator,
can in principle be flexibly chosen or implemented. In this case, an in-house JavaScript de-

1https://rvs.lrz.de

118 A. An Urgent Computing Visualistion Service

Figure A.1: Ubiquitous Visualisation Service at LRZ

velopment (Figure A.2a) for users input and an open-source VNC client software, noVNC2,
(Figure A.2b) were chosen. Figure A.2b shows the visualisation of a North Italian region
where an earthquake occurred. The selection of clients should adhere to only one require-
ment, which is to be easily supported on ubiquitous end user devices. This particular
choice for the visualisation service is thus simply a reflection of the prevailing technological
trends. The client front-end is interchangeable with other alternative ubiquitous clients
and should not affect the underlying TbU implementation. This is a payoff from having a
three layers architecture where a separation of concerns is made possible.

(a) In-house Client Development (b) noVNC

Figure A.2: Ubiquitous Visualisation Client Interface at LRZ

2https://kanaka.github.io/noVNC/

A.2 Implementation with TbU Approach 119

A.2 Implementation with TbU Approach

To illustrate a simple generic urgent use case, three processes, compute, analyse and decide,
are employed to represent an urgent workflow as shown in Figure A.3. The compute
process describes the execution of a numerical simulation code for an urgent event while the
analyse process shows the analysis activities of simulated result. The final process, decide,
represents the act of decision making, i.e. mitigation activities, which is administered
within the decision & coordination system. The visualisation service will be a part of the
analyse process and correspondingly only this process is elaborated.

Figure A.3: TbU Analyse Process of Ubiquitous Visualistion Service

The analyse process is further broken down into three activities, retrieve, process and
visualise. The retrieve activity represents the need to fetch simulated results from comput-
ing resources to the selected visualisation resource. The selection of the most appropriate
resource is administered by the schedule manager. The process activity illustrates the work
step to post-process simulation results to useful urgent products for visualisation. Finally
the urgent products are rendered in the visualise activity. Processes and activities are ad-
ministered by the ubiquitous orchestrator. Since the visualisation service will only provide
the visualise functionality, only the visualise activity will be detailed. The visualise activity
consists of the following core visualisation tasks, connect, initiate, interact and disconnect,

120 A. An Urgent Computing Visualistion Service

as highlighted by the gray box. These tasks should be defined by the domain scientists.
The urgent managers ensure that the urgent computing requirements are fulfilled. It

is important to note that the urgent managers are integrated in a non-intrusive manner
such that the core tasks can continue to function as they would when the four managers
are unavailable. Each core visualisation task is described and administered with the four
fundamental subtask functions. The connect task illustrates the authentication to the
visualisation resource. Upon a successful connection, the initiate task starts the required
visualisation service, in this case a server, on the resource. A check is performed to ensure
that the required server is started. The server information is then transferred back. This
information is utilised by the the interact task. Since the server is behind a firewall, the
interact task will authenticate once again to start a tunnel for the interaction. A check is
done to ensure the successful creation of the tunnel. The tunnel information is transferred
back. Interaction information is continuously being transferred between the client and the
server. When the service is no longer required, the disconnect task is activated. It will
stop the tunnel and server before finally terminating the connection.

Appendix B

Preemption Approaches

Acquiring computation resources swiftly for urgent computing is crucial. Preemptive
scheduling, terminating an existing job(s) to make way for an urgent job, is one of the
most common approaches considered. Two cost approaches, the least cost (LC) and least
disruptive (LD), are used to demonstrate the cost of preemption. The LC approach is
chosen to illustrate the stand, i.e. minimum cost, of policy makers while the LD approach
is selected to reflect the resource providers concerns, i.e. disrupting minimum jobs and
users.

B.1 Least Cost Approach

The LC approach aims to minimise the direct cost of preempting running jobs to make
way for the urgent job(s). To reduce the direct cost, the ”cheapest” jobs are preempted.
The ”cheapness” of a job is dependent on the elapsed wallclock time and the number of
nodes used.

The least cost algorithm applied is as follows.:

Cp(no) = min(CJ(no), LEJ(no)) (B.1.1)

where

• no is the number of nodes that have to be preempted

• Cp(no) is the direct cost of preempting no or more nodes

• CJ(no) is the sum of the cost of preempting the cheapest running jobs to free no or
more nodes

122 B. Preemption Approaches

function Cheapest_Job
input Integer no

//Jobs are sorted on cost in ascending order
//Iterate through the sorted job list
while n < no

Add job ji with ni nodes to preempt list
n+ = ni

end
if n > no

KnapSack_Algo to find the most expensive
job combination.
Remove the job combination found from
preempt list(n)
n− = ni

end
if n > no

KnapSack_Algo to find cheapest job
combination within same wallclock range
//use this set if cost is lower

end
end

(a) CJ(no)

function Least_Elapsed_Job
input Integer no

//Jobs are sorted on wallclock elapsed time
in ascending order
//Iterate through the sorted job list
while n < no

Add job ji with ni nodes to preempt list
n+ = ni

end
if n > no

Knapsack_Algo to find the most expensive
job combination to remove.
Remove the job combination found from
preempt list(n)
n− = ni

end
end

(b) LEJ(no)

Figure B.1: Least Cost Algorithm

• LEJ(no) is the sum of the cost of preempting the least wallclock elapsed jobs to free
no or more nodes

• min(.., ..) selects the minimum preemption cost

The LC approach will minimise the cost of preemption by preempting the cheapest
(Figure B.1a) or least elapsed wallclock time (Figure B.1b) jobs, thus favouring the pree-
mption of smaller or newly submitted jobs respectively. If more nodes are removed than
required, the list will be filtered using the Knapsack algorithm [118] where the most ex-
pensive redundant job combination will be removed from the preemption list. If more
nodes are still preempted in LEJ , the Knapsack algorithm (minimisation) is additionally
used to find a possible job/job combination with a lower cost within the wallclock range
that is smaller and equal to the last job selected for preemption.

B.2 Least Disruptive Approach

The LD approach as shown in Figure B.2 aims to minimise the number of jobs preempted,
thus the number of users affected. A job that utilises a bigger number of nodes than no will
be preempted as compared to e.g. preempting two smaller cheaper jobs to free no nodes.
If no jobs using ≥ no can be found, the least number of jobs to get no or more nodes are
selected.

B.2 Least Disruptive Approach 123

function least_disruptive
input Integer no

//Jobs ares sorted based on nodes in descending order and cost in ascending order
Case 1: ni == no

Find job ji with the lowest cost Where ni == no

Add job ji to preempt list
n = ni

Case 2: ni > no

Find job ji with the smallest job size ni Where ni > no

And the lowest cost among jobs of the same size
Add job ji to preempt list
n = ni

Case 3: SUM(ni) >= no

Find jobs ji Where SUM(ni) > no

if SUM(ni) == no

Add jobs ji to preempt_list
n = no

else //SUM(ni) > no

//Iterate through the job list
n = 0
while n < no

if ni <= no − n
Add job ji to preempt list
n+ = ni

else
Continue to iterate through the list to Find for the smallest ni

Where ni > no − n And cost is the lowest among jobs of the same size
Add job ji to preempt list
n+ = ni

end
end

end
end

end

Figure B.2: Least Disruptive Algorithm

124 B. Preemption Approaches

Appendix C

Minimum and Maximum Values of
Assessment Model

The maximum and minimum values of makespan robustness metric, site and resource
reliability metrics and ETS for the given set of resources in Case Study 2 are required
to compute the assessment metrics of the three objectives. In the following sections, the
maximum and minimum values of the metrics and ETS values are shown.

C.1 Minimum and Maximum Values of Makespan
Robustness Metric

The minimum robustness makespan metric is obtained by allocating the forecast Morrison
on resource RC. This will maximise f(πj, 1) = 11326 and correspondingly minimise the
makespan robustness metric (first row of Table C.1).

The maximum robustness makespan metric is obtained by allocating the forecast
Morrison on SuperMUC Phase 2 at maximum frequency 2.6 GHz. This will minimise
f(πj , 1) = 10210 (refer to equation (5.3.2)) and corresponding maximise the makespan
robustness metric (second row of Table C.1).

Makespan Robustness Metric Value

ρ(Φ,πj)min -526
ρ(Φ,πj)max 590

Table C.1: Minimum and Maximum Values of Makespan Robustness Metric

126 C. Minimum and Maximum Values of Assessment Model

C.2 Minimum and Maximum Values of Site and Re-
source Reliability Metric

The minimum (first row) and maximum site (second row) site reliability metrics are shown
in Table C.2. The minimum site reliability metric is obtained by allocating all forecasts
to Site2. The maximum site reliability metric is achieved by allocating three forecasts to
LRZ, two forecasts to Site1 and three forecasts to Site2.

Site Reliability Metric Value

ρsite(φreliability, t)min 0.28
ρsite(φreliability, t)max 0.46

Table C.2: Minimum and Maximum Values of Site Reliability Metric

The minimum (first row) and maximum site (second row) resource reliability metrics
are shown in Table C.3. The minimum resource reliability metric is obtained by allocating
all forecasts on one resource, SuperMUC or SuperMUC Phase 2. The maximum resource
reliability metric is achieved by allocating two forecasts each to SuperMUC, SuperMUC
Phase 2 and RC and one forecast each to RA and RB.

Resource Reliability Metric Value

ρresource(φreliability, t)min 0.30
ρresource(φreliability, t)max 0.60

Table C.3: Minimum and Maximum Values of Site Reliability Metric

C.3 Minimum and Maximum Values of ETS

The minimum (first row) and maximum site (second row) ETS values are shown in
Table C.3. The minimum resource reliability metric is obtained by allocating forecasts
Morrison, Thompson, WSM6D, Ferrier, WSM6 and WSM3 to RC, and forecasts WMS5
and Kessler to SuperMUC Phase 2 at the minimum frequency 2.2 GHz. The ETS value is
achieved by allocating all forecasts to SuperMUC at the maximum frequency 2.7 GHz.

ETS Value

etsmin 89.37
etsmax 161.48

Table C.4: Minimum and Maximum Values of ETS

Bibliography

[1] S. A. Ackermann and J. A. Knox. Meteoroglogy: understanding the atmosphere (4th
Ed.). Springer Science+Business Media, 5 Wall Street, Burlington, MA 01803, USA,
2015.

[2] H. Kopetz. Real-Time Systems: Design Principles for Distributed Embedded Applic-
ations, Second Edition. Springer, LLC, 233 Spring Street, New York, NY 10013,
USA, 2011.

[3] M. O’Neill, A. R. Mikler, S. Indrakanti, C. Tiwari, and T. Jimenez. Re-plan: An
extensible software architecture to facilitate disaster response planning. IEEE trans-
actions on systems, man, and cybernetics. Systems, 44(12):1569–1583, 12 2014.

[4] B. Desai and A. Maskrey. Making Development Sustainable: The Future of Disaster
Risk Management. Global Assessment Report on Disaster Risk Reduction. Geneva,
Switzerland: United Nations Office for Disaster Risk Reductions (UNISDR), 2015.

[5] E. S. Epstein. Stochastic dynamic prediction. Tellus, 21(6):739–759, 1969.

[6] F. Atger. The skill of ensemble prediction systems. Monthly Weather Review,
127(9):1941–1953, 1999.

[7] S. H. Leong, A. Frank, and D. Kranzlmüller. Leveraging e-Infrastructures for Urgent
Computing. In ICCS Proceedings, volume 18 of Procedia Computer Science, pages
2177–2186. Elsevier, 2013.

[8] N. Trebon. Enabling Urgent Computing within the existing distributed computing
infrastructure. PhD thesis, University of Chicago, Aug 2011.

[9] S. H. Leong and D. Kranzlmüller. Towards a General Definition of Urgent Comput-
ing. In ICCS Proceedings, volume 51 of Procedia Computer Science, pages 2337 –
2346. Elsevier, 2015.

[10] T. L. Saaty. Decision making with the analytic hierarchy process. International
Journal of Services Sciences, 1(1):83–98, 2008.

128 BIBLIOGRAPHY

[11] S. H. Leong and D. Kranzlmüller. A Task-based Ubiquitous Approach to Urgent
Computing for Disaster Management. In International Conference on Information
and Communication Technologies for Disaster Management, 2015.

[12] P. Beckman, S. Nadella, N. Trebon, and I. Beschastnikh. SPRUCE: A System for
Supporting Urgent High-Performance Computing. In Grid-Based Problem Solving
Environments, volume 239 of Procedia Computer Science, pages 295–311. Springer
US, 2007.

[13] S. H. Leong and D. Kranzlmüller. A Case Study - Cost of Preemption for Urgent
Computing on SuperMUC. In High Performance Computing, volume 9137 of Lecture
Notes in Computer Science, pages 422–433. Springer International Publishing, 2015.

[14] S. H. Leong, D. Kranzlmüller, and A. Frank. A data management system to enable
urgent natural disaster computing. In EGU General Assembly Conference Abstracts,
volume 16, page 4699, May 2014.

[15] S. H. Leong and D. Kranzlmüller. Advance Visualisation and Urgent Computing. In
Intl. Symposium on Grids and Clouds 2015, volume 17, Mar 2015.

[16] S. H. Leong, A. Parodi, and D. Kranzlmüller. A Robust Reliable Energy-Aware
Urgent Computing Resource Allocation for Flash Flood Ensemble Forecasting on
HPC Infrastructures for Decision Support. 2016. Submitted.

[17] S. H. Leong and D. Kranzlmüller. A Hydro-meteorological Urgent Computing Ubi-
quitous Framework for an Ensemble Forecast. In CGW Workshop, 2015.

[18] S. H. Leong and D. Kranzlmüller. Urgent Computing - A General Makespan Ro-
bustness Model for Ensembles of Forecasts. In ICCS, 2016. Accepted.

[19] S. H. Leong and D. Kranzlmüller. An Urgent Computing Framework for Ensembles of
Forecasts on HPC Infrastructure. In Supercomputing Frontier Conference Abstracts,
Mar 2016.

[20] M. Carpen, I. Klampanos, S. H. Leong, E. Casarotti, P. Danecek, G. Ferini,
A. Gemnd, A. Krause, L. Krischer, F. Magnoni, M. Simon, A. Spinuso, L. Trani,
M. Atkinson, G. Erbacci, A. Frank, H. Igel, A. Rietbrock, H. Schwichtenberg, and
J.-P. Vilotte. Towards addressing cpu-intensive seismological applications in europe.
In Supercomputing, volume 7905 of Lecture Notes in Computer Science, pages 55–66.
Springer Berlin Heidelberg, 2013.

[21] S. Marek, S. H. Leong, K. H. Zad, L. Krischer, M. Carpene, G. Ferini, L. Trani,
A. Spinuso, F. Magnoni, E. Casarotti, A. Gemünd, D. Weissenbach, I. Klampanos,
and H. Igel. VERCE - CPU-intensive Applications in Seismology. In EGU General
Assembly Conference Abstracts, volume 15, page 4483, Apr 2013.

BIBLIOGRAPHY 129

[22] T. Goodale, S. Jha, H. Kaiser, T. Kielmann, P. Kleijer, G. Von Laszewski, C. Lee,
A. Merzky, H. Rajic, and J. Shalf. Saga: A simple api for grid applications. high-
level application programming on the grid. Computational Methods in Science and
Technology, 12(1):7–20, 2006.

[23] A. Spinuso, A. Krause, C. R. Garcia, E. Casarotti, F. Magnoni, I. A. Klampanos,
L. Frobert, L. Krischer, L. Trani, M. David, S. H. Leong, and V. Muraleedharan. The
VERCE Science Gateway: enabling user friendly seismic waves simulations across
European HPC infrastructures. In EGU General Assembly Conference Abstracts,
volume 16, page 6141, May 2014.

[24] A. Spinuso, A. Krause, C.R. Garcia, E. Casarotti, F. Magnoni, J. Matser, L. Krischer,
L. Trani, M. David, S.H. Leong, and V. Muraleedharan. The verce science gateway:
Interactive forward modeling and metadata management. In Second European Con-
ference on Earthquake Engineering and Seismology (2ECEES), Aug 2014.

[25] E. Casarotti, A. Spinuso, J. Matser, S. H. Leong, F. Magnoni, A. Krause, C. R.
Garcia, V. Muraleedharan, L. Krischer, and C. Anthes. The VERCE Science Gate-
way: Enabling User Friendly HPC Seismic Wave Simulations. AGU Fall Meeting
Abstracts, page A6, December 2014.

[26] S. H. Leong, C. Anthes, F. Magnoni, A. Spinuso, and E. Casarotti. Advance Visual-
isation of Seismic Wave Propagation and Speed Model. Innovatives Supercomputing
in Deutschland, 13(1):34–37, 2015.

[27] M. Atkinson, M. Carpene, E. Casarotti, S. Claus, R. Filgeueira, A. Frank, M. Galea,
A. Gemünd, H. Igel, I. Klampanos, A. Krause, L. Krischer, S. H. Leong, F. Magnoni,
J. Matser, A. Michelini, H. Schwichtenberg, A. Spinuso, and J.-P. Vilotte. VERCE
delivers a productive e-Science environment for seismology research. In 11th IEEE
International Conference on eScience, Proceedings, 2015.

[28] B. Blanton, J. McGee, J. Fleming, C. Kaiser, H. Kaiser, H. Lander, R. Luettich,
K. Dresback, and R. Kolar. Urgent Computing of Storm Surge for North Carolina’s
Coast. In ICCS Proceedings, volume 9 of Procedia Computer Science, pages 1677–
1686. Elsevier, 2012.

[29] S. V. Ivanov, S. V. Kovalchuk, and A. V. Boukhanovsky. Workflow-based Collab-
orative Decision Support for Flood Management Systems. In ICCS Proceedings,
volume 18 of Procedia Computer Science, pages 2213–2222. Elsevier, 2013.

[30] B. Balis, M. Kasztelnik, M. Bubak, T. Bartynski, T. Gubala, P. Nowakowski, and
J. Broekhuijsen. The UrbanFlood Common Information Space for Early Warning
Systems. In ICCS Proceedings, volume 4 of Procedia Computer Science, pages 96–105.
Elsevier, 2011.

130 BIBLIOGRAPHY

[31] G.S. Brown and D.P. Campbell. Instrument Engineering: Its Growth and Promise
in Process-Control Problems. Mechanical Engineering, 72(2):124–127, 1950.

[32] B. Furht, D. Grostick, D. Gluch, G. Rabbat, J. Parker, and M. McRoberts. Real-
Time UNIX Systems: Design and Applications Guide. Kluwer Academic Publishers,
1991.

[33] K.G. Shin and P. Ramanathan. Real-time computing: a new discipline of computer
science and engineering. Proceedings of the IEEE, 82(1):6–24, Jan 1994.

[34] M. A. Cohen. A Taxonomy of Oil Spill Costs - What are the Likely Costs of the
Deepwater Horizon Spill? Technical report, Resources for the Future, 2010.

[35] P. Beckman, S. Nadella, N. Trebon, and I. Beschastnikh. SPRUCE: Special PRiority
and Urgent Computing Environment. Technical report, TeraGrid, 2008.

[36] P. Beckman, I. Beschastnikh, S. Nadella, and N. Trebon. High Performance Comput-
ing and Grids in Action, volume 16, chapter Building an Infrastructure for Urgent
Computing, pages 75–95. IOS Press, 2008.

[37] V. V. Krzhizhanovskaya, N. B. Melnikova, A. M. Chirkin, S. V. Ivanov, A. V.
Boukhanovsky, and P. M. A. Sloot. Distributed Simulation of City Inundation by
Coupled Surface and Subsurface Porous Flow for Urban Flood Decision Support
System. In ICCS Proceedings, volume 18 of Procedia Computer Science, pages 1046–
1056. Elsevier, 2013.

[38] S. V. Kovalchuk and A. V. Boukhanovsky. High-Level Knowledge-Based Structures
for Simulation within Urgent Computing Tasks. In ICCS Proceedings, volume 9 of
Procedia Computer Science, pages 1694–1703. Elsevier, 2012.

[39] N. Palmer, R. Kemp, T. Kielmann, and H. Bal. The Case for Smartphones as an
Urgent Computing Client Platform. In ICCS Proceedings, volume 9 of Procedia
Computer Science, pages 1667–1676. Elsevier, 2012.

[40] A. Parodi, G. Boni, L. Ferraris, F. Siccardi, P. Pagliara, E. Trovatore, E. Foufoula-
Georgiou, and D. Kranzlmueller. The “perfect storm”: From across the Atlantic to
the hills of Genoa. EOS Transactions, 93(24):225–226, Jun 2012.

[41] M. Rivi and A. Emerson. Using the IBM iDataPlex (PLX). 21st Summer School of
Parallel Computing, 2012.

[42] E. Yamasaki. What We Can Learn From Japan’s Early Earthquake Warning System.
Momentum, 1:1–26, 2012.

[43] S. Marru, D. Gannon, Beckman, D. B. Weber, K. A. Brewster, and K. K. Droege-
meier. LEAD Cyberinfrastructure to Track Real-Time Storms Using SPRUCE Ur-
gent Computing. CTWatch Quarterly, 4(1), Mar 2008.

BIBLIOGRAPHY 131

[44] A. Cencerrado, A. Corts, and T. Margalef. On the Way of Applying Urgent Comput-
ing Solutions to Forest Fire Propagation Prediction. In ICCS Proceedings, volume 9
of Procedia Computer Science, pages 1657–1666. Elsevier, 2012.

[45] K. K. Yoshimoto, D. J. Choi, R. L. Moore, A. Majumdar, and E. Hocks. Implement-
ations of Urgent Computing on Production HPC Systems. In ICCS Proceedings,
volume 9 of Procedia Computer Science, pages 1687–1693. Elsevier, 2012.

[46] K. V. Knyazkov, D. A. Nasonov, T. N. Tchurov, and A. V. Boukhanovsky. Interactive
workflow-based infrastructure for urgent computing. 18:2223 – 2232, 2013. 2013
International Conference on Computational Science.

[47] R. Brzoza-Woch, M. Konieczny, B. Kwolek, Piotr Nawrocki, Tomasz Szydlo, and
Krzysztof Zielinski. Holistic approach to urgent computing for flood decision support.
51:2387 – 2396, 2015.

[48] ERINA+. About e-Infrastructures, Nov 2012. http://www.erinaplus.eu/index.
php/about-e-infrastructures.

[49] XSEDE. The Extreme Science and Engineering Discovery Environment 2011-2012
Annual Highlights. Technical report, XSEDE, 2012.

[50] A. Musa, H. Matsuoka, O. Watanabe, Y. Murashima, S. Koshimura, R. Hino,
Y. Ohta, and H. Kobayashi. A Real-Time Tsunami Inundation Forecast System
for Tsunami Disaster Prevention and Mitigation. In The International Conference
for High Performance Computing, Networking, Storage and Analysis, Nov 2015.

[51] H. Kobayashi. One-Year Experience with SX-ACE. 22nd Workshop on Sustained
Simulation Performance, Dec 2015.

[52] S. Koshimura, T. Oie, H. Yanagisawa, and F. Imamura. Developing Fragility Func-
tions for Tsunami Damage Estimation using Numerical Model and Post-Tsunami
data from Banda Aceh, Indonesia. Coastal Engineering Journal, 51(03):243–273,
2009.

[53] A. Geist and C. Engelmann. Development of Naturally Fault Tolerant Algorithms.
Technical report, Oak Ridge National Laboratory, 2002.

[54] M. Hegland. Multidimensional problems and fault tolerance. International Sym-
posium on Parallel and Distributed Computing (ISPDC 2012), 2012. Invited talk.

[55] T. Aboulnasr and Q. Pan. Data-dependent partial update adaptive algorithms for
linear and nonlinear systems. In Signal Processing Conference, 2005 13th European,
pages 1–4, Sept 2005.

http://www.erinaplus.eu/index.php/about-e-infrastructures
http://www.erinaplus.eu/index.php/about-e-infrastructures

132 BIBLIOGRAPHY

[56] G. Hulten, L. Spencer, and P. Domingos. Mining time-changing data streams. In
Proceedings of the Seventh ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, KDD ’01, pages 97–106, New York, NY, USA, 2001.
ACM.

[57] S. V. Kovalchuk, P. A. Smirnov, S. V. Maryin, T. N. Tchurov, and V. A. Karbovskiy.
Deadline-driven Resource Management within Urgent Computing Cyberinfrastruc-
ture. 18:2203–2212, 2013.

[58] K. Kurowski, A. Oleksiak, w. Piatek, and J. Weglarz. Impact of Urgent Computing
on Resource Management Policies, Schedules and Resources Utilization. In ICCS
Proceedings, volume 9 of Procedia Computer Science, pages 1713–1722. Elsevier, 2012.

[59] D. Nasonov and N. Butakov. Hybrid Scheduling Algorithm in Early Warning Sys-
tems. Procedia Computer Science, 29:1677 – 1687, 2014. 2014 International Confer-
ence on Computational Science.

[60] O. H. Ibarra and C. E. Kim. Heuristic Algorithms for Scheduling Independent Tasks
on Nonidentical Processors. J. ACM, 24(2):280–289, Apr 1977.

[61] L. Sha, T. Abdelzaher, K. E. Arzn, A. Cervin, T. Baker, A. Burns, G. Buttazzo,
M. Caccamo, J. Lehoczky, and A. K. Mok. Real Time Scheduling Theory: A Histor-
ical Perspective. Real-Time Systems, 28(2-3):101–155, 2004.

[62] Y. Shin and K. Choi. Power conscious fixed priority scheduling for hard real-time
systems. In Design Automation Conference, 1999. Proceedings. 36th, pages 134–139,
1999.

[63] Y. Zhang, X. Hu, and D. Z. Chen. Task scheduling and voltage selection for energy
minimization. In Design Automation Conference, 2002. Proceedings. 39th, pages
183–188, 2002.

[64] R. Ge, X. Feng, and K. W. Cameron. Performance-constrained distributed dvs
scheduling for scientific applications on power-aware clusters. In Supercomputing,
2005. Proceedings of the ACM/IEEE SC 2005 Conference, pages 34–34, Nov 2005.

[65] A. M. Methta, J. Smith, H. J. Siegel, A. A. Maciejewski, A. Jayaseelan, and B. Ye.
Dynamic resource allocation heuristics that manage tradeoff between makespan and
robustness. The Journal of Supercomputing, 42(1):33–58, 2007.

[66] J. Koomey. Worldwide electricity used in data centers. Environmental Research
Letters, 3(3):034008, 2008.

[67] J. Koomey. Growth in Data center electricity use 2005 to 2010. Technical report,
Stanford University, 2011.

BIBLIOGRAPHY 133

[68] K. Bergman, S. Borkar, D. Campbell, W. Carlson, W. Dally, M. Denneau, P. Fran-
zon, W. Harrod, J. Hiller, S. Karp, S. Keckler, D. Klein, R. Lucas, M. Richards,
A. Scarpelli, S. Scott, A. Snavely, T. Sterling, R. S. Williams, and K. Yelick. ExaS-
cale Computing Study: Technology Challenges in Achieving Exascale Systems Peter
Kogge, Editor & Study Lead, 2008.

[69] H. Shoukourian. Adviser for Energy Consumption Management: Green Energy Con-
servation . PhD thesis, Technische Universität München, Jul 2015.

[70] H.F. Sheikh, H. Tan, I. Ahmad, S. Ranka, and P. Bv. Energy- and performance-
aware scheduling of tasks on parallel and distributed systems. J. Emerg. Technol.
Comput. Syst., 8(4):32:1–32:37, November 2012.

[71] E. Seo, J. Jeong, S. Park, and J. Lee. Energy efficient scheduling of real-time tasks
on multicore processors. Parallel and Distributed Systems, IEEE Transactions on,
19(11):1540–1552, Nov 2008.

[72] S. Srinivasan and N. K. Jha. Safety and reliability driven task allocation in distributed
systems. Parallel and Distributed Systems, IEEE Transactions on, 10(3):238–251,
1999.

[73] X. Qin and H. Jiang. A dynamic and reliability-driven scheduling algorithm for
parallel real-time jobs executing on heterogeneous clusters. Journal of Parallel and
Distributed Computing, 65(8):885 – 900, 2005.

[74] Andrea Rossa, Katharina Liechti, Massimiliano Zappa, Michael Bruen, Urs Ger-
mann, Gnther Haase, Christian Keil, and Peter Krahe. The {COST} 731 action:
A review on uncertainty propagation in advanced hydro-meteorological forecast sys-
tems. Atmospheric Research, 100(23):150 – 167, 2011. Uncertainty Propagation in
Advanced Hydro-Meteorological Forecast Systems.

[75] L. Ferraris, R. Rudari, and F. Siccardi. The uncertainty in the prediction of flash
floods in the northern mediterranean environment. Journal of Hydrometeorology,
3(6):714–727, 2016/01/24 2002.

[76] J. C. Bartholmes, J .Thielen, M. H. Ramos, and S. Gentilini. The European Flood
Alert System EFAS Part 2: Statistical skill assessment of probabilistic and determ-
inistic operational forecasts. Hydrology and Earth System Sciences, 13(2):141–153,
2009.

[77] L. Alfieri, P. Burek, E. Dutra, B. Krzeminski, D. Muraro, J. Thielen, and F. Pappen-
berger. GloFAS — Global ensemble streamflow forecasting and flood early warning.
Hydrology and Earth System Sciences, 17(3):1161–1175, 2013.

[78] European Centre for Medium-Range Weather Forecasts (ECMWF). Forecasts, Dec
2015. http://www.ecmwf.int/en/forecasts.

http://www.ecmwf.int/en/forecasts

134 BIBLIOGRAPHY

[79] Deutscher Wetterdienst (DWD). Ensemble Prediction, Dec 2015. http://www.dwd.
de/EN/research/weatherforecasting/num_modelling/04_ensemble_methods/
ensemble_prediction/ensemble_prediction_node.html.

[80] National Centers for Environmental Prediction (NCEP). Global Ensemble Forecast
System (GEFS), Dec 2015. https://www.ncdc.noaa.gov/data-access/model-
data/model-datasets/global-ensemble-forecast-system-gefs.

[81] China Meteorological Administration (CMA). An introduction of ensemble forecast
of CMA, May 2015. http://www.cma.gov.cn/en2014/news/Features/201505/
t20150505_281493.html.

[82] Bureau of Meteorology. Climate Model Details, Dec 2015. http://www.bom.gov.
au/climate/model-summary/model-summary-table.shtml.

[83] Japan Meteorological Agency (JMA). JMA’s Ensemble Prediction System (Products
of GPC Tokyo), Dec 2015. http://www.bom.gov.au/climate/model-summary/
model-summary-table.shtml.

[84] L. Alfieri, L. Feyen, F. Dottori, and A. Bianchi. Ensemble flood risk assessment in
europe under high end climate scenarios. Global Environmental Change, 35:199 –
212, 2015.

[85] B. Revilla-Romero, J. Thielen, P. Salamon, T. De Groeve, and G. R. Braken-
ridge. Evaluation of the satellite-based Global Flood Detection System for measur-
ing river discharge: influence of local factors. Hydrology and Earth System Sciences,
18(11):4467–4484, 2014.

[86] A. Pieri, J. von Hardenberg, A. Parodi and A. Provenzale. Sensitivity of Precipitation
Statistics to Resolution, Microphysics, and Convective Parameterization: A Case
Study with the High-Resolution WRF Climate Model over Europe. J. Hydrometeor,
16(4):1857–1872, 2015/08/18 2015.

[87] C. A. Doswell, H. E. Brooks, and R. A. Maddox. Flash Flood Forecast-
ing: An Ingredients-Based Methodology. Weather and Forecasting, 11(4):560–581,
2015/10/30 1996.

[88] A. Hally, O. Caumont, L. Garrote, E. Richard, A. Weerts, F. Delogu, E. Fiori, N. Re-
bora, A. Parodi, A. Mihalović, M. Ivković, L. Dekić, W. van Verseveld, O. Nuissier,
V. Ducrocq, D. D’Agostino, A. Galizia, E. Danovaro, and A. Clematis. Hydrometeor-
ological multi-model ensemble simulations of the 4 november 2011 flash flood event
in genoa, italy, in the framework of the drihm project. Natural Hazards and Earth
System Sciences, 15(3):537–555, 2015.

[89] E. Fiori, A. Comellas, L. Molini, N. Rebora, F. Siccardi, D. J. Gochis, S. Tanelli,
and A. Parodi. Analysis and hindcast simulations of an extreme rainfall event in the
mediterranean area: The genoa 2011 case. Atmospheric Research, 138:13 – 29, 2014.

http://www.dwd.de/EN/research/weatherforecasting/num_modelling/04_ensemble_methods/ensemble_prediction/ensemble_prediction_node.html
http://www.dwd.de/EN/research/weatherforecasting/num_modelling/04_ensemble_methods/ensemble_prediction/ensemble_prediction_node.html
http://www.dwd.de/EN/research/weatherforecasting/num_modelling/04_ensemble_methods/ensemble_prediction/ensemble_prediction_node.html
https://www.ncdc.noaa.gov/data-access/model-data/model-datasets/global-ensemble-forecast-system-gefs
https://www.ncdc.noaa.gov/data-access/model-data/model-datasets/global-ensemble-forecast-system-gefs
http://www.cma.gov.cn/en2014/news/Features/201505/t20150505_281493.html
http://www.cma.gov.cn/en2014/news/Features/201505/t20150505_281493.html
http://www.bom.gov.au/climate/model-summary/model-summary-table.shtml
http://www.bom.gov.au/climate/model-summary/model-summary-table.shtml
http://www.bom.gov.au/climate/model-summary/model-summary-table.shtml
http://www.bom.gov.au/climate/model-summary/model-summary-table.shtml

BIBLIOGRAPHY 135

[90] S. Davolio, F. Silvestro, and P. Malguzzi. Effects of increasing horizontal resolution
in a convection-permitting model on flood forecasting: The 2011 dramatic events in
liguria, italy. Journal of Hydrometeorology, 16(4):1843–1856, 2016/01/24 2015.

[91] S. Anquetin, J.-D. Creutin, G. Delrieu, V. Ducrocq, E. Gaume, and I. Ruin. Increas-
ing the forecasting lead-time of weather driven flash-floods. Technical report, April
2004. Rapport H01/812/02/D9056/AG/ct de 47 p. [Annexe : p. 32 à 47].

[92] B. Paplinska-Swerpel, L. Paszke, W. Sulisz, and R. Bolanos. Application of statistical
methods for the prediction of extreme wave events. Journal of Hydraulic Research,
46(sup2):314–323, 2008.

[93] G. W. Brier. Verification of forecasts expressed in terms of probability. Monthly
Weather Review, 78(1):1–3, 2015/11/18 1950.

[94] W. Marzocchi, J. D. Zechar, and T. H. Jordan. Bayesian Forecast Evaluation and En-
semble Earthquake Forecasting. The Bulletin of the Seismological Society of America,
102:2574–2584, December 2012.

[95] K. Rasouli, W. W. Hsieh, and A. J. Cannon. Daily streamflow forecasting by ma-
chine learning methods with weather and climate inputs. Journal of Hydrology,
414–415:284 – 293, 2012.

[96] C. Marzban and G. J. Stumpf. A neural network for tornado prediction based on
doppler radar-derived attributes. Journal of Applied Meteorology, 35(5):617–626,
2015/11/18 1996.

[97] National Science Foundation. The TeraGrid Community Steps Up to Help Japan
in Crisis, Nov 2012. https://www.nsf.gov/discoveries/disc_summ.jsp?cntn_
id=119412&org=NSF%20Oil%20spill%20simulation.

[98] J. Clark. Amazon Web Services: The hidden bugs that made AWS outage
worse, Jul 2012. http://www.zdnet.com/amazon-web-services-the-hidden-
bugs-that-made-aws-outage-worse-7000000186/.

[99] S. Gennies, A. Funk, M. Schlegel, and D. Dehmer. Hochwasser-Bilanz 2013
Wie schlimm war die Flut wirklich?, Jun 2013. http://www.tagesspiegel.
de/politik/hochwasser-bilanz-2013-wie-schlimm-war-die-flut-wirklich/
8416770.html.

[100] K. Ujikane. Japan Forecasts Earthquake Damage May Swell to $309 Bil-
lion, Mar 2011. http://www.bloomberg.com/news/articles/2011-03-23/japan-
sees-quake-damage-bill-of-up-to-309-billion-almost-four-katrinas.

[101] D.K. Nanto, W.H. Cooper, and J.M. Donnelly. Japans 2011 Earthquake and
Tsunami- Economic Effects and Implications for the United States. Technical re-
port, Congressional Research Service, 2011.

https://www.nsf.gov/discoveries/disc_summ.jsp?cntn_id=119412&org=NSF%20Oil%20spill%20simulation
https://www.nsf.gov/discoveries/disc_summ.jsp?cntn_id=119412&org=NSF%20Oil%20spill%20simulation
http://www.zdnet.com/amazon-web-services-the-hidden-bugs-that-made-aws-outage-worse-7000000186/
http://www.zdnet.com/amazon-web-services-the-hidden-bugs-that-made-aws-outage-worse-7000000186/
http://www.tagesspiegel.de/politik/hochwasser-bilanz-2013-wie-schlimm-war-die-flut-wirklich/8416770.html
http://www.tagesspiegel.de/politik/hochwasser-bilanz-2013-wie-schlimm-war-die-flut-wirklich/8416770.html
http://www.tagesspiegel.de/politik/hochwasser-bilanz-2013-wie-schlimm-war-die-flut-wirklich/8416770.html
http://www.bloomberg.com/news/articles/2011-03-23/japan-sees-quake-damage-bill-of-up-to-309-billion-almost-four-katrinas
http://www.bloomberg.com/news/articles/2011-03-23/japan-sees-quake-damage-bill-of-up-to-309-billion-almost-four-katrinas

136 BIBLIOGRAPHY

[102] M. L. Dolfman, S. F. Wasser, and B. Bergman. The effects of Hurricane Katrina on
the New Orleans economy. Technical report, Bureau of Labor Statistics of the U.S.
Department of Labor, 2007.

[103] E. Gica, M. C. Spillane, and V. V. Titov. Development of the forecast propagation
database for NOAA’s short-term inundation forecast for tsunamis (SIFT). Technical
Report OAR PMEL-139, U.S. Dept. of Commerce, National Oceanic and Atmo-
spheric Administration, Office of Oceanic and Atmospheric Research, Pacific Marine
Environmental Laboratory, 2008.

[104] R. E. Litan, J. W. Jacobs, W. D. Iwan, and S. D. Parker. The Impacts of Natural
Disasters: A Framework for Loss Estimation. Technical report, Committee on As-
sessing the Costs of Natural Disasters - Board on Natural Disasters and Commission
on Geosciences Environment and Resources - National Research Council, 1999.

[105] R. C. Tausworthe. The work breakdown structure in software project management.
Journal of Systems and Software, 1:181–186, 1979.

[106] IEEE Standard for Developing Software Life Cycle Processes. IEEE Std 1074-1991,
pages 1–, 1992.

[107] IEEE Standard for Developing Software Life Cycle Processes. IEEE Std 1074-1997,
pages i–, 1998.

[108] S. Ali, A. A. Maciejewski, H. J. Siegel, and J.-K. Kim. Measuring the robustness
of a resource allocation. Parallel and Distributed Systems, IEEE Transactions on,
15(7):630–641, Jul 2004.

[109] G. Strang and K. Borre. Linear Algebra, Geodesy, and GPS. Wellesley-Cambridge,
1997.

[110] A. Auweter, A. Bode, M. Brehm, L. Brochard, N. Hammer, H. Huber, R. Panda,
f. Thomas, and T. Wilde. A case study of energy aware scheduling on supermuc. In
Supercomputing, volume 8488 of Lecture Notes in Computer Science, pages 394–409.
Springer International Publishing, 2014.

[111] D. Usman I.B. Mohamad. Standardization and Its Effects on K-Means Cluster-
ing Algorithm. Research Journal of Applied Sciences, Engineering and Technology,
6(17):3299–3303, 2013.

[112] J. Dudhia. 11th WRF Users’ Workshop - Microphysics Options in WRF. 2010.

[113] S. A. Cheong, T. L. Tan, C.-C. Chen, W.-L. Chang, Z. Liu, L. Y. Chew, P. M. A.
Sloot., and N. F. Johnson. Short-term forecasting of taiwanese earthquakes using a
universal model of fusion-fission processes. Scientific Reports, 4:3624 EP –, 01 2014.

137

[114] E. E. Ebert, U. Damrath, W. Wergen, and M. E. Baldwin. The wgne assessment of
short-term quantitative precipitation forecasts. Bulletin of the American Meteorolo-
gical Society, 84(4):481–492, 2016/01/21 2003.

[115] V. Viswanathanand C. E Lee, M. H. Lees, S. A. Cheong, and P. M. A. Sloot. Quant-
itative comparison between crowd models for evacuation planning and evaluation.
European Physical Journal B, 87:27, Feb 2014.

[116] E. Toth, A. Brath, and A. Montanari. Comparison of short-term rainfall prediction
models for real-time flood forecasting. Journal of Hydrology, 239(14):132 – 147, 2000.

[117] E. Pajorová, L. Hluchý, and C. Anthes. 3D Geovisualization Service for Grid-oriented
applications of Natural Disasters. In 16th International Conference in Central Europe
on Computer Graphics, Visualization and Computer Vision - Poster Proceedings
(WSCG ’08), pages 1–4, Plzen, Czech Republic, Feb 2008.

[118] M. A. Trick. A Dynamic Programming Approach for Consistency and Propagation
for Knapsack Constraints. In Annals of Operations Research, pages 113–124, 2001.

138

Acknowledgement

I would like to thank my parents, Leong Fook Choi and Kee Hong Eng, and two sib-
lings, Leong Siew Yin and Leong Guotang, the driving forces behind the completion of
this dissertation, for their persistent support and encouragement (including the teasing of
course).

Next, I would like to thank Prof. Dr. Dieter Kranzlmüller, for his constant guid-
ance, support and not forgetting patience while supervising this work. His involvement is
imperative to the success of this work.

I would also like to thank Prof. Dr. Hans-Joachim Bungartz for providing guidance
and support. His advices are invaluable not only for this dissertation but beyond to enable
sustainability for the research activities in this area of research.

There are many others, from within Leibniz Supercomputing Centre (LRZ) and outside,
who had taken valuable time to discuss my research work with me, provided guidance,
valuable inputs, opportunities, etc. that help complete this dissertation.

From LRZ, I would like to thank Christoph Anthes, Reinhold Bader, Hayk Shoukourian,
Helmut Heller, Anton Frank, Matthias Brehm and Herbert Huber. I would also like to
thank the group members of VER, in particular Jens Weismüller for translating the abstract
to German, and Matteo Lanati and Shaila Roessle-Blank, for their constant support.

Last but not least, I would like to thank Antonio Parodi for discussing hydro-
meteorology problems and providing the case study problem, Ionel Muntean, for guid-
ance and encouragement to kick start my first publication, Nick Trebon, for answering
my enquiries and giving me words of encouragement, Emanuele Casarotti for discussing
seismological problems with me, Michael Johnson for proofreading, Mark Yampolskiy and
Ilya Saverchenko, for their mental support.

Thank you everyone!

Formular 3.2

Name, Vorname

Eidesstattliche Versicherung
(Siehe Promotionsordnung vom 12.07.11, § 8, Abs. 2 Pkt. .5.)

Hiermit erkläre ich an Eidesstatt, dass die Dissertation von mir

selbstständig, ohne unerlaubte Beihilfe angefertigt ist.

Ort, Datum Unterschrift Doktorand/in

Leong, Siew Hoon

Garching bei München

	Contents
	List of Figures
	List of Tables
	Abstract
	Zusammenfassung
	Introduction
	Motivation and Research Question
	Research Methodology and Contribution
	Publications
	Personal and Main Contributions
	Collaborative Contributions

	Outline
	Terminology

	Related Work and Analysis
	Overview of Urgent Computing
	Related Computing Paradigms
	Definition of Urgent computing
	Urgent computing use cases and challenges
	Urgent Computer Systems

	Resource Allocation
	Resource Allocation Strategies in Urgent Computing
	Resource Allocation Heuristics

	Ensemble of Forecasts
	Flooding

	Urgent Computing Definition
	Requirements
	Functional Requirements
	Non-functional Requirements

	Characteristics
	Pre-computation Characteristics
	Post-computation Characteristics

	Deadline
	Cost
	Classes of Computing Resources
	Selection of Resource Class
	Policy Recommendations for Public Resource Providers

	An Urgent System & A Task-based Ubiquitous Framework
	Urgent System
	Task-based Ubiquitous Framework
	Architecture
	Design of the Urgent Computer System

	Resource Allocation Heuristics
	Obligations and Objectives of Resource Allocation Heuristics
	Robustness and Reliability Models
	Robustness Model
	Reliability Model

	Ensembles of Forecasts Allocation Patterns
	Independent Consecutive Forecast Allocation Pattern
	Independent Concurrent Forecast Allocation Pattern
	Independent Concurrent and Consecutive Forecast Allocation Pattern

	Resource Allocation Heuristics
	Minimise Makespan
	Minimise Makespan-Minimise ETS
	Minimise Makespan-Maximise Resource Reliability
	Minimise Makespan-Maximise Resource Reliability-Minimise ETS
	Minimise Makespan-Maximise Site Reliability
	Minimise Makespan-Maximise Site and Resource Reliability-Minimise ETS

	Assessment Model
	Obligation 1 – Meeting the Stipulated Deadline
	Obligation 2 – Maximising the Number of Successfully Allocated and Completed Forecasts
	Heuristic Objectives

	Summary

	Implementation and Result
	Case Study 1 - Gamma distribution
	Independent Consecutive Forecast Allocation Pattern
	Independent Concurrent Forecast Allocation Pattern
	Independent Concurrent and Consecutive Forecast Allocation Pattern
	Assessment of Results

	Case Study 2 - Flash flood
	Minimise Makespan
	Minimise Makespan-Minimise ETS
	Minimise Makespan-Maximise Resource Reliability
	Minimise Makespan-Maximise Resource Reliability-Minimise ETS
	Minimise Makespan-Maximise Site Reliability
	Minimise Makespan-Maximise Site and Resource Reliability-Minimise ETS
	Assessment of Results
	Visualisation of Ensemble of Flash Flood Forecasts

	Conclusion and Future Work
	Summary of Findings
	Future Work

	Appendices
	An Urgent Computing Visualistion Service
	Architecture
	Implementation with TbU Approach

	Preemption Approaches
	Least Cost Approach
	Least Disruptive Approach

	Minimum and Maximum Values of Assessment Model
	Minimum and Maximum Values of Makespan Robustness Metric
	Minimum and Maximum Values of Site and Resource Reliability Metric
	Minimum and Maximum Values of ETS

	Bibliography
	Acknowledgement

