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Abstract—Emergency response applications require the pro-
cessing of large amounts of data, generated by a diverse set of
sensors and devices, in order to provide for an accurate and
concise view of the situation at hand. The adoption of semantic
technologies allows for the definition of a formal domain model
and intelligent data processing and reasoning on this model based
on generated device and sensor measurements.

This paper presents a novel approach to emergency re-
sponse applications, such as fire fighting, integrating a formal
semantic domain model into an event-based decision support
system, which supports reasoning on this model. The developed
model consists of several generic ontologies describing concepts
and properties which can be applied to diverse context-aware
applications. These are extended with emergency response specific
ontologies. Additionally, inference on the model performed by a
reasoning engine is dynamically synchronized with the rest of
the architectural components. This allows to automatically trigger
events based on predefined conditions. The proposed ontology and
developed reasoning methodology is validated on two scenarios,
i.e. (i) the construction of an emergency response incident and
corresponding scenario and (ii) monitoring of the state of a fire
fighter during an emergency response.

I. INTRODUCTION

Emergency responders, such as fire fighters, regularly face
large amounts of data generated by a diverse set of sensors
and devices. These need to be processed in a timely manner
in order to form astute decisions during a disaster. An emerging
trend [1] in such settings is the development of context-aware
decision support systems able to provide an accurate and
concise view of the situation at hand. Relevant information,
captured from various devices and sensors, should be pushed
pro-actively and presented in a context-aware way [2] in order
to support the situational awareness of the actors involved.

Current emergency response research focuses on decision
support systems [3], [4] and crisis simulation environments [5].
However, the underlying databases provide limited information
processing and reasoning. In our approach, semantic technolo-
gies are adopted, enabling the formal definition of the domain
concepts and their properties [6] in an emergency response
ontology. This supports intelligent reasoning on the available
data inferring valuable insights on the current context.

The reasoning framework proposed in this paper seamlessly
integrates a domain-specific semantic model into a decision
support system for emergency response by the fire department

in the context of the ASTUTE1 project. The novelty of the
described approach is twofold. First, the developed semantic
model is defined by means of several generic ontologies
which can be used to describe diverse context-aware appli-
cation domains. These are extended with emergency response
specific ontologies. Second, the overall architecture consists
of the seamless combination of a semantic reasoner and an
event-based decision support system. Incoming real-time data
from device and sensor measurements during an emergency
is updated into the semantic domain model. The reasoner
automatically derives new knowledge from this formal emer-
gency response definition. Based on the inferred context, the
event-based decision support system triggers alarms which are
forwarded to the right fire fighting units.

II. RELATED WORK

Ongoing development of emergency response applications
targets issues such as distributed communication between
mobile devices, simulation environments for training purposes,
decision support systems processing events from numerous
devices, sensors, social media, and formal domain modelling.

Raven [7] supports the use of smart phones for collabora-
tive disaster data collection and sharing through an exchange
of the database and corresponding schema. Its current interface
tracks lost and found people based on database records. Simi-
larly, SocEDA [8], [9] enables the exchange of social network
data between heterogeneous services through the distributed
interaction of several event processing engines. An emergency
response scenario during a nuclear disaster simulates virtual
events from the involved partners.

The suite of adaptive search methods applied by REScUE
[3] constructs a near-optimal plan consisting of an associ-
ated response team, including equipment and vehicles, using
information on the location and capabilities of the available
resources. In addition, emergency response agents at the scene
of the event report to the decision support system informa-
tion on casualties and urgent tasks. REScUE’s agent-based
simulation environment, STORMI, evaluates the response of
the emergency services to hypothetical major incidents. Sim-
ulation technology for crisis management and training is also

1ASTUTE is a large EU project (www.astute-project.eu) which focuses
on the development of pro-active decision support for data intensive en-
vironments. The approach is being verified in several different industrial
demonstrators e.g. avionics, emergency management and others.
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supported by the INDIGO FP7 EU project [5] which uses a
whiteboard to share information between the crisis centre and
the mobile devices in the field.

Incidone [4] provides incident info, loose dynamic action
lists, suggestions based on data, and composition of tasks to
coast guard watch officers in a centralized command centre.
All knowledge of the area is collected from contacts outside or
automated systems like the Automatic Identification System.
Additionally, plans in the form of hierarchical to-do lists are
used to coordinate the actions taken to resolve incidents.

WeKnowIT [10], [11] extracts information on emergency
response scenarios (e.g. flooding, fire) from user-generated
sources such as emergency response workers at the scene
or the general public observing. This information is geo-
located, either from image metadata or through a textual or
visual analysis, and displayed on a map. An emergency alert
service [12] informs social contacts and public authorities
about the emergency situation. Events and user interactions
are represented by means of the WeKnowIt core ontology,
CURIO 2, which defines resources for user generated content.

The FP7 EU project PRONTO [13], [14] focuses on event
recognition for intelligent resource management. Its semantic
data store has an ontology of events defining the status of
the system. These events are gathered from various kinds of
sources, such as hardware devices (e.g. GPS), user interactions
with the system, audio and video data streams. After aggrega-
tion, relevant information is filtered out for the users.

The ontology described in [15] presents a model for the or-
ganization of dynamic data for emergency response developed
within the RGI-239 project ’Geographical Data Infrastructure
for Disaster Management’ (GDI4DM). It applies ontologies
to resolve the semantic interoperability inherent in emergency
management. The model is derived from the organization
of emergency response in the Netherlands investigating the
information flow from processes performed by first responders
such as fire brigade, paramedics, police and municipality. It
captures the type of disaster, the involvement of response
sectors including their locations, and the consequences for
people, animals and infrastructure. The main objective is the
extraction and processing of the information from spatial data
sets and its distribution to the different response units.

The main contribution of the described approach in this
paper is the enrichment of an event-based decision support sys-
tem with semantic reasoning on a formal domain model. The
model consists of a combination of several generic ontologies
used to describe diverse context-aware application domains
extended with emergency response specific features. During
an emergency the model is updated with incoming real-time
data from devices and sensors. A reasoner automatically infers
new knowledge from the updated emergency response context
based on which the event-based system triggers events and
alarms forwarded to the right emergency response units.

III. INTEGRATED REASONING FRAMEWORK

This paper proposes a layered approach combining the
formal definition of a domain model using an ontology, se-
mantic reasoning on this model and the triggering of events

2http://socsem.open.ac.uk/ontologies/curio/

based on new, enriched information inferred from the ontology.
The advantage is the distinction between the reasoning on the
model from the application-specific actions.
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Fig. 1. Reasoning framework layers: illustration of the importance of the
semantic model within the application.

Figure 1 presents an overview of the architectural layers
of the ASTUTE framework. The first layer is the Semantic
model which contains the Emergency Response Ontology
described in Section IV. The layer above, the Context Engine,
encapsulates the translation of the semantic concepts into Java
Beans and uses Pellet [16] to reason on the model. These
objects are queried by the Decision Engine which utilizes
the Drools rule engine [17] in order to trigger events and
alarms intended for the emergency responders. The Java Bean
translation, in Section V, enables the transparent use of an
actual semantic model by Drools resulting in the triggering of
rules on the updated objects in a timely manner. Finally, the
Data Aggregator is responsible for capturing data from devices
and sensors and formatting it as defined by the Semantic model
using the encapsulation of the Context Engine.

The main purpose of the Context Engine is the semantic
reasoning on the domain model, which generates knowledge
flow into the system through inference from new data. The
Decision Engine captures application knowledge in the form
of rules in order to determine which information needs to be
sent to whom at what moment. It relies on the Context Engine
for delivering the interpreted raw context data.

IV. EMERGENCY RESPONSE ONTOLOGY

In order to develop intelligent emergency response appli-
cations which are able to interpret the meaning and adequately
filter the relevant information out of the huge amount of
heterogeneous data provided about an emergency situation, an
Emergency Response Ontology was developed.

A. Ontology Development Methodology

The Emergency Response Ontology was designed by ontol-
ogy engineers in close collaboration with project stakeholders
such as industry professionals who have a long track record of
developing ICT solutions for emergency management. These
companies have a broad knowledge of the data being ex-
changed during an emergency situation and have a direct
link to the domain experts working in the field, e.g., fire
fighters. This close collaboration ensures that the information
in the ontology accurately and completely reflects the daily
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Fig. 2. Graph-based visualization of the Low-Level Emergency Plan Ontology.

work practices of the domain experts who will be using
the applications built based on this semantic model. Several
methods were employed to involve these partners in each
step of the ontology life cycle without having to construct
the ontology themselves. The five widely accepted stages for
building an ontology [18] are Specification, Conceptualization,
Formalization, Implementation and Maintenance.

The aim of the Specification stage is to define the scope of
the ontology. In order to achieve this various scenarios were
developed detailing the use of the emergency response system.
These help develop a detailed and shared understanding of the
context and activities of the future system users.

In the second Conceptualization stage, a conceptual model
of the ontology is constructed. This consisted of the extraction
of the different concepts and properties of the emergency
response domain from the scenarios. Large amount of the
modelled knowledge is also applied within other context-
aware application domains, such as capturing data on de-
vices, sensors, people, companies, locations. Therefore, this
knowledge was modelled in separate ontologies, called High-
Level or generic ontologies, such that they can easily be
re-used for other applications. Low-Level ontologies extend
these High-Level ontologies with concepts and properties
which are specific for the emergency response domain. An
investigation of existing ontologies was also performed to
evaluate if these could be re-used and how they should be
integrated. In order to iteratively discuss and fine-tune the
ontology under development with the different stakeholders,
graph-based visualizations were constructed. An example of
such a graph is shown in Figure 2. The squares represent
concepts, the blue arrows depict the relations between them,
the dashed arrows represent subclass relationships and the
dotted arrows indicate instances of a certain concept.

The Formalization stage translates the conceptual model
into a formal model by adding axioms and rules that restrict
its possible interpretations, e.g., defining which competences a

certain role has or are needed to perform a task, which sensor
observations are valid. The properties of the relations, domain
and range, were discussed with the stakeholders by using the
graph-based visualizations. However, in order to define more
complex definitions, an Excel-sheet was used, which allows
stakeholders to informally express and discuss the restrictions
which are needed, by defining domain conditions, arguments,
effects and relations to other restrictions in a natural language.
This frees the stakeholders from learning the required formal
language constructs. The natural language descriptions are then
translated to formal axioms and SWRL rules [19] by the
ontology engineers in the Implementation stage.

During the Implementation stage, the conceptual graphs
and rules are translated into an ontology. The Protégé editor
[20] was used to develop the ontology in the Ontology Web
Language (OWL) [21] and express the rules on the concept
properties in the SWRL rule language. The ontology con-
sistency and classification was checked by the Pellet Rea-
soner [16]. The resulting ontology is discussed in the following
section.

The Maintenance stage consists of the continuous eval-
uation, update and correction of the ontology. This work
is ongoing within the ASTUTE project. The integrated rea-
soning framework is currently under development. Its aim
is to demonstrate the development of intelligent emergency
response applications supporting fire fighters during an emer-
gency situation on top of this ontology. As a proof of concept
an application is being developed which supports fire fighters
in a search and rescue situation, allowing them to rapidly
find and rescue victims while monitoring their own safety and
health. It also allows the commander to track the progress
and condition of his team. The development of the application
allows gaining significant insights into the completeness and
usability of the ontology. Moreover, stakeholders can experi-
ment, criticize, discuss and evaluate the application which will
give input on the correctness and applicability of the ontology.
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Fig. 3. Import schema of the Emergency Response Ontology.

B. The Resulting High-Level and Low-Level Emergency Re-
sponse Ontologies

Within ASTUTE 8 High-Level ontologies and 6 Low-Level
ontologies were developed. Figure 3 visualizes how they are
related to each other and which existing ontologies they are
based on or import.

General High-Level Ontology: Classes, properties and
axioms that are generic across all knowledge domains are
described by this upper ontology. An upper ontology, also
known as a top-level ontology or foundation ontology, is an
ontology which describes very general concepts that are the
same across all knowledge domains [22]. Common examples
are the SWRLTemporalOntology [23], WordNet [24], Cyc3

and the Suggested Upper Merged Ontology (SUMO) [25].
Upper ontologies have however received a lot of critique. It is
difficult to capture the concepts in such a way that they can eas-
ily be re-used across different domains without modification.
Specific domains often require small alterations to the concepts
defined in the upper ontologies. Sometimes the concepts are
too generic to be usefully re-used. A lot of the concepts
defined in the upper ontologies clash with concepts defined
in the ontologies we already wanted to import. However, it is
important to model time in the ontology, e.g., tasks that need
to be performed before a certain point in time, for logging
purposes or work processes that are adjusted according to the
time of day. Consequently, The General High-Level Ontology,
imports the SWRLTemporalOntology ontology and extends
it with additional concepts modelling the current temporal
context, e.g., season, shift or holidays.

Device Extension High-Level Ontology: This ontology
describes concepts and properties related to devices, such as
the device status and events from devices defining values
with their respective units. There exist a whole plethora of
ontologies to describe devices, sensors and sensor networks.
A comprehensive list can be found in Section 4 of the
W3C Semantic Sensor Network XG Final Report [26] of
the W3C Semantic Sensor Network Incubator group. For this
research, the Hydra ontology [27] was imported to define the
actual devices. The Device Extension High-Level Ontology
allows interpreting and attaching meaning to the data values
monitored by the sensors or devices using an observation

3http://www.cyc.com/

pattern. A data value monitored by a system is modelled as an
Observation. Rules added to the ontology allow detecting
specific phenomena in these observations, e.g., oxygen level is
zero. These phenomena are modeled as Symptom concepts.
Classification axioms allow reclassifying these symptoms as
Faults, e.g., oxygen in the room is too low. Each fault can
then again be reclassified as having a Solution.

Location High-Level Ontology: A formal description of
locations including type of buildings, rooms, floors, passages,
GPS coordinates and reference systems is provided by this
ontology. It is based on the Amigo [28] ontology.

Context High-Level Ontology: Herein additional context
information not captured by the Device Extension and Loca-
tion High-Level Ontologies is described, e.g., physical assets
such as vehicles, furniture and equipment. Moreover, this
ontology also defines relations, restrictions and properties that
relate the concepts from both ontologies, e.g., associating a
location with its temperature or oxygen level based on the
measurements of sensors in the neighbourhood of this location.

Person High-Level Ontology: It defines the profile in-
formation of people such as their contact information and
the organizations they work for. A Profile consists of a
Basic and a Risk Profile. The Basic profile models
the important administrative (birth date, sex), psychological
(easily stressed) and sociological (nationality and language)
information. This information is inputted into the system or
extracted from documents such as the personnel file. The
Risk profile is defined by classification axioms and rules. This
allows a reasoner to automatically obtain the Risk profile of a
person by reasoning on the information in the Basic profile.
The Person High-Level Ontology also defines relations which
allow associating a person with concepts from the previously
discussed ontologies, e.g., to indicate the location of the person
or which items and devices he/she owns. Finally, a person can
also have a status, e.g., free, busy, missing or stressed. Axioms
are defined automatically extracting this status based on the
rest of the information in the ontology.

Role & Competence High-Level Ontology: In order to
provide support to the people with the tasks they need to
perform during an emergency situation, it is important to define
their competences and roles. A lot of research has been done on
how roles should be represented in knowledge representation



models [29], [30]. In ontology engineering a distinction is
often made between Entities, i.e., things that are, from
Events, i.e., things that happen. It is not obvious how this
division admits Roles, i.e., things that are, but only in the
context of things that happen. Research has produced three
basic approaches for representing roles:

• A role can be represented as a label assigned to a
participant in an event [31]. This approach is simple,
but it fails to make the distinction between roles and
entities and makes it difficult to add characteristics to
roles.

• Roles are differentiated from entities, but both con-
cepts are then combined into one single hierarchy [32],
[33]. This combination can be done in two ways. The
roles can be subtypes of entities which is problematic
when entities of different types can play the same role.
The roles can also be super-types of entities which also
leads to modelling problems related to the dynamicity
of roles.

• A role is represented as an ”adjunct instance” of an
entity [29]. This is a distinct instance of a role class
that is coupled with the instance of an entity. The role
instance does not exist independent of that entity.

The latter approach was adapted in this project. In the Role
& Competence High-Level Ontology roles are types indepen-
dent of entities. They thus have two separate hierarchies. An
instance of a role is played by an instance of an entity. Thus,
every instance of a role exists along with an instance of an
entity. Our representation extends further on this approach
by also including competences. Each role is defined by its
competences through classification axioms. This allows writing
algorithms that find the most appropriate staff members to
fulfil a task based on the required competences. Roles and
competences can also have characteristics (properties) in our
representation, e.g., the department a person works on when
he/she has a certain role. Each person is associated with
competences and roles through five relationships:

• hasFunction: primary role of this person, i.e., the
role for which this person was primarily hired.

• hasRole: models all the roles this person can have,
e.g., the fire truck driver who is also a fire fighter.

• hasCurrentRole: role the person is currently ful-
filling within the emergency response setting. If this
relation is not instantiated, it is assumed that the
current role of the person is his or her function.

• hasDiplomaCompetence: extra competences this
person has acquired by following courses.

• hasExperienceCompetence: extra competences
this person has acquired through experience.

Task High-Level Ontology: The emergency response on-
tology requires the modelling of process workflows executed
during emergency situation such as fire fighting. OWL-S 4 is
an ontology for describing Semantic Web Services. Its process
model allows describing process workflows, how processes can

4http://www.w3.org/Submission/OWL-S/

be mapped on each other based on their inputs and outputs,
which conditions need to be fulfilled to execute the process
and which effects the execution of the process has on the
environment and the context. This way workflows can be
constructed that start from particular input and context and
reach a specified effect and result by combining various tasks.
The Task High-Level Ontology extends this OWL-S Process
ontology by introducing the Task concept, which is a subclass
of Process, divided into Planned and Unplanned tasks.
Each task has also an associated Status, e.g., Assigned,
Finished or Active, Priority, Location at which it
is preferably executed and Competences needed to execute
it. This Task concept is used to model the various emergency
response tasks along with the required competences. Consider,
for example, assigning the task of searching a victim in a fire.
Searching a victim is modelled as an Unplanned Task. For
each type of a task it can then be specified which competences
or roles are needed to handle it, e.g., search and rescue
operations can only be performed by fire fighters. For each
type of task, its preconditions (a person is missing), its input
(the location where the victim was last seen), its output (the
location of the missing person), and its effects (the commander
is alerted that the victim was found and notified of his/her
location), are modelled by using concepts from the OWL-S
Process ontology.

Medical High-Level Ontology: For the emergency re-
sponse domain a formal definition of medical knowledge is
required which allows monitoring the medical condition, e.g.,
heart rate or body temperature, of the various rescue workers.
A well-known eHealth ontology is the Galen Common Ref-
erence Model 5 which is developed as a clinical terminology.
Along with modelling clinical categories it contains sufficient
information on those categories allowing for their automatic
classification. The Galen Common Reference Model especially
avoids adding too many axioms to the ontology that con-
strain the possible interpretations of a concept, unless there
is an agreement about the constraint, e.g., an ulcer located
in the stomach is a stomach ulcer. As importing the whole
ontology would significantly slow down the reasoning, it was
decided to only import the concepts of the Galen Common
Reference Model which are needed in this project. These
concepts are preceded by the galen namespace prefix. This
way, the concepts and the ontology can be easily mapped
back to the original Galen Common Reference Model. The
Medical High-Level Ontology adds axioms and constraints to
this imported terminology that express relations between the
medical knowledge and concepts in the other ontologies. For
example, it defines the hasMedicalParameter property
which associates each person with his/her medical parameters.

Device, Context, Role & Competence and Task Emer-
gency Demonstrator (ED) Low-Level Ontologies: These on-
tologies extend the respective High-Level ontologies with
concepts, restrictions and relations specific for the emergency
response domain. For instance, these ontologies model specific
equipment (e.g. fire extinguishers), vehicles (e.g. fire trucks),
roles and their mapping on competences (e.g. fire fighter and its
competences such as extinguishing fire and performing search
and rescue missions), devices (e.g. fire alarm control panels)
and tasks (e.g. extinguishing fires).

5http://www.opengalen.org/index.html



Risk Assessment Low-Level Ontology: This ontology
models the various risks associated with particular locations or
physical assets, i.e., equipment and vehicles. For instance, it is
possible to model the presence of explosives within a particular
space. Each risk is also associated with the protective measures
which should be employed to mediate or diminish the risk. For
example, in case there are explosives in a certain space, the
fire wall should be protected and a safety distance should be
maintained. Finally, each risk is also associated with a level
indicating how severe the risk is within the current context.

Emergency Plan Low-Level Ontology: The most vital on-
tology is the Emergency Plan Low-Level Ontology, visualized
in Figure 2, which combines the concepts from the rest of
the ontologies in defining the specific emergency incident and
corresponding scenario. Therein, depending on the scenario,
e.g., search and rescue, the required team having specific roles
and competences is assigned.

V. AUTOMATIC JAVA BEANS GENERATION FROM
SEMANTIC CONCEPTS

The adoption of a semantic domain model usually requires
the configuration of a reasoner such as Pellet and the manual
encapsulation of the necessary concepts into Java classes in
order to update and query their properties in a more general
domain independent way. This manual work may be feasi-
ble for limited models but for larger use cases such as an
emergency dispatching scenario the amount of manual work
becomes difficult to maintain. Apart from the necessary testing,
one needs to manually update the Java classes each time the
ontology changes in order to keep the system synchronized
with the domain model.

We automated this process through the creation of
a Code Generator [34] that automatically generates
Java classes from semantic concepts translating their
properties into class methods. For example, the following
methods are automatically generated for the property
hasCommander(FireFighter, Commander) which
specifies that a FireFighter has a Commander:

public interface FireFighter extends Role {
/*
* Property http://localhost/ASTUTE.owl#hasCommander

*/

// Gets all values for the hasCommander property.
Collection<? extends Commander> getAllCommander();

// Gets the value for the hasCommander property.
Commander getCommander();

// Checks if it has a hasCommander property value.
boolean hasCommander();

// Adds a hasCommander property value.
void addCommander(Commander newCommander);

// Removes a hasCommander property value.
void removeCommander(Commander oldCommander);

// Sets a hasCommander property value.
void setCommander(Commander newCommander);
...

}

The result is the automatic translation of the seman-
tic domain concepts into Java Beans that are used by

Drools just like regular Beans. In order for Drools rules
to retrieve the specific commander name value, one should
query its data property value hasName and thus use:
FireFighter(commander.getName()). On the other
hand, as data properties specify value type definitions, it is pos-
sible to use them in the following way: Commander(name).

Consequently these objects are consumed by the rest of
the application just like normal objects with the exception
that the underlying model is updated together with the object
updates. Additionally, inference on the model performed by the
semantic reasoner in the Context Engine is automatically syn-
chronized with the Decision Engine resulting in the triggering
of events by Drools based on scenario specific conditions.

VI. ILLUSTRATIVE EXAMPLE TO AN EMERGENCY
RESPONSE APPLICATION

In order to validate the proposed ontology and developed
reasoning methodology this section describes two cases, i.e.
(i) the construction of an emergency response incident and
corresponding scenario and (ii) the monitoring of the state of
a fire fighter during an emergency response.

A. Initialization of an Emergency Incident

As mentioned in Section IV-B, Figure 2 presents the Emer-
gency Plan Low-Level Ontology, which specifies an emergency
incident and corresponding scenario through a fusion of the
rest of the ontologies. The particular scenario description,
e.g., search and rescue, enables the selection of the required
team having specific roles and competences. Following is a
description of how this assignment is accomplished.

As visualized by Figure 2 one is able to specify
an emergency Incident at a Location and assign a
Team and Roles to it. Additionally, it is possible to
link to it a Scenario describing the required assets
such as Equipment, Vehicles, Devices, Roles and
Competences to accomplish tasks. Based on this general
Incident definition one can supply the assigned Team with
the required assets.

However if the incident at hand is more specific such as a
search and rescue, it should be possible to link a predefined
search and rescue scenario to it which poses particular require-
ments. For example, the following ontology definition specifies
a restriction on a SearchAndRescueIncident bounding
it to a SearchAndRescueScenario:

class SearchAndRescueIncident
Superclasses: Incident

hasApplicableScenario
some SearchAndRescueScenario

This SearchAndRescueScenario is defined as re-
quiring specific competences such as EvacuateVictims
and SearchAndRescue as follows:

class SearchAndRescueScenario
Superclasses: Scenario

requiredCompetence some
(EvacuateVictims and SearchAndRescue)

Based on this specification one can select a qualified
team with roles supporting these competences. Figure 4



presents a partial description of the Role & Competence
Low-Level Ontology where fire fighter Roles are linked to
Competences. Using this information a matching Role
for the EvacuateVictims and SearchAndRescue
Competences is a ReconFireFighter.
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This is accomplished through the definition of the follow-
ing SWRL rule stating that if the Scenario requires these
Competences, then the Incident should dispose of the
specific Roles corresponding with such Competences:

IF
Incident hasApplicableScenario Scenario AND
Scenario requiredCompetence Competence AND
Role hasCompetence Competence

THEN
Incident hasAssignedRole Role

A similar role assignment is accomplished through an
alternative rule where a specific Incident has an assigned
Team whose participants have specific Roles:

IF
Incident hasAssignedTeam Team AND
Person hasCurrentRole Role AND
Team hasTeamParticipant Person

THEN
Incident hasAssignedRole Role

The information on the emergency incident and scenario
provides a description of the emergency situation, specifies the
available resources and supports tracking of the progress of the
emergency scenario. The description is further used to assign
Tasks requiring specific Competences to people disposing
of these Competences.

B. Tracking of a Firefighter’s State

In order to validate the proposed approach, a second
scenario is designed that captures the state of a person, namely
a fire fighter under stress walking through a building on
fire. It presents the description of a fire fighter who can
be a person having several properties such as a location,
activities, e.g., extinguishing fire, and medical measurements,
e.g., temperature, heart rate and oxygen level. Due to the
specification of several types of context, such as physical,
task and medical, one can define the criticality of a task or
the level of a medical measurement. For example, the activity
ExtinguishingFire that is performed by fire fighters is
defined as a Task with High Criticality as specified
by the necessary condition below:

class ExtinguishingFire
Superclasses: Task

hasCriticality value High

Using these definitions one can define SWRL rules infer-
ring the thresholds for high temperature or heart rate. The
following rule defines that a BodyTemperature above 38
degrees is a HighBodyTemperature:

IF
BodyTemperature greaterThan 38

THEN
BodyTemperature is a HighBodyTemperature

We could also specify personalized thresholds per per-
son where one can define a maximum heart rate spe-
cific for each person. The following rule defines a person
HeartRate higher that his personal defined maximum as
a HighHeartRate:

IF
Person hasMedicalParameter HeartRate_1 AND
Person hasMaxHeartRate HeartRate_2 AND
HeartRate_1 greaterThan (HeartRate_2 multiply 0.8)

THEN
HeartRate_1 is a HighHeartRate

The results from inferring these rules are combined
into additional rules. For example, we can define the fol-
lowing rule that expresses that a person who performs a
highly Critical Task while having HighHeartRate
and HighBodyTemperature and is located in a Room with
HighRoomTemperature is Stressed:

IF
Activity hasCriticality High AND
Person hasActivity Activity AND
Person hasBodyTemperature BodyTemperature AND
Person hasHeartRate HeartRate AND
HeartRate is a HighHeartRate AND
BodyTemperature is a HighBodyTemperature AND
Person hasLocation Room AND
Room hasRoomTemperature RoomTemperature AND
RoomTemperature is a HighRoomTemperature

THEN
Person isStressed true

These rules enable the tracking of a fire fighter’s state
during the fire fighting scenario. The environmental sensors
sending various measurements, such as temperature, location
and heart rate, register these values via the Data Aggregator
in the Context Engine. With each new update, the Context
Engine fires the rules in the Decision Engine. If the following
Drools rule is defined that alerts the commander that the fire
fighter is stressed, it will be triggered evaluating the condition
of the fire fighter.

rule "Firefighter is stressed"
no-loop
when
$p : Person(isStressed==true),
$f : Person.getCurrentRole()

then
$hmi.sendMessage($f.getCommander().getName(),
"Firefighter " + $f.getName() + " is stressed", "ALERT");

end

The moment the Context Engine receives a new update
inferring that the fire fighter is actually stressed because of



for instance an elevated heart rate, the Decision Engine fires
this rule and the commander is alerted of the state of his team
member.

VII. CONCLUSION

This paper presents a novel approach integrating a semantic
reasoning engine into an event-based system supporting the
use of a formal domain definition. An Emergency Response
ontology is divided into several application-independent on-
tologies, which are extended with emergency response specific
ontologies. Additionally, inference on the model performed by
the semantic reasoner is automatically synchronized with the
rest of the architectural components resulting in the triggering
of events based on scenario specific conditions.
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