411 research outputs found

    A tailored solver for bifurcation analysis of ocean-climate models

    Get PDF
    In this paper, we present a new linear system solver for use in a fully-implicit ocean model. The new solver allows to perform bifurcation analysis of relatively high-resolution primitive-equation ocean-climate models. It is based on a block-ILU approach and takes special advantage of the mathematical structure of the governing equations. In implicit models Jacobian matrices have to be constructed. Analytical construction is hard for complicated but more realistic representations of mixing. This is overcome by evaluating the Jacobian in part numerically. The performance of the new implicit ocean model is demonstrated using (i) a high-resolution model of the wind-forced double-gyre flow problem in a (relatively small) midlatitude spherical basin, and (ii) a medium-resolution model of thermohaline and wind-driven flows in an Atlantic size single-hemispheric basin.

    The Oceanographic Multipurpose Software Environment (OMUSE v1.0)

    Get PDF
    In this paper we present the Oceanographic Multipurpose Software Environment (OMUSE). OMUSE aims to provide a homogeneous environment for existing or newly developed numerical ocean simulation codes, simplifying their use and deployment. In this way, numerical experiments that combine ocean models representing different physics or spanning different ranges of physical scales can be easily designed. Rapid development of simulation models is made possible through the creation of simple high-level scripts. The low-level core of the abstraction in OMUSE is designed to deploy these simulations efficiently on heterogeneous high-performance computing resources. Cross-verification of simulation models with different codes and numerical methods is facilitated by the unified interface that OMUSE provides. Reproducibility in numerical experiments is fostered by allowing complex numerical experiments to be expressed in portable scripts that conform to a common OMUSE interface. Here, we present the design of OMUSE as well as the modules and model components currently included, which range from a simple conceptual quasi-geostrophic solver to the global circulation model POP (Parallel Ocean Program). The uniform access to the codes' simulation state and the extensive automation of data transfer and conversion operations aids the implementation of model couplings. We discuss the types of couplings that can be implemented using OMUSE. We also present example applications that demonstrate the straightforward model initialization and the concurrent use of data analysis tools on a running model. We give examples of multiscale and multiphysics simulations by embedding a regional ocean model into a global ocean model and by coupling a surface wave propagation model with a coastal circulation model

    Application of adaptive multilevel splitting to high-dimensional dynamical systems

    Get PDF
    Stochastic nonlinear dynamical systems can undergo rapid transitions relative to the change in their forcing, for example due to the occurrence of multiple equilibrium solutions for a specific interval of parameters. In this paper, we modify one of the methods developed to compute probabilities of such transitions, Trajectory-Adaptive Multilevel Sampling (TAMS), to be able to apply it to high-dimensional systems. The key innovation is a projected time-stepping approach, which leads to a strong reduction in computational costs, in particular memory usage. The performance of this new implementation of TAMS is studied through an example of the collapse of the Atlantic Ocean Circulation

    Energetics of multidecadal Atlantic Ocean variability

    Get PDF
    Oscillatory behavior of the Atlantic meridional overturning circulation (MOC) is thought to underlie Atlantic multidecadal climate variability. While the energy sources and sinks driving the mean MOC have received intense scrutiny over the last decade, the governing energetics of the modes of variability of the MOC have not been addressed to the same degree. This paper examines the energy conversion processes associated with this variability in an idealized North Atlantic Ocean model. In this model, the multidecadal variability arises through an instability associated with a so-called thermal Rossby mode, which involves westward propagation of temperature anomalies. Applying the available potential energy (APE) framework from stratified turbulence to the idealized ocean model simulations, the authors study the multidecadal variability from an energetics viewpoint. The analysis explains how the propagation of the temperature anomalies leads to changes in APE, which are subsequently converted into the kinetic energy changes associated with variations in the MOC. Thus, changes in the rate of generation of APE by surface buoyancy forcing provide the kinetic energy to sustain the multidecadal mode of variability

    Physics-based Machine Learning Approaches to Complex Systems and Climate Analysis

    Get PDF
    Komplexe Systeme wie das Klima der Erde bestehen aus vielen Komponenten, die durch eine komplizierte Kopplungsstruktur miteinander verbunden sind. Für die Analyse solcher Systeme erscheint es daher naheliegend, Methoden aus der Netzwerktheorie, der Theorie dynamischer Systeme und dem maschinellen Lernen zusammenzubringen. Durch die Kombination verschiedener Konzepte aus diesen Bereichen werden in dieser Arbeit drei neuartige Ansätze zur Untersuchung komplexer Systeme betrachtet. Im ersten Teil wird eine Methode zur Konstruktion komplexer Netzwerke vorgestellt, die in der Lage ist, Windpfade des südamerikanischen Monsunsystems zu identifizieren. Diese Analyse weist u.a. auf den Einfluss der Rossby-Wellenzüge auf das Monsunsystem hin. Dies wird weiter untersucht, indem gezeigt wird, dass der Niederschlag mit den Rossby-Wellen phasenkohärent ist. So zeigt der erste Teil dieser Arbeit, wie komplexe Netzwerke verwendet werden können, um räumlich-zeitliche Variabilitätsmuster zu identifizieren, die dann mit Methoden der nichtlinearen Dynamik weiter analysiert werden können. Die meisten komplexen Systeme weisen eine große Anzahl von möglichen asymptotischen Zuständen auf. Um solche Zustände zu beschreiben, wird im zweiten Teil die Monte Carlo Basin Bifurcation Analyse (MCBB), eine neuartige numerische Methode, vorgestellt. Angesiedelt zwischen der klassischen Analyse mit Ordnungsparametern und einer gründlicheren, detaillierteren Bifurkationsanalyse, kombiniert MCBB Zufallsstichproben mit Clustering, um die verschiedenen Zustände und ihre Einzugsgebiete zu identifizieren. Bei von Vorhersagen von komplexen Systemen ist es nicht immer einfach, wie Vorwissen in datengetriebenen Methoden integriert werden kann. Eine Möglichkeit hierzu ist die Verwendung von Neuronalen Partiellen Differentialgleichungen. Hier wird im letzten Teil der Arbeit gezeigt, wie hochdimensionale räumlich-zeitlich chaotische Systeme mit einem solchen Ansatz modelliert und vorhergesagt werden können.Complex systems such as the Earth's climate are comprised of many constituents that are interlinked through an intricate coupling structure. For the analysis of such systems it therefore seems natural to bring together methods from network theory, dynamical systems theory and machine learning. By combining different concepts from these fields three novel approaches for the study of complex systems are considered throughout this thesis. In the first part, a novel complex network construction method is introduced that is able to identify the most important wind paths of the South American Monsoon system. Aside from the importance of cross-equatorial flows, this analysis points to the impact Rossby Wave trains have both on the precipitation and low-level circulation. This connection is then further explored by showing that the precipitation is phase coherent to the Rossby Wave. As such, the first part of this thesis demonstrates how complex networks can be used to identify spatiotemporal variability patterns within large amounts of data, that are then further analysed with methods from nonlinear dynamics. Most complex systems exhibit a large number of possible asymptotic states. To investigate and track such states, Monte Carlo Basin Bifurcation analysis (MCBB), a novel numerical method is introduced in the second part. Situated between the classical analysis with macroscopic order parameters and a more thorough, detailed bifurcation analysis, MCBB combines random sampling with clustering methods to identify and characterise the different asymptotic states and their basins of attraction. Forecasts of complex system are the next logical step. When doing so, it is not always straightforward how prior knowledge in data-driven methods. One possibility to do is by using Neural Partial Differential Equations. Here, it is demonstrated how high-dimensional spatiotemporally chaotic systems can be modelled and predicted with such an approach in the last part of the thesis
    corecore