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Stochastic nonlinear dynamical systems can undergo rapid transitions relative to the 
change in their forcing, for example due to the occurrence of multiple equilibrium solutions 
for a specific interval of parameters. In this paper, we modify one of the methods 
developed to compute probabilities of such transitions, Trajectory-Adaptive Multilevel 
Sampling (TAMS), to be able to apply it to high-dimensional systems. The key innovation 
is a projected time-stepping approach, which leads to a strong reduction in computational 
costs, in particular memory usage. The performance of this new implementation of TAMS 
is studied through an example of the collapse of the Atlantic Ocean Circulation.

© 2020 Elsevier Inc. All rights reserved.

1. Introduction

The Atlantic Meridional Overturning Circulation (AMOC) is an important component of the climate system because of its 
associated meridional heat transport. It is well known that the AMOC is sensitive to surface freshwater flux perturbations 
[1]. Freshening of the surface waters in the Nordic and Labrador Seas diminishes the production of deepwater that feeds 
the deep southward branch of the AMOC. The weakening of the AMOC leads to reduced northward salt transport freshening 
the northern North Atlantic and amplifying the original freshwater perturbation. In a hierarchy of ocean models, transitions 
in AMOC flows are found due to the occurrence of multiple equilibria (see e.g. chapter 6 in [2]). However, it is currently 
unknown whether the present-day AMOC is in a multiple equilibrium regime, and if so, what the probability is that it will 
undergo a collapse within the next 100 or 1000 years [3].

Probabilities of rare events, and in particular of transitions between different equilibrium states of a certain stochastic 
system, are often very difficult to compute. In the framework of Large Deviation Theory, there are several results available 
[4]. When the deterministic system can be described in terms of a potential, the transition rate for stochastic transitions 
induced by white additive noise is given by the Eyring–Kramers formula [5,6]. Extensions of this formula for non-gradient 
systems have been found [7], and although these can be very useful for determining the location of possible transition paths 
[8], directly computing transition probabilities using such formulas for high-dimensional systems is presently not feasible. 
Furthermore, these results allow to compute only transition rates, i.e. the probability that a transition occurs in a unit 
time. A more interesting quantity is the probability that the system undergoes a transition within a certain time interval. 
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The connection between these two quantities is not straightforward, unless specific assumptions are made on the noise 
generating the transitions: for example, if the process can be assumed to be Poisson, then the probability of undergoing a 
transition within a certain time follows the cumulative distribution function of the exponential distribution with the rate 
parameter being the transition rate [9].

From a totally different perspective, one could think of computing transition probabilities with standard Monte Carlo 
methods. This can be done by computing a large number of trajectories, and then counting the number of observed tran-
sitions. This approach is, however, not suitable for high-dimensional systems, especially when the probabilities are small. 
Therefore, specialized methods, such as Genealogical Particle Analysis (GPA) [10–12], Adaptive Multilevel Splitting (AMS) 
[13–15], and Trajectory-Adaptive Multilevel Sampling (TAMS) [9] have been developed. The idea behind these methods is 
similar: the algorithms try to push trajectories in the direction of the transition to make sure transitions actually occur, 
also for smaller sample sizes, while still being able to compute the transition probability. Rare transitions in a barotropic 
β-plane model have been studied by means of AMS in [8]. Transitions in the two-dimensional barotropic quasi-geostrophic 
equations were also studied in [16,17], but in that case only the most likely transition path was determined by means 
of the minimum action method [18–21]. To our knowledge, actual transition probabilities have never been computed for 
high-dimensional problems on the scale of our target problem, which is a global ocean model with a resolution of at least 
2 degrees (∼ 1.4 · 106 degrees of freedom). In this paper, however, we only present and validate the methodology suitable 
for the target problem, but do not actually compute transition probabilities for this problem.

Methods for finding transition probabilities have two main limitations. The first is that they always require some form 
of time integration, which is very expensive for high-dimensional systems. This is especially the case when an implicit 
time-stepping method is used, since then in every time step a linear system has to be solved. The other is that for meth-
ods based on AMS, a large number of states at different time steps have to be stored in memory in order to keep the 
computational cost minimal. We therefore propose a projected time-stepping method, for which in every time step, only a 
small projected linear system has to be solved, and for which only the projected states have to be stored, which are much 
smaller dimensional than the original states. The vectors that are used for the projection are the empirical orthogonal func-
tions (EOFs) that are commonly used often easily computed for many geophysical models. The most dominant EOFs can be 
found by computing the eigenvectors belonging to the largest eigenvalues of the covariance matrices at both stable steady 
states. These vectors can be obtained from basis vectors of the low-rank solution of a generalized Lyapunov equation [22]. 
A theoretical background is given in [23].

The projected time-stepping method is related to the Karhunen–Loève transform in the context of stochastic processes 
[24] or the proper orthogonal decomposition in the context of fluid dynamics [25,26]. The difference is that we do not use 
an ensemble, but instead use both stable steady states and covariance matrices at those steady states to directly compute 
the basis vectors.

Model order reduction techniques such as the projection method described above have been applied in many fields when 
studying transitions [27–32], but to our knowledge not with the multilevel splitting methods that we need to compute 
transition rates in non-gradient systems. Note that there are many other available model reduction techniques that could be 
used with the methodology described in this paper such as temporal EOFs [29] and machine learning [32].

In this paper, TAMS, its optimization and the projected time-stepping are described in section 2. This is followed by 
section 3 where we apply it to a spatially two-dimensional model of the AMOC, governed by a set of stochastic partial 
differential equations. Summary and discussion are provided in section 4.

2. Methodology

Consider a system of stochastic differential algebraic equations (SDAEs) of the form

M(p)dXt = F (Xt;p)dt + g(Xt;p)dWt (1)

where p ∈Rnp indicates a vector of parameters, M ∈Rn×n is usually referred to as the mass matrix, Xt ∈Rn , F :Rn →Rn , 
g ∈ Rn×nw and Wt ∈ Rnw is a vector of nw independent standard Brownian motions [33]. Assume that the corresponding 
deterministic system

M(p)
dx

dt
= F (x;p) (2)

has two stable steady states x̄A and x̄B for fixed values of parameters p and define two sets, A and B , which respectively 
contain x̄A and x̄B . Our starting point will be the state x̄A . Once we perturb it with noise, the state will wander around the 
equilibrium, with a motion depending on the characteristics of the noise. If the perturbation is strong enough, the system 
may undergo a transition and end up in the other equilibrium state x̄B . We would like to compute the probability that such 
a transition occurs within a certain interval of time.

We compute bifurcation diagrams for (2) using the pseudo-arclength continuation method [34], in which branches of 
steady states (x(s), p(s)) are parameterized by an arclength parameter s and Newton’s method is used on an augmented 
system to converge onto the steady states. Pseudo-arclength continuation has the advantage that it can also compute the 
unstable steady state x̄C that is located between x̄A and x̄B .
2
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2.1. Trajectory-adaptive multilevel sampling

The idea behind the algorithm is based on the fact that, once the trajectories leave A, there are more trajectories that 
come back to A than there are ones that reach B . A method that makes use of this is called the Adaptive Multilevel Splitting 
method (AMS) [13,14]. It was inspired by multilevel splitting methods which date back to [35] and [36]. The multilevel 
splitting methods are all based on the same idea of discarding trajectories that do not reach B and splitting (or branching) 
trajectories that are closer to B . This makes it so that the probability that a trajectory reaches B keeps increasing, which is 
why this method is more efficient than a naive method (such as Monte Carlo).

How close a vector x is to B is defined by a so-called reaction coordinate, or score function, which is a smooth one-
dimensional function

φ : Rn → R. (3)

In this paper, we assume that the reaction coordinate should satisfy

|∇φ(x)| �= 0, ∀x ∈Rn\(A ∪ B), (4a)

A ⊂ {x ∈Rn : φ(x) < zmin}, (4b)

B ⊂ {x ∈Rn : φ(x) > zmax}, (4c)

where zmin < zmax are two given real numbers. These properties were slightly adapted from [37]. For multi-dimensional 
problems, we propose some additional properties to make sure the method actually converges towards B , and not some-
where completely different which has the same value of φ. These properties are

{x ∈Rn : φ(x) = inf{φ(y) : y ∈Rn}} ⊂ A, (5a)

{x ∈Rn : φ(x) = sup{φ(y) : y ∈Rn}} ⊂ B. (5b)

Since the gradient ∇φ is not allowed to be zero outside of A and B , this means that the reaction coordinate is always 
increasing towards B and decreasing towards A.

The efficiency of multilevel splitting methods is based on the choice of the reaction coordinate. With α indicating the 
transition probability, N the number of trajectories and μα , σα the sample mean and sample variance of the estimator of 
α, the relative error εα = σα/μα of standard Monte Carlo methods converges with O(

√
1/(αN)) [38], whereas multilevel 

splitting methods show behavior between O(
√

log (1/α)/N) (optimal) and O(
√

1/(αN)) (worst case) [39,9]. Choosing a 
better reaction coordinate means that we get closer to the optimal convergence behavior. The optimal behavior, however, is 
only attained when the optimal reaction coordinate, which is also referred to as the committor, is used, in which case the 
proportionality constant is equal to one [14]. The committor can be obtained by solving a backward Fokker–Planck equation, 
but in practice this can never be done for high-dimensional systems [40].

In this paper, we define our reaction coordinate to be

φ(x) = η − ηe−γ d2
A + (1 − η)e−γ d2

B , (6)

where dA = ‖x − x̄A‖2/‖x̄A − x̄B‖2 is the normalized distance between x and x̄A , and dB = ‖x − x̄B‖2/‖x̄A − x̄B‖2 is the 
normalized distance between x and x̄B and γ is a real positive constant which we choose to be 8. To give equal weight to 
both stable steady states, a good choice for η would be 0.5. When the unstable state x̄C associated with the saddle-node 
bifurcation is known, however, a good choice would be η = ‖x̄C − x̄A‖2/‖x̄B − x̄A‖2. This is the normalized distance between 
the unstable steady state x̄C and the stable steady state x̄A . Using this value of η makes sure that more weight is given to 
the stable steady state farthest away from the unstable steady state, meaning that a trajectory is less likely to keep circling 
around it.

AMS can be used to first compute the mean first passage time. The transition probability can then be obtained from the 
mean first passage time under the assumptions that the transitions are a Poisson process and that they are instantaneous [9].

Trajectory-Adaptive Multilevel Sampling (TAMS) [9] is a slightly altered version of AMS, in which, instead of first comput-
ing the mean first passage time, the transition probability is computed directly when given a maximum time Tmax, without 
requiring any of the aforementioned assumptions [41]. In TAMS, there is an optional maximum number of iterations kmax
that can be set, which allows us to stop even before all trajectories have reached B . We now explain step by step how to 
compute the transition probability using TAMS.

1. First generate N independent trajectories (x)(1), . . . , (x)(N) with time step 	t that start in A until t = Tmax is reached, 
or the trajectory ends up in B . Here (x)(i) = (x(i)

0 , x(i)
1 , . . . , x(i)

Nt
) is a trajectory of length Nt = Tmax/	t .

2. Each trajectory (x)(i) , i = 1, . . . , N , has a certain maximum value of the reaction coordinate (or maximum distance from 
A), which we define to be Q i . Set k = 1, w0 = 1.

3. Take L = { j : Q j = inf{Q i : i ∈ {1, . . . , N}}}, which are the indices for which the maximum value of the reaction 
coordinate is minimal, and take 
k to be the number of elements in L. Since the trajectories {(x)( j) : j ∈ L} have the 
smallest value of Q i , all other trajectories have some j for which φ(x j) ≥ Q l for all l ∈ L.
3
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Fig. 1. Example run of TAMS with N = 3 applied to a two-dimensional double well potential, for which we take F (x) = −∇V (x) with V (x, y) = 1
4 x4 − 1

2 x2 +
y2 and g(x) = 0.4. The second trajectory (purple) has the lowest maximum value of the reaction coordinate Q 2 after the first iteration. This trajectory is 
then branched from a random other trajectory, in this case the first trajectory (blue). The new trajectory (green) has a new maximum value of the reaction 
coordinate Q̃ 2, which is larger than Q 2. (For interpretation of the colors in the figure(s), the reader is referred to the web version of this article.)

4. Set wk =
(

1 − 
k

N

)
wk−1. For all l ∈ L, repeat steps 5-7.

5. Select a trajectory (x)(r) uniformly at random with r from {1, . . . , N}\L, and set (x̃)(l) = (x(r)
0 , . . . , x(r)

jmin
), where jmin is 

the smallest value for which φ(x(r)
jmin

) ≥ Q l .

6. Generate the rest of the trajectory starting from x(r)
jmin

until again you reach either t = Tmax or B . This trajectory has a 
new maximum value of the reaction coordinate Q̃ l , which is always greater than or equal to Q l .

7. Set (x)(l) = (x̃)(l) and Q l = Q̃ l .
8. Repeat steps 3-7 with k = k + 1 until Q i ≥ zmax, ∀ i = 1, . . . , N or k = kmax.

An illustration of the workings of TAMS is given in Fig. 1.
The weights wk , computed in each step, represent the probability of a trajectory reaching iteration k + 1. For instance, 

consider the case in which we start with 100 trajectories, and we have 2 trajectories for which the maximum value of the 
reaction coordinate is minimal. Since these two trajectories are eliminated, the probability of a trajectory reaching iteration 
2 is 1 − 2/100 = 98/100. We repeat this process, multiplying the probabilities that we find in every step. This gives us an 
unbiased estimator of the transition probability

α̂N = NB w K

N
= NB

N

K∏
k=0

(
1 − 
k

N

)
, (7)

where K is the number of iterations it took for all trajectories to converge, and NB is the number of trajectories that reached 
B [9].

2.2. Optimizations

Say we have a problem of dimension n = 104 with a time step 	t = 10−2, a maximum time T = 103, and N = 103

trajectories, which is not at all unreasonable for the problems that we want to solve. In this case we would need at least 
7.28 TB of memory to store all of the states that we compute in double precision, which is a very large amount of memory. 
Fortunately, some simple optimizations exist to help with this.

First, it is important to observe that the only place where we actually use a state is when we branch a trajectory. Other 
than in this place, we only use the times to compute the quantities that we need. This means that we can discard any state 
x for which φ(x) < Q l , since these will never be used for branching. Discarding these states can be done for instance every 
time a trajectory is branched, every so many iterations, or even in every TAMS iteration.

Secondly, since we only use the first x for which φ(x) ≥ Q l , we only have to store {x j ∈ (x) : φ(x j) > sup{φ(x1), . . . ,
φ(x j−1)}}, where (x) denotes a full trajectory. This means that if we iteratively determine the value of Q , we only store 
a state x if φ(x) > Q . In addition, one could also limit the number of states that we store by only storing one state per 
interval of φ. So for instance if zmin = 0.1, zmax = 0.9 and we only store a state with intervals of 0.005, at most 160 states 
would be stored.

Alternatively, one can implement a checkpointing strategy, where only a small subset of the states is stored, but all seeds 
of the random number generator, along with the corresponding values of φ(x) are stored. In that way, any state that is 
required for the branching process can be recomputed without actually storing it in memory. In practice it is common to 
store the state that is being branched from, meaning that only one state per trajectory has to be stored. Of course this 
comes at the cost of having to recompute x jmin , starting from the checkpoint, in every iteration of TAMS. The storage in 
memory can be compressed even further by retaining only one checkpoint per group of trajectories that have a common 
ancestor, again at a slightly higher computational cost.

Optimizations can also be done in terms of parallelization. Since all trajectories in the first step are computed indepen-
dently, parallelization of the first step is trivial. Later steps, however, are more difficult to parallelize due to the branching 
process. An example of a parallelized AMS method is given in [14].
4
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2.3. Accuracy of the method

Generally, one realization of the algorithm is not enough to get an accurate answer. Also, from just one realization, we 
can not tell how accurate the answer actually is. Therefore, one computes M realizations of the algorithm, and uses those to 
compute both a more accurate answer, and an estimate of the error. From this we get a sample of M probability estimates 
α̂N , which we can use to compute the sample mean

μα = 1

M

M∑
m=1

α̂N,m (8)

and the sample variance

σ 2
α = 1

M − 1

M∑
m=1

(
α̂N,m − μα

)2
. (9)

An estimate of the relative error is given by

εα = σα

μα
. (10)

We noted before that the relative error shows behavior between O(
√

log (1/α)/N) (optimal) and O(
√

1/(αN)) (worst case).
It is known that when the committor is used as a reaction coordinate, the variance on the estimation of α tends to √| logα|/√N for large N [13,14]. This means that we can compute a compensated variance

σ0 = σα

√
N

μα

√| logμα | (11)

which can also be seen as the relative error divided by its expected optimal behavior. Since behavior is optimal when the 
committor is used, in that case σ0 would be equal to 1. This quantity can be used as an indicator of the quality of the 
reaction coordinate.

2.4. Projected time-stepping in TAMS

In AMS and TAMS, but also in GPA, one is free to choose any stochastic time stepping method. One such method is the 
stochastic theta method with θ �= 0 [42], which, although convergence of the error of the rare event algorithm generally 
goes with 

√
	t , may be of benefit when large time steps are used [14]. In case θ �= 0, multiple linear systems have to be 

solved in every time step. Solving these linear systems is usually the computationally most expensive part of TAMS, even if 
the linear system is sparse, and an iterative solver with a good preconditioner is used.

At time step j + 1 of the stochastic theta method performed on (1) with fixed p, we take

F̂ (x) = Mx j − Mx + (1 − θ)	t F (x j) + θ	t F (x) + g(x j) 	W j = 0 (12)

with Jacobian matrix

Ĵ (x) = θ	t J (x) − M, (13)

where J is the Jacobian matrix of F and M is the mass matrix. Newton’s method for one implicit time step would normally 
look like this

1: y(0) = x j
2: for k = 1, 2, . . . until convergence do
3: solve Ĵ (y(k−1))	y(k) = − F̂ (y(k−1))

4: y(k) = y(k−1) + 	y(k)

5: x j+1 = y(k)

A small potential optimization that can be made is computing Ĵ (x j) beforehand, and using this instead of Ĵ (y(k−1))

(the chord method). This will make it such that Newton’s method does not converge quadratically, but saves the time of 
computing the Jacobian matrix multiple times.

Instead of solving with this large sparse matrix Ĵ (y(k−1)) in every Newton iteration, we instead propose to solve with a 
smaller matrix obtained from a Galerkin type projection V T Ĵ (x j)V , where V consists of an orthogonal basis of the most 
5
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important directions that are used by the stochastic perturbation. These vectors are given by the empirical orthogonal 
functions (EOFs), or more precisely by the eigenvectors belonging to the largest eigenvalues of the covariance matrix. After 
linearization around the steady state x̄A , the covariance matrix C A may be obtained by solving a generalized Lyapunov 
equation of the form

J (x̄A)C A MT + MC A J (x̄A)T + B A BT
A = 0, (14)

where B A ∈ Rn×nw is the matrix describing the noise [33]. Instead of computing the full covariance matrix, a low-rank 
approximation of the form C A ≈ V A Y A V T

A , which only contains the eigenvectors belonging to the largest eigenvalues, may 
be computed instead [22]. Here V A ∈Rn×nA and Y A ∈RnA×nA with nA � n. The cost of computing such a low-rank approx-
imation of the covariance matrix is negligible compared to the cost of computing transition probabilities.

We can now compute an orthogonal basis V of the form

V = orth ([x̄A, V A, B A, x̄B , V B , B B ]), (15)

where x̄A and x̄B are the two stable steady states, V A is the basis of the low-rank Lyapunov solution at x̄A , and V B is 
the basis of the low-rank Lyapunov solution at x̄B , and B A and B B are the noise matrices at x̄A and x̄B . The basis may be 
expanded further with information from around the saddle-node bifurcation if available. Note that we can not compute V C
in the same way as V A and V B because the steady state x̄C is unstable.

We can now replace the Newton iteration with

1: y(0) = V T x j

2: A = V T Ĵ (x j)V
3: for k = 1, 2, . . . until convergence do
4: solve A	y(k) = −V T F̂ (V y(k−1))

5: y(k) = y(k−1) + 	y(k)

6: x j+1 = V y(k)

If we apply this in TAMS, we see that between two consecutive time steps, we always apply V T V y(k) . Now since V
is orthogonal, this means that we might as well apply TAMS itself to y(k) directly. Doing this actually solves the most 
significant problem we observe when applying TAMS to high-dimensional systems, which is the storage of the trajectories, 
since we now only have to store the trajectories restricted to the space spanned by V . Say we have a system of size 10000 
and V consisting of 100 vectors, which is a realistic scenario, then this reduces the required storage by a factor 100.

3. Application to AMOC model

In order to study the sensitivity of the AMOC to freshwater anomalies, we use the spatially quasi two-dimensional 
model as described in [43]. In the model, there are two active tracers: temperature T and salinity S , which are related to 
the density ρ by a linear equation of state

ρ = ρ0 (1 − αT (T − T0) + αS (S − S0)) , (16)

where αT and αS are the thermal expansion and haline contraction coefficients, respectively, and ρ0, T0, and S0 are refer-
ence quantities.

3.1. Model formulation

In order to eliminate longitudinal dependence from the problem, we consider a purely buoyancy-driven flow on a non-
rotating Earth [43]. We furthermore assume that inertia can be neglected in the meridional momentum equation. The 
mixing of momentum and tracers due to eddies is parameterized by simple anisotropic diffusion. In this case, the zonal 
velocity as well as the longitudinal derivatives are zero and the equations for the meridional velocity v , vertical velocity w , 
pressure p, and the tracers T and S are given by

− 1

ρ0r0

∂ p

∂θ
+ AV

∂2 v

∂z2
+ AH

r2
0

(
1

cos θ

∂

∂θ

(
cos θ

∂v

∂θ

)
+

(
1 − tan2 θ

)
v

)
= 0, (17a)

− 1

ρ0

∂ p

∂z
+ g (αT T − αS S) = 0, (17b)

1 ∂(v cos θ) + ∂ w = 0, (17c)

r0 cos θ ∂θ ∂z

6
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Table 1
Fixed model parameters of the two-dimensional ocean model, following [44].

D = 4.0 · 103 m Hm = 2.5 · 102 m
r0 = 6.371 · 106 m T0 = 15.0 ◦C
g = 9.8 m s−2 S0 = 35.0 psu

AH = 2.2 · 1012 m2 s−1 αT = 1.0 · 10−4 K−1

AV = 1.0 · 10−3 m2 s−1 αS = 7.6 · 10−4 psu−1

K H = 1.0 · 103 m2 s−1 ρ0 = 1.0 · 103 kg m−3

K V = 1.0 · 10−4 m2 s−1 τ = 75.0 days

∂T

∂t
+ v

r0

∂T

∂θ
+ w

∂T

∂z
= K H

r2
0 cos θ

∂

∂θ

(
cos θ

∂T

∂θ

)
+ K V

∂2T

∂z2
+ CA(T ), (17d)

∂ S

∂t
+ v

r0

∂ S

∂θ
+ w

∂ S

∂z
= K H

r2
0 cos θ

∂

∂θ

(
cos θ

∂ S

∂θ

)
+ K V

∂2 S

∂z2
+ CA(S). (17e)

Here t is time, θ latitude, z the vertical coordinate, r0 the radius of Earth, g the acceleration due to gravity, AH (AV ) the 
horizontal (vertical) eddy viscosity, and K H (K V ) the horizontal (vertical) eddy diffusivity. The terms with CA represent 
convective adjustment contributions.

The equations are solved on an equatorially symmetric, flat-bottomed domain. The basin is bounded by latitudes θ = −θN

and θ = θN = 60◦ and has depth D . Free-slip conditions apply at the lateral walls and at the bottom. Rigid lid conditions are 
assumed at the surface and atmospheric pressure is neglected. The wind stress is zero everywhere, and “mixed” boundary 
conditions apply for temperature and salinity,

K V
∂T

∂z
= Hm

τ

(
T̄ (θ) − T

)
, (18a)

K V
∂ S

∂z
= S0 Fs(θ). (18b)

This formulation implies that temperatures in the upper model layer (of depth Hm) are relaxed to a prescribed temperature 
profile T̄ at a rate τ−1, while salinity is forced by a net freshwater flux Fs , which is converted to an equivalent virtual 
salinity flux by multiplication with S0. The specification of the CA terms is given in [43]. The numerical values of the fixed 
model parameters are summarized in Table 1.

3.2. Bifurcation diagram

For the deterministic model, we take the surface forcing similar to what was used in [44] as

T̄ (θ) = 10.0 cos (πθ/θN) , (19a)

Fs(θ) = F̄ s(θ) = μF0
cos(πθ/θN)

cos(θ)
+ β F0 F p(θ), (19b)

where μ = 0.3 is the strength of the mean freshwater forcing, F0 = 0.1 m yr−1 is a reference freshwater flux, β is the 
strength of an anomalous freshwater flux pattern F p , which is −1 in the area [45◦N, 60◦N], and 0 elsewhere.

The equations are a subset of those of a more general ocean model [45], where also the longitude dimension is taken 
into account. These more general equations are discretized on a longitude-latitude-depth equidistant nx ×ny ×nz grid using 
a second-order conservative central difference scheme. An integral condition expressing the overall conservation of salt is 
also imposed, as the salinity equation is only determined up to an additive constant. The total number of degrees of freedom 
is n = 6nxnynz , as there are six unknowns per point. The standard spatial resolution used is nx = 4, ny = 32, nz = 16 and the 
solutions of the [45] model are uniform in the zonal direction, with the zonal velocity u = 0 and hence satisfy (17a).

The bifurcation diagram of the deterministic model for parameters as in Table 1 was already calculated in [44] and is 
shown in Fig. 2(a). On the y-axis, the sum of the maximum (�+) and minimum (�−) values of the meridional overturning 
streamfunction � is plotted, where � is defined through

∂�

∂z
= v cos θ, − 1

r0 cos θ

∂�

∂θ
= w. (20)

For the calculation of the volume transports (in Sv, where 1 Sv = 106 m3 s−1), the basin is assumed to have a zonal width 
of 64◦ . The value of �+ + �− is zero when the AMOC is symmetric with respect to the equator.

We are interested in transitions from the top branch to the bottom branch of the bifurcation diagram. We will investigate 
transitions at parameter values between βa = 0.190 and βb = 0.220. The stochastic transitions will be from points between 
a and b to points between a′ and b′ with the same parameter values. The pattern of the asymmetric meridional overturning 
streamfunction at location a with sinking in the northern part of the basin, which represents the current state of the AMOC 
[2], is shown in Fig. 2(b), as well as the meridional overturning streamfunction at location a′ with sinking in the southern 
part of the basin. The saddle-node bifurcations are located at β = 0.2320 and β = −0.3371.
7
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Fig. 2. (a) Bifurcation diagram of the deterministic 2D AMOC model, with the forcing as in (19). (b) Meridional Overturning Streamfunction patterns at a, 
which represents the current state of the AMOC and a′ , in which the circulation is reversed, respectively, with contours in Sv.

3.3. Stochastic freshwater forcing

For the stochastic model, the freshwater forcing is chosen as

Fs(θ, t) = (1 + σζ(θ, t)) μF0
cos(πθ/θn)

cos(θ)
+ β F p(θ), (21)

where ζ(θ, t) represents zero-mean white noise with a unit standard deviation, i.e., with E[ζ(θ, t)] = 0, E[ζ(θ, t)ζ(θ, s)] =
δ(θ, t − s), E[ζ(θ, t)ζ(η, t)] = δ(θ − η, t) and δ(θ, t) being the Dirac delta function. The constant σ is the standard deviation 
of the noise which we set to σ = 0.1. The noise is additive and is only active in the freshwater component, only present 
at the surface, meridionally uncorrelated, and has magnitude σ of 10% of the background freshwater forcing amplitude at 
each latitude θ (see (21)).

3.4. Reaction coordinate

Since the pressure p is determined up to a constant, and therefore does not have a unique solution, computing the 
reaction coordinate by using the norm of the state vector as was done in (6) is not possible. We instead want to define the 
reaction coordinate in such a way that the distance between the meridional streamfunctions goes to zero, and therefore we 
decided to define a norm on the v-part of the state. This gives us a reaction coordinate of the form

φ(x) = η − ηe−8d2
A + (1 − η)e−8d2

B , (22)

where, if ‖ ·‖v denotes the 2-norm on only the v-velocities, dA = ‖x− x̄A‖v/‖x̄A − x̄B‖v is the normalized difference between 
x and x̄A , and dB = ‖x− x̄B‖v/‖x̄A − x̄B‖v is the normalized difference between x and x̄B , and η = ‖x̄C − x̄A‖v/‖x̄B − x̄A‖v is 
the normalized difference between the unstable steady state x̄C and the stable steady state x̄A . We assume that a trajectory 
has reached B if φ(x) > zmax = 0.75, since at that point circulation has reversed and we are closer to x̄B as we are to the 
unstable steady state x̄C , as can be seen in Fig. 2(a).

3.5. Results

In this section we report on the transition probabilities and compare the results from TAMS with the results from its 
projected variant. All optimizations as discussed in Section 2.2 were applied, with exception of the checkpointing strategy 
and the parallel computation of trajectories. The ocean model itself, however, does use a parallel domain decomposition. 
Computations are performed on Peregrine, the HPC cluster of the University of Groningen. Peregrine has nodes with 2 Intel 
Xeon E5 2680v3 CPUs (24 cores at 2.5 GHz) and each node has 128 GB of memory. For every instance of TAMS, four 
cores were used to allow for efficient parallelization. Due to the problem size and the way the convective adjustment is 
implemented, it did not make sense to use more than four cores per instance.

For our numerical experiments, we investigated the probability of a transition to a reversed circulation within 2000 years 
and ran TAMS 100 times with 300 trajectories. The stochastic theta method (12) was used with theta equals 0.5 and a time 
step of 2 years. Note that a (semi-)implicit method is required due to both the algebraic constraints and the large time step. 
The transition probability, relative error and compensated variance are shown in Fig. 3.

We first observe from Fig. 3(a) that the transition probability decreases rapidly when moving away from the bifurcation, 
and that the relative error increases as the transition probability gets smaller. We also see in Fig. 3(b), however, that the 
8
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Fig. 3. Transition probability, relative error and compensated variance on the interval [βa, βb] for Tmax = 2000 yr with the shaded area representing the 
standard deviation. To obtain the results we used 100 TAMS experiments with 300 trajectories each.

Fig. 4. Transition probability at different values of β and with increasing size of the basis V . The shaded area represents the standard deviation and 
Tmax = 2000 yr. To obtain the results we used 100 TAMS experiments with 300 trajectories each.

relative error shows much better behavior than the 
√

1/α behavior we would get from a standard Monte Carlo method, as 
expected. From Fig. 3(c) we can conclude that the reaction coordinate can be further improved, since it gets further away 
from 1 as the transition probability decreases. The value of the compensated variance remains close to 1, however, in the 
region of interest where the probability of a transition within the next 2000 years is not negligible.

To determine how well the projected method performs, we look at accuracy at three different values of β: 0.190, 0.205
and 0.220, and with increasing sizes of the basis V . The basis is computed by the approximate solution of the generalized 
Lyapunov equation (14) where the relative residual ‖R‖2/‖B BT ‖2 with R = J (x̄)V Y V T MT + M V Y V T J (x̄)T + B BT is de-
creased to obtain a larger basis. The results are shown in Fig. 4. We see that for all values of β , the results are very close to 
the results obtained with the unprojected method when using a basis of rank 400 or larger, at the cost of a slightly larger 
error. This is remarkable, because it means that even for small probabilities (i.e. β = 0.190), we do not need a larger basis.

A common a priori method of determining how large the basis should be is by looking at the leading eigenvalues of the 
corresponding matrices. In our case these are the covariance matrices at two branches. As can be seen in Fig. 5, we never 
observe a sudden decrease of the eigenvalues, which would indicate that a sufficient amount has been determined. Indeed, 
we found that we are able to use the same basis size for all probabilities that we compute. This motivates to investigate 
whether, for a larger application, we would be able to determine the proper basis size once by looking at a figure such as 
Fig. 4(c), and then use that basis size for all further experiments. However, this is outside the scope of this paper. Note that 
computing Fig. 4(c) is still relatively cheap when the probability is large.

In Table 2 we show the computational cost of the unprojected method compared to the projected method for different 
ranks of the basis V . The values we show were determined at β = 0.220, but these are actually independent of the value 
of β . Here we observe that for a basis of rank 400, which we deemed sufficient, the projected method is twice as fast and 
uses 97% less memory.

4. Summary and discussion

The Adaptive Multilevel Splitting (AMS) method and its Trajectory variant (TAMS) are very promising numerical tech-
niques to study rare events and in particular transitions between different equilibria of stochastic dynamical systems. 
9



S. Baars, D. Castellana, F.W. Wubs et al. Journal of Computational Physics 424 (2021) 109876
Fig. 5. Leading eigenvalues of the covariance matrix at the top (solid) and bottom (dashed) branch as determined by the Lyapunov solver RAILS [22] with a 
relative residual tolerance of 10−10.

Table 2
Computational time per time step and memory cost per 
state vector of the unprojected method (first row) and the 
projected method at increasing sizes of V .

rank(V ) t(s) Mem (kB)

− 0.32 96.00 kB

252 0.12 1.97 kB
297 0.13 2.32 kB
351 0.14 2.74 kB
405 0.17 3.16 kB
466 0.19 3.64 kB
519 0.22 4.05 kB
559 0.24 4.37 kB
608 0.26 4.75 kB

However, in their original form they cannot be applied to high-dimensional dynamical systems, i.e. as derived from three-
dimensional ocean models. Therefore, we implemented a projected time-stepping method, which can be applied to any of 
the methods in the Generalized Adaptive Multilevel Splitting framework [46]. This approach solves the problem in a reduced 
space, which is obtained from a Galerkin-like projection with the low-rank solution of a generalized Lyapunov equation. The 
results obtained with the projected time-stepping approach are very similar to the ones obtained with standard TAMS. The 
main benefit of the projected time-stepping method is the reduced computational cost, especially in terms of memory usage, 
where only 3% of the amount of memory that is required for standard TAMS is used. Since memory is the limiting factor in 
many applications, this reduction, along with all other optimizations such as the checkpointing strategy we mentioned, will 
allow a larger application potential, without necessarily negatively impacting the computational time.

The benefit in terms of memory usage is present even if an explicit time stepping method is used. Downsides of using 
the projection in combination with an explicit method, however, are a higher computational cost due to the projection that 
has to be performed in every time step and the requirement of having access to the Jacobian matrix to be able to compute 
the low-rank approximation of the covariance matrix. In case of implicit time stepping, however, the Jacobian matrix is 
usually already available, and solving the projected system is often cheaper than solving with the full Jacobian matrix.

As an application, we computed transition probabilities for a quasi two-dimensional model of the Atlantic Meridional 
Overturning Circulation (AMOC). The model consists of a system of stochastic partial differential equations, representing the 
equations for mass, momentum, temperature and salinity in the oceanic basin, resulting (when discretized) in a dynamical 
system with a total of 12288 degrees of freedom. While this is a highly idealized model, it captures the essential feedback 
(the salt-advection feedback) which is responsible for the sensitivity of the AMOC to freshwater perturbations. Although we 
investigated only a few cases, the transition probability of the AMOC in the two-dimensional model decreases drastically 
when moving away from the saddle-node bifurcation. This indicates that, in this model, a stochastic transition is not very 
likely to occur unless the AMOC is close to critical conditions.

It would be interesting to see if the methodology can be extended to three-dimensional ocean models for which one 
can calculate bifurcation diagrams. In [22], we found for a primitive three-dimensional example where the noise is fully 
uncorrelated (worst case), that the size of the space that comes from the generalized Lyapunov equation increases with 
O(n). Therefore it is possible that for three-dimensional ocean models the cost of solving with the projected Jacobian 
matrix becomes dominant, and eventually more expensive than computations with the original Jacobian matrix, but the 
memory cost will still be at most 3% of the original TAMS. Whether we can suffice with predicting the required size of the 
basis from simulations with a high transition probability is still an open question.
10
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Additionally, more sophisticated noise models may be used, such as correlated additive and multiplicative (CAM) noise, 
which is commonly used in climate science. The methodology from this paper can also be used for multiplicative types 
of noise, but in that case the generalized Lyapunov equations have to be extended with a bilinear term. We refer to the 
resulting equations as extended generalized Lyapunov equations. These may be solved by combining the methodology from 
[47] and [22].

Something that still needs further investigation is the reaction coordinate. In this paper, we just chose a reaction coor-
dinate that works reasonably well for the AMOC application, but the fact that the compensated variance moves away from 
1 as the transition probability becomes smaller suggests that it is possible to find more efficient reaction coordinates. It 
has also been shown theoretically for systems with a few degrees of freedom that paths that go through x̄C should be 
favored as they more closely represent the committor [40]. Further incorporating terms of the form ‖x − xC ‖ may help with 
this [14,15]. It would be favorable if it were possible to find a reaction coordinate that works well for a wide variety of 
high-dimensional dynamical systems, and work on this is in progress.
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