

 University of Groningen

Numerical methods for studying transition probabilities in stochastic ocean-climate models
Baars, Sven

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from
it. Please check the document version below.

Document Version
Publisher's PDF, also known as Version of record

Publication date:
2019

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):
Baars, S. (2019). Numerical methods for studying transition probabilities in stochastic ocean-climate
models. Rijksuniversiteit Groningen.

Copyright
Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the
author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

The publication may also be distributed here under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license.
More information can be found on the University of Groningen website: https://www.rug.nl/library/open-access/self-archiving-pure/taverne-
amendment.

Take-down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the
number of authors shown on this cover page is limited to 10 maximum.

Download date: 21-06-2022

https://research.rug.nl/en/publications/374c62ad-9b20-4da2-bec0-c9617c6d3ee7

Numerical methods for studying
transition probabilities in stochastic

ocean-climate models

Sven Baars

The work in this thesis has been carried out at the Bernoulli Institute for
Mathematics, Computer Science and Artificial Intelligence of the University
of Groningen. It is part of the Mathematics of Planet Earth research pro-
gram, which is financed by the Netherlands Organization for Scientific Re-
search (NWO).

Copyright © 2019 Sven Baars

Printed by Gildeprint

ISBN 978-94-034-1710-3 (printed version)
ISBN 978-94-034-1709-7 (electronic version)

Numerical methods for studying
transition probabilities in stochastic

ocean-climate models

Proefschrift

ter verkrijging van de graad van doctor aan de
Rijksuniversiteit Groningen

op gezag van de
rector magnificus prof. dr. E. Sterken

en volgens besluit van het College voor Promoties.

De openbare verdediging zal plaatsvinden op

vrijdag 21 juni 2019 om 14:30 uur

door

Sven Baars

geboren op 15 augustus 1990
te Ulrum

Promotor
Prof. dr. ir. R.W.C.P. Verstappen

Copromotor
Dr. ir. F.W. Wubs

Beoordelingscommissie
Prof. dr. R.H. Bisseling
Prof. dr. D.T. Crommelin
Prof. dr. A.J. van der Schaft

CONTENTS

1 Introduction 1

2 Basic concepts 7
2.1 Newton’s method . 7
2.2 Iterative methods . 8
2.3 Bifurcation analysis . 11

2.3.1 Pseudo-arclength continuation 12
2.4 Stochastic differential equations 15

2.4.1 Brownian motion . 15
2.4.2 Stochastic differential equations 16
2.4.3 The Euler–Maruyama method 17
2.4.4 The stochastic theta method 17

2.5 Governing equations . 18
2.5.1 The Navier–Stokes equations 18
2.5.2 The ocean model . 18
2.5.3 Stochastic freshwater forcing 20

3 Linear systems 21
3.1 The two-level ILU preconditioner 24

3.1.1 Initialization phase . 25
3.1.2 Factorization phase . 27
3.1.3 Solution phase . 28

3.2 The multilevel ILU preconditioner 28
3.3 Skew partitioning in 2D and 3D 30
3.4 Numerical results . 33

v

vi Contents

3.4.1 Weak scalability . 35
3.4.2 Strong scalability . 39
3.4.3 Lid-driven cavity . 41

3.5 Summary and Discussion . 44

4 Lyapunov equations 47
4.1 Methods . 48

4.1.1 Formulation of the problem 48
4.1.2 A novel iterative generalized Lyapunov solver 50
4.1.3 Convergence analysis . 52
4.1.4 Restart strategy . 54
4.1.5 Extended generalized Lyapunov equations 55

4.2 Problem setting . 57
4.2.1 Bifurcation diagram . 57
4.2.2 Stochastic freshwater forcing 58

4.3 Results . 58
4.3.1 Comparison with stochastically forced time forward

simulation . 59
4.3.2 Comparison with other Lyapunov solvers 60
4.3.3 Numerical scalability . 66
4.3.4 Towards a 3D model . 68
4.3.5 Continuation . 70
4.3.6 Extended Lyapunov equations 71

4.4 Summary and Discussion . 72

5 Transition probabilities 75
5.1 Definition . 75
5.2 The Eyring–Kramers formula . 76

5.2.1 Double well potential . 77
5.2.2 Computing the transition probability 77

5.3 Covariance ellipsoids . 78
5.3.1 Example . 79

5.4 Most probable transition trajectories 80
5.5 Computing transition probabilities 81

5.5.1 Direct sampling . 81
5.5.2 Direct sampling of the mean first passage time 82
5.5.3 Adaptive multilevel splitting 82
5.5.4 Trajectory-Adaptive Multilevel Sampling 91
5.5.5 Genealogical Particle Analysis 95
5.5.6 Comparison . 96

5.6 Summary and Discussion . 101

6 Transitions in the Meridional Overturning Circulation 103
6.1 Projected time-stepping in TAMS 104

Contents vii

6.2 Problem setting . 105
6.2.1 Bifurcation diagram . 105
6.2.2 Stochastic freshwater forcing 106
6.2.3 Reaction coordinate . 106

6.3 Results . 107
6.4 Summary and Discussion . 108

7 Conclusion 111

Publications and preprints 115

Software 117

Bibliography 119

Summary 131

Samenvatting 135

Soamenvatting 139

Acknowledgments 141

C
H

A
PT

ER
1

INTRODUCTION

You may be reading this thesis on a sunny day in August in your garden sur-
rounded by flowers, or it may be a rainy Sunday afternoon near the fireplace
with your feet up, but most likely it’s just another day in the office. Fact is
that there is a strong variability in the every day weather related to the de-
velopment of high- and low-pressure fields. These developments do not have
anything to do with the external solar forcing, but are due to the internal vari-
ability of the atmospheric flow (Dijkstra, 2005). The time scale of this vari-
ability of 3-7 days is determined by the nonlinear processes in the atmosphere
itself.

Similar processes happen in every part of the climate system on varying
time scales. A high-frequency process is the weather as described above; a
low-frequency process is the change in land-ice distribution (Mulder et al.,
2018). In the ocean, internal variability causes formation of ocean eddies and
the meandering of ocean currents such as the Gulf Stream (Schmeits and Dijk-
stra, 2001). Interaction between all the different processes on different time
scales may result in internal variability on other time scales that is not present
in decoupled systems. This makes such processes very difficult to study, and
difficult to understand. Therefore it is often a good idea to take a step back,
and look at a more simplified model to make sure one is at least able to under-
stand the results, and then apply this newly acquired knowledge to the fully
coupled system.

In this thesis, we work with such a simplified model of the Meridional
Overturning Circulation (MOC). The MOC consists of a global ‘conveyor belt’
of ocean currents, which are driven by wind stress forces and fluxes of heat
and freshwater at the surface. In the Atlantic ocean, it consists of surface cur-
rents that transport relatively light water toward high latitudes, deep water

1

2 Introduction

currents going in the opposite direction, and sinking and upwelling processes
that connect these two. The circulation system contains two overturning cells:
one in the north with North Atlantic Deep Water (NADW) and one in the
south with Antarctic Bottom Water (AABW). The Atlantic part of the MOC
(AMOC) is shown in Figure 1.1.

Figure 1.1: Simplified depiction of the Meridional Overturning Circulation in the At-
lantic ocean. The yellow paths indicate the circulation at the surface, and the blue
paths indicate the deep-water currents. The gradients between the two colors indicate
the overturning cells with NADW in the north and AABW cell in the south.

Since the first model proposed by Stommel (1961), many model studies
have shown that the MOC may be sensitive to variability in the freshwater
forcing. In a global coupled climate model by Vellinga and Wood (2002) the
NADW circulation collapses and recovers after 120 years. This is because
weakening the MOC by introducing more freshwater in the North Atlantic
(melting of the Greenland ice sheet) leads to a reduced northward saltwater
transport, which in turn amplifies the freshwater perturbation.

A state of the MOC with a strongly reduced heat transport may have large
consequences for the global climate (Rahmstorf, 2000; Lenton et al., 2008). In
Vellinga and Wood (2002), a cooling of a few degrees is observed in Europe,
which in turn may lead to growing glaciers and then global cooling. There-
fore, an estimate of the probability of MOC transitions is crucial for prediction
of a collapse of the MOC and with that a rapid climate change.

This collapse may occur due to the existence of a tipping point associated
with the salt-advection feedback (Walin, 1985; Lenton, 2011). Mathematically,

Introduction 3

this tipping point is referred to as a bifurcation point. Tipping points exist due
to the presence of multiple stable steady states for the same parameter values.
Due to unresolved small-scale variability, however, transitions may even be
observed before a tipping point is reached. This unresolved variability is of-
ten represented as noise. An example of such a noise induced transition in a
simplified 2D model of the MOC is shown in Figure 1.2.

t
-20

-10

0

10

20

- +

+
 (

S
v
)

a

b

Figure 1.2: Example of a noise induced transition between steady states a and b in a
simplified 2D model of the MOC. We are interested in the computation of the prob-
ability of such transitions. On the y-axis, the sum of the maximum and minimum of
the overturning streamfunction Ψ are shown, meaning that steady state a represents
the current state of the MOC as depicted in Figure 1.1, and steady state b rotates in the
opposite direction.

The effect of noise on MOC transitions has so far been studied in very ide-
alized models (Cessi, 1994; Monahan et al., 2008; Timmermann and Lohmann,
2000) and more recently in a coupled climate model of intermediate complex-
ity (Sijp et al., 2013). Knowledge of the probability of these transitions is also
important to evaluate whether climate variability phenomena in the geologi-
cal past, such as the Dansgaard–Oeschger events, could be caused by stochas-
tic transitions or by transitions induced by crossing tipping points (Ditlevsen
and Johnsen, 2010). The aim of this thesis is to develop methods which can be
used for studying transition behavior in the MOC.

To be able to observe these transitions between stable steady states, we first
need to be able to compute the steady states themselves. They can be com-
puted by using time integration, which is often expensive, especially if steady
states have to be computed for multiple parameter values. Instead one can ap-
ply a method called (pseudo-arclength) continuation (Keller, 1977; Crisfield,
1991), which can compute the steady states directly by applying Newton’s
method. This can speed up the computation of steady states considerably
(Dijkstra et al., 2014). Pseudo-arclength continuation is especially useful for
computing unstable steady states, i.e. steady states for which a small distur-
bance causes the state to converge to a different steady state. Time integration
methods are usually incapable of computing these unstable steady states.

4 Introduction

During the application of Newton’s method, many linear systems of equa-
tions have to be solved. For the MOC, these are specifically equations that
include the Navier–Stokes equations, which are discretized on a staggered
grid. In Benzi et al. (2005), the authors gave a survey of methods that are cur-
rently used to solve linear systems of this type. Direct (sparse) solvers are not
practical since a typical ocean model involves millions of unknowns leading
to a huge memory requirement for storing the factorization and an enormous
amount of time to compute it. For such problems, iterative methods are pre-
ferred, e.g. Krylov subspace methods with suitable preconditioning to ensure
robustness, fast convergence and accuracy of the final approximate solution
(Benzi et al., 2005; Benzi and Olshanskii, 2006; De Niet et al., 2007; Elman et al.,
2002; Kay et al., 2002; Elman et al., 2008). Segal et al. (2010) give an overview
of the present state of fast solvers for the incompressible Navier–Stokes equa-
tions discretized by the finite element method and linearized by Newton’s or
Picard’s method.

Preconditioners that are often advocated include standard additive
Schwarz domain-decomposition, multigrid with aggressive coarsening and
strong smoothers (e.g. ILU), and ‘block preconditioners’ that use an approx-
imate block LU factorization and some approximation of the Schur comple-
ment associated with the pressure unknowns, e.g. SIMPLEC, LSC, and PCD
(Cyr et al., 2012).

Another class of Schur complement methods is obtained when eliminat-
ing the interior of geometric partitions (or subdomains) and constructing a
suitable approximation of the reduced system on the separator. In Wubs and
Thies (2011); Thies and Wubs (2011) it was shown how to construct a precon-
ditioner for the Navier–Stokes equations, which are discretized on a staggered
grid. The resulting operator acts in the divergence-free space, which allows
the method to handle the saddle-point structure of the system in a natural
way. In Chapter 3 we first present a novel multilevel variant of this method.
This method is also described in Baars et al. (2019c), and used in Baars et al.
(2019b) for studying bifurcations in a lid-driven cavity.

After computing steady states of the MOC, we are interested in its sen-
sitivity to noise. The sensitivity around a steady state can be determined
from the probability density function. It is well known that this probabil-
ity density function can be computed from the solution of a generalized
Lyapunov equation (Gardiner, 1985). Direct methods for solving a gener-
alized Lyapunov equation such as Bartels–Stewart algorithm (Bartels and
Stewart, 1972) are based on dense matrix solvers and hence inapplicable for
large systems. Other existing methods which use low-rank approximations
(Simoncini, 2007; Druskin and Simoncini, 2011; Stykel and Simoncini, 2012;
Druskin et al., 2014; Kleinman, 1968; Penzl, 1999) might also become expen-
sive for high-dimensional problems, particularly when trying to use previ-
ous initial guesses along a continuation branch. We therefore present a novel
method for computing the solution of generalized Lyapunov equations that

Introduction 5

is particularly well suited for our ocean problem in a continuation context in
Chapter 4. Most of this chapter has been published in Baars et al. (2017) and
Dijkstra et al. (2016), but some extra work has been done in the context of
continuation and extended generalized Lyapunov equations.

A shortcoming to this above approach is that it only describes the sensi-
tivity to noise around a steady state. To study the more global phenomenon
of transitions between steady states, stochastic time integration is required.
Applying a standard Monte Carlo method, however, is way too expensive,
especially for high-dimensional systems and when the probability of a transi-
tion is small. Multiple methods exist to work around this problem by apply-
ing some form of resampling (Cérou and Guyader, 2007; Rolland and Simon-
net, 2015; Lestang et al., 2018; Moral and Garnier, 2005; Moral, 2013; Wouters
and Bouchet, 2016). We discuss these methods and show their benefits and
shortcomings when applied to transitions between steady states on high-
dimensional systems in Chapter 5. In Chapter 6 we propose a method based
on the solution of generalized Lyapunov equations that reduces the compu-
tational cost and the huge memory requirements that are common for these
types of methods. This chapter, and parts of Chapter 5 will appear in Baars
et al. (2019a). We also used one of the methods described in Chapter 5 in
Mulder et al. (2018) to study transition behavior in marine ice sheet instability
problems.

C
H

A
PT

ER
2

BASIC CONCEPTS

In this chapter we discuss some of the basic concepts that will be used
throughout this thesis. We start with Newton’s method, which we use in both
continuation methods and implicit time stepping methods, and then continue
with iterative methods that we use for solving the linear systems that arise in
Newton’s method. After this, we describe the concept of bifurcation analy-
sis and the pseudo-arclength continuation method which we use to perform
this bifurcation analysis. Finally, we describe the equations that are used in
our ocean model and discuss stochastic differential equations which we use
to represent unresolved small-scale variability in the ocean.

Newton’s method 2.1

Newton’s method, or the Newton–Raphson method, is an iterative method
for computing the roots of a function F : Rn → Rn (Atkinson, 1988). It can be
derived directly from the Taylor series

F (x+ ∆x) = F (x) + J(x)∆x+O(∆x2),

where J(x) is the Jacobian of F . Assuming that F (x+∆x) = 0, and neglecting
the second order term O(∆x2), we obtain a linear system

J(x)∆x = −F (x),

which can be solved for ∆x. x + ∆x will now be a better approximation of
the actual root. Starting at some initial guess x0, we can apply this procedure
iteratively, as is shown in Algorithm 1.

7

8 Basic concepts

input: x0 Initial guess.
F, J Function for which we want to find a root

and its Jacobian.
output: xk Approximate solution.

1: for i = 1, 2, . . . until convergence do
2: solve J(xi−1)∆xi = −F (xi−1)
3: xi = xi−1 + ∆xi

Algorithm 1: Newton’s method for computing the roots of F (x).

2.2 Iterative methods

Linear systems as the one described in the previous section are often large and
sparse. In this case, standard methods such as LU factorization with forward-
backward substitution are often not efficient enough, and one instead resides
to iterative methods (Van der Vorst, 2003). The general idea behind iterative
methods is that we want to solve the system Ax = b, and at each iteration
i, we try to get a better approximate solution xi. We may also write this as
x = xi + εi, where εi is the error at step i. Multiplication by A gives us

Aεi = A(x− xi) = b−Axi.

Since we do not have the exact solution, we do not know the exact error either.
Instead, we can try to solve the system

Mzi = b−Axi

for zi, with M an approximation of A that makes this system much easier to
solve than the system Ax = b. Now since M is an approximation of A, zi is
an approximation of the error. Thus solving the easier system leads to a better
approximation of the solution: xi+1 = xi + zi. The basic iteration introduced
here, now leads to

xi+1 = xi +M−1(b−Axi),

where M is called the preconditioner, which is used to improve the spectral
properties of the system. Note that M−1 is never computed explicitly.

If we now take M = I , we obtain the well known Richardson iteration
(Van der Vorst, 2003)

xi+1 = b+ (I −A)xi = xi + ri,

2.2. Iterative methods 9

with ri = b−Axi the residual at step i. Multiplying the above relation by −A
and adding b gives

ri+1 = (I −A)ri = (I −A)i+1r0.

It then follows that the approximate solution xi+1 may be written as

xi+1 = r0 + r1 + . . .+ ri =

i∑
k=0

(I −A)kr0 (2.1)

for x0 = 0. We can do this without loss of generality, because in case x0 is
nonzero, we could just shift the system by setting Ay = b − Ax0 = b̂ with
y0 = 0. We now observe that

xi+1 ∈ Span{r0, Ar0, . . . , A
ir0} ≡ Ki+1(A; r0).

The space of dimension m, spanned by a given vector v, and increasing pow-
ers ofA applied to v up to the (m−1)th power ofA is called them-dimensional
Krylov subspace generated by A and v, and is denoted as Km(A;v) (Van der
Vorst, 2003). In the general case that M 6= I , we obtain xm ∈ Km(AM−1; r0).

As we know from the power method, repeated multiplication by a matrix
A converges to the eigenvector belonging to the largest eigenvalue of A. So
(2.1) would converge to the eigenvector belonging to the largest eigenvalue of
I − A. This means that this iteration without any modification is not a very
good way to generate new vectors for the Krylov subspace.

Instead, one can orthogonalize every new vector with respect to all vectors
that are already present in the Krylov subspace. This can be done by using for
instance modified Gram-Schmidt (Golub and Van Loan, 1996). The power
method with inclusion of the modified Gram-Schmidt procedure, which is
given in Algorithm 2, is called the Arnoldi method. This method can generate
an orthonormal basis of the Krylov subspace, but can also be used for the
computation of multiple eigenvectors and eigenvalues of a matrix A.

With the orthonormal basis of the Krylov subspace Vm and the upper Hes-
senberg matrix Hm+1,m that are obtained from the Arnoldi method, we get
the relation

AVm = Vm+1Hm+1,m,

or alternatively

V TmAVm = Hm,m.

The matrix Hm,m is also called the Galerkin projection of A onto Km(A;v1). For
an iterative method based on this projection, the related Galerkin condition is
given by

V Tm (r0 −Axm) = V Tm (r0 −AVmym) = 0

10 Basic concepts

input: A Matrix.
v0 Initial vector.
m Size of the Krylov subspace.

output: Hm+1,m Upper Hessenberg matrix.
Vm = [v1, . . . ,vm] Orthonormal basis of the

m-dimensional Krylov subspace.

1: v1 = v0/‖v0‖2
2: for j = 1, . . . ,m− 1 do
3: q = Avj
4: for i = 1, . . . , j do
5: Hi,j = vTi q
6: q = q −Hi,jvi

7: Hj+1,j = ‖q‖2
8: vj+1 = q/Hj+1,j

Algorithm 2: The Arnoldi method with modified Gram-Schmidt. V is an orthonormal
basis of the m-dimensional Krylov subspace. The eigenvalues and eigenvectors of A
can be obtained from the matrices Hm+1,m and Vm = [v1, . . . , vm].

for some xm = Vmym + x0 (Golub and Van Loan, 1996).
Most Krylov subspace methods can be distinguished in three different

classes (Van der Vorst, 2003).

1. xm is taken such that the residual is orthogonal to the Krylov subspace:
b−Axm ⊥ Km(A; r0). This is called the Ritz–Galerkin approach.

2. xm is taken such that the residual is orthogonal to some other suitable
m-dimensional space. This is called the Petrov–Galerkin approach.

3. xm is taken such that ‖b − Axm‖2 is minimal over Km(A; r0). This is
called the minimum residual norm approach.

The most commonly used iterative methods are the Conjugate Gradient (CG)
method for symmetric positive definite matrices, which is based on the Ritz–
Galerkin approach, and the MINRES method for symmetric matrices and GM-
RES method for general matrices, which are based on the minimum residual
norm approach.

The convergence behavior of Krylov subspace methods is determined by
the spectral properties of A. Fast convergence is obtained when all eigen-
values of the matrix are close to 1, and when the matrix is close to a normal
matrix, meaning thatATA = AAT . As mentioned above, a preconditioner can

2.3. Bifurcation analysis 11

be used to improve these properties. In Chapter 3 we introduce such a pre-
conditioner for staggered grid discretizations of the Navier–Stokes equations.

Bifurcation analysis 2.3

As mentioned earlier, we are interested in the computation of tipping points
in the MOC. In this section we discuss how we compute these tipping or bi-
furcation points.

Take a dynamical system of the form

dx

dt
= F (x,p), (2.2)

where x ∈ Rn is the state, p ∈ Rm are parameter values and F : Rn × Rm →
Rn. We are interested in sets of solutions which are approached asymptoti-
cally when going forward or backward in time. These sets include periodic
orbits, and stable and unstable steady states. A bifurcation is a point at which
a small change of a so-called bifurcation parameter in p results in a sudden
qualitative change of the system, e.g. when a stable steady state turns into an
unstable steady state.

We can study bifurcations from a bifurcation diagram, in which a variable
of interest y : Rn × R → R is plotted against the bifurcation parameter. An
example of a bifurcation diagram is shown in Figure 2.1, where y is the vari-
able of interest, and µ is the bifurcation parameter. The stable steady states are
depicted by a solid line, whereas the unstable steady states are dashed. In the
bifurcation diagram, we see two saddle-node bifurcations.

Saddle-node
bifurcation

y

µ

Stable
Unstable

Figure 2.1: Schematic depiction of two saddle-node bifurcations, where at the first
bifurcation a branch of stable steady states turns into a branch of unstable steady states,
and at the second bifurcation an unstable branch turns into a stable branch. Here y is
the variable of interest, and µ is the value of the bifurcation parameter.

12 Basic concepts

The types of bifurcations that we will see in this thesis are saddle-node
bifurcations, as shown in Figure 2.1, and pitchfork bifurcations, as shown in
Figure 2.2.

Pitchfork bifurcation

y

µ

Stable
Unstable

Figure 2.2: Schematic depiction of a supercritical pitchfork bifurcation, where a stable
steady state branches into two stable steady states and one unstable steady state. Here
y is the variable of interest, and µ is the value of the bifurcation parameter.

2.3.1 Pseudo-arclength continuation

For the study of bifurcation points in a dynamical system of the form (2.2),
it is often desirable to compute steady states for a wide variety of parame-
ter values p. A common approach is to start from a known steady state at
a nearby parameter value, and then perform a time integration to get to the
stable steady state at the current parameter value.

A more efficient way of finding the steady state at a certain parameter
value when starting from the steady state at a nearby parameter value is by
computing the solution of

F (x,p) = 0 (2.3)

directly by using Newton’s method as described in Section 2.1. This is
called natural continuation. Neither of these methods, however, is capable
of the computation of unstable steady states after a saddle-node bifurcation
is reached. The solution will just converge to one of the stable steady states
instead.

Instead one can apply a method called pseudo-arclength continuation
(Keller, 1977; Crisfield, 1991), which can speed up the computation of steady
states considerably Dijkstra et al. (2014). In this method, the branches

2.3. Bifurcation analysis 13

(x(s),p(s)) in the bifurcation diagram are instead parameterized by an ar-
clength parameter s. An additional normalizing condition

N(x, µ, s) ≡ ζ ‖ ˙x(s)‖22 + (1− ζ) |µ̇(s)|2 − 1 = 0

is applied, where the dot indicates the derivative with respect to s, ζ ∈ (0, 1)
is a tunable parameter and µ is the bifurcation parameter in p. This condi-
tion, however, is not very useful for both implementation or derivation of the
method that we want to implement. Instead we reside to the approximation

N2(x, µ, s) ≡ ζ ‖x(s)− x0‖22 + (1− ζ) (µ(s)− µ0)2 − (s− s0)2 = 0. (2.4)

Here ∆s = s − s0 is the step along the tangent vector at the current position
(x0,p0). In case ẋ0 and µ̇0 are known, one can instead use the approximation

N3(x, µ, s) ≡ ζ ẋT0 (x(s)− x0) + (1− ζ) µ̇0(µ(s)− µ0)− (s− s0) = 0.

To solve (2.3) together with (2.4), a predictor-corrector scheme is applied.
The Euler predictor, which is a guess for the next steady state xi+1, is given
by

x
(0)
i+1 = xi + ∆s ẋi,

µ
(0)
i+1 = µi + ∆s µ̇i.

In the Newton corrector, the updates are given by

x(k+1) = x(k) + ∆x(k+1),

µ(k+1) = µ(k) + ∆µ(k+1),

where we dropped the i+ 1 subscript for readability. This process is shown in
Figure 2.3.

∆x(k+1) and ∆µ(k+1) can be obtained from the correction equation(
Jx(x(k), µ(k)) Jµ(x(k), µ(k))

2ζ (x(k) − xi)T 2(1− ζ) (µ(k) − µi)

)(
∆x(k+1)

∆µ(k+1)

)
=(
−F (x(k), µ(k))
−N2(x(k), µ(k), s)

)
,

where Jx is the Jacobian of F with respect to x and Jµ is the Jacobian of F with
respect to µ. This system can be solved as such, which is very robust, but has
the downside that a solver for this bordered system has to be implemented.

The solution can also be obtained by first solving

Jx(x(k), µ(k))z1 = −F (x(k), µ(k)),

Jx(x(k), µ(k))z2 = Jµ(x(k), µ(k)),

14 Basic concepts

s

Predictor

(x0,p0)

Newton corrector

Saddle-node
bifurcation

y

µ

Figure 2.3: Schematic depiction of pseudo-arclength continuation.

after which ∆x(k+1) and ∆µ(k+1) can be found from

∆µ(k+1) =
−N2(x(k), µ(k), s)− 2ζ (x(k) − xi)Tz1

2(1− ζ) (µ(k) − µi)− 2ζ (x(k) − xi)Tz2
,

∆x(k+1) = z1 −∆µ(k+1)z2.

This method is less robust, but has the advantage that only systems with Jx
have to be solved.

Linear approximations to the derivatives ẋ and µ̇, which are required
for the Euler predictor, can be obtained from two previous iterations of the
method as

ẋi ≈
1

∆s
(xi − xi−1),

µ̇i ≈
1

∆s
(µi − µi−1).

This, however, can not be used in the first step. What we do instead is first
obtain x0 at parameter µ0 by using Newton’s method, and then compute the
tangent by solving

Jx(x0, µ0)z = Jµ(x0, µ0)

2.4. Stochastic differential equations 15

for z, after which

ẋ0 ≈ −
1√

zTz + ∆µ2
z,

µ̇0 ≈
∆µ√

zTz + ∆µ2
,

where we take ∆µ = 1.

Stochastic differential equations 2.4

Stochastic differential equations (SDEs) are used in a wide variety of applica-
tions areas including biology, chemistry, physics, economics, and of course cli-
mate dynamics. In this thesis, we will use them to represent unresolved vari-
ability in the freshwater forcing. We only briefly introduce the concepts that
are required for understanding the usage of SDEs in this thesis. For a more
detailed explanation, we refer to Higham (2001), Gardiner (1985) or Dijkstra
(2013).

Brownian motion 2.4.1

A standard Brownian motion or Wiener process is a random variable Wt on t ∈
[0, T] which has the following properties:

1. W0 = 0 with probability 1.

2. W has independent increments Wt −Ws for every t > s ≥ 0.

3. For 0 ≤ s < t ≤ T , the increment Wt −Ws is normally distributed with
mean zero and variance t− s, i.e. Wt −Ws ∼ N(0, t− s)

4. Wt is continuous in t with probability 1.

In a computational context, we always look at discretized Brownian motion.
This means that the value of Wt is only specified at discrete values of t. Say
we take a fixed number of time steps N with length ∆t = T/N , then the
discretized Brownian motion would be defined as

Wi = Wi−1 + ∆Wi,

where Wi is the value of Wt at time ti = i∆t, i = 0, 1, . . . , N and ∆Wi is
the increment at time ti which is an independent random variable taken from
N(0,∆t). An example of a discretized Brownian motion can be found in Fig-
ure 2.4.

16 Basic concepts

0.2 0.4 0.6 0.8 1
0

1

Wt

t

Figure 2.4: Example of a single realization of a one-dimensional discretized Brownian
motion.

2.4.2 Stochastic differential equations

Given a real function f : [0, T]→ R, we approximate the integral
∫ T

0
f(t)dt by

the left Riemann sum
N−1∑
i=0

f(ti)(ti+1 − ti), (2.5)

where ti = i∆t with ∆t = T
N . For Riemann-integrable functions, (2.5) will

converge to the actual value of the integral for ∆t→ 0.
Similarly, we may consider an approximation of the form

N−1∑
i=0

g(ti)(Wi+1 −Wi),

for a stochastic integral
∫ T

0
g(t)dWt. If we again take ∆t → 0, this defines the

value of the so-called Itô integral.
For stochastic integration, one may also use different approximations to

obtain a different integral value. After the Itô integral, the most common in-
tegral is the Stratonovich integral, which instead of using a left Riemann-type
sum uses the midpoint rule. In this thesis, however, we will only use Itô inte-
gration and the related Itô calculus.

Using the Itô integral, we may define a stochastic differential equation in
integral form

Xt = X0 +

∫ t

0

f(Xs)ds+

∫ t

0

g(Xs)dWs, 0 ≤ t ≤ T,

where the initial condition X0 is a random variable, and f and g are scalar
functions. In differential equation form, this integral is given by

dXt = f(Xt)dt+ g(Xt)dWt, 0 ≤ t ≤ T.

2.4. Stochastic differential equations 17

The ocean can, unfortunately, not be described by a single stochastic dif-
ferential equation. We will instead look at systems of stochastic differential
algebraic equations (SDAEs) of the form

M dXt = F (Xt) dt+ g(Xt) dWt, (2.6)

whereM ∈ Rn×n is usually referred to as the mass matrix,Xt ∈ Rn, F : Rn →
Rn, g : Rn → Rnw ,Wt ∈ Rnw , and nw is the number of stochastic variables.

The Euler–Maruyama method 2.4.3

The most basic method for simulating stochastic differential equations in Itô
calculus is the Euler–Maruyama method, which is a generalization of the Eu-
ler method for ordinary differential equations Higham (2000). Consider the
n-dimensional SDE

dXt = F (Xt) dt+ g(Xt) dWt.

The Euler–Maruyama method is then given by

Xi+1 = Xi + ∆tF (Xi) + g(Xi) ∆Wi. (2.7)

where ∆Wi are independent and identically distributed random variables
with mean zero and variance ∆t.

The stochastic theta method 2.4.4

In the same sense that the Euler method can be generalized to the theta
method for ordinary differential equations, we can also generalize the Euler–
Maruyama method (Kloeden and Platen, 1992). The generalization of this
method is given by

Xi+1 = Xi + (1− θ)∆t F (Xi) + θ∆t F (Xi+1) + g(Xi) ∆Wi.

We will refer to this method as the stochastic theta method, as is also done
in Higham (2000). Note that if we take θ = 0, we get the Euler–Maruyama
scheme as described above, with θ = 1, we get the stochastic version of the
implicit Euler method, and θ = 1

2 gives a stochastic trapezoidal rule. In any
case, the noise is always added explicitly.

This method can be generalized even further for SDAEs, in which case it
is given by

M(Xi −Xi+1) + (1− θ)∆t F (Xi) + θ∆t F (Xi+1) + g(Xi) ∆Wi = 0. (2.8)

Here Xi+1 can be obtained by applying the Newton method. The Jacobian of
(2.8) is given by

θ∆tJ(Xi+1)−M,

where J is the Jacobian of F .

18 Basic concepts

2.5 Governing equations

2.5.1 The Navier–Stokes equations

The Navier–Stokes equations, which govern the motion of a fluid such as the
ocean, are described by the conservation of mass

∂ρ

∂t
+∇ · (ρu) = 0,

and the conservation of momentum

ρ
∂u

∂t
+ ρu · ∇u = −∇p+∇ · τ ,

where u is the velocity, p the pressure, ρ the density and σ = −pI + τ is the
internal stress tensor (Batchelor, 2000; Landau and Lifshitz, 1959).

In case the fluid is assumed to be incompressible, i.e. the density is con-
stant, the conservation of mass is reduced to

∇ · u = 0.

Furthermore, the stress tensor can be simplified and is now given by

τ = µ(∇u+∇uT),

where µ is the dynamic viscosity. In this case the conservation of momentum
can be written as

∂u

∂t
+ u · ∇u = −1

ρ
∇p+ ν∇2u,

where ν = µ/ρ is the kinematic viscosity.

2.5.2 The ocean model

Due to the complex nature of the Navier–Stokes equations, many approxima-
tions are made to be able to focus on the most important motions that are
present in the ocean (Griffies, 2004; Cushman-Roisin and Beckers, 2011). The
most important approximations are as follows. First we have the hydrostatic
approximation, where the contributions of vertical acceleration and friction to
the vertical pressure gradients are neglected. Then we have the shallow ocean
approximation, where the depth of the ocean is assumed to be negligible with
respect to the radius of the earth. The third approximation is the Boussinesq
approximation, which means that any density difference that is not multiplied
by the gravitational constant g is ignored. And finally we have the rigid lid
approximation which assumes that the sea surface elevation is static.

2.5. Governing equations 19

For our simulations, this results in the spatially quasi two-dimensional
primitive equation model of the Atlantic MOC as described in Weijer and
Dijkstra (2001); Den Toom et al. (2011). In the model, there are two active
tracers: temperature T and salinity S, which are related to the density ρ by a
linear equation of state

ρ = ρ0 (1− αT (T − T0) + αS (S − S0)) ,

where αT and αS are the thermal expansion and haline contraction coeffi-
cients, respectively, and ρ0, T0, and S0 are reference quantities. The numerical
values of the fixed model parameters are summarized in Table 2.1.

D = 4.0 · 103 m Hm = 2.5 · 102 m
r0 = 6.371 · 106 m T0 = 15.0 ◦C
g = 9.8 m s−2 S0 = 35.0 psu

AH = 2.2 · 1012 m2s−1 αT = 1.0 · 10−4 K−1

AV = 1.0 · 10−3 m2s−1 αS = 7.6 · 10−4 psu−1

KH = 1.0 · 103 m2s−1 ρ0 = 1.0 · 103 kg m−3

KV = 1.0 · 10−4 m2s−1 τ = 75.0 days

Table 2.1: Fixed model parameters of the two-dimensional ocean model.

In order to eliminate longitudinal dependence from the problem, we con-
sider a purely buoyancy-driven flow on a non-rotating Earth. We furthermore
assume that inertia can be neglected in the meridional momentum equation.
The mixing of momentum and tracers due to eddies is parameterized by sim-
ple anisotropic diffusion. In this case, the zonal velocity as well as the longi-
tudinal derivatives are zero and the equations for the meridional velocity v,
vertical velocity w, pressure p, and the tracers T and S are given by

− 1

ρ0r0

∂p

∂θ
+AV

∂2v

∂z2
+
AH
r2
0

(
1

cos θ

∂

∂θ

(
cos θ

∂v

∂θ

)
+
(
1− tan2 θ

)
v

)
= 0,

− 1

ρ0

∂p

∂z
+ g (αTT − αSS) = 0,

1

r0 cos θ

∂v cos θ

∂θ
+
∂w

∂z
= 0,

∂T

∂t
+

v

r0

∂T

∂θ
+ w

∂T

∂z
=

KH

r2
0 cos θ

∂

∂θ

(
cos θ

∂T

∂θ

)
+KV

∂2T

∂z2
+ CA(T),

∂S

∂t
+

v

r0

∂S

∂θ
+ w

∂S

∂z
=

KH

r2
0 cos θ

∂

∂θ

(
cos θ

∂S

∂θ

)
+KV

∂2S

∂z2
+ CA(S).

Here t is time, θ latitude, z the vertical coordinate, r0 the radius of Earth, g the
acceleration due to gravity, AH (AV) the horizontal (vertical) eddy viscosity,

20 Basic concepts

and KH (KV) the horizontal (vertical) eddy diffusivity. The terms with CA
represent convective adjustment contributions.

The equations are solved on an equatorially symmetric, flat-bottomed do-
main. The basin is bounded by latitudes θ = −θN and θ = θN = 60◦ and
has depth D. Free-slip conditions apply at the lateral walls and at the bottom.
Rigid lid conditions are assumed at the surface and atmospheric pressure is
neglected. The wind stress is zero everywhere, and “mixed” boundary condi-
tions apply for temperature and salinity,

KV
∂T

∂z
=
Hm

τ

(
T̄ (θ)− T

)
,

KV
∂S

∂z
= S0Fs(θ).

(2.9)

This formulation implies that temperatures in the upper model layer (of depth
Hm) are relaxed to a prescribed temperature profile T̄ at a rate τ−1, while salin-
ity is forced by a net freshwater flux Fs, which is converted to an equivalent
virtual salinity flux by multiplication with S0. The specification of the CA
terms is given in Den Toom et al. (2011).

2.5.3 Stochastic freshwater forcing

For the most simple deterministic case, we choose an equatorially symmetric
surface forcing as

T̄ (θ) = 10.0 cos (πθ/θN) , (2.10a)

Fs(θ) = F̄s(θ) = µF0
cos(πθ/θN)

cos(θ)
, (2.10b)

where µ is the strength of the mean freshwater forcing (which we take as
bifurcation parameter) and F0 = 0.1 m yr−1 is a reference freshwater flux.

To represent the unresolved variability in the freshwater forcing, we use a
stochastic forcing. This forcing is chosen as

Fs(θ, t) = (1 + σ ζ(θ, t))F̄s(θ), (2.11)

where ζ(θ, t) represents zero-mean white noise with a unit standard deviation,
i.e., with E[ζ(θ, t)] = 0, E[ζ(θ, t)ζ(θ, s)] = δ(θ, t − s) and E[ζ(θ, t)ζ(η, t)] =
δ(θ−η, t). The constant σ is the standard deviation of the noise which we set to
σ = 0.1. The noise is additive and is only active in the freshwater component,
only present at the surface, meridionally uncorrelated, and has magnitude σ
of 10% of the background freshwater forcing amplitude at each latitude θ. In
the context of (2.6), g is given by the discretized version of σF̄s(θ).

C
H

A
PT

ER
3

LINEAR SYSTEMS

During the application of Newton’s method in both continuation processes
as described in Section 2.3 and implicit time stepping as described in Section
2.4.4, linear systems have to be solved. Ultimately, our goal is to solve linear
systems with the Jacobian of the model as described in Section 2.5.2, but for
now, we will just focus on solving the incompressible Navier–Stokes without
the additional tracers. The most elegant way to solve these linear systems
is to replace the complete LU factorization by an accurate incomplete one,
which can be used as a preconditioner in an iterative method. Moreover, this
preconditioner can be used to find approximate eigenvalues and eigenvectors
of the Jacobian matrix during the continuation process. By an appropriate
ordering technique and dropping procedure, one can construct an incomplete
LU (ILU) factorization that yields grid independent convergence behavior and
approaches an exact factorization as the amount of allowed fill is increased.

The incompressible Navier–Stokes equations can be written as

∂u

∂t
+ u · ∇u = −∇p+

1

Re
∆u,

∇ · u = 0,
(3.1)

where Re = ρU
µ is the Reynolds number, ρ is the density and µ is the dynamic

viscosity. These equations are discretized using a second-order symmetry-
preserving finite volume method on an Arakawa C-grid; see Figure 3.1. The
discretization leads to a system of ordinary differential equations (ODEs)

M
du

dt
+N(u,u) = −Gp+

1

Re
Lu+ fu,

−GTu = fp,

21

22 Linear systems

where u and p now represent the velocity and pressure in each grid point,
N(·, ·) is the bilinear form arising from the convective terms, L is the dis-
cretized Laplace operator, G is the discretized gradient operator, M is the
mass matrix, which contains the volumes of the grid cells on its diagonal and
f contains the known part of the boundary conditions. Note that minus the
transpose of the gradient operator gives us the divergence operator.

If we fix one of the variables in the bilinear formN , it becomes linear, hence
we may write

N(u,v) = N1(u)v = N2(v)u,

where we assume that N1(u) contains the discretized convection terms, and
N2(u) contains the cross terms. Using this notation, the linear system of sad-
dle point type (Benzi et al., 2005) that has to be solved with Newton’s method
in a continuation is given by(

N1(u) +N2(u)− 1
ReL G

GT 0

)(
∆u
∆p

)
= −

(
fu
fp

)
. (3.2)

u

v

p

Figure 3.1: Positioning of unknowns in an Arakawa C-grid

It is known (Verstappen and Veldman, 2003), that, on closed domains, dis-
sipation of kinetic energy only occurs by diffusion. Our discretization pre-
serves this property, which has the consequence that for divergence-free u,
the operator N1(u) is skew-symmetric. This means that if we omit N2(u),
the approximate Jacobian will become negative definite on the space of dis-
crete divergence-free velocities. Omitting N2(u) greatly simplifies the solu-
tion process since definiteness is a condition under which many standard iter-
ative methods converge. This is a simplification that many authors make, and
results in replacing the Newton iteration by a Picard iteration (Elman et al.,
2014). This works well for reasonably low Reynolds numbers, and far away
from bifurcation points where steady solutions become unstable. The Picard
iteration, however, seriously impairs the convergence rate of the nonlinear
iteration (Carey and Krishnan, 1987; Baars et al., 2019b).

Similarly some authors use time dependent approaches to study the stabil-
ity of steady states (Dijkstra et al., 2014). This approach, however, also requires
some tricks to obtain the desired information.

Linear systems 23

Since we want to study precisely the phenomena where the above meth-
ods experience difficulty, we would rather use the full Jacobian matrix of the
nonlinear equations and apply Newton’s method directly.

There are many methods that are based on segregation of physical vari-
ables which can solve the linear equations that arise in every Newton itera-
tion. In this approach the system is split into subproblems of an easier form
for which standard methods exist. The segregation can already be done at the
discretization level, e.g. by doing a time integration and solving a pressure
correction equation independently of the momentum equations (Verstappen
and Veldman, 2003; Verstappen and Dröge, 2005). Another class of methods
performs the segregation during the linear system solve, often in a precon-
ditioning step. Important are physics based preconditioners (De Niet et al.,
2007; Klaij and Vuik, 2012; Cyr et al., 2012; He et al., 2018), which try to split the
problem in subsystems which capture the bulk of the physics. The subsystems
are again solved by iterative procedures, e.g. algebraic multigrid (AMG) for
Poisson-like equations. These methods consist of nested loops for: the nonlin-
ear iteration, iterations over the coupled system, and iterations over the sub-
systems. The stopping criteria of all these different iterations have to be tuned
to make the solver efficient. Furthermore, the total number of iterations in the
innermost loop is given by the product of the number of iterations performed
on all three levels of iteration and thus easily becomes excessive. This is a
major problem when trying to achieve extreme parallelism, because each in-
nermost iteration typically requires global communication in inner products.
The number of levels of nested iteration may increase even more if additional
physical phenomena are added (De Niet et al., 2007; Thies et al., 2009). Our
ultimate aim is to get rid of the inner iterations altogether and to solve the
nonlinear equations using a subspace accelerated inexact Newton method. In
Sleijpen and Wubs (2004) we did this for simple eigenvalue problems using
the Jacobi–Davidson method, which is in fact an accelerated Newton method.
The method we present here will make this feasible for the 3D Navier–Stokes
equations.

For this, fully aggregated approaches are important. In this category,
multigrid and multilevel ILU methods for systems of PDEs exist (see Trot-
tenberg et al. (2000); Wathen (2015) and references therein). The former is
attractive but for those methods smoothers may fail due to a loss of diago-
nal dominance for higher Reynolds Numbers, for which a common solution
is to use time integration (Feldman and Gelfgat, 2010). The latter comprise
AMG algorithms and multilevel methods like MRILU (Botta and Wubs, 1999)
and ILUPACK (Bollhöfer and Saad, 2006). ILUPACK has been successful in
many fields since it uses a bound to preclude very unstable factorizations.
However, this method does not show grid independence for Navier–Stokes
problems and is difficult to parallelize (Aliaga et al., 2008). It works well for
large problems, but not yet beyond a single shared memory system.

In this chapter we present a novel multilevel preconditioning method

24 Linear systems

which is specialized for the 3D Navier–Stokes equations. In Section 3.1, we
first describe the two-level ILU preconditioner as introduced in Wubs and
Thies (2011) and Thies and Wubs (2011). After this, we generalize the two-
level method to a multilevel method in Section 3.2. To make this method work
for the 3D Navier–Stokes equations, we introduce a skew partitioning method
in Section 3.3. In Section 3.4 we then discuss the scalability and general per-
formance of the method, and compare it to existing methods, after which we
finalize by providing a summary and discussion in Section 3.5.

3.1 The two-level ILU preconditioner

In Wubs and Thies (2011) a robust parallel two-level method was developed
for solving

Ax = b,

with A ∈ Rn×n for a class of matrices known as F-matrices. An F-matrix is a
matrix of the form

A =

(
K B
BT 0

)
,

with K symmetric positive definite and B such that it has at most two en-
tries per row and the entries in each row sum up to 0, as is the case for
our gradient matrix G (Tuma, 2002; De Niet and Wubs, 2008). It was shown
that the two-level preconditioner leads to grid-independent convergence for
the Stokes equations on an Arakawa C-grid, and that the method is robust
even for the Navier–Stokes equations, which strictly speaking do not yield
F-matrices because K becomes nonsymmetric and possibly indefinite.

Rather than reviewing the method and theory in detail, we will only briefly
present it here. For details, see Wubs and Thies (2011) and Thies and Wubs
(2011).

To simplify the discussion, we focus on the special case of the 3D incom-
pressible Navier–Stokes equations in a cube-shaped domain, discretized on
an Arakawa C-grid (see Figure 3.1). We refer to the velocity variables, which
are located on the cell faces as V -nodes, and to the the pressure, which is lo-
cated in the cell center, as P -node. The variables are numbered cell-by-cell,
i.e. the first three variables are the u/v/w-velocity at the north/east/top face
of the cell in the bottom south west corner of the domain, and variable four
is the P -node in its center. Appropriate boundary conditions (e.g. Dirichlet
conditions) are easily implemented in this situation. We remark that the al-
gorithm (and software) can handle more general situations like rectangular
domains, interior boundary cells, etc., and could be generalized to arbitrary
domain shapes and partitionings.

3.1. The two-level ILU preconditioner 25

First we describe the initialization phase of the preconditioner, which is
the necessary preprocessing that has to be done only once for a series of linear
systems with matrices with the same sparsity pattern. Then we describe the
factorization phase, which has to be done separately for every matrix. Finally
we describe the solution phase, which has to be performed for every linear
system.

Initialization phase 3.1.1

First the system is partitioned into non-overlapping subdomains. These sub-
domains may be distributed over different processes, which allows for par-
allelization of the computation. The partitioning may be done based on the
graph of the matrix, as implemented for instance in METIS (Karypis and Ku-
mar, 1998), or by a geometric approach, e.g. by dividing the domain into rect-
angular subdomains. An example of a Cartesian partitioning of a square do-
main is shown in Figure 3.2.

Figure 3.2: Cartesian partitioning of a 12 × 12 C-grid discretization of the Navier–
Stokes equations into 9 subdomains of size sx × sy with sx = sy = 4. The interiors
are shown in gray. Velocities of the same (non-gray) color that are on the same face of
neighboring cells form a separator group. The red circles are pressure nodes that are
retained.

In the discretization, variables in a subdomain may be coupled to variables
in other subdomains. This means that the linear systems associated with the

26 Linear systems

subdomains may not be solved independently. For this reason we define over-
lapping subdomains, which have interior nodes that are in the non-overlapping
subdomain and are coupled only to variables in the overlapping subdomain.
The interiors of all subdomains may be solved independently. The nodes in
the overlapping subdomains that are not coupled only to variables in the same
overlapping subdomain constitute the separator nodes. One separator is defined
as a set of separator nodes that are coupled with the same set of subdomains.
One separator group is defined as the variables on the same separator that have
the same variable type. In Figure 3.2 the interior nodes are shown in gray and
the different separator groups are denoted by different colors.

We can now reorder the matrix A such that the interiors (I) and separators
(S) are grouped. This gives us the system(

AII AIS
ASI ASS

)(
xI
xS

)
=

(
bI
bS

)
,

where AII consists of independent diagonal blocks. Since AII consists of in-
dependent diagonal blocks, applyingA−1

II is easy and trivial to parallelize. For
this reason, we aim to solve

SxS = bS −ASIA−1
II bI ,

xI = A−1
II bI −A−1

II AISxS ,

where S is the Schur complement given by S = ASS −ASIA−1
II AIS .

Whether a variable is coupled to a different subdomain can be determined
from the graph of the matrix. It may again also be determined geometri-
cally by additionally defining the overlapping subdomains during the par-
titioning step, and checking what overlapping subdomains a node of the non-
overlapping subdomain belongs to. The separators can be determined by, for
every node, making a set of subdomains it is coupled to or overlapping sub-
domains it belongs to, and then grouping the nodes that have the same set.

There are three types of separators: faces (in 3D), edges and corners. For
the Navier–Stokes problem on a C-grid, these separators only consist of V -
nodes. The P -nodes are only connected to V -nodes that belong to the same
overlapping subdomain, so these should never lie on a separator. We arbi-
trarily choose one P -node in every interior which we also define to be its own
separator group to make sure the Schur complement stays nonsingular.

For every separator we now define a Householder transformation which
decouples all but one V -node from the P -nodes (Wubs and Thies, 2011). This
transformation is of the form

Hj = I − 2
vjv

T
j

vTj vj
, (3.3)

3.1. The two-level ILU preconditioner 27

for some separator group gj with

v
(k)
j =

{
e

(k)
j + ‖ej‖2 if node k is the first node of separator group gj
e

(k)
j otherwise

(3.4)

and

e
(k)
j =

{
1 if node k is in separator group gj
0 if node k is not in separator group gj

for all k = 1, . . . , n. We call the one V -node that is still coupled to the P -nodes
a VΣ node.

The physical interpretation of this Householder transformation is that the
VΣ velocities that remain on a separator face provide an approximation of the
collective flux through that face. It is therefore important that the variables are
correctly scaled before the factorization in a way that they represent fluxes. In
the matrix in (3.2) this gives a G-part with entries of constant magnitude, in
which case the Householder transformations will exactly decouple the non-
VΣ nodes from the pressures. Since the Householder transformation can be
applied independently for every separator, we may collect all these transfor-
mations in one single transformation matrix H .

Factorization phase 3.1.2

For every overlapping subdomain Ωi, i = 1, . . . , N , where N is the total num-
ber of overlapping subdomains, we can define a local matrix

A(i) =

(
A

(i)
II A

(i)
IS

A
(i)
SI A

(i)
SS

)
.

After computing the factorization A(i)
II = L

(i)
IIU

(i)
II , the local contribution to the

Schur complement is given by

Si = A
(i)
SS −A

(i)
SI(L

(i)
IIU

(i)
II)−1A

(i)
IS ,

and the global Schur complement is given by

S =

N∑
i=1

Si.

We now apply the Householder transformation

ST = H(

N∑
i=1

Si)H
T =

N∑
i=1

HiSiH
T
i , (3.5)

28 Linear systems

which can be done separately for every separator or subdomain, or on the en-
tire Schur complement. We choose to do this separately for every subdomain,
since H is very sparse, and sparse matrix-matrix products are very expensive
and memory inefficient.

We now drop all connections between VΣ and non-VΣ nodes and between
non-VΣ nodes and non-VΣ nodes in different separator groups. The dropping
that is applied here is what makes our factorization inexact. Not applying the
dropping gives us a factorization that can still be partially parallelized, but is
also exact.

Our transformed Schur complement is now reduced to a block-diagonal
matrix with blocks for the non-VΣ nodes for every separator and one block
for all VΣ nodes, which we will call SΣΣ. Separate factorizations can again be
made for all these diagonal blocks, which can again be done in parallel. For
the non-VΣ blocks, sequential LAPACK solves can be used, and for SΣΣ we
can employ a (distributed) sparse direct solver. We denote the factorization
that is computed by these solvers by LSUS .

The full factorization obtained by the method is given by

A =

(
LII 0
ASI HTLS

)(
UII (LIIUII)

−1AIS
0 USH

)
.

3.1.3 Solution phase

After the preconditioner has been computed, it can be applied to a vector in
each step of a preconditioned Krylov subspace method, for which we use the
well-known GMRES method (Saad and Schultz, 1986). Communication has
to occur in the application of AIS and ASI , and when solving the distributed
VΣ system. The latter was adressed by using a parallel sparse direct solver
in Thies and Wubs (2011), but in the next section we propose a different road
that does not rely on the availability of such a solver.

3.2 The multilevel ILU preconditioner

The main issue with the above two-level ILU factorization that prevents scal-
ing to very large problem sizes in three space dimensions is that as the prob-
lem size increases and the subdomain size remains constant, the size of SΣΣ

will increase steadily and any (serial or parallel) sparse direct solver will even-
tually limit the feasible problem sizes. Increasing the subdomain size, on
the other hand, leads to more iterations and therefore more synchronization
points.

One of the strong points, on the other hand, is the fact that it preserves
the structure of the original problem in the sense that, when applied to an
F-matrix, it produces a strongly reduced matrix SΣΣ which is again an F-
matrix. It is therefore intuitive to try applying the scheme recursively to avoid

3.2. The multilevel ILU preconditioner 29

the problem of the growing sparse matrix that has to be factorized. From the
structure preserving properties of the algorithm, it is immediately clear that
such a recursive scheme will again lead to grid-independent convergence if
the number of recursions is kept constant as the grid size is increased.

From now on we will refer to the number of recursions, or the number of
times a reduced matrix SΣΣ is computed, as the number of levels. Note that
this means that the method, which was previously referred to the two-level
method is in fact the first level of the multilevel method. Applying a direct
solver to ST from (3.5) would be level zero, since in this case the precondi-
tioner itself is in fact just a direct solver.

In order to apply the method to the reduced matrix SΣΣ, we need a coarser
partitioning for which it is most optimal in terms of communication to make
sure subdomains are not split up in the new partitioning. In case we have a
regular partitioning like a rectangular partitioning this may be done by mul-
tiplying the separator length by a certain coarsening factor. Having a coarsening
factor of 2 would mean that in 3D the separator length is increased by a factor
2, and the number of subdomains is reduced by a factor 8.

As stated in the previous section, we require the velocity variables to be
correctly scaled to be able to apply the Householder transformation. How-
ever, the VΣ-variables from the previous level that lie on one separator had a
different number of variables in their separator groups. In case of a regular
partitioning, an edge separator, for instance, consists of VΣ-nodes from two
edges and one corner from the previous level This leads to a different scaling
of the VΣ-nodes and thus to non-constant entries in the G-part of SΣΣ. In-
stead of re-scaling the SΣΣ matrix on every level, we instead use a test vector
t. The test vector is defined initially as a constant vector of ones, and is mul-
tiplied by the Householder transformation H at each consecutive level. The
Householder transformation is as defined in (3.3) and (3.4), but now with

e
(k)
j =

{
t(k) if node k is in separator group gj
0 if node k is not in separator group gj

for all k = 1, . . . , n. After applying the Householder transformation, we can
again apply dropping to remove connections between VΣ and non-VΣ nodes
and between non-VΣ nodes and non-VΣ nodes in different separator groups.
When the matrix SΣΣ is sufficiently small, a direct solver is applied to factorize
it.

Instead of just having one separator group per variable per separator, we
may also choose to have multiple separator groups, meaning that instead of
retaining only one VΣ node per variable per separator we retain multiple VΣ

nodes. This in turn means that less dropping is applied, and therefore the
factorization is more exact. Retaining all nodes in this way, possibly only after
reaching a certain level, gives us an exact factorization, which, in terms of

30 Linear systems

iterations for the outer iterative solver, should give the same results as using
any other direct solver at that level.

3.3 Skew partitioning in 2D and 3D

Looking at Figure 3.2, we see that there are pressures that are located at the
corners of the subdomains that are surrounded by velocity separators. This
means that if we add these pressures to the interior, as was suggested above,
we get a singular interior block. We call these pressure nodes that are sur-
rounded by velocity separators isolated pressure nodes. For the two-level pre-
conditioner in 2D, it was possible to solve this problem by turning these pres-
sures into their own separator groups. This unfortunately does not work for
the multilevel method, since in this case velocity nodes around the isolated
pressure nodes get eliminated. It also does not work in 3D because there the
isolated pressure nodes also exist inside of the edge separators, where they
form tubes of isolated nodes.

A possible way to solve this for the multilevel case and in 3D is to also turn
all velocity nodes around the isolated pressure nodes into separate separator
groups. This means that they will all be treated as VΣ nodes and will never
be eliminated until they are in the interior of the domain at a later level. This,
however, has a downside that a lot more nodes have to be retained at every
level, resulting in much larger SΣΣ matrices at every level. Another downside
is that a lot of bookkeeping is required to properly keep track of all the extra
separator groups.

In 2D, we can resolve these problems by rotating the Cartesian partitioning
by 45 degrees. The result is shown in Figure 3.3a. It is easy to see that in this
case no pressure nodes are surrounded by only velocity separators. We call
this partitioning method skew partitioning. In Figure 3.3, we also show the
workings of the multilevel method, with all the steps being displayed in the
different subfigures.

The most basic idea for generalizing the rotated square shape to a 3D set-
ting was to use octahedral subdomains. Partitioning with this design turned
out to be unsuccessful, but it is still briefly discussed here since it led to some
new insights. Since regular octahedrons (the dual to cubes, having their ver-
tices at the centers of the cube faces) in itself are not space tiling, the octahe-
drons can be slightly distorted to make them fit within a single cubic repeat
unit. The resulting subdomains are space tiling, but only by using three mu-
tually orthogonal subdomain types. The fact that it requires the use of three
types of templates increases the programming efforts significantly since it in-
troduces a lot of exceptional cases that should be considered, e.g. for subdo-
mains located at the boundary of the domain.

A problem with the octahedral subdomains is that they are not scalable,
meaning that we can not construct a larger octahedral subdomain from mul-

3.3. Skew partitioning in 2D and 3D 31

(a) Initial partitioning (b) After elimination of interiors only the
separator groups remain

(c) The Householder transformations leave
one VΣ-node per separator group

(d) Partitioning on next level

Figure 3.3: Skew partitioning of a 12 × 12 C-grid discretization of the Navier–Stokes
equations into 12 subdomains. The interiors are shown in gray. Velocities of the same
(non-gray) color that are on the same face of neighboring cells form a separator group.
The red circles are pressure nodes that are retained. This example uses a coarsening
factor of 2, i.e. the separators on the next level have twice the length of those on the
previous level.

32 Linear systems

tiple smaller octahedral subdomains. This is of course required for the mul-
tilevel method. However, scalability can be achieved by splitting the octahe-
drons into four smaller tetrahedrons, of which six different types are required
to fill 3D space. This would introduce additional separator planes that are
similar to the 2D skew case and hence it increases the risk of isolating a pres-
sure node when such planes intersect. Especially planar intersections which
are parallel to either of the Cartesian axes have a high risk of producing iso-
lating pressure nodes.

We did indeed not manage to find any scalable tiling using tetrahedrons
that would not give rise to any isolated pressure nodes. Moreover, we would
like to have a singular subdomain shape that we can use instead of six, since
this would greatly simplify the implementation. A lesson we learned is that
isolated pressure nodes always seem to arise when having faces that are
aligned with the grid. Therefore, we looked into a rotated parallelepiped
shape that does not have any faces that are aligned with the grid (Van der
Klok, 2017). This shape is shown in Figure 3.4a, where the cubes represent a
set of sx × sx × sx grid cells. A welcome property of this domain is that its
central cross section resembles the proposed skew 2D partitioning method.

A schematic view of the position of the separator nodes is shown in Figure
3.4b. Here we see that on the side that is facing towards us, only half of the
w-nodes are displayed. This is because the other half of the separator nodes
is behind the u-nodes and v-nodes that are shown. This alternating property
is required to make sure that we do not obtain isolated pressure nodes. If,
for instance, all w-separator nodes that stick out in the figure were instead
flipped to the inside, we would have an isolated pressure node in the bottom
row. A consequence of this alternating property is that the w-planes have
to be divided into two separate separator groups; one for each of the two
neighboring subdomains in which these nodes are actually located.

Another advantage of using a skew domain partitioning is that the amount
of communication that is required is reduced compared to a square partition-
ing. In Bisseling (2004), it is estimated that for the Laplace problem, the com-
munication is asymptotically reduced by a factor of

√
2 for the 2D diamond

shape. If we instead compare the diamond shape to a rectangular domain
with the same number of nodes (having the same number of nodes with a
square domain is impossible), we find that communication is reduced by a fac-
tor of 3

2 . In the same manner, we can compare a 3D domain of size sx×sx×sx/2
to the rotated parallelepiped, and find a factor of 4

3 . We remark that the trun-
cated octahedron that is used in Bisseling (2004) for the 3D domain and has
a factor of 1.68 can not be used for our multilevel method, since truncated
octahedra are not scalable.

3.4. Numerical results 33

y x

z

(a) Shape of the parallelepiped inside of
two cubes that exist of m×m×m grid
cells

y x

z

(b) Schematic view of the position of
the separator nodes, where u-nodes are
depicted in red, v-nodes in green and
w-nodes in yellow.

Figure 3.4: Parallelepiped shape for partitioning the domain.

Numerical results 3.4

A common benchmark problem in fluid dynamics is the lid-driven cavity
problem. We consider an incompressible Newtonian fluid in a square three-
dimensional domain of unit length, with a lid at the top which moves at a con-
stant speed U . The equations are given by (3.1). No-slip boundary conditions
are applied at the walls, meaning that they are Dirichlet boundary conditions,
and the equations are discretized on an Arakawa C-grid as described before.
We take nx = ny = nz grid points in every direction.

At first, however, we will only look at the Stokes equations of the form

µ∆u−∇p = 0,

∇ · u = 0.

This is because our preconditioner is constructed in such a way that memory
usage and time cost for both computation and application of the precondi-
tioner should not be influenced by inclusion of the convective term. After

34 Linear systems

this, we will further investigate the behavior on the lid-driven cavity problem
for increasing Reynolds numbers, which constitute harder problems. There-
fore we expect an increase in iterations of the iterative solver, but otherwise
the same behavior.

For obtaining the exact memory usage, we developed a custom library
which overrides all memory allocation routines when linking against it. The
library contains a hash table in which the amount of memory that is allocated
is stored by its memory address. We keep track of the total amount of memory
that is allocated, which is increased on memory allocation, and reduced by the
amount that is stored in the hash table when memory is freed. The reason we
did this is that existing methods rely on rough estimates of the memory usage
of the used data structures, use the data that is available from /proc/meminfo
which is inaccurate, or actually count memory usage in a similar way as we
do (i.e. valgrind), but have a large performance impact.

We perform every experiment twice: once to determine the memory usage,
and once to determine the run time, without linking to the memory usage
library. This means that when reporting timing results, we are not impacted
by the performance impact of tools to determine memory usage. The reason
that we are still concerned about their performance impact, even though we
developed our own library, is that it adds roughly a constant amount of time
per process, which impacts scalability results. The memory usage that we
report is the exact difference in memory usage before and after a certain action
is performed, e.g. before and after the construction of the preconditioner.

For the timing results, we do not include the time it takes to compute the
partitioning. The partitioning is computed by first constructing a template se-
quentially, which contains all possible nodes of exactly one overlapping sub-
domain, which may even partially be outside of the domain. This template is
then mapped to the correct position for every other overlapping subdomain
to determine the interiors and separator groups. However, since the template
contains all possible nodes, every time we increase the number of levels by
1, the amount of time to compute this template increases by a factor 8, which
is the worst possible scenario. The reason we do not include this in the tim-
ing results is that this may be resolved by only computing the partitioning for
nodes that are still present in the Schur complement at that level. This would,
however, require a full rewrite of the existing partitioning code, while it would
not have any impact on the timing results of the rest of the code, since this is
completely decoupled. This means that even though the partitioning method
does not scale at all, the preconditioning method itself can be studied reliably
without including the timing of the partitioning.

For the implementation of the preconditioner and solver, we use libraries
from the Trilinos project (Heroux et al., 2005). The libraries we use are Epetra
(vector and matrix data structures), IFPACK (direct solver and precondition-
ing interfaces) (Sala and Heroux, 2005), Amesos (direct solvers) (Sala et al.,
2008) and Belos (iterative solvers) (Bavier et al., 2012). As iterative solver we

3.4. Numerical results 35

use GMRES(250) (Saad and Schultz, 1986), as parallel sparse direct solver on
the coarsest level we use SuperLU DIST 6.1 (Liu et al., 2018), and as direct
solver for the interior blocks we use KLU (Davis and Natarajan, 2010) with
the fill-reducing ordering from De Niet and Wubs (2008).

The benchmark is performed on Cartesius, which is the Dutch national
supercomputer. We used the Haswell nodes, which consist of 2 × 12-core 2.6
GHz Intel Xeon E5-2690 v3 (Haswell) CPUs per node with 64 GB per node. For
all experiments, we disabled multithreading inside the MPI processes, since
this is poorly implemented in Epetra, and causes results to become worse in-
stead of better.

Due to issues with the interconnection between nodes, which are most
likely caused by hardware issues, we were not able to run our code on more
than 2048 cores. Note that this holds for a large number of applications and
not just our application, and has been confirmed to not be an issue with our
code. For this reason we do not look at the scalability past 83 = 512 cores, even
though we also wanted to add experiments for 84 = 4096 cores. The connec-
tion issues that we observed are also likely to have impacted performance of
the experiments that we report in this section, especially when larger numbers
of cores are used.

Weak scalability 3.4.1

First, we look at results obtained when increasing the grid size nx at the same
rate as the number of used cores np, i.e. the problem size on each core is kept
constant. The exact configurations that we use are 1 core for nx = 16, 1 core
for nx = 32, 8 cores for nx = 64, 64 cores for nx = 128 and 512 cores for
nx = 256. The size of the subdomains (the size of the cubes in Figure 3.4a) at
the first level is sx = 8, while we choose the coarsening factor to be 2, meaning
we increase sx by a factor of 2 at each level. We perform experiments when
keeping the number of levels constant at L = 2, and when increasing the
number of levels by 1 when doubling the grid size. For the latter, we look at
three cases where we retain a different number of separator nodes starting at
level 2: 1, 4, and all.

For the fixed number of levels, we expect the number of iterations of the it-
erative solver to converge to a constant number as the domain size increases.
For the case where we increase the number of levels as the domain size in-
creases, we expect the number of iterations to only increase mildly, and we
expect that retaining more separator nodes starting at level 2 decreases the
number of iterations until it again becomes constant as we retain more and
more nodes per separator.

The results are shown in Figure 3.5. We see that indeed the number of iter-
ations becomes constant when fixing the number of levels or when retaining
all separator nodes. When increasing the number of levels with the grid size,
we see that the number of iterations appears to increase linearly. Interesting

36 Linear systems

16 32 64 128 256

100

200

300

400

Grid size (nx)

N
um

be
r

of
it

er
at

io
ns

L = 2

L = log2(nx)− 2, retain 1
L = log2(nx)− 2, retain 4
L = log2(nx)− 2, retain all

Figure 3.5: Number of iterations of GMRES for the Stokes problem on a grid of size
nx × nx × nx, while keeping the number of levels at L = 2, and when increasing the
number of levels by 1 when nx is doubled. A relative residual of 10−8 was used as
convergence tolerance.

is that when retaining 4 instead of 1 separator node per separator group after
level 2, the number of iterations that is required decreases drastically, even
though this does not have a significant impact on the memory usage as we
will see later.

The computational time of both computing the preconditioner, as well as
the solution of the linear system would ideally become constant when keep-
ing the problem size at each core constant while increasing the problem size.
However, in practice this is not possible since increasing the number of cores
also increases the required amount of communication. The results are shown
in Figure 3.6 and Figure 3.7.

When computing the preconditioner, we see that especially at the largest
grid sizes, the amount of computational time tends to increase, while for
smaller problems it appeared to become constant. This is because for the
smaller problems, at most 3 computing nodes were used, meaning very lit-
tle communication between computing nodes was required. When increasing
the number of computing nodes, the amount of required communication in-
creases, which happens mainly at the point where contributions of neighbor-
ing subdomains have to be added up in the Schur complement. Since retain-
ing more nodes per level means an increase in the amount of communication,
we see that retaining 4 or all nodes takes more time than retaining only 1 node
per separator at every level.

3.4. Numerical results 37

16 32 64 128 256
0

10

20

30

40

50

Grid size (nx)

Ti
m

e
(s

)
L = 2

L = log2(nx)− 2, retain 1
L = log2(nx)− 2, retain 4
L = log2(nx)− 2, retain all

Figure 3.6: Time to compute the preconditioner for the Stokes problem on a grid of
size nx × nx × nx, while keeping the number of levels at L = 2, and when increasing
the number of levels by 1 when nx is doubled.

We also notice that retaining all nodes after level 2 is much more inefficient
than just using SuperLU DIST at level 2, meaning that our preconditioner per-
forms very poorly as a direct solver. This is mainly due to the fact that the
Schur complement at the last level is quite large and full. The last level Schur
complement for a grid of size 2563 has size 20961× 20961 and its factorization
is filled with 72% nonzeros. Computing the factorization of this matrix and
applying it is therefore really expensive. Using a parallel dense solver instead
of SuperLU DIST should help to make it more efficient. Moreover, since the
cost of computing the factorization in a sparse direct solver goes at best with
O(n2/np) = O(n3

x) (Liu et al., 2018), we expect that the cost of computing the
preconditioner when keeping the number of levels constant, or when retain-
ing all separator nodes, increases with n3

x.

In Figure 3.7, we show both the time it takes to solve the linear system
after computation of the preconditioner, and the time of 1000 applications of
the preconditioner, which is not influenced by the number of iterations of the
iterative solver and does not include time spent on for instance matrix-vector
products and orthogonalization. First of all, we again observe that retain-
ing all separator nodes is a bad idea, since the computation time goes off the
chart. For the case where we only use 2 levels, we also see the unwanted be-
havior of a time that keeps increasing linearly for the total solution time, and
superlinearly for the application of the preconditioner, where we would actu-

38 Linear systems

16 32 64 128 256
0

50

100

150

Grid size (nx)

Ti
m

e
(s

)
L = 2

L = log2(nx)− 2, retain 1
L = log2(nx)− 2, retain 4
L = log2(nx)− 2, retain all

Figure 3.7: Time to solve the linear system with GMRES (lines), and time of 1000 ap-
plications of the preconditioner (dashed lines). This is for the Stokes problem on a grid
of size nx×nx×nx, while keeping the number of levels at L = 2, and when increasing
the number of levels by 1 when nx is doubled. A relative residual of 10−8 was used as
convergence tolerance.

ally expect O(n4/3/np) = O(nx) behavior from the triangular solve (Liu et al.,
2018). This may be caused by disabling multithreading support, which results
in a lot of extra communication inside of SuperLU DIST.

For both cases where we retain 1 and 4 separator nodes after 2 levels, we
see that the computational time appears to become constant for larger grid
sizes. We also note that even though the case where we retain 4 nodes is
slower per application, it is faster in total solution time due to the lower num-
ber of iterations that is required, as can also be seen in Figure 3.5, and the fact
that applying the preconditioner is so cheap.

In Figure 3.8, we see the average memory usage of the preconditioner per
core. Here we again observe that the 2 level case, and the case where we retain
all separator nodes after level 3 performs poorly. The case where we retain 1
or 4 separator nodes per separator group after level 2 show similar behavior
in terms of memory usage. We see, however, that the memory usage of the
latter two cases does not become constant. We will discuss this further in the
next section.

3.4. Numerical results 39

16 32 64 128 256
0

100

200

300

400

Grid size (nx)

M
em

or
y

us
ag

e
(M

B)

L = 2

L = log2(nx)− 2, retain 1
L = log2(nx)− 2, retain 4
L = log2(nx)− 2, retain all

Figure 3.8: Memory usage of the preconditioner per core for the Stokes problem on
a grid of size nx × nx × nx, while keeping the number of levels at L = 2, and when
increasing the number of levels by 1 when nx is doubled.

Strong scalability 3.4.2

In this section, we will look at a problem with size nx = 128, with 6 levels
and retaining only one node per separator group. We use 1 to 128 cores for
the memory usage and 2 to 128 cores for the computational time, with steps
of a factor of 2. Reason we do not look at 1 core for the timing is that this
configuration caused a memory allocation error in the iterative solver (Belos).

We first look at the total memory usage in Figure 3.9. We observe that there
is a large difference between the memory usage on one core, and the memory
usage on two cores. This is due to the fact that mainly Epetra uses different
implementations of its data structures for serial and parallel computations.
We also observe that the total memory usage increases when using more cores.
We found that this increase happens when the so called column maps are
constructed, which are used in every sparse matrix data structure in Epetra.
The matrices in Epetra are distributed by rows, meaning that a row is always
stored on a single core. The global indices of local rows of a certain process are
stored in the row map. This map is of roughly constant size independent of
the number of processes due to its unique nature. The column indices of the
nonzeros that are present in one row may, however, not belong to rows that
are also stored in the same process. Therefore the corresponding column map,
which stores all the column indices, has overlap between different processes,
and increases in size when more processes are used. The map is needed in

40 Linear systems

1 8 16 64 128

12

13

14

15

16

Number of cores (np)

M
em

or
y

us
ag

e
(G

B)

Figure 3.9: Memory usage of the preconditioner for the Stokes problem on a grid of
size 1283, with 1 to 128 cores.

for instance a matrix-vector product. That is, in case of a square matrix, the
left- and right-hand side vectors have the same map as the row map of the
matrix, so to multiply one row of the matrix with the left hand side vector
requires communication with all indices that are stored in the column map.
This means that not only the memory usage increases, but also the time cost,
since a larger column map means more communication is required. Note that
we also see this behavior not only in our preconditioner but also in the storage
of the original matrix.

Since the difference in communication between a cubical domain and a
parallelepiped shaped domain is a constant factor of 3

4 , we may instead look
at a cubical domain to explain this behavior. Say we have a subdomain of
size sx × sy × sz , then communication is required for 2sxsy + 2sxsz + 2sysz
grid cells. If we now split this subdomain in the x-direction, then we require
communication for 2sxsy + 2sxsz + 4sysz grid cells. If we now assume that
sx = sy = sz , we see that communication increases with a factor 4

3 , meaning
that we expect the size of the column map increases with a factor 4

3 when
doubling the number of cores. This is, however, not what we observe. When
increasing the number of cores even further, we even see a factor of 10 instead
of 4

3 . This appears to be because of caching that happens inside of both Epetra
and MPI itself when the column map is constructed. We checked that the
actual column map shows the 4

3 behavior that we expect.
In Figure 3.10 we look at the speedup when using more cores. Ideally, we

would see that using twice the number of cores means half of the computa-

3.4. Numerical results 41

1 2 4 8 16 32 64 128
1

2

4

8

16

32

64

128

Number of cores (np)

Sp
ee

du
p

Ideal
Compute
Apply

Figure 3.10: Speedup of computation and application of the preconditioner for the
Stokes problem on a grid of size 1283, with 2 to 128 cores.

tional time. We plotted this ideal line for reference. We see that the speedup
of the computation of the preconditioner is very close to this ideal line. The
application of the preconditioner is a bit further from the ideal line. This is
again mostly due to the communication that is required for the non-local col-
umn indices, but may also be affected by the issues with the interconnection
between nodes that we discussed earlier.

Lid-driven cavity 3.4.3

In the previous sections we determined the strong and weak scalability prop-
erties of the preconditioner, which means that we can now continue with
the robustness of the solver on the lid-driven cavity problem with increasing
Reynolds numbers. We perform a continuation with steps of Re = 100 starting
from the solution of the Stokes problem. We show the results of the first itera-
tion of Newton at Re = 500 and Re = 2000. Reason we go up to Re = 2000 is
that a Hopf bifurcation is located between Re = 1900 and Re = 2000, which is
of interest (Baars et al., 2019b).

In Figure 3.11 and Figure 3.12, we show the results at Reynolds number
500, which show good correspondence with the results on the Stokes prob-
lem. Again the number of iterations appears to become constant when the
number of levels is kept the same, and retaining more nodes gives better con-
vergence. The main difference is that more iterations are needed, since higher

42 Linear systems

16 32 64 128 256
0

500

1,000

1,500

Grid size (nx)

N
um

be
r

of
it

er
at

io
ns

L = 2

L = log2(nx)− 2, retain 1
L = log2(nx)− 2, retain 4

Figure 3.11: Number of iterations of GMRES for the lid-driven cavity problem at Re =
500 on a grid of size nx × nx × nx, while keeping the number of levels at L = 2, and
when increasing the number of levels by 1 when nx is doubled. A relative residual of
10−8 was used as convergence tolerance.

Reynolds numbers constitute harder problems. Also interesting is that for the
2563 grid with 2 levels, SuperLU DIST aborted without any error message,
also when using different amounts of cores. In Baars et al. (2019b), we ob-
served convergence, however, so we suspect this is due to a change that was
made in version 6 of SuperLU DIST.

The results at Reynolds number 2000 are shown in Figure 3.13 and Figure
3.14. We again observe that the number of iterations is much larger. What is
odd, however, is that retaining more nodes now actually gives worse conver-
gence. This may be because we use GMRES(250) instead of GMRES due to
memory limitations, and therefore do not preserve the convergence proper-
ties of GMRES. This effect is more prevalent for this problem because of the
large number of iterations that is required. We do observe that for the first 250
iterations, retaining 4 nodes after level 2 gives rise to better convergence, as
we expected.

In Table 3.1 we show results for Reynolds number 500 using the block
preconditioner LSC (Least-Squares Commutator) implemented in Teko (Cyr
et al., 2012). We chose Teko for comparison because it is available in Trilinos
and can therefore easily be coupled to our code. We also tried other precon-
ditioners, but those did unfortunately not yield convergence. The stopping
criterion of the linear solver is 10−8, as before.

Compared to our method, we see that Teko has much more difficulty with

3.4. Numerical results 43

16 32 64 128 256
0

100

200

300

400

500

Grid size (nx)

Ti
m

e
(s

)
L = 2

L = log2(nx)− 2, retain 1
L = log2(nx)− 2, retain 4

Figure 3.12: Time for GMRES to converge for the lid-driven cavity problem at Re = 500
on a grid of size nx × nx × nx, while keeping the number of levels at L = 2, and when
increasing the number of levels by 1 when nx is doubled. A relative residual of 10−8

was used as convergence tolerance.

np nx L its tc (s) ts (s)
1 16 2 142 0.12 0.77
1 32 2 187 9.88 18.80
8 64 3 245 1511.12 313.00

Table 3.1: Performance of Teko with LSC preconditioner for the lid-driven cavity prob-
lem at Re = 500 on a grid of size nx × nx × nx. Here np is the number of cores, L is
the number of levels, its is the number of iterations, tc is the time to compute the pre-
conditioner and ts is the time for solving the linear system.

the grid refinement, leading to a huge computational cost already at a grid size
of 643. A crude computation shows that per grid point the method becomes
about 65 times more expensive per iteration. This must be attributed to slow
convergence of algebraic multigrid on the subblocks. One of these blocks is
the L + N block from (3.2), with N indefinite, and this is something that is
difficult for a standard AMG method. We chose the number of levels to be 2
for grid sizes 163 and 323, and 3 levels for 643 since these seemed to give the
optimal results. For Reynolds number 2000, we did not observe convergence
past the 163 grid.

44 Linear systems

16 32 64 128 256
0

2,000

4,000

6,000

Grid size (nx)

N
um

be
r

of
it

er
at

io
ns

L = 2

L = log2(nx)− 2, retain 1
L = log2(nx)− 2, retain 4

Figure 3.13: Number of iterations of GMRES for the lid-driven cavity problem at Re =
2000 on a grid of size nx × nx × nx, while keeping the number of levels at L = 2, and
when increasing the number of levels by 1 when nx is doubled. A relative residual of
10−8 was used as convergence tolerance.

3.5 Summary and Discussion

We presented a robust method for solving the steady, incompressible Navier–
Stokes equations, which makes use of parallelepiped shaped overlapping sub-
domains. The interiors of these overlapping subdomains can be eliminated in
parallel. On the interfaces of the subdomains, Householder transformations
are applied to decouple all but one velocity node from the pressure nodes,
after which all decoupled nodes can also be eliminated in parallel. The key
to the multilevel approach is the resulting reduced Schur complement matrix,
which has the same structure as the original matrix. Therefore we can recur-
sively apply the preconditioner to this matrix. The shape of the subdomains
makes it such that pressure nodes are not isolated in the factorization process,
which would result in a singular Schur complement matrix.

Our weak scalability experiments show that if the number of levels of the
multilevel approach is kept constant while increasing the problem size, grid
independent convergence is obtained. We also show that by increasing the
number of levels and processors as the problem size increases, we only require
a small amount of additional time and memory for both the factorization and
solution process. Moreover, by increasing the number of nodes that is retained
per separator after level 2, we can further decrease the time that is required to
solve the system.

3.5. Summary and Discussion 45

16 32 64 128
0

500

1,000

1,500

Grid size (nx)

Ti
m

e
(s

)

L = 2

L = log2(nx)− 2, retain 1
L = log2(nx)− 2, retain 4

Figure 3.14: Time for GMRES to converge for the lid-driven cavity problem at Re =
2000 on a grid of size nx × nx × nx, while keeping the number of levels at L = 2, and
when increasing the number of levels by 1 when nx is doubled. A relative residual of
10−8 was used as convergence tolerance.

Our strong scalability experiments show that the time that is required to
compute the preconditioner scales very well. The memory that is used for the
preconditioner scales slightly less optimal, but this can be explained by the
caching of communication related data structures. The slightly less optimal
time it takes to apply the preconditioner can also be explained by means of
the increased communication.

We also showed that the preconditioner gives rise to convergence of GM-
RES for the lid-driven cavity problem at high Reynolds numbers, where other
methods, such as the LSC preconditioner that in implemented in Teko, fail to
do so.

This leads us to conclude that we implemented a robust solution method
for the Navier–Stokes equations on staggered grids which shows good par-
allel scalability. In the future we want to apply our preconditioner in ocean-
climate models. The fact that it has proven to be robust for the lid-driven
cavity problem with higher Reynolds numbers leads us to believe that it will
also perform well for the ocean model described in Section 2.5.2.

C
H

A
PT

ER
4

LYAPUNOV EQUATIONS

In this chapter, we focus on stochastic partial differential equations (SPDEs)
describing fluid flows for which certain processes have been represented
stochastically or for which the forcing of the flow has stochastic properties.
In our case this is the stochastic representation of the freshwater forcing as
described in Section 2.5.2. The direct way to investigate these flows is to use
ensemble simulation techniques for many initial conditions to estimate the
probability density function (PDF) for several observables of the flows (Slingo
and Palmer, 2011). Other methods which have been suggested use some form
of model order reduction. For example, a stochastic Galerkin technique forms
the basis of the Dynamical Orthogonal Field method (DO) (Sapsis and Ler-
musiaux, 2009). Non-Markovian reduced models can also be obtained by
projecting on a basis of eigenvectors of the underlying deterministic system
(Chekroun et al., 2015).

In a deterministic-stochastic continuation method recently suggested by
Kuehn (2012), the results from fixed point computation in a deterministic
model are used to obtain information on the stationary PDF of the stochas-
tically forced system. A restriction is that linearized dynamics near the fixed
point adequately describe the behavior of the stochastic system. In this case,
one only needs the leading-order linear approximation and determines the co-
variance matrix from the solution of a Lyapunov equation. This provides all
the information to determine the probability of sample paths. The nice aspect
of this method is that one can combine it easily with deterministic pseudo-
arclength continuation methods. However, in order to apply the approach to
systems of PDEs with algebraic constraints, generalized Lyapunov equations
have to be solved.

Direct methods to solve a generalized Lyapunov equation such as the

47

48 Lyapunov equations

Bartels–Stewart algorithm (Bartels and Stewart, 1972) are based on dense ma-
trix solvers and hence inapplicable for large systems. Other existing methods
which use low-rank approximations such as Extended and Rational Krylov
subspace methods (Simoncini, 2007; Druskin and Simoncini, 2011; Stykel and
Simoncini, 2012; Druskin et al., 2014) and alternating directions implicit (ADI)
based iterative methods (Kleinman, 1968; Penzl, 1999) might also become ex-
pensive for high-dimensional problems, particularly when trying to use pre-
vious initial guesses along a continuation branch.

The aim of this chapter is to present new methodology to efficiently trace
PDFs of SPDEs with algebraic constraints in parameter space. In Section 4.1,
an extension of the approach suggested in Kuehn (2012) and the novel pro-
cedure to efficiently solve a generalized Lyapunov equation numerically are
presented. In fact, this solves an open conjecture in Kuehn (2015), which states
that it should be possible to reuse previous solutions of a continuation in a spe-
cialized Lyapunov solver. We describe the results on the model of the Atlantic
Ocean circulation in Section 4.2. The numerical aspects and capabilities of the
novel method for this application are shown in Section 4.3. In Section 4.4, we
provide a summary and discuss the results.

4.1 Methods

Any ocean-climate model consists of a set of conservation laws (momentum,
mass, heat and salt), which are formulated as a set of coupled partial differen-
tial equations, that can be written in general form as (Griffies, 2004)

M(p)
∂u

∂t
= L(p)u+N (u,p) + F(u,p), (4.1)

where L, M are linear operators, N is a nonlinear operator, u is the state
vector, F contains the forcing of the system and p ∈ Rm indicates a vector of
parameters. Appropriate boundary and initial conditions have to be added to
this set of equations for a well-posed problem.

4.1.1 Formulation of the problem

When (4.1) is discretized, eventually a set of ordinary differential equations
with algebraic constraints arises, which can be written as

M(p)
dx

dt
= L(p)x+N(x,p) + F (x,p), (4.2)

where x ∈ Rn is the state vector, M(p) ∈ Rn×n is a generally singular
matrix of which every zero row is associated with an algebraic constraint,
L(p) ∈ Rn×n is the discretized version of L, and F : Rm → Rn and
N : Rn × Rm → Rn are the finite-dimensional versions of the forcing and the

4.1. Methods 49

nonlinearity respectively. When noise is added to the forcing, the evolution
of the flow can generally be described by a stochastic differential-algebraic
equation (SDAE) of the form

M(p) dXt = f(Xt;p) dt+ g(Xt;p) dWt, (4.3)

where f(Xt;p) = L(p)Xt + N(Xt,p) + F (Xt,p) is the right-hand side of
(4.2), Wt ∈ Rnw is a vector of nw-independent standard Brownian motions
(Gardiner, 1985), and g(Xt;p) ∈ Rnw×n.

Suppose that the deterministic part of (4.3) has a stable fixed point x̄ =
x̄(p) for a given range of parameter values. Then linearization around the
deterministic steady state yields (Kuehn, 2012)

M(p) dXt = A(x̄;p)Xt dt+B(x̄;p) dWt, (4.4)

where A(x;p) ≡ (Dxf)(x;p) is the Jacobian matrix and B(x;p) = g(x̄;p).
From now on, we drop the arguments of the matrices A,B and M .

In the special case thatM is a nonsingular matrix, the equation (4.4) can be
rewritten as

dXt = M−1AXt dt+M−1B dWt, (4.5)

which represents an n-dimensional Ornstein–Uhlenbeck (OU) process. The
corresponding stationary covariance matrix C is determined from the follow-
ing Lyapunov equation (Gardiner, 1985)

M−1AC + CATM−T +M−1BBTM−T = 0.

This equation can be rewritten as a generalized Lyapunov equation

ACMT +MCAT +BBT = 0. (4.6)

If M is a singular diagonal matrix then (4.5) does not apply. However, if the
stochastic part is non-zero only on the part where M is nonsingular (which
occurs often when the noise is in the forcing of the flow), then (4.4) can be
written as(

0 0
0 M22

)(
dXt,1

dXt,2

)
=

(
A11 A12

A21 A22

)(
Xt,1

Xt,2

)
dt+

(
0
B2

)
dWt, (4.7)

where M22 represents the nonsingular part of M . Consequently, for nonsin-
gular A11 we can separate (4.7) into an algebraic part and an explicitly time-
dependent part,

A11Xt,1 +A12Xt,2 = 0, (4.8a)
M22 dXt,2 = SXt,2 dt+B2 dWt, (4.8b)

where S = A22 − A21A
−1
11 A12 is the Schur complement of A, which is well-

defined since A11 is nonsingular as the Jacobian A has eigenvalues strictly

50 Lyapunov equations

in the left-half complex plane by the assumption on deterministic stability
of x̄. Since M22 is nonsingular by construction we can find the stationary
covariance matrix C22 by solving the corresponding generalized Lyapunov
equation

SC22M
T
22 +M22C22S

T +B2B
T
2 = 0. (4.9)

We remark that (4.9) could alternatively be derived using an epsilon-
embedding approach for the differential algebraic equations. In order to find
the full covariance matrix we use Cij = E[Xt,iX

T
t,j] together with (4.8a) which

gives

C12 = −A−1
11 A12E[Xt,2X

T
t,2]

= −A−1
11 A12C22,

C21 = −E[Xt,2X
T
t,2]AT12A

−T
11

= −C22A
T
12A

−T
11 = CT12,

C11 = A−1
11 A12E[Xt,2X

T
t,2]AT12A

−T
11

= −A−1
11 A12C21.

In summary, we can obtain an estimate of the covariance matrix C of the
stochastic dynamical system (4.3) by providing the matrices A, B and M and
solving the corresponding generalized Lyapunov equation (4.6), or (4.9) in
case M is singular. Once the covariance matrix C is computed, the stationary
PDF of the approximating OU-process, indicated by p(x) follows as (Gardiner,
1985; Kuehn, 2011)

p(x; x̄) =
1

(2π)
n
2
| C |−1/2 e−

1
2 (x−x̄)TC−1(x−x̄). (4.10)

The limitations of this approach are, firstly, that only a PDF estimate is pro-
vided valid on a subexponential time scale before large deviations occur and,
secondly, that only the local behavior near the steady state and Gaussian
stochastic behavior of the system are obtained.

4.1.2 A novel iterative generalized Lyapunov solver

The type of systems of the form (4.6) that we want to solve are typically sparse
and have a dimension n = O(105) or larger. Solving systems of this size re-
sults in a C that is generally a dense matrix of the same size. This is computa-
tionally very expensive in terms of both time and memory. Consequently, one
cannot aim to compute the full C but only a low-rank approximation of the
form C ≈ V TV T . In existing iterative solution methods for low-rank approxi-
mations (Kleinman, 1968; Penzl, 1999; Saad, 1990; Simoncini, 2007; Stykel and
Simoncini, 2012) the matrix V is usually computed using repetitive products

4.1. Methods 51

with B in every iteration, for instance in such a way that it spans the Krylov
spaces Km(A,B) or Km(A−1, B). In practice, however, the matrix B might
have many columns, which means that in every iteration of such a method
many matrix-vector products have to be performed or many linear systems
have to be solved. These operations take up by far the largest amount of time
in every iteration, which is why we would like a method that does not expand
the search space with the same number of vectors as the number of columns
in B.

The solution method we propose is based on a Galerkin projection, and
is very similar to the method in Saad (1990). It works by solving projected
systems of the form

V TAV TV TMTV + V TMV TV TATV + V TBBTV = 0,

where C is approximated by a low-rank approximation C̃ = V TV T , and T
is generally a dense symmetric matrix which should not be confused with
the superscript T denoting transposition. Now if we take Ã = V TAV ,
M̃ = V TMV , B̃ = V TB, we get the smaller projected generalized Lyapunov
equation

ÃTM̃T + M̃T ÃT + B̃B̃T = 0, (4.11)

which can be solved by a dense solution routine (Bartels and Stewart, 1972).
A problem that arises when solving generalized Lyapunov equations in an

iterative manner is computing an estimate of the residual

R = AC̃MT +MC̃AT +BBT , (4.12)

for some approximate solution C̃. The (matrix) norm of this residual, which
is generally a dense matrix, can be used in a stopping criterion. The 2-norm
of the residual matrix is equal to its spectral radius which is defined by the
absolute value of the largest eigenvalue. Since the residual is symmetric, ap-
proximations of the largest eigenpairs can be computed using only a few steps
of the Lanczos method Lanczos (1950). Even though we cannot computeR ex-
plicitly, it is possible to apply the Lanczos method to determine the eigenpair
because only matrix vector products Rx are needed, which are evaluated as

Rx = A(V (T (V T (MTx)))) +M(V (T (V T (ATx)))) +B(BTx).

The goal of our method is to compute the matrix V , which we could also
view as a search space by considering its columns as basis vectors for a lin-
ear subspace of Rn. From now on we assume V to be orthonormalized. We
suggest to expand V in every iteration by the eigenvectors associated with the
largest eigenvalues of the residual, which we already obtained when comput-
ing the norm of the residual. The reasoning behind this will be explained be-
low. Now in every iteration, we solve the projected system (4.11), but because

52 Lyapunov equations

we expanded our search space (with the largest components of the residual),
we hope that the new residual is smaller. The resulting algorithm for solving
generalized Lyapunov equations is shown in Algorithm 3. Because of the pe-
culiar choice of vectors to expand our space, we call this method the Residual
Approximation-based Iterative Lyapunov Solver (RAILS).

input: A,B,M Matrices from (4.6).
V1 Initial space.
m Dimension increase of the space per iteration.
l Maximum number of iterations.
ε Convergence tolerance.

output: Vk, Tk Approximate solution, where C ≈ VkTkV Tk .

1: Orthonormalize V1

2: Compute Ã1 = V T1 AV1

3: Compute M̃1 = V T1 MV1

4: Compute B̃1 = V T1 B
5: for j = 1, . . . , l do
6: Obtain Ãj = V Tj AVj by only computing new parts
7: Obtain M̃j = V Tj MVj by only computing new parts
8: Obtain B̃j = V Tj B by only computing new parts
9: Solve ÃjTjM̃T

j + M̃jTjÃ
T
j + B̃jB̃

T
j = 0

10: Compute the approximate largest m eigenpairs (λp, rp) of the
residual Rj using Lanczos

11: Stop if the approximated largest eigenvalue is smaller than ε
12: Vj+1 = [Vj , r1, . . . , rm]
13: Re-orthonormalize Vj+1

Algorithm 3: RAILS algorithm for the projection based method for solving generalized
Lyapunov equations.

4.1.3 Convergence analysis

We will now show why we choose the eigenvectors associated with the largest
eigenvalues of the residual. Here we use orth(B) to denote the orthonormal-
ization of B. We first show that in a special case, Vk as defined in Algorithm 3
spans the Krylov subspace

Kk(A,B) = {B,AB, . . . , Ak−1B}.

4.1. Methods 53

Proposition 4.1.1. If M = I , B ∈ Rn×m, where m is also the number of vectors we
use to expand the space Vk in every iteration and V1 = orth(B), then Range(Vk) ⊆
Kk(A,B).

Proof. For k = 1 this is true by assumption. Now say that in step k, (λ, q) is an
eigenpair of the residual Rk, and assume that Range(Vk) ⊆ Kk(A,B). Then
we can write

Rkq = λq = AVkq1 + Vkq2 +Bq3

where q1 = TkV
T
k q, q2 = TkV

T
k A

Tq, q3 = BTq. From this it is easy to see that
if we orthonormalize q with respect to Vk, it is only nonzero in the direction
of AVk. Now we take Vk+1 = [Vk, Qk], where the columns of Qk are the eigen-
vectors associated with them largest eigenvalues ofRk orthonormalized with
respect to Vk. Then

Range(Vk+1) ⊆ Range(Vk) ∪ Range(AVk)

⊆ Kk(A,B) ∪AKk(A,B) = Kk+1(A,B).

Remark 4.1.1. In case Qi has full rank for every i = 1, . . . , k it is clear that actually
the equality Range(Vk) = Kk(A,B) holds in Proposition 4.1.1. This is also the
behavior that we observed on a variety of different test problems.

From Proposition 4.1.1 and Remark 4.1.1, we see that when we choose m
equal to the number of columns of B, RAILS is equivalent to the method in
Saad (1990) as long as Qk has full rank in every iteration. What is important,
is that we want to take m much smaller, in which case we assume that eigen-
vectors associated with the largest eigenvalues of the residual Rk point into
the direction of the most important components ofAVk. A similar result holds
when we want to look in the Krylov space Kk(A−1, A−1B).

Proposition 4.1.2. If M = I , B ∈ Rn×m, where m is also the number of vectors
we use to expand the space Vk in every iteration, V1 = orth(A−1B) and Vk+1 =
[Vk, Qk], where Qk are the m eigenvectors associated with the largest eigenvalues of
A−1Rk orthonormalized with respect to Vk, then Range(Vk) ⊆ Kk(A−1, A−1B).

Proof. This can be proved analogously to Proposition 4.1.1.

We show this result since most other iterative Lyapunov solvers include an
operation withA−1. An example is the Extended Krylov method, which looks
in the Krylov spaceK2k(A,A−kB). We remark that our method, when we start
with V1 = orth([B,A−1B]) and expand with [Qk, A

−1Qk] is not equivalent to
the Extended Krylov method.

54 Lyapunov equations

We know that if Vk has n orthogonal columns, it spans the whole space,
so the solution is in there. To show that our method has finite termination,
we argue that the method has converged when the vectors we generate do
not have a component perpendicular to Vk, which means that the size of the
search space does not increase anymore.

Proposition 4.1.3. Take M = I and B ∈ Rn×m. After k steps of RAILS, the
residual Rk has an eigenpair (λ, q) with λ = ‖Rk‖2. If q ∈ Range(Vk), then
VkTkV

T
k is the exact solution.

Proof. We have

Rkq = λq = AVkTkV
T
k q + VkTkV

T
k A

Tq +BBTq.

Since q ∈ Range(Vk) and Vk is orthonormalized, it holds that q = VkV
T
k q. So

then

λq = λVkV
T
k q = VkV

T
k AVkTkV

T
k q + VkTkV

T
k A

TVkV
T
k q + VkV

T
k BB

TVkV
T
k q

= VkÃkTkV
T
k q + VkTkÃ

T
k V

T
k q + VkB̃kB̃

T
k V

T
k q

= Vk(ÃkTk + TkÃ
T
k + B̃kB̃

T
k)V Tk q

= 0

since the part between brackets is the projected Lyapunov equation that we
solved for. This shows us that the residual is zero, so VkTkV

T
k is the exact

solution.

Corollary 4.1.1. From Proposition 4.1.3 it follows that when m = 1, the equality
Range(Vk) = Kk(A,B) holds in Proposition 4.1.1.

4.1.4 Restart strategy

A problem that occurs in the method described above is that the space V
might get quite large. This means that it can take up a lot of memory, but also
that the reduced system, for which we use a dense solver, can become large
and take up most of the computation time. For this reason we implemented a
restart strategy, where we reduce the size of V after a certain number of itera-
tions. Usually, not all directions that are present in V are equally important, so
we just want to keep the most important ones. We do this by computing the
eigenvectors associated with the largest eigenvalues of V TV T , which are then
used as V in the next iteration of our method. Note that since V is orthonor-
malized, the nonzero eigenvalues of V TV T are the same as the eigenvalues
of T . The eigenvectors are given by V U , where U are the eigenvectors of T ,
which makes it quite easy to obtain them.

Besides limiting the size of the reduced problem we have to solve, another
advantage is that we reduce the rank of the approximate solution, since we

4.1. Methods 55

only keep the most important components. This means that we need less
memory to store the solution, but also that when we apply the solution, for
instance when computing eigenvalues of the solution, we need fewer opera-
tions. To assure that we have a solution that has a minimal size, we also apply
a restart when RAILS has converged, after which we let it converge once more.
This usually leads to an approximation of lower rank.

A downside of restarting an iterative method is that we lose a lot of con-
vergence properties, like for instance the finite termination property that was
shown in Proposition 4.1.3. Since we keep reducing the size of the search
space at the time of a restart, it might happen that stagnation occurs. This can
be prevented by (automatically) increasing the tolerance of the vectors that
we retain during a restart. If we keep doing this repetitively, eventually, the
method should still converge.

To implement this restart method, we replaced Line 11 in Algorithm 3 by
Algorithm 4.

input: k Iterations after which to restart.
τ Tolerance for the eigenvalues at a restart.

1: Set converged to true if the approximated largest eigenvalue is
smaller than ε

2: if converged and convergence was already achieved earlier then
3: stop
4: else if converged or j mod k = 0 then
5: Compute the eigenpairs (λp, qp) of Tj
6: U = []
7: for all eigenvalues λp larger than τ do
8: U = [U, qp]

9: Vj+1 = VjU

10: Ãj+1 = UT ÃjU

11: M̃j+1 = UT M̃jU

12: B̃j+1 = UT B̃j

Algorithm 4: Restart method that replaces Line 11 in Algorithm 3.

Extended generalized Lyapunov equations 4.1.5

To explain the non-Gaussian behavior in sea surface temperature (Sardesh-
mukh and Sura, 2009) and sea surface height (Sura and Gille, 2010) an ad-
ditional multiplicative noise term was introduced. The resulting correlated
additive and multiplicative (CAM) noise gives rise to linearized stochastic

56 Lyapunov equations

differential-algebraic equations of the form

M(p) dXt = A(x̄;p)Xt dt +

(B(x̄;p) + [N1(x̄;p)Xt, . . . , Nm(x̄;p)Xt]) dWt,

where m is the dimension of the noise increment dWt. The corresponding
covariance matrix C can be determined from the extended generalized Lyapunov
equation

ACMT +MCAT +BBT +

m∑
j=1

NjCN
T
j = 0, (4.13)

where the matricesA andNj are n×nmatrices withA nonsingular, whileB is
n×m. Note that these equations with M = I are often referred to as general-
ized Lyapunov equations, but to avoid confusion with generalized Lyapunov
equations of the form (4.6), we refer to these equations as extended Lyapunov
equations.

Recently a method was proposed in Shank et al. (2015) for solving ex-
tended generalized Lyapunov equations. The method consists of applying
a stationary iteration during which NjCN

T
j terms from the previous itera-

tion are added in every iteration. For this method, we assume that the so-
lution C is positive semidefinite, and in case that M is also positive definite,
we require that A is negative semidefinite and that ρ(M−1N) < 1, where
M(X) = AXMT + MXAT , N (X) =

∑m
j=1NjXN

T
j and ρ(L) denotes the

spectral radius of the operator L (Shank et al., 2015). The algorithm is shown
in Algorithm 5.

input: A,B,M,Nj Matrices from (4.13).
l Maximum number of iterations.
ε Convergence tolerance.

output: Vk Approximate solution, where C ≈ VkV Tk .

1: solve ACMT +MCAT +BBT = 0 for C1 = V1V
T
1

2: for i = 2, 3, . . . , l do
3: Bi = [N1Vi−1, . . . , NmVi−1, B]
4: solve ACMT +MCAT +BiB

T
i = 0 for Ci = ViV

T
i

5: if ‖ACiMT +MCiA
T +

∑m
j=1NjCN

T
j ‖ < ε then

6: stop

Algorithm 5: Stationary iteration for solving extended generalized Lyapunov equa-
tions from Shank et al. (2015).

4.2. Problem setting 57

In Shank et al. (2015) the Extended Krylov method is used as method to
solve the generalized Lyapunov equations that arise in every iteration. A
downside of this algorithm is that Bi can become so large that the extended
Krylov subspace that is computed by this method requires a huge amount of
memory and that the orthonormalization and the solution of projected gener-
alized Lyapunov equation (4.11) takes up the majority of the time. As a solu-
tion in this problem, Bi was split up into multiple single vectors b(i)

1 , . . . , b
(i)
2m,

after which 2m generalized Lyapunov equations had to be solved in every
iteration.

The advantage of using RAILS instead of EKSM is twofold. Since we only
expand with a few vectors in every iteration, the space does not become as
large as when using EKSM, and therefore we do not have to split up the prob-
lem. Furthermore, RAILS can be restarted, meaning that we can also use Vi−1

in the stationary iterations as initial guess for Vi. Moreover, since the matri-
ces A and M are the same in every iteration, AVi−1, Vi−1AV

T
i−1, MVi−1 and

Vi−1MV Ti−1, do not have to be recomputed. By doing this, we only require
a few iterations of RAILS in every stationary iteration to obtain the approx-
imate solution. The restart method from Algorithm 4 can be called after the
first solution of the projected generalized Lyapunov equation (4.11) in every
stationary iteration to reduced the size of the initial space.

Problem setting 4.2

In this section we discuss the problem setting of the ocean model as described
in Section 2.5.2. In Section 4.2.1, we first determine the bifurcation diagram of
the deterministic model using pseudo-arclength continuation methods. In the
next sections, the case with stochastic freshwater forcing is considered, focus-
ing on validation of the new methods (Section 4.3.1), comparison with other
methods (Section 4.3.2), numerical aspects (Section 4.3.3 and Section 4.3.4) and
application in a continuation (Section 4.3.5). In Section 4.3.6, we discuss the
performance on an example of an extended Lyapunov equation.

Bifurcation diagram 4.2.1

For the deterministic case, we fix the equatorially symmetric surface forcing
as described in (2.10).

The equations are discretized on a latitude-depth equidistant nx× ny × nz
grid using a second-order conservative central difference scheme. An integral
condition expressing the overall conservation of salt is also imposed, as the
salinity equation is only determined up to an additive constant. The total
number of degrees of freedom is n = 6nxnynz , as there are six unknowns per
point. The standard spatial resolution used is nx = 4, ny = 32, nz = 16 and
the solutions are uniform in the zonal direction, with the zonal velocity u = 0.

58 Lyapunov equations

The bifurcation diagram of the deterministic model for parameters as in
Table 2.1 is shown in Figure 4.1a. On the y-axis, the sum of the maximum
(Ψ+) and minimum (Ψ−) values of the meridional streamfunction Ψ is plotted,
where Ψ is defined through

∂Ψ

∂z
= v cos θ, − 1

r0 cos θ

∂Ψ

∂θ
= w. (4.14)

For the calculation of the transports, the basin is assumed to have a zonal
width of 64◦. The value of Ψ+ + Ψ− is zero when the MOC is symmetric with
respect to the equator.

For small values of µ, a unique equatorially anti-symmetric steady MOC
exists of which a pattern at location a is shown in Figure 4.1b. This pattern
destabilizes at a supercritical pitchfork bifurcation and two asymmetric pole-
to-pole solutions appear. An example of the MOC at location b in Figure
4.1b shows a stronger asymmetric overturning with sinking in the northern
part of the basin. The pole-to-pole solutions cease to exist beyond a saddle-
node bifurcation near µ = 0.47 and both branches connect again with the
anti-symmetric solution at a second supercritical pitchfork bifurcation. At this
bifurcation, the anti-symmetric solution with equatorial sinking (see MOC at
location c in Figure 4.1b) appears which is stable for larger values of µ. The
value of µ at the point b, µb = 0.40, will be our reference freshwater forcing.

4.2.2 Stochastic freshwater forcing

The freshwater forcing is chosen as described in Section 2.5.3. In this case, the
noise matrix B in (4.4) simply represents additive noise which is (i) only ac-
tive in the freshwater component, (ii) only present at the surface, (iii) merid-
ionally uncorrelated (unless stated otherwise), and (iv) has magnitude σ of
10% of the deterministic freshwater forcing amplitude at each latitude θ (see
(2.11)).

4.3 Results

Using the available JacobianA of the deterministic continuation, the mass ma-
trix M , which is a diagonal matrix with non-zero elements in the T and S
rows, and the forcing B as described above, we can determine the local prob-
ability distribution of a steady state using the generalized Lyapunov equation
(4.9). We use grid sizes of 4 × ny × 16, where ny is a varying number of grid
points in the meridional direction, 16 is the number of grid points in the ver-
tical direction and there are 4 grid points in the zonal direction. Since our
model is two-dimensional, both the forcing and the solution will be constant
in this direction. For the forcing, this means that B contains ny vectors with
the forcing as described in (2.11).

4.3. Results 59

0 0.1 0.2 0.3 0.4 0.5

µ

-15

-10

-5

0

5

10

15

Ψ
- +

Ψ

+
 (

S
v
)

a

b

c

(a) Bifurcation diagram where a solid line is sta-
ble and dashed line is unstable.

-60 -40 -20 0 20 40 60

latitude

-4000

-3000

-2000

-1000

0

d
e

p
th

 (
m

)

-2

0

2

-60 -40 -20 0 20 40 60

latitude

-4000

-3000

-2000

-1000

0

d
e
p
th

 (
m

)

0

2

4

6

8

-60 -40 -20 0 20 40 60

latitude

-4000

-3000

-2000

-1000

0

d
e

p
th

 (
m

)

-2

0

2

(b) The streamfunction at µa, µb and µc respec-
tively.

Figure 4.1: (a) Bifurcation diagram of the deterministic equatorially symmetric 2D
MOC model, with the forcing as in (2.10). (b) Streamfunction pattern at µa, µb and
µc respectively.

For RAILS, we use the algorithm as described in Section 4.1 and always
expand with m = 3 vectors per iteration unless stated otherwise. When com-
paring to other Lyapunov solvers, which were mostly written in Matlab, we
use a Matlab implementation of RAILS (Section 4.3.2), but when we solve
larger systems, we prefer to use a C++ implementation (all other sections).
Computations are performed on one node of Peregrine, the HPC cluster of
the University of Groningen. We use this machine to be able to make fair
comparisons with other methods, which use large amounts of memory. Pere-
grine has nodes with 2 Intel Xeon E5 2680v3 CPUs (24 cores at 2.5GHz) and
each node has 128 GB of memory. Only one core is used in the results below
to be able to make fair comparisons.

The results in this section can be reproduced with the C++ and Matlab
code at https://github.com/Sbte/RAILS.

Comparison with stochastically forced time forward simulation 4.3.1

In climate sciences it is common use empirical orthogonal functions (EOFs) to
investigate the variability of a system Dijkstra (2013); Navarra and Simoncini
(2010). The EOFs are the eigenvectors of the covariance matrix, and in the con-
text of principal component analysis are also called the principal components.

https://github.com/Sbte/RAILS

60 Lyapunov equations

The EOFs that belong to the largest eigenvalues of the covariance matrix are
the ones that can be used to explain a large part of the variance, which is why
these are of interest.

A first check of the correctness of the approximate solution of the general-
ized Lyapunov equations is obtained by comparing the EOFs and weighted
eigenvalues of the covariance matrix that we get from both the Lyapunov
solver and a stochastically forced time forward simulation at µ = µb, simi-
lar to those performed in Van der Mheen et al. (2013). The EOFs, which are
the eigenvectors of the covariance matrix, are used to get an idea of

This time series (for ny = 32) is plotted in Figure 4.2a and shows that Ψ+

fluctuates around the mean MOC value at µb. The patterns of the MOC, the
temperature field and the salinity field of both EOF1 and EOF2 are shown in
Figure 4.2b and Figure 4.2c.

The eigensolutions of the generalized Lyapunov equation, also for ny = 32,
are shown in Figure 4.3. Comparing Figure 4.2 with Figure 4.3, we see that the
results from the transient flow computation and the approximate solution of
the generalized Lyapunov equation look very similar. Also, the eigenvalues
we find with both methods are very similar, as can be seen in Table 4.1. The
fact that they are not exactly the same is most likely due the fact that the time
series takes a long time to converge to a statistical steady state. Since the eigen-
values are really close nevertheless, we can indeed use RAILS to compute an
estimate of the local probability distribution of steady states of the MOC.

As another check, we use the Bartels–Stewart algorithm (Bartels and Stew-
art, 1972), which is a dense solver of which the solution time increases with
O(n3) and the required memory with O(n2). The implementation we use is
sb03md from the SLICOT library (Benner et al., 1999). Results from this method
(Table 4.1, also for ny = 32) confirm that our solution method provides correct
solutions.

Method λ1 λ2 λ3 λ4

RAILS 0.677 0.176 0.078 0.033
Dense Lyapunov 0.677 0.176 0.079 0.033
Time series 0.679 0.170 0.082 0.033

Table 4.1: First four weighted eigenvalues of the covariance matrix. For the RAILS
solver ‖R‖2/‖BBT ‖2 < 10−2 was used as stopping criterion.

4.3.2 Comparison with other Lyapunov solvers

In this section, we compare the results of RAILS to those obtained with
standard implementations of the Extended Krylov (EKSM) (Simoncini, 2007),
Projected Extended Krylov (PEKSM) (Stykel and Simoncini, 2012), Rational
Krylov (RKSM) (Druskin and Simoncini, 2011), Tangential Rational Krylov

4.3. Results 61

5 10 15 20 25 30 35 40 45 50

kyear

11.6

11.8

12

12.2

Ψ
+

 (
S

v
)

(a) Time series of the MOC maximum Ψ+.

-60 -40 -20 0 20 40 60

latitude

-4000

-3000

-2000

-1000

0

d
e

p
th

 (
m

)

0

0.01

0.02

0.03

-60 -40 -20 0 20 40 60

latitude

-4000

-3000

-2000

-1000

0

d
e

p
th

 (
m

)

-5

0

5

×10
-3

-60 -40 -20 0 20 40 60

latitude

-4000

-3000

-2000

-1000

0

d
e

p
th

 (
m

)

-2

0

2

4

6

×10
-3

(b) The first EOF.

-60 -40 -20 0 20 40 60

latitude

-4000

-3000

-2000

-1000

0

d
e

p
th

 (
m

)

0

0.01

0.02

-60 -40 -20 0 20 40 60

latitude

-4000

-3000

-2000

-1000

0

d
e

p
th

 (
m

)

-4

-2

0

2

4

6
×10

-3

-60 -40 -20 0 20 40 60

latitude

-4000

-3000

-2000

-1000

0

d
e

p
th

 (
m

)

0

5

10

×10
-3

(c) The second EOF.

Figure 4.2: (a) Time series of the maximum MOC strength Ψ+ for a 50,000 years simu-
lation of the model for µ = µb under the freshwater forcing as in (2.11). The variability
has a slight negative skewness of −0.05 and a kurtosis of 3.04. (b) Patterns of Ψ (top),
isothermals (middle) and isohalines (bottom) for the first EOF of this simulation. (c)
Similar to (b) but for the second EOF.

(TKRSM) (Druskin et al., 2014) and Low-rank ADI (LR-ADI) (Penzl, 1999)
methods. For the LR-ADI method, results with the heuristic shifts from Penzl
(1999) and self-generating shifts based on a Galerkin projection from Benner
et al. (2014) are reported. Implementations of the Extended Krylov and Ratio-
nal Krylov methods were obtained from the website of Simoncini (Simoncini,
2016), whereas the LR-ADI method from M.E.S.S. was used (Saak et al., 2016).

What we want to show is that RAILS can be competitive without requir-
ing linear system solves in every iteration, which all the methods we compare
to require. However, convergence properties of the other methods might be
better since they use these linear system solves. For this reason, we also add

62 Lyapunov equations

-60 -40 -20 0 20 40 60

latitude

-4000

-3000

-2000

-1000

0

d
e

p
th

 (
m

)

0

0.01

0.02

0.03

-60 -40 -20 0 20 40 60

latitude

-4000

-3000

-2000

-1000

0

d
e

p
th

 (
m

)

-5

0

5

×10
-3

-60 -40 -20 0 20 40 60

latitude

-4000

-3000

-2000

-1000

0

d
e

p
th

 (
m

)

0

2

4

6

×10
-3

(a) The first EOF.

-60 -40 -20 0 20 40 60

latitude

-4000

-3000

-2000

-1000

0

d
e

p
th

 (
m

)

0

0.01

0.02

-60 -40 -20 0 20 40 60

latitude

-4000

-3000

-2000

-1000

0

d
e

p
th

 (
m

)

-4

-2

0

2

4

6
×10

-3

-60 -40 -20 0 20 40 60

latitude

-4000

-3000

-2000

-1000

0

d
e

p
th

 (
m

)
0

2

4

6

8

×10
-3

(b) The second EOF.

Figure 4.3: (a) Patterns of Ψ (top), isothermals (middle) and isohalines (bottom) re-
spectively for the first EOF obtained by solving the generalized Lyapunov equation.
(b) Similar to (a) but for the second EOF.

experiments with our method, where we expand the search space by S−1ri,
where ri are the eigenvectors of the residual associated with the largest eigen-
values. From now on we will refer to this method as Inverse RAILS. To be able
to better compare to Extended Krylov, we could also expand our search space
by [ri, S

−1ri], but some preliminary experiments showed that Inverse RAILS
performs slightly better.

For Inverse RAILS, Extended/Rational Krylov and ADI based methods,
the linear system solves of the form Sy = x are implemented by first comput-
ing an LU factorization of A using UMFPACK whenever possible (available
from lu in Matlab), and then solving the system(

A11 A12

A21 A22

)(
ỹ
y

)
=

(
0
x

)
.

This is similar to what has been used in LR-ADI methods in Freitas et al.
(2008). Alternatives would be first computing S and then making a factoriza-
tion of S, which is not feasible since S tends to be quite dense, or using an iter-
ative method where we need repeated applications of S, which includes solv-
ing a system with A11. Both alternatives tend to be slower than the method
described above if we add up factorization and solution times.

For the (Tangential) Rational Krylov methods we precompute the initial
values s(1)

0 and s
(2)
0 as the eigenvalues of S with the smallest and largest real

4.3. Results 63

part. The time it required to compute the eigenvalues is not included in the
results.

For the Projected Extended Krylov method, we followed März (1996)
for obtaining the spectral projectors that are required and implemented the
method according to Stykel and Simoncini (2012). The advantage of this
method is that it does not require the Schur complement as we described
above. The disadvantage is that instead spectral projectors are required. For
this method, we have to compute the projected matrix V TAV explicitly, and
not implicitly as suggested in Stykel and Simoncini (2012) to obtain sufficient
accuracy. Without this, the Lyapunov solver that was used for the small pro-
jected Lyapunov equation would fail to find a solution. For comparison, we
implemented the same projection method that was used in Stykel and Si-
moncini (2012) also in RAILS, where we chose to expand the basis withA−1ri.

For all methods we use the same stopping criterion, namely that we re-
quire the relative residual ρ = ‖R‖2/‖BBT ‖2 < ε, where ε = 10−2, which
is sufficient for our application. The resulting absolute residual norm will be
around 10−5 for the MOC problem with ny = 32, 64, 128. We also show the
final relative residual in our results. For RAILS we use a random V1 as initial
guess, since this seemed to give slightly better results than taking B as initial
guess. Using a random initial guess also shows that even if storing B in a
dense way requires too much memory, we are still able to start our method
where the other methods cannot. During a continuation run, we can of course
do much better than a random initial guess by using the approximate solution
space from the previous continuation step. For Inverse RAILS, we use S−1B2

as initial guess as suggested by Proposition 4.1.2. For the same reason, we use
A−1B as initial guess for Projected RAILS. Results for the MOC problem with
ny = 32 are shown in Table 4.2. Note that B always has ny columns.

Let us discuss all columns of Table 4.2 separately. The first column contains
the rank of the approximate solution, which is more-or-less the same for every
method, because we did some post-processing on the non-RAILS methods to
only keep eigenvectors belonging to eigenvalues that are larger than a certain
tolerance. In this case we took 4 · 10−6. For RAILS, we do not have to do this
since the restart method already takes care of this. The projected variants have
a larger rank, because they iterate on the full space instead of only the space
belonging to the Schur complement.

Dim shows the maximum dimension of the search space during the itera-
tion. Note that this is much smaller for all variants of RAILS than for almost
all of the other methods. For the standard RAILS method this is due to the
restart that we use, but we restart after 50 iterations, so both other variants
of RAILS do not restart, except in the last step when the method already con-
verged and the rank is being minimized. The only other method that has a
small maximum space dimension is the Tangential Rational Krylov method,
which also expands the space by only a few vectors in each iteration. This is
also the reason why we compare to this method.

64 Lyapunov equations

Method Rank Dim Its MVPs IMVPs ts (s) ρ

RAILS 59 204 217 634 0 8 9.2 · 10−3

Inverse RAILS 60 127 34 128 128 7 9.5 · 10−3

Projected RAILS 80 133 36 134 134 9 9.9 · 10−3

EKSM 60 448 7 224 256 11 6.2 · 10−3

PEKSM 81 704 11 704 384 24 6.3 · 10−3

RKSM 60 448 13 448 416 64 9.2 · 10−3

TRKSM 60 187 16 219 155 46 9.7 · 10−3

LR-ADI (heuristic) 60 800 25 0 480 129 6.1 · 10−3

LR-ADI (projection) 60 1312 41 0 800 212 6.4 · 10−3

Table 4.2: Comparison of different Lyapunov solvers. Rank is the rank of the final
approximate solution, Dim is the maximum dimension of the approximation space
during the iteration, Its is the number of iterations, MVPs are the number of matrix-
vector products, IMVPs are the number of inverse matrix-vector products and ts is the
time required for solution of the Lyapunov equation, which includes the computation
of the LU factorization when necessary. For all methods the stopping criterion is a
relative residual of 10−2. RAILS was restarted after 50 iterations with a tolerance of
4 · 10−6 for the eigenpairs that were retained. This is the same tolerance that was used
for the other methods to minimize the rank of the approximate solution.

The next column contains the number of iterations. We show this just for
reference purposes. Every method has a different notion of what an iteration
is, so we can not really compare these values. For instance in this case RAILS
expands by 3 vectors per iteration, Extended Krylov by 64, and LR-ADI by 32.

Then we show the MVPs, which are the number of matrix-vector products.
For RAILS this is quite high compared to the other methods, but then the
advantage is that no linear solves are required, which can be seen if we look
at the IMVPs. If we include these in RAILS, which we did in the Inverse RAILS
method, we see that it needs far fewer linear solves than the other methods.

The most important part of this table is the solution time ts, from which
we can see that all variants of RAILS are faster than all other methods. The
fastest method is Inverse RAILS. However, it is only a bit faster than standard
RAILS, at the cost of having to solve linear systems in each iteration. For the
solution of the linear systems, an LU factorization was computed beforehand
that was utilized by the two variants of RAILS that require a solve, and by the
(Projected) Extended Krylov method. The time this takes is included in the so-
lution time. For the LR-ADI and Rational Krylov methods precomputing the
LU factorization is not possible, because in each iteration a different shifted
linear system has to be solved. Mainly for this reason RAILS is much faster
than Tangential Rational Krylov, even though it uses a larger space.

Lastly, we added a column with the explicitly computed final residual
norms, which are all between 6 · 10−3 and 10−2.

We use quite a loose tolerance for the results in Table 4.2, which is sufficient
for our purposes. We will continue with this loose tolerance in later experi-

4.3. Results 65

ments. However, with this tolerance, it is quite hard to see the convergence
properties of the different methods. In Figure 4.4, we show a convergence
plot with a much smaller tolerance: a relative residual of 10−8. We choose to
put CPU time on the x-axis, since there is not really any other quantity that
represents a similar amount of work for each method.

0 50 100 150 200 250 300

CPU time (s)

10
-10

10
-8

10
-6

10
-4

10
-2

10
0

10
2

10
4

R
e

la
ti
v
e

 r
e

s
id

u
a

l
ρ

RAILS

Inverse RAILS

Projected RAILS

Extended Krylov

Projected Extended Krylov

Rational Krylov

Tangential Rational Krylov

LR-ADI (heuristic)

LR-ADI (projection)

Figure 4.4: Convergence history of the relative residual ρ of all the different methods
against CPU time. RAILS was restarted after 15 iterations with a tolerance of 10−12 for
the eigenpairs that were retained and expanded with 10 vectors per iteration.

What we see in Figure 4.4 is that two methods perform really badly: the
Projected Extended Krylov method and Projected RAILS. Projected Extended
Krylov actually breaks down due to the small projected Lyapunov equation
having eigenvalues with opposite signs and Projected RAILS stagnates. This
might be due to round-off errors during the projection, so it seems that here
the projected variants are not very well suited for solving our problem. The
other methods all converge, but for the Krylov type methods, we clearly see
that the cost per iteration increases the further they converge. This is because it
becomes increasingly expensive to solve the small projected Lyapunov equa-
tion. On the other hand, the LR-ADI methods performed increasingly well for
smaller tolerances. They are still really expensive however, due to the shifted
solves in every iteration. The fastest method, again, is the Inverse RAILS. It
also shows almost monotone convergence, except in the first few steps, and
converges very rapidly. Standard RAILS performs very well, but convergence
is more erratic. It is, however, promising that a method that only uses matrix-
vector products can converge faster than the other existing methods that we
tried.

66 Lyapunov equations

0 500 1000 1500 2000

LR-ADI (projection)

LR-ADI (heuristic)

Tangential Rational Krylov

Rational Krylov

Extended Krylov

Inverse RAILS

RAILS

Maximum space dimension

Figure 4.5: Memory usage of the different methods as described in Figure 4.4 in terms
of maximum space dimension. Both projected methods were left out of this figure
since they did not converge.

In Figure 4.5 we show the memory usage of the methods in Figure 4.4. We
left out the methods that did not converge. Here it is clear that RAILS uses
the least amount of memory due to the small number of vectors that is used
to expand the space and due to the restart strategy.

4.3.3 Numerical scalability

Now we want to show how RAILS behaves when we solve larger systems.
We do this by solving the same problem with different grid sizes, namely
4 × 32 × 16, 4 × 64 × 16 and 4 × 128 × 16. For the solution of the general-
ized Lyapunov equation, when increasing the dimension of our model by a
factor 2, the size of the solution increases by a factor 4, since the solution is a
square matrix. However, we try to compute a low-rank approximation of the
solution, so if the rank of the approximate solution stays the same when we
increase the dimension of our model by a factor 2, the size required to store
our approximate solution is also increased by a factor 2.

For the MOC problem, if we increase ny by a factor 2, we know that the
number of columns inB also increases by a factor 2, since those two are equal.
From this, we would also expect the rank of the approximate solution to in-
crease. Therefore, we first look at a simplified problem where we use B̂ = B·1,
with 1 being a vector of ones, as right-hand side, so B̂ is a single vector con-
taining the row sums of the original B. For our test problem, this can be seen
as a fully space correlated stochastic forcing. We expect that the rank of the
approximate solution stays the same.

From Table 4.3 we see that indeed the rank of the approximate solution
does not change when we increase the dimension of the model. However,

4.3. Results 67

the number of iterations to find the approximate solution is dependent on the
spectral properties of A. And since we are refining, new high-frequency parts
in the approximate solution will be amplified strongly in the residual evalua-
tion and appear also in the search space. This will slow down the convergence
process as can also be seen in Table 4.3.

Size Rank Dim Its MVPs ts (s) tm (S)
32 12 41 231 223 3 1.5
64 13 42 350 338 13 10
128 13 42 536 518 58 52

Table 4.3: Performance of RAILS for different grid sizes with B̂ = B · 1. The grids are
of size 4×ny × 16 where ny is the size in the first column. Rank is the rank of the final
approximate solution, Dim is the maximum dimension of the approximation space
during the iteration, Its is the number of iterations, MVPs are the number of matrix-
vector products, ts is the time required for solution of the Lyapunov equation and tm
is the cost of the matrix-vector product. The stopping criterion is a relative residual of
10−2. RAILS was restarted after 30 iterations with a tolerance of 10−5 for the eigenpairs
that were retained. We expanded the space with 1 vector in each iteration.

We are of course also interested in the increase of the solution time. There
are five factors that influence this: the length of the vectors that span our basis,
the number of vectors that span our basis, the number of iterations, the cost
of the matrix-vector product, and the cost of solving the projected Lyapunov
equation. First of all, the length of the vectors that span our basis increases
by a factor 2 when the dimension of the problem is increased by a factor 2,
so we can expect a factor 2 in time increase from this. Secondly, the rank
of the approximate solution and the dimension of the search space does not
increase. This means that also the cost of solving the projected Lyapunov
equation does not increase, so we do not expect a solution time increase from
this. Then we have the number of iterations, which does seem to increase by a
factor 1.5. And finally we have the cost of the matrix-vector product, which we
listed in an extra column of Table 4.3. Note that this is actually a matrix-vector
product with the Schur complement S which requires a linear solve with the
matrix block A11, which is relatively expensive. If we subtract the cost of the
matrix-vector product, we would expect a factor 3 in time cost increase from
the increased vector length and the increased number of iterations. In Table
4.3 we observe roughly a factor 2. This being less than 3 might be due to
higher efficiency of vector operations for larger vectors.

Going back to the original problem, where we take B as the original
stochastic forcing, we expect the solution time to increase by a larger fac-
tor, since the projected Lyapunov equation solve and the vector operations
become more costly, because the maximum search space dimension and the
rank of the approximate solution now do increase. In Table 4.4 we see that
the number of iterations from ny = 32 to ny = 64 increases by a factor 1.5

68 Lyapunov equations

again, so we would expect the solution time without matrix-vector products
to increase by a factor 3, which is true. The number of iterations from ny = 64
to ny = 128 increases by a factor 2, so we would expect the time cost to in-
crease by a factor 4, and this is also true. This is because the solution of the
projected Lyapunov equation is still relatively cheap for the problems we have
here, since those projected equations have at most size 247 × 247. For prob-
lems with a larger maximum search space dimension, the cost of solving this
projected Lyapunov equation would become dominant.

Size Rank Dim Its MVPs ts (s) tm (s)
32 59 198 233 682 7 2
64 86 223 340 997 31 17
128 147 247 652 1915 178 115

Table 4.4: Performance of RAILS for different grid sizes withB as the original stochas-
tic forcing. The grids are of size 4 × ny × 16 where ny is the size in the first column.
Rank is the rank of the final approximate solution, Dim is the maximum dimension of
the approximation space during the iteration, Its is the number of iterations, MVPs are
the number of matrix-vector products, ts is the time required for solution of the Lya-
punov equation and tm is the cost of the matrix-vector product. The stopping criterion
is a relative residual of 10−2. RAILS was restarted after 50 iterations with a tolerance
of 10−5 for the eigenpairs that were retained.

4.3.4 Towards a 3D model

Ultimately, we want to do computations on a full 3D model. To illustrate what
will happen for a full 3D model, we include some results where we take the
forcing in such a way that it is not zonally averaged, but it is taken such that
there is no correlation in the zonal direction. The new forcing can be seen as
a diagonal matrix, where all salinity nodes at the surface have a nonzero on
the diagonal, and the rest of the matrix is zero. We can write our new forcing,
using Matlab notation, as B̂ = diag(B · 1) where B̂ is the new forcing and B is
the original forcing. This means that there are 4 · ny − 1 nonzero columns in
B̂.

We choose to compare RAILS to Extended Krylov, which was the only
method that came close to RAILS in the earlier experiments in terms of time,
and to the Tangential Rational Krylov method, since this was the only method
that came close in terms of maximum space dimension. Since Extended
Krylov does not perform well anymore when the projected system becomes
really large, which would be the case for this problem, we split B̂ into multi-
ple parts. We can do this because for our problem, the right-hand side B̂B̂T

4.3. Results 69

can be written as

B̂B̂T =

4·ny−1∑
i=1

B̂iB̂
T
i ,

where B̂i is the ith column of B̂. Since the rank of the approximate solution
is highly dependent on the number of vectors in B̂, we expect the maximum
space dimension that is needed, and therefore also the size of the projected
system, to decrease. After splitting B̂, we separately solve the Lyapunov
equations with these new right-hand sides, of which we reduce the rank of
the approximate solution separately to save memory. Afterwards, we merge
the low-rank solutions back into one low-rank solution, which is the approx-
imate solution for the system with B̂. We report results with the number of
parts that resulted in the least amount of solution time. The optimal number
of parts that we found was 4, so that is three of size ny and one of size ny − 1.
The maximum space dimension that we report is the maximum space size of
solving one part plus the number of vectors that are required to store the re-
duced approximate solution of the previous solves. The results with the 3D
forcing are shown in Table 4.5.

Method Size Rank Dim Its MVPs IMVPs tf (s) ts (s)
EKSM 32 172 763 6 1114 1241 3 43

64 309 1353 5 1979 2234 15 278
TRKSM 32 177 681 16 808 554 0 109

64 314 1232 17 1487 977 0 645
RAILS 32 166 312 252 739 0 0 16

64 276 419 406 1189 0 0 82
128 563 699 651 1912 0 0 584

Table 4.5: Comparison of different Lyapunov solvers for different grid sizes with
B̂ = diag(B · 1). The grids are of size 4 × ny × 16 where ny is the size in the sec-
ond column. Rank is the rank of the final approximate solution, Dim is the maximum
dimension of the approximation space during the iteration, Its is the number of it-
erations, MVPs are the number of matrix-vector products, IMVPs are the number of
inverse matrix-vector products tf is the time required for computing the LU factoriza-
tion and ts is the time required for solution of the Lyapunov equation. For all methods
the stopping criterion is a relative residual of 10−2. RAILS was restarted after 50 itera-
tions with a tolerance of 10−6 for the eigenpairs that were retained. The tolerance that
was used in Extended Krylov and Tangential Rational Krylov to minimize the rank of
the approximate solution in such a way that the residual was still below the tolerance
was set to 10−6 and 4 · 10−7 for the 32 and 64 problems respectively.

We see that in this case RAILS can solve systems much faster and with
much less memory than the Extended Krylov and Tangential Rational Krylov
methods, even when applying the additional trick that we described above to

70 Lyapunov equations

reduce the memory usage of the Extended Krylov method. It is also clear that
both computing and applying the inverse becomes a real problem for these
kinds of systems. RAILS, however, does not need an inverse, and employs a
restart strategy to reduce the space size, which is why it performs so much
better. The reason why we do not show any results with the Extended Krylov
and Tangential Rational Krylov methods for the 4 × 128 × 16 problem is that
we did not have enough memory to do these computations, since we chose to
not employ an iterative solver.

4.3.5 Continuation

Now that we have shown the performance of RAILS compared to other meth-
ods, we show how it can be useful in the context of continuation. The main
idea is that since RAILS can be restarted and since we can choose the num-
ber of vectors that we use to expand the space, we can easily start from the
low-rank solution of another generalized Lyapunov equation, in our case the
solution that was determined in the previous continuation step. We refer to
this method as Recycling RAILS. We use the settings from Section 4.3.2, start-
ing at point b from the bifurcation diagram in Figure 4.1, and moving towards
the bifurcation with constant step size ds = 0.05. We do this for 20 continua-
tion steps on the problem of size 4× 32× 16.

RAILS Recycling RAILS
Step Par Its ts(s) Its ts(s)

1 0.403 210 7.3 210 7.0
2 0.406 242 8.4 49 2.0
3 0.410 245 8.6 35 1.3
4 0.413 248 8.8 39 1.5
5 0.415 250 9.1 39 1.5
10 0.428 254 9.1 36 1.3
15 0.439 285 10.1 50 2.2
20 0.448 304 11.1 54 2.3

Table 4.6: Performance of RAILS during 20 steps of the continuation process with fixed
step size ds = 0.05. Here Recycling RAILS is RAILS restarted from the solution of the
generalized Lyapunov equation at the previous continuation step. Par is the actual
parameter value, Its is the number of iterations, ts is the time required for solution of
the Lyapunov equation. For all methods the stopping criterion is a relative residual of
10−2. RAILS was restarted after 50 iterations with a tolerance of 10−6 for the eigenpairs
that were retained.

The results are shown in Table 4.6. It is clear that reusing the solution from
the previous continuation step, which we do in Recycling RAILS, is of great
benefit. Both the number of iterations and the computational time are reduced
by roughly a factor of 6. The local variations in the number of iterations can

4.3. Results 71

mostly be explained by the random initial guess that is used for computation
of the eigenvectors of the residual. We also see a global pattern of the general-
ized Lyapunov equations becoming harder to solve when getting closer to the
saddle-node bifurcation, which is expected. This does not seem to affect the
efficiency of the recycling method.

Extended Lyapunov equations 4.3.6

Since usage of CAM noise for the MOC problem that is discussed in this sec-
tion has not yet been investigated, we will not look at the performance of
RAILS on a MOC related problem. Instead, we will look at Example 2 from
Shank et al. (2015), which is described in more detail in Damm (2008). The ex-
ample consists of a central finite difference discretization of the 2D convection-
diffusion operator L(x) = ∆x− xy on Ω = (0, 1)2 with Robin boundary con-
ditions n · ∇x = 1

2uj(x− 1) on an increasing number of sides of the domain,
and Dirichlet boundary conditions x = 0 on the rest of the boundary. Here
the control variable uj represents the heat transfer coefficient on boundary j.
The number of Robin boundary conditions that are imposed determines the
number of extra terms of the extended Lyapunov equation. The matrices in
(4.13) are given by

A = I ⊗D +D ⊗ I − I ⊗G+
2

h

 m∑
j=1

Nj

 ,

N1 =
1

2h
(E1 ⊗ I), N2 =

1

2h
(En ⊗ I),

B1 = − 1

2h
(E1 ⊗ 1), B2 = − 1

2h
(En ⊗ 1),

B = [B1, . . . , Bm], M = I,

whereD ∈ Rn×n is the central finite difference discretization of the 1D Laplace
operator, G ∈ Rn×n is the central finite difference discretization of the deriva-
tive, Ej = eje

T
j with canonical unit vector ej ∈ Rn, 1 ∈ Rn is a vector of

all ones, n = 70, and h = 1/(n + 1). The solution C may be interpreted as a
controllability Gramian of the system Damm (2008). The implementation of
this example which was used in Shank et al. (2015), along with the implemen-
tation of the stationary iterations, can be found at Simoncini (2016). We found
that the example was not implemented correctly, however, and therefore the
results we find here may differ from the results reported in Shank et al. (2015).

In Table 4.7 and Table 4.8 we show the performance of RAILS when ex-
panded with ri (RAILS), A−1ri (Inverse RAILS) and [ri, A

−1ri] (Extended
RAILS), EKSM, and EKSM where Bi is split into single vectors. The first table
contains results from the case with one Robin boundary condition, the second
table contains results with two Robin boundary conditions. In Table 4.7, we

72 Lyapunov equations

see that Extended RAILS and Inverse RAILS perform very well in terms of
matrix-vector products, the number of linear system solves and the required
CPU time. The rank of the final solution of all methods is comparable. The
reason why the number of matrix-vector products and the number of linear
system solves is so much smaller than those of EKSM is that we restart from
the solution of the previous stationary iteration.

Method Rank MVPs IMVPs ts (s) ρ

RAILS 66 1084 0 58.0 8.1 · 10−9

Inverse RAILS 68 264 264 5.3 6.4 · 10−9

Extended RAILS 68 274 137 3.8 6.4 · 10−9

EKSM 69 2461 2656 67.6 6.1 · 10−9

EKSM + splitting 69 1992 2186 8.7 7.7 · 10−9

Table 4.7: Comparison of RAILS and EKSM with and without splitting of Bi on the
example described in this section with one Robin boundary condition. Rank is the rank
of the final approximate solution, MVPs are the number of matrix-vector products,
IMVPs are the number of inverse matrix-vector products and ts is the time required
for solution of the extended Lyapunov equation. For all methods the stopping criterion
is a relative residual of 10−8. The number of eigenvectors of the residual in RAILS was
set to be the same as the number of columns of the matrix Bi. RAILS was restarted
after 10 iterations.

In Table 4.8, we see again that Extended RAILS performs well in all cate-
gories. Because we use two Robin boundary conditions in this case, an extra
extended term is added, and therefore also the number of columns of Bi of
the stationary iteration is larger. As we also noticed for the MOC problem,
this is something for which RAILS performs increasingly well compared to
other methods. We notice that even though the number of linear system solves
that is required for Extended RAILS is more than a factor 20 lower than that
of EKSM with splitting, it is only a factor 3 faster. This is because the prob-
lem that is solved here is relatively easy, meaning that solving a linear system
is relatively cheap. Therefore all instances of RAILS are actually dominated
by the cost of computing the eigenvectors. We expect that RAILS performs
even better for more complex systems like an ocean-climate model with CAM
noise.

4.4 Summary and Discussion

We have presented a new method for numerically determining covariance
matrices, and hence we can compute probability density functions (PDFs)
near steady states of deterministic PDE systems which are perturbed by noise.
This method enables the application of the approach suggested by Kuehn
(2011, 2015) to larger systems of SPDEs with algebraic constraints and ex-
ploits the structure of the generalized Lyapunov equation in the computa-

4.4. Summary and Discussion 73

Method Rank MVPs IMVPs ts (s) ρ

RAILS 123 1793 0 246.3 9.6 · 10−9

Inverse RAILS 123 416 416 9.2 9.7 · 10−9

Extended RAILS 123 464 232 8.0 9.6 · 10−9

EKSM 123 4429 4865 197.6 9.6 · 10−9

EKSM + splitting 134 4652 5090 23.5 8.7 · 10−9

Table 4.8: Comparison of RAILS and EKSM with and without splitting ofBi on the ex-
ample described in this section with two Robin boundary conditions. Rank is the rank
of the final approximate solution, MVPs are the number of matrix-vector products,
IMVPs are the number of inverse matrix-vector products and ts is the time required
for solution of the extended Lyapunov equation. For all methods the stopping crite-
rion is a relative residual of 10−8. The number of eigenvectors of the residual in RAILS
was set to be the same as the number of columns of the matrixBi. RAILS was restarted
after 10 iterations.

tions. This approach fits nicely within purely deterministic numerical bifur-
cation computations (Keller, 1977) and methods to tackle the SPDEs directly
(Sapsis and Lermusiaux, 2009). It provides a Gaussian PDF which is valid
under linearized dynamics near the deterministic steady state.

Our new algorithm to solve generalized Lyapunov equations is based on a
projection method, where solutions are found iteratively by using a set of sub-
spaces Vk. The key new aspects are (i) that at each iteration k, the subspace Vk
is expanded with the eigenvectors corresponding to the largest eigenvalues of
the residual matrixR, orthogonalized with respect to Vk and itself, and (ii) the
restart strategy that is used to keep the space dimension low. We applied this
method to a test problem consisting of a quasi two-dimensional model of the
Atlantic Ocean circulation. Our method, RAILS, outperforms both Krylov and
ADI based methods (Simoncini, 2007; Druskin and Simoncini, 2011; Stykel
and Simoncini, 2012; Druskin et al., 2014; Kleinman, 1968; Penzl, 1999) for this
test problem.

In practice, one has to provide the Jacobian matrix A of a determinis-
tic fixed point and the matrix B representing the stochastic forcing in order
to solve for the stationary covariance matrix C. In a matrix-based pseudo-
arclength continuation method the Jacobian is available since a Newton–
Raphson method is used (Dijkstra et al., 2014). The mass matrix M is readily
available from the model equations. The method hence enables us to deter-
mine the continuation of local PDFs in parameter space. In particular, the
projection approach provides subspaces, which may be re-used directly or by
computing predictors along continuation branches.

The availability of the new method opens several new directions of analy-
sis. In one set of applications, A is varied whereas the structure of B is fixed.
This typically corresponds to varying a bifurcation parameter and analyzing
the corresponding changes in PDF (i.e. covariance matrix C) and transition

74 Lyapunov equations

probabilities (i.e. overlap of PDFs of two steady states) as the steady states
(i.e. A) change and a bifurcation point is approached (Kuehn, 2011). For ex-
ample, this could be used in the test problem considered in this study in order
to investigate the scaling law in PDF near the saddle-node bifurcation on the
branch of pole-to-pole solutions. In this way, the critical slowdown near a
tipping point can be studied (Van der Mheen et al., 2013).

We have shown that for these types of problems, RAILS performs espe-
cially well since it can be restarted using the approximate solution of the pre-
vious continuation step, which results in rapid convergence. We also applied
RAILS in a stationary iteration to solve extended generalized Lyapunov equa-
tions. This proved to be very efficient and may be used when CAM noise is
applied instead of the additive noise that we used for the MOC.

Another interesting application is to fixA (or a set ofAs that exists for fixed
parameter values) and vary B. In this case one steady state is fixed (or two
in a regime of two steady states) and the impact of different B (“noise prod-
ucts”) on the PDF/covariance matrix C (and possibly transition probabilities)
is investigated. Different B can be constructed by changing (a) the dynamical
component which is stochastically active (freshwater flux, wind, heat flux), (b)
the magnitude, and (c) the pattern (i.e. the cross-correlation structure and the
spatial weighting of the auto-covariances). Results from these computations
will show the effect of the representation of small scale processes (the ‘noise’)
on the probability density function (under the restriction of linear dynamics).

For the ocean circulation problem it would be interesting to compare the
different impacts of freshwater flux versus wind stress noise e.g. on the PDF
of the MOC or heat transports. Moreover, regarding the wind stress and (c)
one could construct B based on EOFs of the atmospheric variability, as for
example considered in Dijkstra et al. (2008). Note that for studying the effect
of wind-stress noise, a full three-dimensional model, as developed in De Niet
et al. (2007) is required. In order to construct B from more than one EOF one
has to generalize the stochastic forcing to a sum of OU processes. In that case
we can use the linearity of the generalized Lyapunov equation and solve for
each term separately and combine later on.

C
H

A
PT

ER
5

TRANSITION PROBABILITIES

In this chapter we give an overview of the methods that are available for
studying transition probabilities. Many different kinds of methods exist, but
they all serve a different purpose. Therefore, we also give a quantitative
comparison of methods that may seem suited for computing actual transi-
tion probabilities. To our knowledge, such an overview does not yet exist in
the literature.

In Section 5.1, we first discuss our definition of a transition probability. In
Section 5.2, we then discuss the Eyring–Kramers formula, which can be used
to analytically study transitions in gradient systems. We then make a detour
to covariance ellipsoids in Section 5.3, which may be used to study local vari-
ability around a steady state, and to most probable transition paths in Section
5.4. After this we discuss how to actually compute transition probabilities in
Section 5.5. In this section we also give a comparison between all the different
methods. We then discuss what method we will actually use for computations
on the MOC based on these results in Section 5.6.

Definition 5.1

Take a stochastic differential-algebraic equation (SDAE) of the form

M(p) dXt = F (Xt;p) dt+ g(Xt;p) dWt, (5.1)

as defined in Section 2.4.2.
We define the transition probability as the probability that we go from a

neighborhood A near a deterministic steady state x̄A to a neighborhood B
near a deterministic steady state x̄B within time T . It is important to know

75

76 Transition probabilities

that there are many similar quantities that are related, but may not lead to
the computation of transition probabilities as we defined them here. In Rol-
land and Simonnet (2015), the crossing probability is defined as the probabil-
ity that a trajectory starting from some initial condition X0 reaches a set B
before some set A with A ∩ B = ∅. This is dependent on X0 instead of some
maximum time T , and in our case, where we would chooseX0 ∈ A, the cross-
ing probability would be 0. Another quantity that is mentioned often (Rolland
et al., 2015) is the transition rate, which is the probability that in a unit time, a
transition occurs.

Something that makes computing transition probabilities for ocean-
climate models more difficult, is that we generally do not have a gradient
system, which, in a stochastic sense, is an overdamped Langevin equation of
the form

M(p) dXt = −∇V (Xt;p) dt+ g(Xt;p) dWt,

with a potential V : Rn → R. Note that a system ẋ = F (x) withF : R3 → R3 is
a gradient system if∇×F = 0. For a gradient system, and under the assump-
tion of small noise, the Eyring–Kramers formula can be applied (Hänggi et al.,
1990), which is something that is often exploited, but not something we can
use due to the nature of our problem. For non-gradient systems, the Freidlin–
Wentzell theorem in large deviations theory (Freidlin and Wentzell, 1998) and
a related generalization of the Eyring–Kramers formula exist (Bouchet and
Reygner, 2016), but this is much harder, if not impossible, to compute.

5.2 The Eyring–Kramers formula

Even though we can not apply the Eyring–Kramers formula directly, there is
much that we can learn from looking at it. Take an SDE of the form

dXt = −∇V (Xt) dt+
√

2ε dWt, (5.2)

with ε > 0, which originally was a temperature parameter. Say that in be-
tween the two steady states x̄A and x̄B that we are interested in, we also
have an unstable steady state x̄C . The Eyring–Kramers formula (Eyring, 1935;
Kramers, 1940) is then given by

E[τ εx̄A→x̄B] '
ε↓0

2π

−λC

√
|det(∇2V (x̄C))|
det(∇2V (x̄A))

e
V (x̄C)−V (x̄A)

ε , (5.3)

where λC is the single negative eigenvalue of the Hessian matrix ∇2V (x̄C)
and τ εx̄A→x̄B is the first passage time. The first passage time is the time it takes
to reach x̄B from x̄A for the first time. The quantity τMFPT = E[τ εx̄A→x̄B] is the
mean first passage time.

5.2. The Eyring–Kramers formula 77

Double well potential 5.2.1

An example of (5.2) which is often used is the double well potential, which
has two local minima with a saddle point in between. The one dimensional
symmetric double well potential is given by

V (x) =
1

4
x4 − 1

2
x2,

which is displayed in Figure 5.1. We can substitute this in (5.2), in which case

x̄A x̄C x̄B

V (x)

Figure 5.1: Double well potential

the mean first passage time for small noise can be obtained from (5.3). It tells
us that

τMFPT '
2π

−V ′′(0)
e
V (0)−V (−1)

ε ,

since x̄A = −1 and x̄C = 0.

Computing the transition probability 5.2.2

The transition rate η of (5.1) is the probability that a transition occurs in a unit
time. This means that in an infinitesimal interval of time dt, the probability
of having a transition is η dt, which in turn means that the probability of not
having a transition is 1 − η dt. If, for some time T , we take dt = limN→∞

T
N

we have that the probability that in a time T no transitions occur is given by

P(Xt 6∈ B | 0 ≤ t ≤ T) = lim
N→∞

(
1− η T

N

)N
= e−ηT ,

assuming that a transition itself happens within time dt. This means that the
probability that transitions do occur in a time T is given by

P(Xt ∈ B | 0 ≤ t ≤ T) = 1− e−ηT .

Note that this is the cumulative distribution function of the exponential dis-
tribution. Since the occurence of transitions in a time T is equivalent to saying

78 Transition probabilities

that the first transition has occurred before time T , it is easy to see that the
relation between the transition rate and the mean first passage time is given
by

τMFPT =
1

η
,

which means that we could also write

P(Xt ∈ B | 0 ≤ t ≤ T) = 1− e− T
τMFPT . (5.4)

5.3 Covariance ellipsoids

In Kuehn (2012) it was suggested that one might get an insight into transition
probabilities by looking at the spatial distance between high (n)-dimensional
ellipsoidal confidence regions. These confidence ellipsoids are determined
by the probability density functions (PDFs) and indicate, with a certain con-
fidence, where a state may be during a transient computation. The station-
ary PDF of the approximating n-dimensional Ornstein–Uhlenbeck process
around a steady state x̄ is described as as (Gardiner, 1985; Cowan, 1998)

p(x; x̄) =
1

(2π)
n
2 |C | 12

e−
1
2Q(x;x̄),

where

Q(x; x̄) = (x− x̄)TC−1(x− x̄),

and C is the covariance matrix at x̄. The associated ellipsoid can be described
as

E = {x ∈ Rn : Q(x; x̄) ≤ Qα} , (5.5)

where Qα is the quantile of confidence level 1 − α of the χ2-distribution
(Cowan, 1998). Note that (5.5) is properly defined in case C is invertible.
However, since we compute low-rank approximations of C as discussed in
the previous chapter, this is never the case. Instead we may use an alternative
formulation of the ellipsoid

E =
{
x ∈ Rn : vTx ≤ vT x̄+

√
vT C̃v ∀ v ∈ Rn

}
, (5.6)

where C̃ = QαC is the positive semi-definite shape matrix associated with the
confidence ellipsoid. Note that such confidence regions are limited to repre-
senting the PDF under the assumption of linearized dynamics according to

M(p) dXt = A(x̄;p)Xt dt+B(x̄;p) dWt.

5.3. Covariance ellipsoids 79

The distance between ellipsoids associated with equilibria at different
branches, but with the same parameter value, provides information about the
relative frequency of noise induced transitions (Kuehn, 2012). Hence, calcu-
lating the distance between ellipsoids can be worthwhile when transient com-
putations are expensive. To determine the distance d between ellipsoids, a
convex minimization problem of the form

−d = min
‖v‖2=1

(
−vT x̄A +

√
vT C̃1v + vT x̄B +

√
vT C̃2v

)
is solved, where x̄A is an equilibrium at one branch and x̄B the equilibrium at
the other branch for the same parameter value µ. C̃1 = QαC1 and C̃2 = QαC2

are the respective shape matrices.
In Mulder et al. (2018) we investigated patterns of transition behavior in

marine ice sheet instability problems. Here we actually saw a good correspon-
dence with results that were obtained with transient computations.

Example 5.3.1

To get a feeling for these covariance ellipsoids, we produce results with the
two-dimensional double well potential defined by

V (x, y;µ) =
1

4
x4 − 1− µ

2
x2 + y2,

where we added a parameter µ in which we will perform a continuation. The
corresponding SDE that we solve is given by

dXt = −∇V (Xt;µ) dt+ g(Xt;µ) dWt, (5.7)

where we take g(Xt;µ) = 0.4. The bifurcation diagram of the determinis-
tic part of the SDE, together with the ellipsoids in parameter steps of 0.2 are
shown in Figure 5.2. For the ellipsoids, we take Qα corresponding to the con-
fidence level 1− α = 0.95.

In Figure 5.3 we show ten transient simulations up to T = 10 for µ = 2,
which show good correspondence with the ellipsoids. From the linearized dy-
namics around the steady states, which the ellipsoids describe, we expect 95%
of a transient to be within the ellipsoids. Indeed we see in the figure that most
trajectories spend the majority of the time inside the ellipsoids. However, the
trajectory that actually transitions to the other steady state spends a lot of
time outside either of the ellipsoids. In this figure, the actual amount of time
spent inside the ellipsoids is 92% of the total time. If we take 1000 samples
instead of just 10, we see that this percentage converges to 90%. This makes
sense since the covariance matrix only describes the local behavior around the
steady state, while the transitions happen on a global scale.

80 Transition probabilities

Figure 5.2: Bifurcation diagram of (5.7) with ellipsoids in parameter steps of 0.2.

Figure 5.3: Ten transients of (5.7) up to T = 10 at µ = 2 with corresponding ellipsoids.
Each color represents a different transient.

5.4 Most probable transition trajectories

Another quantity of interest when investigating transition probabilities is the
most probable transition trajectory. Other terms that are used are path of
maximum likelihood, minimum action path, minimum energy path or instan-
ton, depending on the application and the method that is used to compute
them. Where Eyring–Kramers tells us something about the transition rate,
Freidlin–Wentzell (Freidlin and Wentzell, 1998) large deviations theory gives
us information about the most probable transition trajectories. For gradient
systems, methods for computing these trajectories include the nudged elastic
band method (Henkelman et al., 2000; Henkelman and Jónsson, 2000) or the

5.5. Computing transition probabilities 81

string method (E et al., 2002, 2007). Methods which also work for more gen-
eral systems are the minimum action method and its geometric and adaptive
variants (E et al., 2004; Vanden-Eijnden and Heymann, 2008; Zhou et al., 2008;
Grafke et al., 2017).

In Bouchet et al. (2014); Laurie and Bouchet (2015) the two-dimensional
barotropic quasi-geostrophic (QG) equations, which are approximations of the
shallow water equations for small Rossby numbers, were studied in the con-
text of rare transitions. The minimum action method was applied to obtain
the most probable transition trajectories. This gives us an indication that this
may also work for our 2D MOC problem, since from our experience, investi-
gating transitions in the QG model is harder than investigating transitions in
the 2D MOC.

It may be possible to simplify computations of most probable transition
trajectories by minimizing only in the space spanned by the low-rank solu-
tions of the Lyapunov equations as described in the previous chapter. Ideally,
one could also exploit the knowledge about these paths to compute actual
transition probabilities, for instance by using the location of the path to only
sample near that path. One would have to investigate how this can be done
without losing information about the probabilities. We will, however, not go
further into this direction in this thesis.

Computing transition probabilities 5.5

In this section we investigate methods that actually compute transition prob-
abilities. We start with the most naive methods, then discuss more advanced
methods, and finally give a quantitative comparison between all of these
methods.

Direct sampling 5.5.1

The most naive method of computing a transition probability as defined above
is by computing samples using the Euler–Maruyama method (2.7) or some
other stochastic time stepping method like the stochastic theta method (2.8)
until the end time T , and then counting the number of times a transition oc-
curred. This is just a standard Monte Carlo method, which converges with
O((αN)−1/2), where α is the transition probability and N is the number of
samples (Rubino and Tuffin, 2009). This means that especially for small prob-
abilities, this method is very expensive, and for high-dimensional problems
unfeasible. The method is described in Algorithm 6.

82 Transition probabilities

input: F (x), g(x) Functions as described in (5.1) with M = I .
∆t Time step.
x0 Starting point.
T End time.
N Number of samples.

output: α Transition probability.

1: nt = 0
2: for i = 1, . . . , N do
3: x = x0

4: for t = ∆t, 2∆t, . . . , T do
5: x = x+ F (x)∆t+

√
∆tg(x)∆W

6: if x ∈ B then
7: nt = nt + 1

8: α̂N = nt/N

Algorithm 6: Direct sampling method for computing transition probabilities.

5.5.2 Direct sampling of the mean first passage time

Instead of computing the transition probability directly, one might also first
compute the mean first passage time in a naive way, and then compute the
transition probability using (5.4). This method is described in Algorithm 7.
Again, the Euler–Maruyama scheme can be replaced by another stochastic
time stepper like the stochastic theta method.

5.5.3 Adaptive multilevel splitting

There exist more efficient ways of computing the mean first passage time
that are based on the idea that there are more trajectories that leave A that
come back to A than there are trajectories that reach B. A method that makes
use of this concept is called the Adaptive Multilevel Splitting method (AMS)
(Cérou and Guyader, 2007; Rolland and Simonnet, 2015). It was inspired by
multilevel splitting methods which date back to Kahn and Harris (1951) and
Rosenbluth and Rosenbluth (1955). The multilevel splitting methods are all
based on the same idea of discarding trajectories that are unlikely to reach B
and splitting (or branching) from trajectories that are more likely to reach B.
An additional advantage of these methods is that no assumptions have to be
made on the amplitude and color of the noise, unlike for theoretical values ob-
tained through Eyring–Kramers or Freidlin–Wentzell (Rolland and Simonnet,
2015). We will now explain in more detail how it works.

5.5. Computing transition probabilities 83

input: F (x), g(x) Functions as described in (5.1) with M = I .
∆t Time step.
x0 Starting point.
N Number of samples.

output: τ Mean first passage time.

1: τ̂ = 0
2: for i = 1, . . . , N do
3: x = x0

4: for t = ∆t, 2∆t, . . . do
5: x = x+ F (x)∆t+

√
∆tg(x)∆W

6: if x ∈ B then
7: τ̂ = τ̂ + t/N
8: break

Algorithm 7: Direct sampling method for computing the mean first passage time.

We start with the neighborhoodA near a deterministic steady state x̄A and
the neighborhood B near a deterministic steady state x̄B as defined in Section
5.1. Now we define a surface C that encloses A. This surface C can be chosen
arbitrarily, but the speed of the algorithm greatly depends on the choice of C
(Rolland and Simonnet, 2015). We also define a so-called reaction coordinate,
which is a smooth one-dimensional function

φ : Rn → R

that defines how close x is to B. In this thesis, we assume that the reaction
coordinate should satisfy

|∇φ(x)| 6= 0, ∀x ∈ Rn\(A ∪B), (5.8a)
A ⊂ {x ∈ Rn : φ(x) < zmin}, (5.8b)
B ⊂ {x ∈ Rn : φ(x) > zmax}, (5.8c)
C = {x ∈ Rn : φ(x) = zmin}, (5.8d)

where zmin < zmax are two given real numbers. These properties were slightly
adapted from Cérou et al. (2011). For multi-dimensional problems, we pro-
pose some additional properties to make sure the method actually converges
towardsB, and not somewhere completely different which has the same value
of φ. These properties are

{x ∈ Rn : φ(x) = inf{φ(y) : y ∈ Rn}} ⊂ A,
{x ∈ Rn : φ(x) = sup{φ(y) : y ∈ Rn}} ⊂ B.

84 Transition probabilities

Since the gradient is not allowed to be zero outside of A and B, this means
that the reaction coordinate is always increasing towards B and decreasing
towards A.

We now explain step by step how the Adaptive Multilevel Splitting
method works.

1. First generate N independent trajectories (x)(1), . . . , (x)(N), that start in
A, pass through C, and then end up in either A or B. Here (x)(i) =

(x
(i)
0 ,x

(i)
1 , . . . ,x

(i)
Mi−1) is a trajectory of length Mi. From this we can see

how important the choice of C is. The further away from A, the longer
trajectories take to reach C, so the longer this step takes.

2. Each trajectory (x)(i), i = 1, . . . , N , has a certain maximum value of the
reaction coordinate (or maximum distance from A), which we define to
be Qi. Set k = 1, w0 = 1.

3. Take L = {j : Qj = inf{Qi : i ∈ {1, . . . , N}}}, which are the indices
for which the maximum value of the reaction coordinate is minimal, and
take `k = card(L) to be the number of elements in L. Since the trajecto-
ries {(x)(j) : j ∈ L} have the smallest value of Qi, all other trajectories
have some j for which φ(xj) > Ql for all l ∈ L.

4. Set wk =

(
1− `k

N

)
wk−1. For all l ∈ L, repeat steps 5-7.

5. Select a random trajectory (x)(r) with r from {1, . . . , N}\L, and
set (x̃)(l) = (x

(r)
0 , . . . ,x

(r)
jmin

), where jmin is the smallest value for which

φ(x
(r)
jmin

) ≥ Ql.

6. Generate the rest of the trajectory starting from x
(r)
jmin

until again
you reach either A or B. This trajectory has a new maximum value of
the reaction coordinate Q̃l, which is always greater than or equal to Ql.
Note that this is the branching or splitting which gave the method its
name.

7. Set (x)(l) = (x̃)(l) and Ql = Q̃l.

8. Repeat steps 3-7 with k = k + 1 until Qi ≥ zmax, ∀ i = 1, . . . , N .

The weights wi that are computed in every step represent the probability of
a trajectory reaching iteration i + 1. So say we start with 100 trajectories, and
we have 2 trajectories for which the maximum value of the reaction coordi-
nate is minimal. Since these two trajectories are eliminated, the probability of
a trajectory reaching iteration 2 is 1 − 2/100 = 98/100. We repeat this pro-
cess, multiplying the probabilities that we find in every step. This gives us an

5.5. Computing transition probabilities 85

unbiased estimator of the probability of observing a reactive trajectory

α̂N =
NBwk
N

=
NB
N

k∏
i=0

(
1− `i

N

)
, (5.9)

where k is the number of iterations it took for all trajectories to converge, and
NB is the number of trajectories that reached B (Bréhier et al., 2016). More
precisely, it is the probability that a trajectory starting fromC reachesB before
A.

Note that the formula we give here is different from the one given in Cérou
and Guyader (2007) or Rolland and Simonnet (2015), which is

α̂N =
NB
N

(
1− 1

N

)k
. (5.10)

The reason for this is that the formula from Bréhier et al. (2016) accounts for
the case when two trajectories have the same maximum value of the reaction
coordinate. It may seem that this has probability zero, but it may happen that
it branches from the maximum value of the reaction coordinate of another tra-
jectory. If the reaction coordinate only decreases from there, this means that
now both trajectories have the same maximum value of the reaction coordi-
nate. In case `i is equal to 1 for all i, (5.9) and (5.10) are the same.

Of course we are not exactly interested in this quantity, but instead we are
interested in the transition probability, which we can compute from the mean
first passage time. To compute this time we split up reactive trajectories into
three parts. The first part is given by the initial step in which trajectories are
generated that reach C when starting in A within time t1. The second part
is given by the trajectories that reach A before they reach B when starting
in C within time t2. These are computed during the initial step of AMS as
described above, and are observed with probability 1 − α. The third part is
the trajectories that reach B before A when starting in C within time t3. These
are the trajectories that we obtain from the AMS method, and are observed
with probability α.

The mean first passage time is then given by

τMFPT =

(
1− α
α

)
E(t1 + t2) + E(t1 + t3).

All of the quantities required for computing the mean first passage time are
obtained during the AMS method, but more samples can be generated for
computing E(t1 + t2) to make the result more accurate. Depending on how
close C is to A, this should take a relatively small amount of time.

Unlike α̂N , the estimator of the actual transition probability that can be
obtained by using (5.4) is biased (Lestang et al., 2018).

86 Transition probabilities

Example

As an example we will look at the two-dimensional double well potential de-
fined by

V (x, y) =
1

4
x4 − 1

2
x2 + y2,

which we show in Figure 5.4.

−2 −1
0

1
2−1

0

1
0

2

x

y

Figure 5.4: The two-dimensional double well potential.

The corresponding SDE that we solve is given by

dXt = −∇V (Xt) dt+ g(Xt) dWt,

where we take g(Xt) = 0.4. It is easy to see that there are stable steady states
at (−1, 0) and (1, 0) and an unstable steady state at (0, 0). We take x̄A = (−1, 0)
and x̄B = (1, 0), and use

φ(x, y) =
1

2
− 1

2
e−8((x+1)2+y2) +

1

2
e−8((x−1)2+y2)

as the reaction coordinate. This function satisfies all the conditions that we
defined earlier.

In this example, we will perform AMS with 3 trajectories. We defineA and
B to be

A = {x ∈ R2 : φ(x) < 0.1}, B = {x ∈ R2 : φ(x) > 0.9},

zmin = 0.2 and zmax = 0.9. The initial step, where we compute trajectories that
start in A and go through C to either A or B is shown in Figure 5.6.

Next we compute the maximum values of the reaction coordinate for each
trajectory, Q1, Q2 and Q3 as shown in Figure 5.7. We then pick a random
trajectory, in this case (x)(1), and generate a new trajectory which is branched

5.5. Computing transition probabilities 87

−2 −1
0

1
2−1

0

1

0

0.5

1

x

y

Figure 5.5: Reaction coordinate φ(x, y).

A
C

B

t
0

φ
(x

)

A

C

B

Figure 5.6: First step of AMS where trajectories are computed that start in A and go
through C to either A or B. On the top, the trajectories are shown in the xy-plane with
contours for φ(x) = 0.1, 0.2, . . . , 0.9. On the bottom, the reaction coordinate values of
the same trajectories are plotted against time. Each trajectory has its own color.

from the position where (x)(1) reaches Q2. The newly generated trajectory
(x̃)(2) has a new maximum value of the reaction coordinate Q̃2, which is also
shown in Figure 5.7.

It is clear that Q̃2 > Q2, meaning that the trajectory got closer to B. This
process is repeated until all trajectories reach B. Of course a sample size of 3
is much too small to obtain an accurate transition rate, so we will not compute
this here.

88 Transition probabilities

Q1

Q2

Q3 Q̃2

t
0

φ
(x

)

Figure 5.7: The second step of AMS where the second trajectory, which had the lowest
value of the reaction coordinate, is replaced with a trajectory that branches from the
first trajectory.

Optimizations

Say we have a problem of dimension 10000 with a time step of 0.01, a mean
first passage time of 1000, and 1000 samples, which is not at all unreasonable
for the problems that we want to solve. In this case we would need at least
7.28 TB of memory to store all of the states that we compute. This is a very
large amount of memory, but fortunately, some simple optimizations exist to
deal with this.

First, it is important to observe that the only place where we actually use a
state is when we branch a trajectory. Other than in this place, we only use the
times to compute the quantities that we need. This means that we can discard
any state x for which φ(x) < Ql, since these will never be used for branch-
ing. Discarding these states can be done for instance every time a trajectory is
branched, every so many iterations, or even in every AMS iteration.

Secondly, since we only use the first x for which φ(x) ≥ Ql, we only have
to store {xi ∈ (x) : φ(xi) > sup{φ(x1), . . . , φ(xi−1)}}. This means that if
we iteratively determine the value of Q, we only store a state x if φ(x) > Q.
In addition, one could also limit the number of states that we store by only
storing one state per interval of φ. So for instance if zmin = 0.1, zmax = 0.9
and we only store a state with intervals of 0.005, at most 160 states would be
stored.

Optimizations can also be done in terms of parallelization. Since all tra-
jectories are computed independently in the first step, parallelization of the

5.5. Computing transition probabilities 89

first step is trivial. In the later steps, the same holds, but the branching makes
it a bit more difficult. What one could do is making a pool of unused trajec-
tories (trajectories that are not being regenerated), and select both trajectories
that are being regenerated and random trajectories from which to branch from
this pool. In a shared memory parallelization model, this is easy to implement.
One just lets every thread draw trajectories from this pool until all trajectories
in the pool have reached B.

There are, however, many small details that might cause big problems. For
instance, it might happen that one copies the initial part of a branched trajec-
tory at the same time at which this part is being overwritten. Also it might
happen that the pool from which we can select trajectories is not updated in
all the different threads. The easiest solution is to put everything other than
the transient part, where the new part of the trajectory is generated, in a crit-
ical section and to make sure to synchronize every time you enter a critical
section.

An implementation in pseudocode that utilizes some of these optimiza-
tions is shown in Algorithm 8. Changes that can be made to this pseu-
docode that were discussed before are replacing line 7 and line 33 by φ(x

(l)
j) >

Ql + 0.005 or replacing x(l)
j ∈ B in line 12 and line 35 by φ(x

(l)
j) > zmax.

Accuracy of the method

Methods that fall into the Generalized Adaptive Multilevel Splitting frame-
work produce an unbiased estimator α̂N of the probability α (Bréhier et al.,
2016). Generally, however, one realization of the algorithm is not enough to
get an accurate answer. Also, from just one realization, we can not tell how
accurate the answer actually is. Therefore, one computes K realizations of the
algorithm, and uses those to compute both a more accurate answer, and an
estimate of the error. From this we get K probability estimates α̂N , which we
can use to compute the mean

µα =
1

K

K∑
i=1

α̂
(i)
N

and the variance

σ2
α =

1

K − 1

K∑
i=1

(
α̂

(i)
N − µα

)2

.

An estimate of the relative error is given by

εα =
σα
µα
,

90 Transition probabilities

input: F (x), g(x) Functions as described in (5.1) with M = I .
∆t Time step.
x0 Starting point.
N Number of samples.

output: τ Mean first passage time.

1: for i = 1, 2, . . . , N do
2: t = 0, t

(i)
1 = 0, t

(i)
2 = 0, t

(i)
3 = 0

3: Qi = 0
4: for j = 1, 2, . . . do
5: t = t+ ∆t
6: x

(i)
j = x

(i)
j−1 + F (x

(i)
j−1)∆t+

√
∆tg(x

(i)
j−1)∆W

7: if φ(x
(i)
j) > Qi then

8: Qi = φ(x
(i)
j)

9: if t(i)1 = 0 and φ(x
(i)
j) > zmin then

10: t
(i)
1 = t

11: t = 0
12: else if t(i)1 > 0 and x(i)

j ∈ B then

13: t
(i)
3 = t

14: break
15: else if t(i)1 > 0 and x(i)

j ∈ A then

16: t
(i)
2 = t

17: break

Algorithm 8: AMS step 1: generation of the initial trajectories that start in A, pass
through C, and end in A or B.

which in turn can be used for computing error estimates for the mean first
passage time and the transition probability (Lestang et al., 2018).

However, since we are interested in probabilities close to 0, a standard
confidence interval obtained from the standard deviation σ is not a good rep-
resentation of the actual error (DasGupta et al., 2001). This comes from the
fact that the distribution of samples is usually assumed to be normal, and es-
pecially for small sample sizes near 0, this is clearly not the case. For smaller
sample sizes the variance is larger, meaning the tail of the normal distribution
that is below 0 is also larger. However, it is of course not possible to have a
probability smaller than 0, and hence the confidence interval is incorrect.

Instead, we choose to use the interquartile range (IQR), which is the inter-
val between the 25th percentile and 75th percentile, to give an indication of

5.5. Computing transition probabilities 91

18: w0 = 1
19: for k = 1, 2, . . . do
20: L = {j : Qj = inf{Qi : i ∈ {1, . . . , N}}}
21: `k = card(L)
22: if `k = N then
23: break

24: wk =

(
1− `k

N

)
wk−1

25: for all l ∈ L do
26: r = rand({1, . . . , N}\L)

27: jmin = arg minj(φ(x
(r)
j) : φ(x

(r)
j) ≥ Ql)

28: (x)(l) = (x
(r)
0 , . . . ,x

(r)
jmin

)
29: t = ∆t · jmin

30: for j = jmin + 1, jmin + 2, . . . do
31: t = t+ ∆t
32: x

(l)
j = x

(l)
j−1 + F (x

(l)
j−1)∆t+

√
∆tg(x

(l)
j−1)∆W

33: if φ(x
(l)
j) > Ql then

34: Ql = φ(x
(l)
j)

35: if x(l)
j ∈ B then

36: t
(l)
3 = t

37: break
38: else if x(l)

j ∈ A then
39: break

Algorithm 8: AMS step 2: branching of the trajectories until all of them end up in B.

the error. This can be obtained by sorting the data, and then taking the value
at 25% and the value at 75%. Since the IQR is determined directly from the
data, we do not obtain any probabilities smaller than 0. Note that the 1.5 · IQR
and 3 · IQR values, which are often used in box plots, may still include values
smaller than 0, which is why we do not use those.

Trajectory-Adaptive Multilevel Sampling 5.5.4

So far we have been busy computing the mean first passage time, after which
we can use (5.4) to compute the actual transition probability under the as-
sumption that this probability follows the exponential distribution. However,
it would be much nicer to compute the transition probability directly. For-
tunately, a variant of AMS called Trajectory-Adaptive Multilevel Sampling

92 Transition probabilities

40: t1 =
1

N

N∑
i=1

t
(i)
1 , t2 =

1

NI

N∑
i=1

t
(i)
2 , t3 =

1

NB

N∑
i=1

t
(i)
3

41: α̂N =
NBwk
N

42: τ̂MFPT =

(
1− α̂N
α̂N

)
(t1 + t2) + (t1 + t3)

Algorithm 8: AMS step 3: computation of the mean first passage time. Here NB is the
number of trajectories that reached B, and NI is the number of initial trajectories that
ever reached A before B.

(TAMS) (Lestang et al., 2018) exists, which allows for the direct computation
of the transition probability when given a maximum time T .

In TAMS, there is an optional maximum number of iterations kmax that can
be set, which allows us to stop even before all trajectories have reached B.

The difference between the two algorithms is the absence of C, not stop-
ping when reaching A, and the usage of a maximum time T . These differ-
ences only show in steps 1 and 6, but simplifies the implementation consider-
ably. Since a correct implementation is crucial, we again list all steps that are
needed to compute the transition probability like we did for AMS.

1. First generate N independent trajectories (x)(1), . . . , (x)(N) that start in
A until t = T is reached, or the trajectory ends up in B. Here (x)(i) =

(x
(i)
0 ,x

(i)
1 , . . . ,x

(i)
M) is a trajectory of length M = T/∆t.

2. Each trajectory (x)(i), i = 1, . . . , N , has a certain maximum value of the
reaction coordinate (or maximum distance from A), which we define to
be Qi. Set k = 1, w0 = 1.

3. Take L = {j : Qj = inf{Qi : i ∈ {1, . . . , N}}}, which are the indices
for which the maximum value of the reaction coordinate is minimal, and
take `k = card(L) to be the number of elements in L. Since the trajecto-
ries {(x)(j) : j ∈ L} have the smallest value of Qi, all other trajectories
have some j for which φ(xj) > Ql for all l ∈ L.

4. Set wk =

(
1− `k

N

)
wk−1. For all l ∈ L, repeat steps 5-7.

5. Select a random trajectory (x)(r) with r from {1, . . . , N}\L, and
set (x̃)(l) = (x

(r)
0 , . . . ,x

(r)
jmin

), where jmin is the smallest value for which

φ(x
(r)
jmin

) ≥ Ql.

5.5. Computing transition probabilities 93

6. Generate the rest of the trajectory starting from x
(r)
jmin

until again
you reach either t = T or B. This trajectory has a new maximum value
of the reaction coordinate Q̃l, which is always greater than or equal to
Ql.

7. Set (x)(l) = (x̃)(l) and Ql = Q̃l.

8. Repeat steps 3-7 with k = k + 1 until Qi ≥ zmax, ∀ i = 1, . . . , N or
k = kmax.

Now the quantity that we can compute is again the estimate of the probability
α of observing a reactive trajectory, but since we now introduced a maximum
time, this is now actually the transition probability (Lestang et al., 2018). So
an unbiased estimator of the transition probability is again given by

α̂N =
NBwk
N

=
NB
N

k∏
i=0

(
1− `i

N

)
,

where k is the number of iterations it took for all trajectories to converge, and
NB is the number of trajectories that reached B.

Example

We can again use the example from Section 5.5.3 to show how TAMS works
exactly. The initial step, where we compute trajectories that start in A and
either go to B or end after time T is shown in Figure 5.8.

This figure shows basically the same behavior as we saw in Figure 5.6,
except that the trajectories keep going for longer. This is not very represen-
tative for an actual application with small noise, where trajectories generated
by AMS are often much longer, especially when they reach B.

Next we again compute the maximum values of the reaction coordinate,
and branch from the trajectory with the lowest value. The result is shown in
Figure 5.9. We now actually see different behavior compared to Figure 5.7,
since even though the new trajectory came back to A, we did not stop there,
and ended up with a larger value of the reaction coordinate afterwards. In this
case Q̃2 is larger than Q3, so the third trajectory is now the next one that will
be killed and branched, where this was the second trajectory in Figure 5.7.

The main big advantage of this method is not really displayed here, be-
cause of the nature of the example. The example was chosen in such a way
that trajectories actually manage to reach B, which means that the mean first
passage time is quite short. This also means that all the trajectories that we
show actually reached A or B before time T . Usually this is not the case, and
generally, trajectories take much longer than time T to actually reach either A
or B, so with TAMS, it is much faster to generate new trajectories.

94 Transition probabilities

B

t
0 T

φ
(x

)

Figure 5.8: First step of TAMS where we compute trajectories that start in A and either
go to B or end after time T . On the top, the trajectories are shown in the xy-plane with
contours for φ(x) = 0.1, 0.2, . . . , 0.9. On the bottom, the reaction coordinate values of
the same trajectories are plotted against time. Each trajectory has its own color.

Q1

Q2

Q3 Q̃2

t
0 T

φ
(x

)

Figure 5.9: The second step of TAMS where the second trajectory, which had the lowest
value of the reaction coordinate, is replaced with a trajectory that branches from the
first trajectory.

5.5. Computing transition probabilities 95

Genealogical Particle Analysis 5.5.5

Yet another method for computing probabilities of rare events is the Genealog-
ical Particle Analysis (GPA) method (Moral and Garnier, 2005; Moral, 2013;
Wouters and Bouchet, 2016). Similarly to TAMS, GPA also works by gener-
ating N independent trajectories starting in A and ending at a certain time
T . The difference is that instead of killing and branching trajectories, trajecto-
ries are resampled at certain time intervals based on weights that are assigned
to each trajectory. Additionally, one keeps track of the probability of observ-
ing a certain trajectory, which can ultimately be used to compute the transi-
tion probability. Again, there are many variations of this algorithm, but here
we will describe only the first variant that is discussed in Moral and Garnier
(2005).

We start with defining the function W : Rn → R that is used to compute
the weights of the trajectories

W (x) = eβφ(x),

where we use the same function φ : Rn → R that we used in AMS, since this
gives a good quantification of when we are close to B.

The following steps define a general GPA algorithm:

1. First take N initial conditions x(1)
0 , . . . ,x

(N)
0 in A and assign weights

w
(i)
0 = 1 and observation probabilities p(i)

0 = 1 with i = 1, . . . , N . We
call the tuple (x, w, p) a particle. Take the interval size τ , and set k = 0.

2. Compute the normalizing factor

η =
1

N

N∑
i=1

w
(i)
k .

3. Choose N independent particles with probability proportional to their
weight from

(x
(1)
k , w

(1)
k , p

(1)
k), . . . , (x

(N)
k , w

(N)
k , p

(N)
k).

The new particles are denoted by

(x̃
(1)
k , w̃

(1)
k , p̃

(1)
k), . . . , (x̃

(N)
k , w̃

(N)
k , p̃

(N)
k).

4. Generate new independent trajectories starting in x̃(1)
k , . . . , x̃

(N)
k until

they reach τ . x(1)
k+1, . . . ,x

(N)
k+1 are defined by the end points of the gener-

ated trajectories.

96 Transition probabilities

5. Compute the associated weights and observation probabilities

p
(i)
k+1 =

η p̃
(i)
k

w̃
(i)
k

, (5.11)

w
(i)
k+1 = W (x

(i)
k+1), i = 1, . . . , N.

6. Repeat steps 2-5 with k = k + 1 until kτ = T .

To compute the transition probability, we additionally have to store for every
particle, if the associated trajectories ever reachedB. We can do this by instead
defining a particle to be a tuple (x, γ, w, p), where γ = 0 if the associated
trajectories never reached B, and γ = 1 if they did. The approximation to
transition probability is then given by

α̂N =
1

N

N∑
i=1

γ
(i)
k p

(i)
k .

An implementation that computes the transition probability in this way is
shown in Algorithm 9.

Example

We used the same example we used for AMS in Section 5.5.3 to show the
behavior of GPA. The time is split into four intervals, and we use four trajec-
tories. At the end of each interval, the trajectories are resampled. The result is
shown in Figure 5.10.

Note that this method differs a lot from the AMS methods, and is also
much easier to understand from one picture. In this case, we see that the top
trajectories usually have more trajectories that branch from them. In the end,
one of the trajectories reaches B, but unlike in AMS, we still have to keep
iterating with this trajectory, since it might have to be used for resampling
later.

5.5.6 Comparison

We compare the behavior of the different methods that are described in the
previous sections, again, using the example from Section 5.5.3. For the noise
coefficient we take g(Xt) =

√
0.1. Note that in Section 5.5.3 we took a value

of 0.4, which was only for the sake of being able to generate more informa-
tive figures. We perform a range of experiments in Matlab 2018a for different
values of the maximum time T , using N = 10000 samples and repeating the
experiment 1000 times.

5.5. Computing transition probabilities 97

input: F (x), g(x) Functions as described in (5.1) with M = I .
∆t Time step.
τ Time interval size. Multiple of ∆t.
T End time. Multiple of τ .
x0 Starting point.
N Number of samples.

output: α Transition probability.

1: for i = 1, 2, . . . , N do
2: (x

(i)
0 , γ

(i)
0 , w

(i)
0 , p

(i)
0) = (x0, 0, 1, 1)

3: for k = 0, 1, . . . , T/τ − 1 do
4: η = 1

N

∑N
i=1 w

(i)
k .

5: for i = 1, 2, . . . , N do
6: r = rand([0, η])
7: for j = 1, 2, . . . , N do
8: if

∑j
l=1 w

(l)
k ≥ r then

9: (x̃
(i)
k , γ̃

(i)
k , w̃

(i)
k , p̃

(i)
k) = (x

(j)
k , γ

(j)
k , w

(j)
k , p

(j)
k)

10: for i = 1, 2, . . . , N do
11: y0 = x̃

(i)
k

12: for j = 1, 2, . . . , τ/∆t do
13: yj = yj−1 + F (yj−1)∆t+

√
∆tg(yj−1)∆W

14: if yj ∈ B then
15: γ

(i)
k+1 = 1

16: p
(i)
k+1 = η p̃

(i)
k /w̃

(i)
k

17: x
(i)
k+1 = yτ/∆t

18: w
(i)
k+1 = W (x

(i)
k+1)

19: k = T/τ

20: α̂N =
1

N

N∑
i=1

γ
(i)
k p

(i)
k

Algorithm 9: Genealogical Particle Analysis implementation for determining the tran-
sition probability.

The methods can be divided into two categories, being methods which
compute the transition probability from the mean first passage time and meth-
ods that compute the transition probability directly. Since this system is a gra-
dient system, we can use the Eyring–Kramers formula to compute the mean
first passage time under the assumption of the noise being sufficiently small.

98 Transition probabilities

B

t
0 T

φ
(x

)

Figure 5.10: GPA for computing trajectories that start in A and either go to B or end
after time T . On the top, the trajectories are shown in the xy-plane with contours for
φ(x) = 0.1, 0.2, . . . , 0.9. On the bottom, the reaction coordinate values of the same
trajectories are plotted against time. Each trajectory in each interval has its own color.

We will also compare the first class of methods to this theoretical value.
The results with T in the range [1,50] can be found in Figure 5.11. A more

detailed view of the range [1,10] can be found in Figure 5.12. Since we are
interested in rare transition events, this range is of more interest to us.

The first thing we notice in Figure 5.11 is that GPA gives really bad ap-
proximations for larger values of T . This is partially explained by the fact that
(5.11) is not limited from above by 1. It actually happens that there are values
of α̂N that are larger than 1, which also explains the larger peaks, and the fact
that both 25th and 75th percentile are below the mean, which gives an IQR
that is below the actual line.

Other than that we see that the direct sampling method and TAMS look
very similar, and that near 1, the theory, the direct sampling of the mean first
passage time and AMS are very close to each other. However, both groups of
methods do not seem to agree, especially for smaller values of T .

When we zoom in on the interval [1,10], which can be found in Figure
5.12, we see that here GPA agrees more with TAMS and the direct sampling
method as expected, since this method also computes the transition probabil-
ity directly. Between these three methods, TAMS has the smallest error bars.
We also observe that when using estimates of the mean first passage time, we
obtain a much worse estimate of the transition probability. This even holds for
the value that was computed directly from the Eyring–Kramers formula. This

5.5. Computing transition probabilities 99

0 10 20 30 40 50
0

0.02

0.04

0.06

0.08

0.1

T

Tr
an

si
ti

on
pr

ob
ab

ili
ty

Theory
Direct
Direct MFPT
GPA
AMS
TAMS

Figure 5.11: Comparison of 1000 experiments with all described methods with maxi-
mum times in the range [1,50] and with N = 10000. The shaded areas show the IQR.

can be explained from the fact that the transitions do not happen instantly as
was assumed in Section 5.2.2.

The fact that TAMS has smaller error bars does not necessarily mean that
is it also the most efficient method, which is why we also plot the work-
normalized relative error (Glynn and Whitt, 1992), which is given by

εω =

√
ωσα
µα

for some amount of work ω. Since Matlab does not allow for a fair comparison
of the computational time, we instead use the simulated time to describe the
work. This makes sense, since we use a constant time step, and for high-
dimensional models, time stepping is by far the most expensive part of the
computation. The results can be found in Figure 5.13.

Here we see that TAMS is slightly more efficient than GPA and direct sam-
pling of the transition probability. We also observe that the work-normalized
relative error increases with a factor α−1/2 for smaller maximum times for
methods that compute the transition probability directly. This is as expected
for direct sampling, which converges with O((αN)−1/2) (Rubino and Tuffin,
2009), and the worse case scenario for TAMS, which can show convergence be-
havior between O(

√− logαN−1/2) (optimal) and O((αN)−1/2) (worst case)
(Simonnet, 2014; Lestang et al., 2018). The choice of the reaction coordinate
has a large impact on the efficiency of (T)AMS (Rolland and Simonnet, 2015;

100 Transition probabilities

0 2 4 6 8 10
10−6

10−5

10−4

10−3

10−2

T

Tr
an

si
ti

on
pr

ob
ab

ili
ty

Theory
Direct
Direct MFPT
GPA
AMS
TAMS

Figure 5.12: Comparison of 1000 experiments with all described methods with maxi-
mum times in the range [1,10] and with N = 10000. The shaded areas show the IQR.
The results of the Direct, GPA and TAMS methods where no shaded area is present
have a 25th percentile of 0.

0 10 20 30 40 50
101

102

103

104

T

W
or

k-
no

rm
al

iz
ed

re
la

ti
ve

er
ro

r Direct
GPA
TAMS

Figure 5.13: The work-normalized relative error for 1000 experiments with the Direct,
GPA and TAMS methods with maximum times in the range [1,50] and withN = 10000.

5.6. Summary and Discussion 101

Rolland et al., 2015; Lestang et al., 2018), which means that a better reaction
coordinate can be used to further reduce the work-normalized relative error
and improve the convergence behavior. The optimal convergence behavior,
however, is only attained when the optimal reaction coordinate, which is also
referred to as the committor, is used, but in practice this is never known.

The images in this section can be reproduced with the Matlab code at
https://github.com/Sbte/transitions.

Summary and Discussion 5.6

In this chapter we discussed many different methods for studying transition
probabilities, and analyzed their behavior on the two-dimensional double
well potential. We started with describing what a transition probability ac-
tually is, which is the probability of going from a neighborhood A near a de-
terministic steady state x̄A to a neighborhood B near a deterministic steady
state x̄B within time T .

We then described the Eyring–Kramers formula for computing the mean
first passage time for gradient systems. The mean first passage time can in
turn be used for the computation of the transition probability by using the
cumulative distribution function of the exponential distribution under the as-
sumption that transitions are instantaneous.

Covariance ellipsoids can be used to study the behavior around a steady
state, and can be used to compare the sensitivity to noise at different param-
eter values, but we found that it is insufficient to compute actual transition
probabilities. We used these covariance ellipsoids in Mulder et al. (2018) to
investigate patterns of transition behavior in marine ice sheet instability prob-
lems. There a good correspondence with results that were obtained with tran-
sient computations was observed.

It is also possible to compute most probable transition trajectories, as was
done in Laurie and Bouchet (2015) for the barotropic quasi-geostrophic equa-
tions. This may also be done for the MOC problem in the future, to obtain
more knowledge about the transition behavior, since from our experience, in-
vestigating transitions in the QG model is harder than investigating transi-
tions in the 2D MOC.

After this we described five different numerical methods for computing
transition probabilities: direct sampling, direct sampling of the mean first pas-
sage time, AMS, TAMS and GPA. We saw that TAMS gives the best results for
all ranges of transition probabilities. We will therefore use TAMS in the next
chapter to compute transition probabilities for the MOC. To further improve
the results of TAMS, it would be interesting to investigate the effect of differ-
ent reaction coordinates in the future.

https://github.com/Sbte/transitions

C
H

A
PT

ER
6

TRANSITIONS IN THE
MERIDIONAL OVERTURNING

CIRCULATION

For high-dimensional problems, the computation of transition probabilities of
rare events is not feasible with standard Monte Carlo methods as mentioned
in the previous chapter. Therefore specialized methods such as Genealogical
Particle Analysis (GPA) (Moral and Garnier, 2005; Moral, 2013; Wouters and
Bouchet, 2016), Adaptive Multilevel Splitting (AMS) (Cérou and Guyader,
2007; Rolland and Simonnet, 2015; Rolland et al., 2015), and based on that
Trajectory-Adaptive Multilevel Sampling (TAMS) (Lestang et al., 2018) exist.
The idea behind these methods is similar: they try to push samples in the
direction of the transition to make sure transitions actually occur, also for
smaller sample sizes, while still being able to compute the transition prob-
ability for the original problem.

Our goal is to compute transition probabilities in the Meridional Overturn-
ing Circulation (MOC). Rare transitions in the two-dimensional barotropic
quasi-geostrophic equations have been studied in Bouchet et al. (2014); Laurie
and Bouchet (2015), but there only the most likely transition path was de-
termined by means of the minimum action method (E et al., 2004; Vanden-
Eijnden and Heymann, 2008; Zhou et al., 2008; Grafke et al., 2017). To our
knowledge, actual transition probabilities have never been computed for
high-dimensional problems on a scale that we present here.

Methods for finding transition probabilities have two main culprits. The
first is that they always require some form of time integration, which is very
expensive for high-dimensional systems. This is especially the case when an
implicit time-stepping method is used, since then in every time step a linear
system has to be solved. The other is that for methods based on AMS, a large
number of states at different time steps have to be stored in memory.

We therefore propose a projected time-stepping method in Section 6.1, for

103

104 Transitions in the Meridional Overturning Circulation

which in every time step, only a small projected linear system has to be solved,
and for which only the projected states have to be stored, which are much
smaller than the original states. Based on the results that were obtained in the
previous chapter, we decided to apply this method to TAMS, but it may be
applied to any method for computing transition probabilities. In Section 6.2
we then discuss the problem setting and in Section 6.3 we discuss the results.
The results and the method are summarized and discussed in Section 6.4.

6.1 Projected time-stepping in TAMS

In AMS and TAMS, but also in GPA, one is free to choose any stochastic time
stepping method. In case the stochastic theta method (2.8) is used with θ 6= 0,
multiple linear systems have to be solved in every time step. In that case,
solving these linear systems is usually the computationally most expensive
part of TAMS, even if the linear system is sparse, and an iterative solver with
a good preconditioner is used.

At a time step i of the stochastic theta method, take

F̂ (x) = Mxi −Mx+ (1− θ)∆tF (xi) + θ∆tF (x) + g(xi) ∆Wi

with Jacobian

Ĵ(x) = θ∆tJ(x)−M.

A Newton solve for one implicit time step would normally look like this

1: y(0) = xi
2: for j = 1, 2, . . . until convergence do
3: solve Ĵ(y(j−1))∆y(j) = −F̂ (y(j−1))
4: y(j) = y(j−1) + ∆y(j)

5: xi+1 = y(j)

A small potential optimization that can be made is computing Ĵ(xi) be-
forehand, and using this instead of Ĵ(y(j−1)). This will make it such that
Newton does not converge quadratically, but saves the time of computing the
Jacobian matrix multiple times.

Instead of solving with this large sparse matrix Ĵ(y(j−1)) in every Newton
iteration, we instead propose to solve with a smaller matrix obtained from a
Galerkin type projection V T Ĵ(xi)V , where V consists of an orthogonal basis
of the most important directions that are used by the stochastic perturbation.

6.2. Problem setting 105

These vectors, at least around a steady state, can be obtained from the eigen-
vectors belonging to the largest eigenvalues of the covariance matrix, which
can in turn be obtained from the basis vectors of the low-rank solution of a
generalized Lyapunov equation as described in Chapter 4.

Say we have an orthonormal basis V spanned by x̄A, the basis of the low-
rank Lyapunov solution VA at x̄A, x̄B , the basis of the low-rank Lyapunov
solution VB at x̄B , and the noise matrices BA and BB at x̄A and x̄B . We can
then replace the Newton iteration with

1: y(0) = V Txi
2: A = V T Ĵ(xi)V
3: for j = 1, 2, . . . until convergence do
4: solve A∆y(j) = −V T F̂ (V y(j−1))
5: y(j) = y(j−1) + ∆y(j)

6: xi+1 = V y(j)

If we apply this in TAMS, we see that between two consecutive time steps,
we always apply V TV y(j). Now since V is orthonormal, this means that we
might as well apply TAMS itself to y(j) directly. Doing this actually solves
the largest problem we observe when applying TAMS to high-dimensional
systems, which is the storage of the trajectories, since we now only have to
store the trajectories restricted to the space V . Say we have a system of size
10000 and a space V consisting of 100 vectors, which is a realistic scenario,
then this reduces the required storage by a factor 100.

Problem setting 6.2

In this section we discuss the problem setting of the ocean model as described
in Section 2.5.2. The results with this model are shown in Section 6.3.

Bifurcation diagram 6.2.1

For the deterministic model, we take the surface forcing slightly different from
the forcing that was described in Section 2.5.3 and more similar to what was
used in Van der Mheen et al. (2013) as

T̄ (θ) = 10.0 cos (πθ/θN) , (6.1a)

Fs(θ) = F̄s(θ) = µF0
cos(πθ/θn)

cos(θ)
+ βF0Fp(θ), (6.1b)

106 Transitions in the Meridional Overturning Circulation

where µ = 0.3 is the strength of the mean freshwater forcing, F0 = 0.1 m yr−1

is a reference freshwater flux, β is the strength of an anomalous freshwater
flux Fp, which is 1 in the area [45◦N, 60◦N], and 0 elsewhere.

The equations are discretized on a latitude-depth equidistant nx× ny × nz
grid using a second-order conservative central difference scheme. An integral
condition expressing the overall conservation of salt is also imposed, as the
salinity equation is only determined up to an additive constant. The total
number of degrees of freedom is n = 6nxnynz , as there are six unknowns per
point. The standard spatial resolution used is nx = 4, ny = 32, nz = 16 and
the solutions are uniform in the zonal direction, with the zonal velocity u = 0.

The bifurcation diagram of the deterministic model for parameters as in
Table 2.1 is shown in Figure 6.1a. On the y-axis, the sum of the maximum
(Ψ+) and minimum (Ψ−) values of the meridional streamfunction Ψ is plotted,
where Ψ is defined through

∂Ψ

∂z
= v cos θ, − 1

r0 cos θ

∂Ψ

∂θ
= w. (6.2)

For the calculation of the transports, the basin is assumed to have a zonal
width of 64◦. The value of Ψ+ + Ψ− is zero when the MOC is symmetric with
respect to the equator.

We are interested in transitions from the top branch to the bottom branch
of the bifurcation diagram. We will investigate transitions at two parameter
values βa = −0.2162 and βb = −0.1982. The transitions will be from point
a to a′ and from point b to b′. The pattern of the asymmetric overturning
streamfunction at location b with sinking in the northern part of the basin is
shown in Figure 6.1b, as well as the overturning streamfunction at location b′

with sinking in the southern part of the basin. The saddle-node bifurcations
are located at β = −0.2320 and β = 0.3371.

6.2.2 Stochastic freshwater forcing

For the stochastic model, we use the same freshwater forcing as given in Sec-
tion 2.5.3. However, because we use a different deterministic forcing, we can
not simply describe Fs in terms of F̄s as given in Section 6.2.1. The more pre-
cise description is given by

Fs(θ, t) = (1 + σζ(θ, t)) µF0
cos(πθ/θn)

cos(θ)
+ βFp(θ), (6.3)

where ζ(θ, t) is as described in Section 2.5.3.

6.2.3 Reaction coordinate

Since p andw are determined by the algebraic constraints up to a constant, and
therefore do not have a unique solution, computing the reaction coordinate

6.3. Results 107

-0.5 0 0.5
-15

-10

-5

0

5

10

15

- +

+
 (

S
v
)

a b

a'b'

a b

a'b'

(a) Bifurcation diagram where a solid line is sta-
ble and dashed line is unstable.

-60 -40 -20 0 20 40 60

latitude

-4000

-3000

-2000

-1000

0

d
e

p
th

 (
m

)

0

2

4

6

8

-60 -40 -20 0 20 40 60

latitude

-4000

-3000

-2000

-1000

0

d
e
p
th

 (
m

)

-10

-8

-6

-4

-2

0

(b) The streamfunction at b and b′ respectively.

Figure 6.1: (a) Bifurcation diagram of the deterministic 2D MOC model, with the forc-
ing as in (6.1). (b) Streamfunction pattern at b and b′ respectively.

by using the norm of the state is not possible. We instead want to define the
reaction coordinate in such a way that the distance between the meridional
streamfunctions goes to zero, and therefore we define a norm on the v-part of
the state. Combining this with (5.8), this gives us a reaction coordinate of the
form

φ(x) = η − ηe−8‖x−x̄A‖2v + (1− η)e−8‖x−x̄B‖2v ,

where ‖ · ‖v denotes the 2-norm on only the v-velocities, and η = ‖xC −
x̄A‖v/‖xB − x̄A‖v is the normalized difference between the unstable steady
state xC and the stable steady state xA. We assume that a trajectory has
reached B if φ(x) > zmax = 0.75, since xC is really close to xA.

Results 6.3

In this section we report on the transition probabilities that we find and com-
pare the results from TAMS with the results from its projected variant.

Computations were performed on Peregrine, the HPC cluster of the Uni-
versity of Groningen. Peregrine has nodes with 2 Intel Xeon E5 2680v3 CPUs
(24 cores at 2.5GHz) and each node has 128 GB of memory. For every run of
TAMS, four cores were used to allow for efficient parallelization. Due to the
problem size and the way the vertical mixing is implemented, it did not make
sense to use more than four cores.

For our experiments, we investigated the probability of a transition within
2000 years. We ran TAMS 100 times with 300 samples. The stochastic theta
method was used with θ = 0.5 and a time step of 2 years. For projected TAMS
we used the approximate solution of the generalized Lyapunov equation with
a tolerance of the relative residual of 10−8. The results are shown in Table 6.1.

108 Transitions in the Meridional Overturning Circulation

Method β β + 0.2320 Mean Variance
TAMS -0.2162 0.0158 0.0495 1.48 · 10−4

Projected TAMS -0.2162 0.0158 0.0496 1.47 · 10−4

TAMS -0.1982 0.0338 2.52 · 10−7 2.16 · 10−13

Projected TAMS -0.1982 0.0338 3.36 · 10−7 5.35 · 10−13

Table 6.1: Mean and variance of the probability of a transition within T = 2000 yr
with 100 runs of TAMS and the projected variant with 300 samples. β + 0.2320 is the
distance to the bifurcation point, which is located at β = −0.2320.

Here we see that a small step away from the bifurcation means a drastic
decrease of the transition probability. Due to the convergence behavior of the
relative error, the variance is relatively large for the rightmost point. We are
only interested in the order of magnitude of the probabilities, however, and in
the comparison between the two methods. To further decrease the variance in
the future, we have to find a better reaction coordinate.

We notice a slight difference in the probability and an increased variance
for projected TAMS at point b, which is the furthest away from the bifurcation.
This can be explained by the fact that the probability is close to the tolerance of
the Lyapunov solver. This may be solved by using a smaller tolerance for the
Lyapunov solver, at the cost of more computational time and more memory
usage. For the point that is closest to the bifurcation, the probabilities and
variances are nearly the same.

In Table 6.2 we show the average computational time and memory usage
of each time step in TAMS. We see that the projected method is approximately
30% faster, but more interestingly, uses only about 4% of the memory.

t(s) Mem (kB)
Normal time step 0.452 96
Projected time step 0.311 4

Table 6.2: Time and memory usage per time step in TAMS at point b.

To investigate if the time step of 2 years was small enough, we also ran the
experiment at a time step of 1 year, of which the results are shown in Table
6.3. We see that the results are very similar, which confirms that a time step of
2 years is sufficiently small.

6.4 Summary and Discussion

Based on the results that were obtained in the previous chapter, we decided
to use TAMS to compute transition probabilities in the idealized 2D MOC
model. We showed that this is indeed possible, and observed that the transi-

6.4. Summary and Discussion 109

Time step β Mean Variance
2 yr -0.1982 0.0495 1.48 · 10−4

1 yr -0.1982 0.0493 1.45 · 10−4

Table 6.3: Different time steps for T = 2000 yr with 100 runs of TAMS with 300 samples
for time steps of 1 and 2 years.

tion probability decreased rapidly when moving away from the saddle-node
bifurcation.

The computation of these transition probabilities is very expensive in
terms of both time and memory usage. To be able to also compute transition
probabilities on more realistic models, or in case the transition probability is
small, the computational cost has to be reduced. The proposed projected time
stepping method was shown to be 30% faster, and uses 96% less memory. We
applied the projected time stepping method in TAMS, but the method may
also be used in other methods for investigating rare events such as AMS and
GPA.

In the future, it would be interesting to investigate the possibility of using
a combination of most probable transition paths as computed in Laurie and
Bouchet (2015) and a resampling method as used in AMS or GPA to obtain
the transition probability in an even more efficient way. Such a method is
very likely to still include stochastic time stepping, which means it can still be
combined with the projected time stepping method described in this chapter.

Something that also needs further investigation is the reaction coordinate.
In this thesis, we just chose a reaction coordinate that works, but it may be
possible to find a reaction coordinate that works better. It would especially be
nice if we can find a reaction coordinate that works well for a wide variety of
high-dimensional systems.

C
H

A
PT

ER
7

CONCLUSION

The goal of this thesis was to develop methods which can be used for study-
ing transition behavior in the Meridional Overturning Circulation (MOC). The
reason why we want to study such behavior is that melting of the polar ice
sheets, and thereby increasing the freshwater in the North Atlantic, may cause
a weakening of the MOC, which in turn may cause a reduced average tem-
perature in especially Europe. These transitions may happen due to tipping
points, or bifurcation points, that are associated with the salt-advection feed-
back.

State of the art methods are not efficient enough for computing probabili-
ties of transitions in a realistic MOC model, and therefore techniques for com-
puting other indicators of these transitions are being developed. In this thesis,
we introduced novel preconditioning and Lyapunov solution methods, and
improved the efficiency of methods which can be used for computing actual
transition probabilities.

Linear systems

In Chapter 3, a novel multilevel preconditioner was introduced, which is
specialized for the Navier–Stokes equations which are discretized on a stag-
gered grid. The preconditioner works by partitioning the domain into paral-
lelepiped shaped subdomains, of which the interior can be eliminated in par-
allel. On the interfaces, Householder transformations are applied to decouple
all but one velocity node from the pressure nodes, after which all decoupled
nodes can also be eliminated in parallel. The preconditioner can then be ap-
plied recursively to the leftover coupled velocity nodes until a direct solver is
used at the last level.

111

112 Conclusion

We showed that the preconditioner has grid-independent convergence in
case the number of levels is kept constant. Increasing the number of lev-
els with the grid size was actually more efficient in terms of time, but did
not show grid-independent convergence. We can again come close to grid-
independent convergence by retaining a few more velocity nodes per level.

We also found the preconditioner to be robust for a 3D lid-driven cavity
problem with increasing Reynolds numbers, which leads us to believe that it
will also perform well when applied in our ocean solver.

Lyapunov equations

The sensitivity of the MOC to noise around a steady state can be expressed in
a probability density function. To compute this probability density function,
we have to compute the covariance matrix at the steady state. This can be
done by solving a generalized Lyapunov equation.

We developed a novel method for computing low-rank solutions of gen-
eralized Lyapunov equations in Chapter 4. The method works by applying a
Galerkin type projection with the space built from the eigenvectors belonging
to the largest eigenvalues of the residual at every iteration of the method. Most
important is that the method can be restarted, which allows for less memory
usage, faster iterations, and recycling of previous solutions. We showed that
for an idealized 2D MOC model, our method is the most efficient method in
terms of both memory usage and time.

Due to the recycling properties, the method is also very efficient for solv-
ing extended generalized Lyapunov equations, and for solving generalized
Lyapunov equations during a continuation process.

Transition probabilities

In Chapter 5 we discussed what a transition probability is, and how to com-
pute them. We defined the transition probability to be the probability of going
from a neighborhoodA near a deterministic steady state x̄A to a neighborhood
B near a deterministic steady state x̄B within time T .

Before actually computing transition probabilities, we discussed the pos-
sibility to compute covariance ellipsoids, which can give us some idea of the
variability around a steady state. We then discussed most probable transi-
tion paths, which can give us some idea of the path along which a transition
may happen. Both of these ellipsoids and paths, however, do not allow us to
compute transition probabilities.

To compute actual transition probabilities, we can use methods like Adap-
tive Multilevel Splitting (AMS), Trajectory-Adaptive Multilevel Sampling
(TAMS) and Genealogical Particle Analysis (GPA). All of these methods work
by resampling of the trajectories based on how close they are to the other
steady state. We gave a quantitative comparison of these methods, and found

Conclusion 113

that TAMS gave results close to the results obtained with direct sampling, but
with a smaller variance.

Transitions in the Meridional Overturning Circulation

To compute transitions in the MOC, we used TAMS in Chapter 6, as this gave
us the best results in the previous chapter. To improve on this method, we
came up with a projected time stepping method, which reduces the memory
usage for our idealized 2D MOC model with 96%, and the time consumption
by 30%. We showed that the probability of a transition increases drastically
when getting closer to a bifurcation point, and that the projected method is
able to obtain the same results as standard TAMS.

Since we only looked at an idealized 2D MOC model, we can not really say
anything about the transition probabilities of the MOC in the actual Atlantic
ocean, but we did provide methods with which this becomes feasible.

Prospects

In the various summaries that are present in this thesis, we already mentioned
several prospects that are applicable to the methods that are presented in the
corresponding chapters. In this section we aim to give some prospects for the
project as a whole.

Something that we briefly mentioned in Section 5.4 are most probable
transition trajectories. These have already been computed for another model
that is used in oceanography, which is the two-dimensional barotropic quasi-
geostrophic model. Even though we did not go into this direction in this the-
sis, it would be interesting to also compute these trajectories for the MOC.
This would give us insight in the states that exist between the present day
MOC and a collapsed MOC.

To compute transition probabilities for the MOC that are more meaningful
than the ones we computed with our idealized 2D model, we require a more
realistic 3D ocean-climate model. Fortunately, the implementation that we
used for the idealized 2D model, the I-EMIC, already allows for this (Mulder,
2019). It would be very interesting to see if we can compute transitions with
this 3D model, and if we can, what the probability of such a transition is.

It would also be interesting to see how our preconditioner performs in
combination with the I-EMIC. At present, the I-EMIC uses the tailored pre-
conditioner from De Niet et al. (2007); Thies et al. (2009). We expect to achieve
more stability and much better scalability with the preconditioner presented
in this thesis, which would allow for simulations with a higher resolution.

PUBLICATIONS AND
PREPRINTS

S. Baars, J. Viebahn, T. Mulder, C. Kuehn, F. Wubs, and H. Dijkstra. Con-
tinuation of Probability Density Functions Using a Generalized Lyapunov
Approach. Journal of Computational Physics, 336:627–643, May 2017. doi:
10.1016/j.jcp.2017.02.021.

S. Baars, D. Castellana, F. Wubs, and H. A. Dijkstra. Application of Adap-
tive Multilevel Splitting to High-Dimensional Dynamical Systems. preprint,
2019a.

S. Baars, M. van der Klok, W. Song, J. Thies, A. Veldman, and F. Wubs. Perfor-
mance of the HYMLS Multilevel ILU Preconditioner on 3D Flow Equations.
submitted to Computers & Mathematics with Applications, 2019b.

S. Baars, M. van der Klok, J. Thies, and F. Wubs. SMILU: a Staggered-Grid
Multi-Level ILU for Steady Coupled Fluid-Transport Equations. preprint,
2019c.

B. Carpentieri, J. Liao, M. Sosonkina, A. Bonfiglioli, and S. Baars. Using the
VBARMS Method in Parallel Computing. Parallel Computing, 57:197–211,
Sep 2016. doi: 10.1016/j.parco.2016.01.005.

H. A. Dijkstra, A. Tantet, J. Viebahn, E. Mulder, M. Hebbink, D. Castellana,
H. van den Pol, J. Frank, S. Baars, F. Wubs, M. Chekroun, and C. Kuehn.
A Numerical Framework To Understand Transitions in High-Dimensional
Stochastic Dynamical Systems. Dynamics and Statistics of the Climate System,
1(1), 2016. doi: 10.1093/climsys/dzw003.

115

https://doi.org/10.1016/j.jcp.2017.02.021
https://doi.org/10.1016/j.jcp.2017.02.021
https://doi.org/10.1016/j.parco.2016.01.005
https://doi.org/10.1093/climsys/dzw003

116 Publications and preprints

T. E. Mulder, S. Baars, F. W. Wubs, and H. A. Dijkstra. Stochastic Marine Ice
Sheet Variability. Journal of Fluid Mechanics, 843:748–777, Mar 2018. doi:
10.1017/jfm.2018.148.

W. Song, F. Wubs, J. Thies, and S. Baars. Numerical Bifurcation Analysis of
a 3D Turing-Type Reaction–Diffusion Model. Communications in Nonlin-
ear Science and Numerical Simulation, 60:145–164, Jul 2018. doi: 10.1016/
j.cnsns.2018.01.003.

https://doi.org/10.1017/jfm.2018.148
https://doi.org/10.1017/jfm.2018.148
https://doi.org/10.1016/j.cnsns.2018.01.003
https://doi.org/10.1016/j.cnsns.2018.01.003

SOFTWARE

This chapter contains a list of software that has been developed, or has been
contributed to, as part of this work.

FVM A finite volume package which contains implementations of a lid-driven
cavity, a differentially heated cavity, Rayleigh-Bénard convection, and con-
vection in a differentially heated rotating cavity. https://bitbucket.org/
hymls/hymls/src/master/fvm

HYMLS A Hybrid direct/iterative solver for the Jacobian of the incompress-
ible Navier-Stokes equations on structured grids. The implementation of
the preconditioner and the domain decomposition are described in this the-
sis. https://github.com/nlesc-smcm/hymls

I-EMIC An Implicit Earth System Model of Intermediate Complexity. The
I-EMIC contains a number of implicit submodels coupled through a modu-
lar framework. At the center of the coupled model is the implicit primitive
equation ocean model THCM that has been used in the past to study bifur-
cations in the thermohaline circulation. This package interfaces to parallel
C++ versions of RAILS and the methods for computing transition probabil-
ities that were discussed in this thesis. https://github.com/nlesc-smcm/
i-emic

JDQZ++ A templated C++ implementation of the JDQZ generalized eigen-
value problem solver. https://github.com/erik808/jdqzpp

MOxUnit A lightweight unit test framework for Matlab and GNU Octave.
https://github.com/MOxUnit/MOxUnit

117

https://bitbucket.org/hymls/hymls/src/master/fvm
https://bitbucket.org/hymls/hymls/src/master/fvm
https://github.com/nlesc-smcm/hymls
https://github.com/nlesc-smcm/i-emic
https://github.com/nlesc-smcm/i-emic
https://github.com/erik808/jdqzpp
https://github.com/MOxUnit/MOxUnit

118 Bibliography

OpenBLAS An optimized BLAS library based on GotoBLAS2 1.13, BSD ver-
sion. http://www.openblas.net

PHIST A Pipelined Hybrid Parallel Iterative Solver Toolkit. PHIST provides
implementations of and interfaces to block iterative solvers for sparse linear
and eigenvalue problems. https://bitbucket.org/essex/phist

RAILS An implementation of the Residual Approximation-based Iterative
Lyapunov Solver as described in this thesis in Matlab and a parallel imple-
mentation in C++. https://github.com/Sbte/RAILS

Transitions A Matlab implementation of the methods for computing tran-
sition probabilities as described in this thesis. https://github.com/Sbte/
transitions

Trilinos The Trilinos Project is an effort to develop algorithms and en-
abling technologies within an object-oriented software framework for the
solution of large-scale, complex multi-physics engineering and scientific
problems. A unique design feature of Trilinos is its focus on packages.
https://trilinos.org

http://www.openblas.net
https://bitbucket.org/essex/phist
https://github.com/Sbte/RAILS
https://github.com/Sbte/transitions
https://github.com/Sbte/transitions
https://trilinos.org

BIBLIOGRAPHY

J. I. Aliaga, M. Bollhöfer, A. F. Martı́n, and E. S. Quintana-Ortı́. Design, Tun-
ing and Evaluation of Parallel Multilevel ILU Preconditioners. In High Per-
formance Computing for Computational Science VECPAR 2008, pages 314–327.
Springer Berlin Heidelberg, 2008. doi: 10.1007/978-3-540-92859-1 28.

K. Atkinson. An Introduction To Numerical Analysis. Wiley, New York, 1988.
ISBN 9780471624899

S. Baars, J. Viebahn, T. Mulder, C. Kuehn, F. Wubs, and H. Dijkstra. Con-
tinuation of Probability Density Functions Using a Generalized Lyapunov
Approach. Journal of Computational Physics, 336:627–643, May 2017. doi:
10.1016/j.jcp.2017.02.021.

S. Baars, D. Castellana, F. Wubs, and H. A. Dijkstra. Application of Adap-
tive Multilevel Splitting to High-Dimensional Dynamical Systems. preprint,
2019a.

S. Baars, M. van der Klok, W. Song, J. Thies, A. Veldman, and F. Wubs. Perfor-
mance of the HYMLS Multilevel ILU Preconditioner on 3D Flow Equations.
submitted to Computers & Mathematics with Applications, 2019b.

S. Baars, M. van der Klok, J. Thies, and F. Wubs. SMILU: a Staggered-Grid
Multi-Level ILU for Steady Coupled Fluid-Transport Equations. preprint,
2019c.

R. H. Bartels and G. W. Stewart. Solution of the Matrix Equation AX + XB =
C [f4]. Communications of the ACM, 15(9):820–826, Sep 1972. doi: 10.1145/
361573.361582.

119

https://doi.org/10.1007/978-3-540-92859-1_28
.
https://doi.org/10.1016/j.jcp.2017.02.021
https://doi.org/10.1016/j.jcp.2017.02.021
https://doi.org/10.1145/361573.361582
https://doi.org/10.1145/361573.361582

120 Bibliography

G. K. Batchelor. An Introduction to Fluid Dynamics. Cambridge University
Press, 2000. ISBN 9780511800955. doi: 10.1017/cbo9780511800955.

E. Bavier, M. Hoemmen, S. Rajamanickam, and H. Thornquist. Amesos2 and
Belos: Direct and Iterative Solvers for Large Sparse Linear Systems. Scien-
tific Programming, 20(3):241–255, 2012. doi: 10.1155/2012/243875.

P. Benner, V. Mehrmann, V. Sima, S. V. Huffel, and A. Varga. SLICOT-A
Subroutine Library in Systems and Control Theory. Applied and Compu-
tational Control, Signals, and Circuits, pages 499–539, 1999. doi: 10.1007/
978-1-4612-0571-5 10.

P. Benner, P. Kürschner, and J. Saak. Self-Generating and Efficient Shift Param-
eters in ADI Methods for Large Lyapunov and Sylvester Equations. Electron.
Trans. Numer. Anal., 43:142–162, 2014. doi: 10.17617/2.2071065.

M. Benzi and M. A. Olshanskii. An Augmented Lagrangian-Based Approach
To the Oseen Problem. SIAM Journal on Scientific Computing, 28(6):2095–
2113, Jan 2006. doi: 10.1137/050646421.

M. Benzi, G. H. Golub, and J. Liesen. Numerical Solution of Saddle Point Prob-
lems. Acta Numerica, 14:1–137, May 2005. doi: 10.1017/s0962492904000212.

R. H. Bisseling. Parallel Scientific Computation. Oxford University Press, Mar
2004. ISBN 9780198529392. doi: 10.1093/acprof:oso/9780198529392.001.
0001.

M. Bollhöfer and Y. Saad. Multilevel Preconditioners Constructed From
Inverse-Based ILUs. SIAM Journal on Scientific Computing, 27(5):1627–1650,
Jan 2006. doi: 10.1137/040608374.

E. F. F. Botta and F. W. Wubs. Matrix Renumbering ILU: an Effective Al-
gebraic Multilevel ILU Preconditioner for Sparse Matrices. SIAM Jour-
nal on Matrix Analysis and Applications, 20(4):1007–1026, Jan 1999. doi:
10.1137/s0895479897319301.

F. Bouchet and J. Reygner. Generalisation of the Eyring–Kramers Transition
Rate Formula To Irreversible Diffusion Processes. Annales Henri Poincaré, 17
(12):3499–3532, Jun 2016. doi: 10.1007/s00023-016-0507-4.

F. Bouchet, J. Laurie, and O. Zaboronski. Langevin Dynamics, Large
Deviations and Instantons for the Quasi-Geostrophic Model and Two-
Dimensional Euler Equations. Journal of Statistical Physics, 156(6):1066–1092,
Jul 2014. doi: 10.1007/s10955-014-1052-5.

C.-E. Bréhier, M. Gazeau, L. Goudenège, T. Lelièvre, and M. Rousset. Un-
biasedness of Some Generalized Adaptive Multilevel Splitting Algorithms.
The Annals of Applied Probability, 26(6):3559–3601, Dec 2016. doi: 10.1214/
16-aap1185.

https://doi.org/10.1017/cbo9780511800955
https://doi.org/10.1017/cbo9780511800955
https://doi.org/10.1155/2012/243875
https://doi.org/10.1007/978-1-4612-0571-5_10
https://doi.org/10.1007/978-1-4612-0571-5_10
https://doi.org/10.17617/2.2071065
https://doi.org/10.1137/050646421
https://doi.org/10.1017/s0962492904000212
https://doi.org/10.1093/acprof:oso/9780198529392.001.0001
https://doi.org/10.1093/acprof:oso/9780198529392.001.0001
https://doi.org/10.1093/acprof:oso/9780198529392.001.0001
https://doi.org/10.1137/040608374
https://doi.org/10.1137/s0895479897319301
https://doi.org/10.1137/s0895479897319301
https://doi.org/10.1007/s00023-016-0507-4
https://doi.org/10.1007/s10955-014-1052-5
https://doi.org/10.1214/16-aap1185
https://doi.org/10.1214/16-aap1185

Bibliography 121

G. Carey and R. Krishnan. Convergence of Iterative Methods in Penalty Finite
Element Approximation of the Navier-Stokes Equations. Computer Methods
in Applied Mechanics and Engineering, 60(1):1–29, Jan 1987. doi: 10.1016/
0045-7825(87)90127-7.

F. Cérou and A. Guyader. Adaptive Multilevel Splitting for Rare Event Anal-
ysis. Stochastic Analysis and Applications, 25(2):417–443, Feb 2007. doi:
10.1080/07362990601139628.

F. Cérou, A. Guyader, T. Lelièvre, and D. Pommier. A Multiple Replica Ap-
proach To Simulate Reactive Trajectories. The Journal of Chemical Physics, 134
(5):054108, Feb 2011. doi: 10.1063/1.3518708.

P. Cessi. A Simple Box Model of Stochastically Forced Thermohaline Flow.
Journal of Physical Oceanography, 24(9):1911–1920, Sep 1994. doi: 10.1175/
1520-0485(1994)024〈1911:asbmos〉2.0.co;2.

M. D. Chekroun, H. Liu, and S. Wang. Stochastic Parameterizing Manifolds and
Non-Markovian Reduced Equations. Springer International Publishing, 2015.
ISBN 9783319125206. doi: 10.1007/978-3-319-12520-6.

G. Cowan. Statistical Data Analysis. Clarendon Press, 1998. ISBN 0198501552.

M. A. Crisfield. Nonlinear Finite Element Analysis of Solids and Structures, Vol 1:
Basic Concepts, chapter 1. Wiley, 1991.

B. Cushman-Roisin and J.-M. Beckers. Introduction To Geophysical Fluid Dynam-
ics - Physical and Numerical Aspects. Elsevier, 2011. ISBN 9780120887590

E. C. Cyr, J. N. Shadid, and R. S. Tuminaro. Stabilization and Scalable Block
Preconditioning for the Navier–Stokes Equations. Journal of Computational
Physics, 231(2):345–363, Jan 2012. doi: 10.1016/j.jcp.2011.09.001.

T. Damm. Direct Methods and ADI-Preconditioned Krylov Subspace Methods
for Generalized Lyapunov Equations. Numerical Linear Algebra with Appli-
cations, 15(9):853–871, Nov 2008. doi: 10.1002/nla.603.

A. DasGupta, T. T. Cai, and L. D. Brown. Interval Estimation for a Binomial
Proportion. Statistical Science, 16(2):101–133, May 2001. doi: 10.1214/ss/
1009213286.

T. A. Davis and E. P. Natarajan. Algorithm 907. ACM Transactions on Mathe-
matical Software, 37(3):1–17, Sep 2010. doi: 10.1145/1824801.1824814.

H. A. Dijkstra. Nonlinear Physical Oceanography. Springer Netherlands, 2005.
ISBN 9781402022623. doi: 10.1007/1-4020-2263-8.

H. A. Dijkstra. Nonlinear Climate Dynamics. Cambridge University Press, 2013.
ISBN 9781139034135. doi: 10.1017/cbo9781139034135.

https://doi.org/10.1016/0045-7825(87)90127-7
https://doi.org/10.1016/0045-7825(87)90127-7
https://doi.org/10.1080/07362990601139628
https://doi.org/10.1080/07362990601139628
https://doi.org/10.1063/1.3518708
https://doi.org/10.1175/1520-0485(1994)024<1911:asbmos>2.0.co;2
https://doi.org/10.1175/1520-0485(1994)024<1911:asbmos>2.0.co;2
https://doi.org/10.1007/978-3-319-12520-6
https://doi.org/10.1007/978-3-319-12520-6
http://www.worldcat.org/oclc/246174470?referer=xid
.
https://doi.org/10.1016/j.jcp.2011.09.001
https://doi.org/10.1002/nla.603
https://doi.org/10.1214/ss/1009213286
https://doi.org/10.1214/ss/1009213286
https://doi.org/10.1145/1824801.1824814
https://doi.org/10.1007/1-4020-2263-8
https://doi.org/10.1007/1-4020-2263-8
https://doi.org/10.1017/cbo9781139034135
https://doi.org/10.1017/cbo9781139034135

122 Bibliography

H. A. Dijkstra, L. M. Frankcombe, and A. S. von der Heydt. A Stochastic Dy-
namical Systems View of the Atlantic Multidecadal Oscillation. Philosophical
Transactions of the Royal Society A: Mathematical, Physical and Engineering Sci-
ences, 366(1875):2543–2558, Jul 2008. doi: 10.1098/rsta.2008.0031.

H. A. Dijkstra, F. W. Wubs, A. K. Cliffe, E. Doedel, I. F. Dragomirescu, B. Eck-
hardt, A. Y. Gelfgat, A. L. Hazel, V. Lucarini, A. G. Salinger, E. T. Phipps,
J. Sanchez-Umbria, H. Schuttelaars, L. S. Tuckerman, and U. Thiele. Numer-
ical Bifurcation Methods and Their Application To Fluid Dynamics: Anal-
ysis Beyond Simulation. Communications in Computational Physics, 15(01):
1–45, Jan 2014. doi: 10.4208/cicp.240912.180613a.

H. A. Dijkstra, A. Tantet, J. Viebahn, E. Mulder, M. Hebbink, D. Castellana,
H. van den Pol, J. Frank, S. Baars, F. Wubs, M. Chekroun, and C. Kuehn.
A Numerical Framework To Understand Transitions in High-Dimensional
Stochastic Dynamical Systems. Dynamics and Statistics of the Climate System,
1(1), 2016. doi: 10.1093/climsys/dzw003.

P. D. Ditlevsen and S. J. Johnsen. Tipping Points: Early Warning and Wishful
Thinking. Geophysical Research Letters, 37(19):n/a–n/a, Oct 2010. doi: 10.
1029/2010gl044486.

V. Druskin and V. Simoncini. Adaptive Rational Krylov Subspaces for Large-
Scale Dynamical Systems. Systems & Control Letters, 60(8):546–560, Aug
2011. doi: 10.1016/j.sysconle.2011.04.013.

V. Druskin, V. Simoncini, and M. Zaslavsky. Adaptive Tangential Interpola-
tion in Rational Krylov Subspaces for MIMO Dynamical Systems. SIAM
Journal on Matrix Analysis and Applications, 35(2):476–498, Jan 2014. doi:
10.1137/120898784.

W. E, W. Ren, and E. Vanden-Eijnden. String Method for the Study of Rare
Events. Physical Review B, 66(5), Aug 2002. doi: 10.1103/physrevb.66.
052301.

W. E, W. Ren, and E. Vanden-Eijnden. Minimum Action Method for the Study
of Rare Events. Communications on Pure and Applied Mathematics, 57(5):637–
656, 2004. doi: 10.1002/cpa.20005.

W. E, W. Ren, and E. Vanden-Eijnden. Simplified and Improved String
Method for Computing the Minimum Energy Paths in Barrier-Crossing
Events. The Journal of Chemical Physics, 126(16):164103, Apr 2007. doi:
10.1063/1.2720838.

H. Elman, V. Howle, J. Shadid, R. Shuttleworth, and R. Tuminaro. A Taxon-
omy and Comparison of Parallel Block Multi-Level Preconditioners for the
Incompressible Navier–Stokes Equations. Journal of Computational Physics,
227(3):1790–1808, Jan 2008. doi: 10.1016/j.jcp.2007.09.026.

https://doi.org/10.1098/rsta.2008.0031
https://doi.org/10.4208/cicp.240912.180613a
https://doi.org/10.1093/climsys/dzw003
https://doi.org/10.1029/2010gl044486
https://doi.org/10.1029/2010gl044486
https://doi.org/10.1016/j.sysconle.2011.04.013
https://doi.org/10.1137/120898784
https://doi.org/10.1137/120898784
https://doi.org/10.1103/physrevb.66.052301
https://doi.org/10.1103/physrevb.66.052301
https://doi.org/10.1002/cpa.20005
https://doi.org/10.1063/1.2720838
https://doi.org/10.1063/1.2720838
https://doi.org/10.1016/j.jcp.2007.09.026

Bibliography 123

H. Elman, D. Silvester, and A. Wathen. Finite Elements and Fast Iterative Solvers.
Oxford University Press, Jun 2014. ISBN 9780199678792. doi: 10.1093/
acprof:oso/9780199678792.001.0001.

H. C. Elman, D. J. Silvester, and A. J. Wathen. Performance and Analysis of
Saddle Point Preconditioners for the Discrete Steady-State Navier–Stokes
Equations. Numerische Mathematik, 90(4):665–688, Feb 2002. doi: 10.1007/
s002110100300.

H. Eyring. The Activated Complex in Chemical Reactions. The Journal of Chem-
ical Physics, 3(2):107–115, 1935. doi: 10.1063/1.1749604.

Y. Feldman and A. Y. Gelfgat. Oscillatory Instability of a Three-Dimensional
Lid-Driven Flow in a Cube. Physics of Fluids, 22(9):093602, Sep 2010. doi:
10.1063/1.3487476.

M. I. Freidlin and A. D. Wentzell. Random Perturbations of Dynamical Systems.
Springer-Verlag, New York,, 1998. doi: 10.1007/978-1-4612-0611-8.

F. Freitas, J. Rommes, and N. Martins. Gramian-Based Reduction Method Ap-
plied To Large Sparse Power System Descriptor Models. IEEE Transactions
on Power Systems, 23(3):1258–1270, Aug 2008. doi: 10.1109/tpwrs.2008.
926693.

C. W. Gardiner. Handbook of Stochastic Methods for Physics, Chemistry and the
Natural Sciences. Springer Berlin Heidelberg, 1985. ISBN 9783662024522.
doi: 10.1007/978-3-662-02452-2.

P. W. Glynn and W. Whitt. The Asymptotic Efficiency of Simulation Estima-
tors. Operations Research, 40(3):505–520, Jun 1992. doi: 10.1287/opre.40.3.
505.

G. H. Golub and C. F. Van Loan. Matrix Computations. Johns Hopkins Univer-
sity Press, 1996. ISBN 9781421407944

T. Grafke, T. Schäfer, and E. Vanden-Eijnden. Long Term Effects of Small
Random Perturbations on Dynamical Systems: Theoretical and Computational
Tools, pages 17–55. Springer New York, 2017. ISBN 9781493969692. doi:
10.1007/978-1-4939-6969-2 2.

S. M. Griffies. Fundamentals of Ocean Climate Models. Princeton University
Press, 2004. ISBN 0691187126. doi: 10.2307/j.ctv301gzg.

P. Hänggi, P. Talkner, and M. Borkovec. Reaction-Rate Theory: Fifty Years
After Kramers. Reviews of Modern Physics, 62(2):251–341, Apr 1990. doi:
10.1103/revmodphys.62.251.

https://doi.org/10.1093/acprof:oso/9780199678792.001.0001
https://doi.org/10.1093/acprof:oso/9780199678792.001.0001
https://doi.org/10.1093/acprof:oso/9780199678792.001.0001
https://doi.org/10.1007/s002110100300
https://doi.org/10.1007/s002110100300
https://doi.org/10.1063/1.1749604
https://doi.org/10.1063/1.3487476
https://doi.org/10.1063/1.3487476
https://doi.org/10.1007/978-1-4612-0611-8
https://doi.org/10.1109/tpwrs.2008.926693
https://doi.org/10.1109/tpwrs.2008.926693
https://doi.org/10.1007/978-3-662-02452-2
https://doi.org/10.1007/978-3-662-02452-2
https://doi.org/10.1287/opre.40.3.505
https://doi.org/10.1287/opre.40.3.505
.
https://doi.org/10.1007/978-1-4939-6969-2_2
https://doi.org/10.1007/978-1-4939-6969-2_2
https://doi.org/10.1007/978-1-4939-6969-2_2
https://doi.org/10.2307/j.ctv301gzg
https://doi.org/10.2307/j.ctv301gzg
https://doi.org/10.1103/revmodphys.62.251
https://doi.org/10.1103/revmodphys.62.251

124 Bibliography

X. He, C. Vuik, and C. M. Klaij. Combining the Augmented Lagrangian Pre-
conditioner With the Simple Schur Complement Approximation. SIAM
Journal on Scientific Computing, 40(3):A1362–A1385, Jan 2018. doi: 10.1137/
17m1144775.

G. Henkelman and H. Jónsson. Improved Tangent Estimate in the Nudged
Elastic Band Method for Finding Minimum Energy Paths and Saddle
Points. The Journal of Chemical Physics, 113(22):9978–9985, Dec 2000. doi:
10.1063/1.1323224.

G. Henkelman, B. P. Uberuaga, and H. Jónsson. A Climbing Image Nudged
Elastic Band Method for Finding Saddle Points and Minimum Energy
Paths. The Journal of Chemical Physics, 113(22):9901–9904, Dec 2000. doi:
10.1063/1.1329672.

M. A. Heroux, E. T. Phipps, A. G. Salinger, H. K. Thornquist, R. S. Tuminaro,
J. M. Willenbring, A. Williams, K. S. Stanley, R. A. Bartlett, V. E. Howle,
R. J. Hoekstra, J. J. Hu, T. G. Kolda, R. B. Lehoucq, K. R. Long, and R. P.
Pawlowski. An Overview of the Trilinos Project. ACM Transactions on Math-
ematical Software, 31(3):397–423, Sep 2005. doi: 10.1145/1089014.1089021.

D. J. Higham. Mean-Square and Asymptotic Stability of the Stochastic Theta
Method. SIAM Journal on Numerical Analysis, 38(3):753–769, Jan 2000. doi:
10.1137/s003614299834736x.

D. J. Higham. An Algorithmic Introduction To Numerical Simulation of
Stochastic Differential Equations. SIAM Review, 43(3):525–546, Jan 2001. doi:
10.1137/s0036144500378302.

H. Kahn and T. E. Harris. Estimation of Particle Transmission By Random
Sampling. National Bureau of Standards applied mathematics series, 12:27–30,
1951.

G. Karypis and V. Kumar. A Fast and High Quality Multilevel Scheme for
Partitioning Irregular Graphs. SIAM Journal on Scientific Computing, 20(1):
359–392, Jan 1998. doi: 10.1137/s1064827595287997.

D. Kay, D. Loghin, and A. Wathen. A Preconditioner for the Steady-State
Navier–Stokes Equations. SIAM Journal on Scientific Computing, 24(1):237–
256, Jan 2002. doi: 10.1137/s106482759935808x.

H. B. Keller. Numerical Solution of Bifurcation and Nonlinear Eigenvalue
Problems. In P. H. Rabinowitz, editor, Applications of Bifurcation Theory,
pages 359–384. Academic Press, New York, U.S.A., 1977.

C. M. Klaij and C. Vuik. SIMPLE-Type Preconditioners for Cell-Centered,
Colocated Finite Volume Discretization of Incompressible Reynolds-
Averaged Navier–Stokes Equations. International Journal for Numerical Meth-
ods in Fluids, 71(7):830–849, May 2012. doi: 10.1002/fld.3686.

https://doi.org/10.1137/17m1144775
https://doi.org/10.1137/17m1144775
https://doi.org/10.1063/1.1323224
https://doi.org/10.1063/1.1323224
https://doi.org/10.1063/1.1329672
https://doi.org/10.1063/1.1329672
https://doi.org/10.1145/1089014.1089021
https://doi.org/10.1137/s003614299834736x
https://doi.org/10.1137/s003614299834736x
https://doi.org/10.1137/s0036144500378302
https://doi.org/10.1137/s0036144500378302
https://doi.org/10.1137/s1064827595287997
https://doi.org/10.1137/s106482759935808x
https://doi.org/10.1002/fld.3686

Bibliography 125

D. Kleinman. On an Iterative Technique for Riccati Equation Computations.
IEEE Transactions on Automatic Control, 13(1):114–115, Feb 1968. doi: 10.
1109/tac.1968.1098829.

P. E. Kloeden and E. Platen. Numerical Solution of Stochastic Differential
Equations. Springer Berlin Heidelberg, 1992. ISBN 9783662126165. doi:
10.1007/978-3-662-12616-5.

M. van der Klok. Skew Partitioning for the Hybrid Multilevel Solver. Bachelor’s
thesis, University of Groningen, Jul 2017.

H. Kramers. Brownian Motion in a Field of Force and the Diffusion Model
of Chemical Reactions. Physica, 7(4):284–304, Apr 1940. doi: 10.1016/
s0031-8914(40)90098-2.

C. Kuehn. A Mathematical Framework for Critical Transitions: Bifurcations,
Fast-Slow Systems and Stochastic Dynamics. Physica D: Nonlinear Phenom-
ena, 240(12):1020–1035, Jun 2011. doi: 10.1016/j.physd.2011.02.012.

C. Kuehn. Deterministic Continuation of Stochastic Metastable Equilibria Via
Lyapunov Equations and Ellipsoids. SIAM Journal on Scientific Computing,
34(3):A1635–A1658, Jan 2012. doi: 10.1137/110839874.

C. Kuehn. Numerical Continuation and SPDE Stability for the 2D Cubic-
Quintic Allen–Cahn Equation. SIAM/ASA Journal on Uncertainty Quantifi-
cation, 3(1):762–789, Jan 2015. doi: 10.1137/140993685.

C. Lanczos. An Iteration Method for the Solution of the Eigenvalue Problem of
Linear Differential and Integral Operators. Journal of Research of the National
Bureau of Standards, 45(4):255, Oct 1950. doi: 10.6028/jres.045.026.

L. Landau and E. Lifshitz. Fluid Mechanics. Elsevier, 1959. ISBN 9780080291420

J. Laurie and F. Bouchet. Computation of Rare Transitions in the Barotropic
Quasi-Geostrophic Equations. New Journal of Physics, 17(1):015009, Jan 2015.
doi: 10.1088/1367-2630/17/1/015009.

T. M. Lenton. Early Warning of Climate Tipping Points. Nature Climate Change,
1(4):201–209, Jun 2011. doi: 10.1038/nclimate1143.

T. M. Lenton, H. Held, E. Kriegler, J. W. Hall, W. Lucht, S. Rahmstorf, and H. J.
Schellnhuber. Tipping Elements in the Earth’s Climate System. Proceedings
of the National Academy of Sciences, 105(6):1786–1793, Feb 2008. doi: 10.1073/
pnas.0705414105.

T. Lestang, F. Ragone, C.-E. Bréhier, C. Herbert, and F. Bouchet. Computing
Return Times Or Return Periods With Rare Event Algorithms. Journal of
Statistical Mechanics: Theory and Experiment, 2018(4):043213, Apr 2018. doi:
10.1088/1742-5468/aab856.

https://doi.org/10.1109/tac.1968.1098829
https://doi.org/10.1109/tac.1968.1098829
https://doi.org/10.1007/978-3-662-12616-5
https://doi.org/10.1007/978-3-662-12616-5
https://doi.org/10.1007/978-3-662-12616-5
https://doi.org/10.1016/s0031-8914(40)90098-2
https://doi.org/10.1016/s0031-8914(40)90098-2
https://doi.org/10.1016/j.physd.2011.02.012
https://doi.org/10.1137/110839874
https://doi.org/10.1137/140993685
https://doi.org/10.6028/jres.045.026
.
https://doi.org/10.1088/1367-2630/17/1/015009
https://doi.org/10.1038/nclimate1143
https://doi.org/10.1073/pnas.0705414105
https://doi.org/10.1073/pnas.0705414105
https://doi.org/10.1088/1742-5468/aab856
https://doi.org/10.1088/1742-5468/aab856

126 Bibliography

Y. Liu, M. Jacquelin, P. Ghysels, and X. S. Li. Highly Scalable Distributed-
Memory Sparse Triangular Solution Algorithms. 2018 Proceedings of the Sev-
enth SIAM Workshop on Combinatorial Scientific Computing, pages 87–96, Jan
2018. doi: 10.1137/1.9781611975215.9.

R. März. Canonical Projectors for Linear Differential Algebraic Equations.
Computers & Mathematics with Applications, 31(4-5):121–135, Feb 1996. doi:
10.1016/0898-1221(95)00224-3.

M. van der Mheen, H. A. Dijkstra, A. Gozolchiani, M. den Toom, Q. Feng,
J. Kurths, and E. Hernandez-Garcia. Interaction Network Based Early Warn-
ing Indicators for the Atlantic MOC Collapse. Geophysical Research Letters,
40(11):2714–2719, Jun 2013. doi: 10.1002/grl.50515.

A. H. Monahan, J. Alexander, and A. J. Weaver. Stochastic Models of the
Meridional Overturning Circulation: Time Scales and Patterns of Variabil-
ity. Philosophical Transactions of the Royal Society A: Mathematical, Physical
and Engineering Sciences, 366(1875):2525–2542, Jul 2008. doi: 10.1098/rsta.
2008.0045.

P. D. Moral. Mean Field Simulation for Monte Carlo Integration. Chapman and
Hall/CRC, May 2013. ISBN 9781466504172. doi: 10.1201/b14924.

P. D. Moral and J. Garnier. Genealogical Particle Analysis of Rare Events.
The Annals of Applied Probability, 15(4):2496–2534, Nov 2005. doi: 10.1214/
105051605000000566.

T. E. Mulder. Design and Bifurcation Analysis of Implicit Earth System Models.
PhD thesis, Utrecht University, Jun 2019.

T. E. Mulder, S. Baars, F. W. Wubs, and H. A. Dijkstra. Stochastic Marine Ice
Sheet Variability. Journal of Fluid Mechanics, 843:748–777, Mar 2018. doi:
10.1017/jfm.2018.148.

A. Navarra and V. Simoncini. A Guide to Empirical Orthogonal Functions for
Climate Data Analysis. Springer Netherlands, 2010. ISBN 9789048137022.
doi: 10.1007/978-90-481-3702-2.

A. de Niet, F. Wubs, A. T. van Scheltinga, and H. A. Dijkstra. A Tailored Solver
for Bifurcation Analysis of Ocean-Climate Models. Journal of Computational
Physics, 227(1):654–679, Nov 2007. doi: 10.1016/j.jcp.2007.08.006.

A. C. de Niet and F. W. Wubs. Numerically Stable LDLT-Factorization of F-
Type Saddle Point Matrices. IMA Journal of Numerical Analysis, 29(1):208–
234, Feb 2008. doi: 10.1093/imanum/drn005.

https://doi.org/10.1137/1.9781611975215.9
https://doi.org/10.1016/0898-1221(95)00224-3
https://doi.org/10.1016/0898-1221(95)00224-3
https://doi.org/10.1002/grl.50515
https://doi.org/10.1098/rsta.2008.0045
https://doi.org/10.1098/rsta.2008.0045
https://doi.org/10.1201/b14924
https://doi.org/10.1201/b14924
https://doi.org/10.1214/105051605000000566
https://doi.org/10.1214/105051605000000566
https://doi.org/10.1017/jfm.2018.148
https://doi.org/10.1017/jfm.2018.148
https://doi.org/10.1007/978-90-481-3702-2
https://doi.org/10.1007/978-90-481-3702-2
https://doi.org/10.1016/j.jcp.2007.08.006
https://doi.org/10.1093/imanum/drn005

Bibliography 127

T. Penzl. A Cyclic Low-Rank Smith Method for Large Sparse Lyapunov Equa-
tions. SIAM Journal on Scientific Computing, 21(4):1401–1418, Jan 1999. doi:
10.1137/s1064827598347666.

S. Rahmstorf. The Thermohaline Ocean Circulation: a System With Dangerous
Thresholds? Climatic Change, 46(3):247–256, Aug 2000. doi: 10.1023/a:
1005648404783.

J. Rolland and E. Simonnet. Statistical Behaviour of Adaptive Multilevel Split-
ting Algorithms in Simple Models. Journal of Computational Physics, 283:
541–558, Feb 2015. doi: 10.1016/j.jcp.2014.12.009.

J. Rolland, F. Bouchet, and E. Simonnet. Computing Transition Rates for the 1-
D Stochastic Ginzburg–Landau–Allen–Cahn Equation for Finite-Amplitude
Noise With a Rare Event Algorithm. Journal of Statistical Physics, 162(2):277–
311, Nov 2015. doi: 10.1007/s10955-015-1417-4.

M. N. Rosenbluth and A. W. Rosenbluth. Monte Carlo Calculation of the Av-
erage Extension of Molecular Chains. The Journal of Chemical Physics, 23(2):
356–359, Feb 1955. doi: 10.1063/1.1741967.

G. Rubino and B. Tuffin. Rare Event Simulation using Monte Carlo Methods.
John Wiley & Sons, Ltd, Mar 2009. ISBN 9780470772690. doi: 10.1002/
9780470745403.

Y. Saad. Numerical Solution of Large Lyapunov Equations. In Signal Process-
ing, Scattering and Operator Theory, and Numerical Methods, Proc. MTNS-89,
pages 503–511. Birkhauser, 1990.

Y. Saad and M. H. Schultz. GMRES: a Generalized Minimal Residual Algo-
rithm for Solving Nonsymmetric Linear Systems. SIAM Journal on Scientific
and Statistical Computing, 7(3):856–869, Jul 1986. doi: 10.1137/0907058.

J. Saak, M. Köhler, and P. Benner. M-M.E.S.S.-1.0.1 - the Matrix Equation
Sparse Solver Library, Apr. 2016. doi: 10.5281/zenodo.50575.

M. Sala and M. A. Heroux. Robust algebraic preconditioners using IFPACK
3.0. Technical report, Sandia National Laboratories, Jan 2005.

M. Sala, K. S. Stanley, and M. A. Heroux. On the Design of Interfaces To Sparse
Direct Solvers. ACM Transactions on Mathematical Software, 34(2):1–22, Mar
2008. doi: 10.1145/1326548.1326551.

T. P. Sapsis and P. F. Lermusiaux. Dynamically Orthogonal Field Equations for
Continuous Stochastic Dynamical Systems. Physica D: Nonlinear Phenomena,
238(23-24):2347–2360, Dec 2009. doi: 10.1016/j.physd.2009.09.017.

https://doi.org/10.1137/s1064827598347666
https://doi.org/10.1137/s1064827598347666
https://doi.org/10.1023/a:1005648404783
https://doi.org/10.1023/a:1005648404783
https://doi.org/10.1016/j.jcp.2014.12.009
https://doi.org/10.1007/s10955-015-1417-4
https://doi.org/10.1063/1.1741967
https://doi.org/10.1002/9780470745403
https://doi.org/10.1002/9780470745403
https://doi.org/10.1002/9780470745403
https://doi.org/10.1137/0907058
https://doi.org/10.5281/zenodo.50575
https://doi.org/10.1145/1326548.1326551
https://doi.org/10.1016/j.physd.2009.09.017

128 Bibliography

P. D. Sardeshmukh and P. Sura. Reconciling Non-Gaussian Climate Statistics
With Linear Dynamics. Journal of Climate, 22(5):1193–1207, Mar 2009. doi:
10.1175/2008jcli2358.1.

M. J. Schmeits and H. A. Dijkstra. Bimodal Behavior of the Kuroshio and the
Gulf Stream. Journal of Physical Oceanography, 31(12):3435–3456, Dec 2001.
doi: 10.1175/1520-0485(2001)031〈3435:bbotka〉2.0.co;2.

A. Segal, M. ur Rehman, and C. Vuik. Preconditioners for Incompressible
Navier-Stokes Solvers. Numerical Mathematics: Theory, Methods and Applica-
tions, 2010. doi: 10.4208/nmtma.2010.33.1.

S. D. Shank, V. Simoncini, and D. B. Szyld. Efficient Low-Rank Solution of
Generalized Lyapunov Equations. Numerische Mathematik, 134(2):327–342,
Nov 2015. doi: 10.1007/s00211-015-0777-7.

W. P. Sijp, J. D. Zika, M. d’Orgeville, and M. H. England. Revisiting Merid-
ional Overturing Bistability Using a Minimal Set of State Variables: Stochas-
tic Theory. Climate Dynamics, 43(5-6):1661–1676, Nov 2013. doi: 10.1007/
s00382-013-1992-5.

V. Simoncini. A New Iterative Method for Solving Large-Scale Lyapunov Ma-
trix Equations. SIAM Journal on Scientific Computing, 29(3):1268–1288, Jan
2007. doi: 10.1137/06066120x.

V. Simoncini. Available Software, 2016. URL http://www.dm.unibo.it/
∼simoncin/software.html.

E. Simonnet. Combinatorial Analysis of the Adaptive Last Particle Method.
Statistics and Computing, 26(1-2):211–230, Jul 2014. doi: 10.1007/
s11222-014-9489-6.

G. L. G. Sleijpen and F. W. Wubs. Exploiting Multilevel Preconditioning Tech-
niques in Eigenvalue Computations. SIAM Journal on Scientific Computing,
25(4):1249–1272, Jan 2004. doi: 10.1137/s1064827599361059.

J. Slingo and T. Palmer. Uncertainty in Weather and Climate Prediction. Philo-
sophical Transactions of the Royal Society A: Mathematical, Physical and Engi-
neering Sciences, 369(1956):4751–4767, Oct 2011. doi: 10.1098/rsta.2011.
0161.

H. Stommel. Thermohaline Convection With Two Stable Regimes of Flow.
Tellus B, 13(2), May 1961. doi: 10.3402/tellusb.v13i2.12985.

T. Stykel and V. Simoncini. Krylov Subspace Methods for Projected Lyapunov
Equations. Applied Numerical Mathematics, 62(1):35–50, Jan 2012. doi: 10.
1016/j.apnum.2011.09.007.

https://doi.org/10.1175/2008jcli2358.1
https://doi.org/10.1175/2008jcli2358.1
https://doi.org/10.1175/1520-0485(2001)031<3435:bbotka>2.0.co;2
https://doi.org/10.4208/nmtma.2010.33.1
https://doi.org/10.1007/s00211-015-0777-7
https://doi.org/10.1007/s00382-013-1992-5
https://doi.org/10.1007/s00382-013-1992-5
https://doi.org/10.1137/06066120x
http://www.dm.unibo.it/~simoncin/software.html
http://www.dm.unibo.it/~simoncin/software.html
https://doi.org/10.1007/s11222-014-9489-6
https://doi.org/10.1007/s11222-014-9489-6
https://doi.org/10.1137/s1064827599361059
https://doi.org/10.1098/rsta.2011.0161
https://doi.org/10.1098/rsta.2011.0161
https://doi.org/10.3402/tellusb.v13i2.12985
https://doi.org/10.1016/j.apnum.2011.09.007
https://doi.org/10.1016/j.apnum.2011.09.007

Bibliography 129

P. Sura and S. T. Gille. Stochastic Dynamics of Sea Surface Height Variability.
Journal of Physical Oceanography, 40(7):1582–1596, Jul 2010. doi: 10.1175/
2010jpo4331.1.

J. Thies and F. Wubs. Design of a Parallel Hybrid Direct/Iterative Solver for
CFD Problems. 2011 IEEE Seventh International Conference on eScience, Dec
2011. doi: 10.1109/escience.2011.60.

J. Thies, F. Wubs, and H. A. Dijkstra. Bifurcation Analysis of 3D Ocean Flows
Using a Parallel Fully-Implicit Ocean Model. Ocean Modelling, 30(4):287–
297, Jan 2009. doi: 10.1016/j.ocemod.2009.07.005.

A. Timmermann and G. Lohmann. Noise-Induced Transitions in a Simplified
Model of the Thermohaline Circulation. Journal of Physical Oceanography, 30
(8):1891–1900, Aug 2000. doi: 10.1175/1520-0485(2000)030〈1891:nitias〉
2.0.co;2.

M. den Toom, H. A. Dijkstra, and F. W. Wubs. Spurious Multiple Equilibria
Introduced By Convective Adjustment. Ocean Modelling, 38(1-2):126–137,
Jan 2011. doi: 10.1016/j.ocemod.2011.02.009.

U. Trottenberg, C. W. Oosterlee, and A. Schüller. Multigrid. Academic Press,
Nov 2000. ISBN 9780127010700

M. Tuma. A Note on the LDLT Decomposition of Matrices From Saddle-Point
Problems. SIAM Journal on Matrix Analysis and Applications, 23(4):903–915,
Jan 2002. doi: 10.1137/s0895479897321088.

E. Vanden-Eijnden and M. Heymann. The Geometric Minimum Action
Method for Computing Minimum Energy Paths. The Journal of Chemical
Physics, 128(6):061103, Feb 2008. doi: 10.1063/1.2833040.

M. Vellinga and R. A. Wood. Global Climatic Impacts of a Collapse of the
Atlantic Thermohaline Circulation. Climatic change, 54(3):251–267, 2002. doi:
10.1023/a:1016168827653.

R. Verstappen and M. Dröge. A Symmetry-Preserving Cartesian Grid Method
for Computing a Viscous Flow Past a Circular Cylinder. Comptes Rendus
Mécanique, 333(1):51–57, Jan 2005. doi: 10.1016/j.crme.2004.09.021.

R. Verstappen and A. Veldman. Symmetry-Preserving Discretization of Tur-
bulent Flow. Journal of Computational Physics, 187(1):343–368, May 2003. doi:
10.1016/s0021-9991(03)00126-8.

H. A. van der Vorst. Iterative Krylov Methods for Large Linear Systems. Cam-
bridge University Press, 2003. ISBN 9780511615115. doi: 10.1017/
cbo9780511615115.

https://doi.org/10.1175/2010jpo4331.1
https://doi.org/10.1175/2010jpo4331.1
https://doi.org/10.1109/escience.2011.60
https://doi.org/10.1016/j.ocemod.2009.07.005
https://doi.org/10.1175/1520-0485(2000)030<1891:nitias>2.0.co;2
https://doi.org/10.1175/1520-0485(2000)030<1891:nitias>2.0.co;2
https://doi.org/10.1016/j.ocemod.2011.02.009
.
https://doi.org/10.1137/s0895479897321088
https://doi.org/10.1063/1.2833040
https://doi.org/10.1023/a:1016168827653
https://doi.org/10.1023/a:1016168827653
https://doi.org/10.1016/j.crme.2004.09.021
https://doi.org/10.1016/s0021-9991(03)00126-8
https://doi.org/10.1016/s0021-9991(03)00126-8
https://doi.org/10.1017/cbo9780511615115
https://doi.org/10.1017/cbo9780511615115
https://doi.org/10.1017/cbo9780511615115

130 Bibliography

G. Walin. The Thermohaline Circulation and the Control of Ice Ages. Palaeo-
geography, Palaeoclimatology, Palaeoecology, 50(1):323–332, Jan 1985. doi:
10.1016/s0031-0182(85)80020-1.

A. J. Wathen. Preconditioning. Acta Numerica, 24:329–376, Apr 2015. doi:
10.1017/s0962492915000021.

W. Weijer and H. A. Dijkstra. A Bifurcation Study of the Three-Dimensional
Thermohaline Ocean Circulation: the Double Hemispheric Case. Journal of
Marine Research, 59(4):599–631, Jul 2001. doi: 10.1357/002224001762842208.

J. Wouters and F. Bouchet. Rare Event Computation in Deterministic Chaotic
Systems Using Genealogical Particle Analysis. Journal of Physics A: Mathe-
matical and Theoretical, 49(37):374002, Aug 2016. doi: 10.1088/1751-8113/
49/37/374002.

F. W. Wubs and J. Thies. A Robust Two-Level Incomplete Factorization for
(Navier–)Stokes Saddle Point Matrices. SIAM Journal on Matrix Analysis and
Applications, 32(4):1475–1499, Oct 2011. doi: 10.1137/100789439.

X. Zhou, W. Ren, and W. E. Adaptive Minimum Action Method for the Study
of Rare Events. The Journal of Chemical Physics, 128(10):104111, Mar 2008.
doi: 10.1063/1.2830717.

https://doi.org/10.1016/s0031-0182(85)80020-1
https://doi.org/10.1016/s0031-0182(85)80020-1
https://doi.org/10.1017/s0962492915000021
https://doi.org/10.1017/s0962492915000021
https://doi.org/10.1357/002224001762842208
https://doi.org/10.1088/1751-8113/49/37/374002
https://doi.org/10.1088/1751-8113/49/37/374002
https://doi.org/10.1137/100789439
https://doi.org/10.1063/1.2830717

SUMMARY

There is a strong variability in the everyday weather related to the develop-
ment of high- and low-pressure fields. These developments do not have any-
thing to do with the external solar forcing, but are due to the internal vari-
ability of the atmospheric flow. The time scale of this variability of 3-7 days is
determined by the nonlinear processes in the atmosphere itself. Similar pro-
cesses happen in every part of the climate system on varying time scales. A
high-frequency process is the weather as described above; a low-frequency
process is the change in land-ice distribution. In the ocean, internal variability
causes formation of ocean eddies and the meandering of ocean currents such
as the Gulf Stream. Interaction between all the different processes on different
time scales may result in internal variability on other time scales that is not
present in decoupled systems. This makes such processes very challenging
to study, and difficult to understand. Therefore it is often a good idea to take
a step back, and look at a more simplified model to make sure one is at least
able to understand the results, and then apply this newly acquired knowledge
to the fully coupled system.

We work with such a simplified model of the Meridional Overturning Cir-
culation (MOC). The MOC consists of a global ‘conveyor belt’ of ocean cur-
rents, which are driven by wind stress forces and fluxes of heat and freshwater
at the surface. In the Atlantic ocean, it consists of surface currents that trans-
port relatively light water toward high latitudes, deep water currents going
in the opposite direction, and sinking and upwelling processes that connect
these two. The circulation system contains two overturning cells: one in the
north with North Atlantic Deep Water (NADW) and one in the south with
Antarctic Bottom Water (AABW).

Since the first model proposed by Stommel, many model studies have

131

132 Summary

shown that the MOC may be sensitive to variability in the freshwater forc-
ing. In a global coupled climate model by Vellinga and Wood the NADW
circulation collapses and recovers after 120 years. This is because weakening
the MOC by introducing more freshwater in the North Atlantic (melting of the
Greenland ice sheet) leads to a reduced northward saltwater transport, which
in turn amplifies the freshwater perturbation.

A state of the MOC with a strongly reduced heat transport may have large
consequences for the global climate. Cooling of a few degrees may be ob-
served in Europe, which in turn may lead to growing glaciers and then global
cooling. Therefore, an estimate of the probability of MOC transitions is crucial
for prediction of a collapse of the MOC and with that a rapid climate change.

This collapse may occur due to the existence of a tipping point associated
with the salt-advection feedback. Tipping points exist due to the presence
of multiple stable steady states for the same parameter values. Due to un-
resolved small-scale variability, however, transitions may even be observed
before a tipping point is reached. This unresolved variability is often repre-
sented as noise. We aimed to develop methods which can be used for studying
transition behavior in the MOC.

To be able to observe these transitions between stable steady states, we
first need to be able to compute the steady states themselves. They can be
computed by using time integration, which is often expensive, especially if
steady states have to be computed for multiple parameter values. Instead one
can apply a method called (pseudo-arclength) continuation, which can com-
pute the steady states directly by applying Newton’s method. This can speed
up the computation of steady states considerably. Pseudo-arclength contin-
uation is especially useful for computing unstable steady states, i.e. steady
states for which a small disturbance causes the state to converge to a different
steady state. Time integration methods are usually incapable of computing
these unstable steady states.

During the application of Newton’s method, many linear systems of equa-
tions have to be solved. For the MOC, these are specifically equations that
include the Navier–Stokes equations discretized on a staggered grid. Direct
(sparse) solvers are not practical since a typical ocean model involves millions
of unknowns leading to a huge memory requirement for storing the factor-
ization and an enormous amount of time to compute it. For such problems,
iterative methods are preferred, e.g. Krylov subspace methods with suitable
preconditioning to ensure robustness, fast convergence and accuracy of the
final approximate solution.

Preconditioners that are often advocated include standard additive
Schwarz domain-decomposition, multigrid with aggressive coarsening and
strong smoothers (e.g. ILU), and ‘block preconditioners’ that use an approx-
imate block LU factorization and some approximation of the Schur comple-
ment associated with the pressure unknowns, e.g. SIMPLEC, LSC, and PCD.

Another class of Schur complement methods is obtained when eliminat-

Summary 133

ing the interior of geometric partitions (or subdomains) and constructing a
suitable approximation of the reduced system on the separator. In this class
of methods, we presented a multilevel preconditioner for the Navier–Stokes
equations discretized on a staggered grid. The resulting operator acts in the
divergence-free space, which allows the method to handle the saddle-point
structure of the system in a natural way.

After computing steady states of the MOC, we are interested in its sensi-
tivity to noise. The sensitivity around a steady state can be determined from
the probability density function. It is well known that this probability den-
sity function can be computed from the solution of a generalized Lyapunov
equation. Direct methods for solving a generalized Lyapunov equation such
as Bartels–Stewart algorithm are based on dense matrix solvers and hence in-
applicable for large systems. Other existing methods which use low-rank ap-
proximations might also become expensive for high-dimensional problems,
particularly when trying to use previous initial guesses along a continuation
branch. We, therefore, presented a novel method for computing the solution
of generalized Lyapunov equations that is particularly well suited for our
ocean problem in a continuation context. The method works by applying a
Galerkin type projection with the space built from the eigenvectors belonging
to the largest eigenvalues of the residual at every iteration of the method. Most
important is that the method can be restarted, which allows for less memory
usage, faster iterations, and recycling of previous solutions. We showed that
for an idealized 2D MOC model, our method is the most efficient method in
terms of both memory usage and time.

A shortcoming to this above approach is that it only describes the sensitiv-
ity to noise around a steady state. To study the more global phenomenon of
transitions between steady states, stochastic time integration is required. Ap-
plying a standard Monte Carlo method, however, is way too expensive, espe-
cially for high-dimensional systems and when the probability of a transition
is small. Multiple methods exist to work around this problem by applying
some form of resampling. To improve on these methods, we came up with
a projected time stepping method, which reduces the memory usage for our
idealized 2D MOC model with 96%, and the time consumption by 30%. We
showed that the probability of a transition increases drastically when getting
closer to a bifurcation point, and that the projected method is able to obtain
the same results as standard methods.

Since we only looked at an idealized 2D MOC model, we can not really say
anything about the transition probabilities of the MOC in the actual Atlantic
ocean, but we did provide methods with which this becomes feasible.

SAMENVATTING

Ontwikkelingen van hoge- en lagedrukgebieden zorgen voor een sterke va-
riabiliteit van het weer. Deze ontwikkelingen worden niet veroorzaakt door
stralingsenergie afkomstig van de zon, maar zijn te wijten aan de interne va-
riabiliteit van de atmosferische stroming. De tijdschaal van 3 tot 7 dagen van
deze variabiliteit wordt bepaald door niet-lineaire processen in de atmosfeer
zelf. Soortgelijke processen vinden op verschillende tijdschalen plaats in elk
deel van het klimaatsysteem. Een hoogfrequent proces is het weer zoals hier-
boven beschreven; een laagfrequent proces is de verandering in de dekkings-
graad van ijs op land. In de oceaan veroorzaakt interne variabiliteit vorming
van wervels en het meanderen van oceaanstromingen zoals de Golfstroom.
Interactie tussen alle verschillende processen op verschillende tijdschalen kan
leiden tot interne variabiliteit op andere tijdschalen die niet aanwezig is in de
afzonderlijke systemen. Dit maakt dergelijke processen zeer lastig om te be-
studeren en moeilijk om te begrijpen. Daarom is het vaak een goed idee om
een stap terug te doen en te kijken naar een eenvoudiger model om er zeker
van te zijn dat men in ieder geval in staat is om de resultaten te begrijpen,
en om deze nieuw verworven kennis vervolgens toe te kunnen passen op het
volledig gekoppelde systeem.

We werken met een dergelijk vereenvoudigd model van de meridionale
omwentelingscirculatie (MOC). De MOC bestaat uit een mondiale ‘transport-
band’ van zeestromingen, die wordt aangedreven door windspanningskrach-
ten en fluxen van warmte en zoet water aan het oppervlak. In de Atlanti-
sche oceaan bestaat het uit oppervlaktestromen die relatief licht water naar
hoge breedtegraden transporteren, diepe waterstromen die in de tegenoverge-
stelde richting gaan en zink- en opwellingprocessen die deze twee verbinden.
Het circulatiesysteem bevat twee omwentelingscellen: één in het noorden met

135

136 Samenvatting

Noord-Atlantisch diep water (NADW) en één in het zuiden met Antarctisch
bodemwater (AABW).

Sinds het eerste door Stommel voorgestelde model hebben veel modelstu-
dies aangetoond dat de MOC gevoelig kan zijn voor variabiliteit in de zoetwa-
terforcering. In een gekoppeld klimaatmodel van Vellinga en Wood stort de
NADW-circulatie in en herstelt zich na 120 jaar. De verzwakking van de MOC
door de introductie van meer zoet water in de Noord-Atlantische oceaan (het
smelten van de Groenlandse ijskap) leidt namelijk tot een verminderd zout-
watertransport naar het noorden, wat op zijn beurt de zoetwaterverstoring
versterkt.

Een toestand van de MOC met een sterk gereduceerd warmtetransport
kan grote gevolgen hebben voor het mondiale klimaat. In Europa kan een
afkoeling van enkele graden worden waargenomen, die op haar beurt kan lei-
den tot groeiende gletsjers en vervolgens tot wereldwijde afkoeling. Daarom
is een schatting van de kans op MOC-transities cruciaal voor het voorspellen
van een ineenstorting van de MOC en daarmee een snelle klimaatverande-
ring.

Deze ineenstorting kan optreden vanwege het bestaan van een kantelpunt
die gerelateerd is aan de zout-advectieterugkoppeling. Kantelpunten bestaan
vanwege de aanwezigheid van meerdere stabiele evenwichtstoestanden voor
dezelfde parameterwaarden. Vanwege kleinschalige variabiliteit die niet in
het model wordt gevangen kunnen echter transities worden waargenomen
zelfs voordat een kantelpunt wordt bereikt. Deze kleinschalige variabiliteit
wordt vaak beschreven door middel van ruis. Ons doel was om methoden te
ontwikkelen die kunnen worden gebruikt voor het bestuderen van transitie-
gedrag in de MOC.

Om deze overgangen tussen stabiele evenwichtstoestanden te kunnen
waarnemen, moeten we eerst de evenwichtstoestanden zelf kunnen bere-
kenen. Ze kunnen worden berekend met behulp van tijdsintegratie, wat
vaak duur is, vooral als evenwichtstoestanden berekend moeten worden voor
meerdere parameterwaarden. In plaats daarvan kan men een methode toe-
passen genaamd (pseudo-arclength) continuatie, die de evenwichtstoestan-
den rechtstreeks kan berekenen door de methode van Newton toe te pas-
sen. Dit kan de berekening van evenwichtstoestanden aanzienlijk versnellen.
Pseudo-arclength continuatie is vooral nuttig voor het berekenen van onsta-
biele evenwichtstoestanden, d.w.z. evenwichtstoestanden waarbij een kleine
verstoring ervoor zorgt dat de toestand convergeert naar een andere even-
wichtstoestand. Tijdsintegratiemethoden zijn meestal niet in staat om deze
onstabiele evenwichtstoestanden te berekenen.

Bij de toepassing van de methode van Newton moeten veel lineaire stel-
sels van vergelijkingen worden opgelost. Voor de MOC zijn dit specifiek ver-
gelijkingen die de Navier-Stokes-vergelijkingen omvatten, gediscretiseerd op
een versprongen rooster. Directe (ijle) oplossingsmethoden zijn niet praktisch,
omdat een typisch oceaanmodel miljoenen onbekenden omvat, wat leidt tot

Samenvatting 137

een grote geheugenvereiste voor het opslaan van de factorisatie en een enorme
hoeveelheid tijd die nodig is om deze te berekenen. Voor dergelijke pro-
blemen wordt de voorkeur gegeven aan iteratieve methoden, bijvoorbeeld
de Krylov-deelruimtemethoden met geschikte preconditionering om de ro-
buustheid, snelle convergentie en nauwkeurigheid van de uiteindelijke bena-
derende oplossing te garanderen.

Preconditioneerders die vaak worden bepleit zijn standaard additieve
Schwarz domein-decompositie, multigrid met agressieve verruwing en sterke
gladstrijkers (bijv. ILU), en ‘blok-preconditioneerders’ die een benaderende
blok-LU-factorisatie en een benadering van het Schur-complement geasso-
cieerd met de druk-onbekenden gebruiken, bijvoorbeeld SIMPLEC, LSC en
PCD.

Een andere klasse van Schur-complementmethoden wordt verkregen
wanneer het interieur van geometrische partities (of subdomeinen) wordt
geëlimineerd en een geschikte benadering van het gereduceerde systeem op
de separator wordt geconstrueerd. In deze klasse van methoden stelden we
een meerlaagse preconditioneerder voor de Navier–Stokes-vergelijkingen die
gediscretiseerd zijn op een versprongen rooster. De resulterende operator
werkt in de divergentievrije ruimte, waardoor de methode de zadelpuntstruc-
tuur van het systeem op een natuurlijke manier kan behandelen.

Na het berekenen van evenwichtstoestanden van de MOC zijn we
geı̈nteresseerd in de gevoeligheid voor ruis. De gevoeligheid rond een even-
wichtstoestand kan worden bepaald aan de hand van de kansdichtheid. Het
is algemeen bekend dat deze kansdichtheid kan worden berekend uit de op-
lossing van een gegeneraliseerde Lyapunov-vergelijking. Directe methoden
voor het oplossen van een gegeneraliseerde Lyapunov-vergelijking zoals het
Bartels–Stewart-algoritme zijn gebaseerd op solvers voor volle matrices en
zijn daarom niet toepasbaar voor grote systemen. Bestaande methoden die
gebruik maken van benaderingen met een lage rang kunnen ook duur wor-
den voor hoogdimensionale problemen, met name bij het gebruik van eerdere
initiële schattingen langs een continuatietak. We ontwikkelden daarom een
nieuwe methode voor het berekenen van de oplossing van gegeneraliseerde
Lyapunov-vergelijkingen die bijzonder goed geschikt is voor ons oceaanpro-
bleem in een continuatiecontext. De methode werkt door een Galerkin-type
projectie toe te passen met de ruimte die is opgebouwd uit de eigenvectoren
die behoren tot de grootste eigenwaarden van het residu in elke iteratie van
de methode. Het belangrijkste is dat de methode kan worden herstart, wat
zorgt voor minder geheugengebruik, snellere iteraties, en wat hergebruik van
eerdere oplossingen toestaat. We hebben laten zien dat voor een geı̈dealiseerd
2D MOC-model onze methode de meest efficiënte methode is in termen van
zowel geheugengebruik als tijd.

Een tekortkoming van deze aanpak is dat deze alleen de gevoeligheid voor
ruis rond een evenwichtstoestand beschrijft. Om het meer globale fenomeen
van transities tussen evenwichtstoestanden te bestuderen, is een stochastische

138 Samenvatting

tijdsintegratie nodig. Het toepassen van een standaard Monte Carlo methode
is echter veel te duur, vooral voor hoogdimensionale systemen en wanneer de
kans op een transitie klein is. Er bestaan meerdere methoden om dit probleem
te omzeilen door een of andere vorm van resampling toe te passen. Om deze
methoden te verbeteren, hebben we een geprojecteerde tijdstapmethode be-
dacht, die het geheugengebruik voor ons geı̈dealiseerde 2D MOC-model met
96% en het tijdsverbruik met 30% vermindert. We toonden aan dat de kans
op een transitie drastisch toeneemt wanneer we dichter bij een bifurcatiepunt
komen, en dat de geprojecteerde methode in staat is dezelfde resultaten te
verkrijgen als standaardmethoden.

Omdat we alleen naar een geı̈dealiseerd 2D MOC-model hebben gekeken,
kunnen we niet echt iets zeggen over de transitieskansen van de MOC in de
werkelijke Atlantische oceaan, maar we hebben wel methoden ontwikkeld
waarmee dit haalbaar wordt.

SOAMENVATTING

Klaainschoalege veranderlekhaid ien t klimoat kin grode effecten hebben op
mondioale oceoancirculoatsie. Veurbeelden van zukke klaainschoalege ver-
aanderns binnen schommelingen ien houveulhaid zuit wotter deur t smelten
van t ies op Gruinlaand. Dizze schommelingen kinnen aanlaaiden wezen tot
n òfnoame van haile globoale oceoancirculoatsie, wat op zien beurt òfkouln
van n poar groad kin geven ien Uropoa. Om der achter te kommen houveul
kaans wie moaken op zo’n klimoatomslag, mouten der berekens doan wòrren
mit grootschoalege oceoanmodèllen. Jammer genog binnen bestoande reken-
technieken nait vlug genog en doarom mouten der nije technieken bedòcht
wòrren. Ien dit proufschrift stellen wie drij veur. Eerste is n methode om
grode systemen van vergeliekens op te lössen, twijde n methode om gevuileg-
haid veur schommelingen wied genog vot van t omslaggebied te bepoalen, en
leste methode berekent waarkelke kaans op n klimoatomslag ien grootschoa-
lege modèllen. Wie loaten zain hou dizze methoden waarken op n idealiseerd
twijdimensionoal oceoancirculoatsiemodèl. Ien toukomst kinnen dizze me-
thoden bruukt wòrren om echte omslagkaansen ien realistische drijdimensi-
onoale klimoatmodèllen mit n hoge rezeluutsie te bereken. Veur n oetgebraai-
dere soamenvatting verwiezen wie joe geern deur noar Nederlandse soamen-
vatting.

139

ACKNOWLEDGMENTS

Welcome to the acknowledgments, which is very likely to be one of the very
few parts of my thesis that you will ever read, maybe together with the sum-
mary. I do not mind this at all, since I am also guilty of this habit, especially
when receiving a thesis that is unrelated to my field of research. For this rea-
son, I also provide the summary not only in Dutch, as seems to be common,
but also in English and Gronings.

First and foremost, I would like to thank my supervisor Fred Wubs. I do
not think that any PhD student could ever wish for a better supervisor. You
gave me full freedom to pursue my own interests, even if they did not fully
overlap with your initial plans for this project, and were always interested
in the progress that I made. And whenever I had any questions, you were
there in your office, ready to answer them. I also enjoyed the travels we made
together to conferences and to Jonas in Cologne, especially the cycling trip we
made to Bonn and back.

I would also like to thank Henk Dijkstra, who acted as my second supervi-
sor, for always being enthusiastic and for providing us with a vision, which ul-
timately led me to the topics that were discussed in this thesis. I look forward
to the continuation of working together with both of you, Fred and Henk, in
the coming years.

Furthermore, my thanks goes to my promotor, Roel Verstappen, and the
assessment committee, consisting of Rob Bisseling, Daan Crommelin and Ar-
jan van der Schaft, for their thorough reading of my thesis and their helpful
comments.

Now I get to the two people I spent most time with during the past few
years, even before we started with our PhDs, which are Ronald and Erik. We
have been sharing an office on and off for the past six years or so, and it has

141

142 Acknowledgments

been a pleasure. Thanks especially for not being too annoyed when I distract
you for no particular reason other than to talk to you.

Thanks to Erik for providing me with the finest details on the subjects
of mechanical keyboards(!), modular synthesizers, coffee grinding, growing
edible mushrooms and baking bread. Thanks to Ronald for your love for seals,
powder, Beijum and bananas. Thanks to Daniele, Christian and Jonas for our
pleasant long distance collaborationships during the past few years. Thanks
to Mark for being such an excellent student and for coming up with the rotated
parallelepiped, which solved all of our problems. Thanks to David for the
lengthy discussions over a cup of coffee (thanks also for the coffee). Ahmad,
Cristóbal, Donglin, Henk, Hugo, Jeremı́as, Jigar, Larissa, Luca, Maurits, Nico,
Paolo, Peter, Reza, Sourabh, Weiyan, thanks for the nice conversations we had
often during, but not limited to, the lunch breaks.

Thanks to Paulus, Sjieuwe, Peter, Lanting and Jan, for being my friends
since secondary school, but also while studying together with me at this uni-
versity with the exception of Jan, who went to Delft. Thanks to the mooie
gekken at T.F.V. ‘Professor Francken’ for taking klaverjassen to a next level and
for the countless hours of fun we had together. Thanks to the Marks of the
s[ck]rip(t|t?c)ie for the random acts of programming under the supervision of
Kathinka. Thanks to Roel for teaching me how to perform a scout rush.

Finally, thanks to my parents, for still keeping up with me after so long.
Thanks for all of the Christmas dinners. Thanks for never having forced me
to do anything, and for always being supportive. Thanks for always being
interested in what I do, even if you do not fully understand it. The same
holds for my sister, who in turn I often do not fully understand either, but
who is also very dear to me. Also thanks to Bono and Waldo for respectively
warming and eating my feet. I am happy to have such a wonderful family.

CURRICULUM VITAE

Sven Baars was born on August 15, 1990 in Eenrum, The Netherlands. After
completing his primary education in Eenrum, he attended secondary educa-
tion at the Praedinius Gymnasium in Groningen. From 2008 to 2014 he was
a student at the University of Groningen, where he obtained his bachelor’s
and master’s degree (cum laude) in the field of numerical mathematics. Dur-
ing this time, he also did an internship at the German Aerospace Center in
Cologne.

From 2015 to 2019, Sven was a PhD student at the university of Groningen
in the group of prof. dr. ir. R.W.C.P. Verstappen under the supervision of dr.
ir. F.W. Wubs. The topic of his research was numerical methods for studying
transition probabilities in stochastic ocean-climate models.

143

	Introduction
	Basic concepts
	Newton's method
	Iterative methods
	Bifurcation analysis
	Pseudo-arclength continuation

	Stochastic differential equations
	Brownian motion
	Stochastic differential equations
	The Euler–Maruyama method
	The stochastic theta method

	Governing equations
	The Navier–Stokes equations
	The ocean model
	Stochastic freshwater forcing

	Linear systems
	The two-level ILU preconditioner
	Initialization phase
	Factorization phase
	Solution phase

	The multilevel ILU preconditioner
	Skew partitioning in 2D and 3D
	Numerical results
	Weak scalability
	Strong scalability
	Lid-driven cavity

	Summary and Discussion

	Lyapunov equations
	Methods
	Formulation of the problem
	A novel iterative generalized Lyapunov solver
	Convergence analysis
	Restart strategy
	Extended generalized Lyapunov equations

	Problem setting
	Bifurcation diagram
	Stochastic freshwater forcing

	Results
	Comparison with stochastically forced time forward simulation
	Comparison with other Lyapunov solvers
	Numerical scalability
	Towards a 3D model
	Continuation
	Extended Lyapunov equations

	Summary and Discussion

	Transition probabilities
	Definition
	The Eyring–Kramers formula
	Double well potential
	Computing the transition probability

	Covariance ellipsoids
	Example

	Most probable transition trajectories
	Computing transition probabilities
	Direct sampling
	Direct sampling of the mean first passage time
	Adaptive multilevel splitting
	Trajectory-Adaptive Multilevel Sampling
	Genealogical Particle Analysis
	Comparison

	Summary and Discussion

	Transitions in the Meridional Overturning Circulation
	Projected time-stepping in TAMS
	Problem setting
	Bifurcation diagram
	Stochastic freshwater forcing
	Reaction coordinate

	Results
	Summary and Discussion

	Conclusion
	Publications and preprints
	Software
	Bibliography
	Summary
	Samenvatting
	Soamenvatting
	Acknowledgments

