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Abstract. In this paper we present the Oceanographic Multi-
purpose Software Environment (OMUSE). OMUSE aims to
provide a homogeneous environment for existing or newly
developed numerical ocean simulation codes, simplifying
their use and deployment. In this way, numerical exper-
iments that combine ocean models representing different
physics or spanning different ranges of physical scales can
be easily designed. Rapid development of simulation models
is made possible through the creation of simple high-level
scripts. The low-level core of the abstraction in OMUSE
is designed to deploy these simulations efficiently on het-
erogeneous high-performance computing resources. Cross-
verification of simulation models with different codes and
numerical methods is facilitated by the unified interface
that OMUSE provides. Reproducibility in numerical exper-
iments is fostered by allowing complex numerical experi-
ments to be expressed in portable scripts that conform to a
common OMUSE interface. Here, we present the design of
OMUSE as well as the modules and model components cur-
rently included, which range from a simple conceptual quasi-
geostrophic solver to the global circulation model POP (Par-
allel Ocean Program). The uniform access to the codes’ sim-
ulation state and the extensive automation of data transfer
and conversion operations aids the implementation of model
couplings. We discuss the types of couplings that can be im-
plemented using OMUSE. We also present example appli-
cations that demonstrate the straightforward model initial-
ization and the concurrent use of data analysis tools on a

running model. We give examples of multiscale and multi-
physics simulations by embedding a regional ocean model
into a global ocean model and by coupling a surface wave
propagation model with a coastal circulation model.

1 Introduction

Numerical models of the global open ocean have now
reached a mature state. Models such as the MIT Global
Circulation Model (MITgcm), the Modular Ocean Model
(MOM), the Max Planck Institute Ocean Model (MPIOM),
the Parallel Ocean Program (POP) and Nucleus for European
Modeling of the Ocean (NEMO) are widely used in the com-
munity. These models can be used as the ocean components
in coupled global climate models such as those in the Cou-
pled Model Intercomparison Project1. Such simulations, with
horizontal resolutions as fine as 25 km, focus on projected
forecasts of future climate change (IPCC, 2013). The models
are also used in an ocean-only model configuration (Maltrud
et al., 2010) at even higher resolutions (down to about 10 km)
to adequately resolve western boundary currents, such as the
Gulf Stream, the Agulhas Current and Kuroshio, and to ex-
plicitly represent mesoscale eddies.

At the coastal zone, very different models are required, in-
corporating, for example, tides, river run-off, sediment trans-
port and wave dynamics (e.g., Zijlema, 2010). In many cases,

1http://pcmdi-cmip.llnl.gov
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unstructured mesh models are used (Danilov, 2013; Leut-
tich and Westerink, 2004) in order to provide an accurate
representation (Candy et al., 2014) of complex and irregu-
lar domain bounds that strongly influence local flows. An
additional challenge in regional models, such as ADCIRC
(Advanced 3-D Circulation) and SWAN (Simulating Waves
Nearshore), is that they are not bounded entirely by a coast-
line and typically contain at least one boundary open to the
global ocean. These open-ocean boundaries are usually han-
dled by restoring them to observations (climatology or tran-
sient over a specific period in the past).

In order to evaluate the human-scale impacts of climate
change, for example the effect of sea level rise on coastal ero-
sion (Cazenave, 2004), both the open ocean and coastal zone
need to be jointly considered. Increasing temperatures and
the changes in wind field can give rise to changes in ocean
currents, which in turn cause dynamical changes in sea level
(Brunnabend et al., 2014). These conditions will affect the
wave climate and may lead to changes in erosion at sandy
coasts. To tackle such problems one could proceed by devel-
oping a single code to incorporate both regimes (a monolithic
approach), or one can try to nest an existing regional model
into a global ocean model (using a tool such as AGRIF2 to
take care of the transport of data between grids). The exten-
sion of this idea to different codes and to different compo-
nents of Earth system and climate models suggests a modular
approach (e.g., Valcke et al., 2012), where one develops an
efficient way to couple different (e.g., open and coastal, but
potentially more than two) models together.

In this paper, we follow the latter approach, borrowing
from ideas in the astrophysical community. In simulations of
the formation of stars and galaxies, a wide variety of codes
need to be combined. For example, hydrodynamic codes (de-
scribing interstellar gas dynamics) are coupled with N-body
codes (for the gravitational dynamics of stars), and processes
on different scales, ranging from planetary to galactic, com-
pete to determine the evolution of the coupled system. Given
the need to correctly capture the interactions of the processes
represented in the different codes, the community has come
up with a Python framework3 (AMUSE) allowing easy inter-
action of different codes (Portegies Zwart et al., 2013; Pelu-
pessy et al., 2013).

In oceanography similar problems for multiscale and mul-
tiphysics are encountered, and a number of coupling frame-
works exists in the Earth system modeling community (e.g.,
Hill et al., 2004; Buis et al., 2006; Gregersen et al., 2007;
Jacob et al., 2005; Larson, 2005; Peckham et al., 2013; Val-
cke, 2013). These can be roughly divided into integrated and

2Adaptive Grid Refinement In Fortran, http://www-ljk.imag.fr/
MOISE/AGRIF/

3framework as used here refers to an ensemble of tools, appli-
cation programming interfaces and libraries which together can be
used to construct new applications, in our case scientific simula-
tions.

coupling library approaches (Valcke et al., 2012). In the in-
tegrated approach, the functionality provided by the compo-
nent codes (e.g., by subroutines of the code) is separated out
and joined into a new coupled model in a single executable.
In the library approach, the original codes themselves are
adapted to communicate with each other using an application
programming interface (API) made available by the coupling
library.

The AMUSE package provides a useful alternative since
it takes the approach of integrating different codes in a high-
level programming language (Python), using physically mo-
tivated programming interfaces to communicate with sepa-
rately running instances of the simulation codes. This has the
benefit of the parallelism and flexibility provided by a cou-
pling library approach, and the benefit of abstracting much
of the bookkeeping inherent to code couplings using modern
high-level constructs. In this way, quite complex simulations
can be described in compact scripts, that can be easily under-
stood and easily distributed.

The aim of this paper is to present OMUSE, a framework
which adapts the AMUSE approach for use in the Earth sys-
tem modeling community, with an initial focus on oceanog-
raphy. In Sect. 2, the design and architecture of OMUSE
is presented, with a particular focus on data structures, unit
conversion and grid remapping. The initial set of codes in-
cluded is presented in Sect. 3. In Sect. 4 we discuss the code-
coupling features of the OMUSE framework with particular
emphasis on a quasi-geostrophic model as a conceptual test
case. In Sect. 5, we present simple applications of OMUSE
showing its capabilities. A summary and discussion of these
results concludes the paper (Sect. 6).

2 Design and architecture

As inherited from AMUSE, the basic idea of OMUSE is
the abstraction of the functionality of simulation codes (the
community code base) into physically motivated interfaces
that hide their complexity and numerical implementation.
OMUSE provides the user optimized building blocks that
can be combined to design numerical experiments. The re-
quirement of the high-level glue language is not so much
performance, but one of algorithmic flexibility and ease of
programming. Hence, a modern interpreted scripting lan-
guage with object-oriented features, in our case Python (van
Rossum, 1995), is the natural choice. Furthermore, Python
has a large user and developer base in scientific computing,
and many libraries are available. Amongst these are libraries
for numerical computations, data analysis and visualization,
which can be used in an OMUSE scripts.

An OMUSE application consists, roughly speaking, of a
user script, an interface layer and the community code base
(Pelupessy et al., 2013), as illustrated in Fig. 1. The user
script is constructed by the user and defines a numerical ex-
periment by specifying the initial data, the simulation codes
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Figure 1. Design of the OMUSE framework. This schematic representation shows the design of the interface to a community code (“code”)
and the way it is accessed from the OMUSE framework. The code has a thin layer of interface functions in its native language (e.g., Fortran),
which communicates through an MPI message channel with the Python host process. On the Python side, the user script (“OMUSE simulation
script”) makes only generic calls to a high-level interface. This high-level interface calls the low-level interface functions, hiding details
about units and the code implementation (the communication through the MPI channel does not interfere with the code’s own parallelization
because the latter has its own MPI_WORLD_COMM context). Adapted from Pelupessy et al. (2013).

to be used and the interactions between the codes. It may
include analysis or plotting functions, in addition to writing
simulation data to file. The setup and communication with a
community code is handled by the framework in the inter-
face layer, which consists of a communication interface with
the community code as well as unit handling facilities and
an object-oriented interface. The interface layer also ensures
the consistency of the interactions with the various simula-
tion codes by maintaining a state model for each.

Below we give an overview of the design and architec-
ture of OMUSE (as inherited from AMUSE; more details can
be found in Pelupessy et al., 2013). The main developments
compared with AMUSE, apart from the addition of oceano-
graphic codes, are improvements in grid support, amongst
these support for curvilinear grids and extensive framework
support for grid remappings and grid generation routines. In
addition, a number of domain-specific units and utility li-
braries and support for various file formats, such as NetCDF
(Rew and Davis, 1990) output, have been added.

2.1 Remote function interface

The interface to a community code is provided by a set of
functions, each communicating with the code through a re-
mote function protocol. Currently the default implementa-
tion in OMUSE of this remote function protocol is based on
the message passing interface (MPI). A community code is
started by the instantiation of an interface object (Fig. 2),
transparent to this. Python provides the possibility of link-
ing Fortran or C/C++ codes directly; however, we found that

Figure 2. Examples of the instantiation of simulation codes within
OMUSE. (1) Simple instantiation on a local machine of the QG
code, (2) instantiation of a code inside a debugger, (3) local instan-
tiation of an MPI-parallel code (POP), (4) instantiation of POP on a
remote machine for a massively parallel high-resolution run through
the distributed channel (see Sect. 2.2).

a remote protocol provides two important benefits. First, it
provides for build-in parallelism (this parallelism is exploited
in the current setup for running the codes, although the data
transport between codes is not yet fully parallel; see Sect. 6).
The choice for a parallel interface means that it becomes pos-
sible to run and communicate with parallel running instances
of different codes. In addition, a lot of existing simulation
codes cannot handle multiple simultaneous instances of the
same code. They may, for example, use global variables or
assume a single global state. Using our approach, it is triv-
ial to run separate instances of the same code, even if com-
piled with different options (in addition to this, the fact that
codes are running as different processes prevents collisions
between incompatible libraries when codes are built with dif-
ferent compilers).

Within the remote data communication channel, the MPI
protocol can be replaced by a different method, two of which
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are currently available: a channel based on sockets and one
based on eStep4 technology for distributed computing. At
present, the sockets channel is mainly useful for cases in
which a component process is started on the same machine
as the user script. As its name implies, the sockets chan-
nel is based on standard TCP/IP (transmission control pro-
tocol/internet protocol) sockets. The distributed channel is
described in Sect. 2.2 below. When using the MPI channel,
different MPI implementations can be used (e.g., OpenMPI
or MPICH), but not mixed (vendor implementations can also
be used, although these sometimes do not fully conform to
the standard).

The interface works as follows: when an instance of an im-
ported simulation code is made, an MPI process is spawned
as a separate process somewhere in the MPI cluster envi-
ronment. This process consists of a simple event loop that
waits for a message from the Python side. It will make the
requested simulation code subroutine calls, on the basis of
the incoming message ID as well as any additional data that
may follow the initial MPI message, and subsequently send
the results back (Portegies Zwart et al., 2013). Since there is
no direct memory access, the interfaces themselves must be
carefully designed to ensure all necessary information for a
given physical domain can be retrieved.

Note that the interface design allows the parallelism of
MPI parallel codes to be maintained even when the com-
munication channel uses MPI (OMUSE can be used to
run massively parallel codes with thousands of processes).
This is guaranteed with the recursive parallelism mecha-
nism in MPI-2. The spawned processes share a standard
MPI_WORLD_COMM context, which ensures that an inter-
face can be build around an existing MPI code with minimal
adaptation (Fig. 1). Other parallelization paradigms, such as
OpenMP5, are also supported within OMUSE. In practice,
for the implementation of the interface to an MPI code, one
has to take into account similar issues as for the stand-alone
MPI application. The socket and distributed channels also
accommodate MPI parallel processes. The choice between
the different available channels depends on the computing
resources needed for a given run. For runs distributed over
remote machines the distributed channel may be required,
while locally on a cluster the MPI channel often provides the
most optimized communication path.

2.2 Distributed computing

Current computing resources available to researchers are
more diverse than simple workstations: clusters, clouds,
grids, desktop grids, supercomputers and mobile devices
complement stand-alone workstations, and in practice one
may want to take advantage of this ecosystem.

4http://estep.esciencecenter.nl
5Open Multi-Processing, a shared memory multiprocessing API

Figure 3. An illustration of the use of the OMUSE unit algebra
module, with (1) a definition of a scalar quantity using the | opera-
tor, (2) conversion of a quantity to different units, (3) conversion of
quantity to float, and (4 and 5) definition of a function and its call
using quantities.

To run in such a “jungle computing environment” (Sein-
stra et al., 2011), OMUSE also implements a communication
channel based on eStep technology (Drost et al., 2012). This
channel starts a daemon and connects with it, to communi-
cate with remote workers. This daemon is aware of local and
remote resources and the middleware (e.g., a Secure Shell
connection) over which they communicate. The daemon uses
the Xenon library to start the worker on a remote machine,
executing the necessary authorization, queueing or schedul-
ing automatically. Because OMUSE contains large portions
of C, C++ and Fortran and requires a large number of li-
braries, it is not copied automatically, but it is assumed to be
installed on the remote machine. A binary-only release can
be generated for resources, such as clouds, that employ vir-
tualization. With these modifications, OMUSE is capable of
starting remote workers on any computer the user has access
to, without significant effort required from the user. From
the user point of view, to use the distributed resources, any
OMUSE script can be distributed by simply adding proper-
ties to each worker instantiation in the script, specifying the
channel used, as well as the name of the resource, and the
number of nodes required for this worker (see Fig. 2).

2.3 Unit conversion

In order to simplify the handling of units, a unit algebra
module is included in OMUSE (Fig. 3). This module wraps
standard Python numeric types or Numpy arrays, such that
the resulting quantities (i.e., a numeric value together with
a unit) can transparently be used as numeric types (see the
function definition example in Fig. 3). Even high-level algo-
rithms, such as ODE solvers, typically do not need extensive
modification to work with OMUSE quantities (and in many
cases work without any changes, if they are formulated in a
dimensionally consistent way).

OMUSE enforces the use of units in the interfaces of the
community codes. The specification of the unit dimensions
of the interface functions is part of the interface specification
(much in the same way as the data types of the functions).
Using the unit-aware interfaces, any data that are exchanged
within modules will be automatically converted without ad-
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Figure 4. Example usage of the high-level grid data structure:
(1) initialization of an empty Cartesian grid; (2) defining an at-
tribute, here a scalar field of sea surface height; (3) subgrid genera-
tion by indexing; (4) definition of an explicit channel from in-code
storage to a grid in memory; (5) update of grid attributes over the
channel; (6) functional transform over a channel.

ditional user input, or – if the units are not commensurate – a
code exception is generated. Keeping track of different sys-
tems of units and the various conversion factors when using
different codes quickly becomes tedious. Enforcing the use
of units therefore eliminates an important source of errors.

2.4 Data model

The interfaces to the code send low-level data types (e.g.,
an array of floats) over the remote function channel. While
this is simple and closely matches the underlying C or For-
tran interface, one needs to duplicate much of the “bookkeep-
ing” (i.e., the organization of the arrays and their indexing)
in the user script if the low-level data types are used directly.
Therefore, in order to simplify working with the codes, a data
model is added to the interfaces based on the construction of
high-level objects that store the data (Fig. 4). Two base data
stores are available: particle sets and grids. The main differ-
ence between these are that particle sets can be extended dy-
namically and are unordered, while grids are fixed when gen-
erated, ordered and can be multidimensional. Typically, grid
data structures are used to store the state in oceanographic
simulation codes. Particle sets can, for example, be used for
the storage of properties for Lagrangian particle trackers. The
data stores can either reference memory in the main Python
memory space (for sets defined independent of any code) or
reference the data in the (possibly distributed) memory space
of the community code. Subsets can be defined on the sets
without additional storage (see Fig. 4; these subsets are im-
plemented as views on the underlying local or remote data),
and new sets can be constructed using simple operations.

2.4.1 Grid support

Compared to AMUSE, OMUSE expands the support of grid
data structures by introducing different grid data types. All
types of grids share the same base functionality, including
grid sampling and slicing, the creation of save points, and the
creation of grid copies that include part or all of the grid at-
tributes. The new grid types form a hierarchy (Fig. 5), where
each grid type has its own set of (derived) grid attributes
(such as cell sizes) and utility functions (for basic operations,

Structured grid Unstructured grid

Grid

Rectilinear grid

Regular grid

Cartesian grid

Figure 5. Hierarchy of grid data types in OMUSE. Arrows denote
inheritance of the corresponding classes in OMUSE.

such as checking overlap or the extent of a grid). The grid
types supported are Cartesian (single, constant cell size, same
in each dimension), regular (constant cell size, different per
dimension), rectilinear (cell boundaries specified per dimen-
sion), structured (cells specified by a grid of corner points)
and unstructured (cell corners are specified for each cell in-
dividually).

2.4.2 Grid remappings

Grid remapping is a fundamental operation for coupled cli-
mate models, where heat and water fluxes are periodically
transferred between different component models, each using
different grids internally. In many cases, these remappings
must be performed in an energy- or mass-conserving manner
to maintain the global conservation conditions of the coupled
climate system. As such, OMUSE interfaces with CDO for
their implementation of a second-order conservative remap-
ping scheme (see Sect. 3.2). However, different remapping
backends can be used within OMUSE.

OMUSE extends AMUSE with support for remapping
quantities between different grids (AMUSE included sup-
port only for copying data between two equivalent grids).
OMUSE allows the user to instantiate grid remapping ob-
jects. The remapper is initialized by setting the source and
destination grid and can be used to remap a list of grid at-
tributes from one grid to the other.

The use of such a remapping object is illustrated in Fig. 6,
where, as an example, the sea surface height values from
one ocean model are remapped to the grid of another ocean
model. Note that it does not matter (for the syntax) whether
the grid values reside inside the community code or in Python
memory. In this example both grids are stored in the memory
of the community code, and, if needed, unit conversion of the
values transferred between the models is automatically per-
formed by the interface of the receiving code, as explained in
Sect. 2.3.

www.geosci-model-dev.net/10/3167/2017/ Geosci. Model Dev., 10, 3167–3187, 2017
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Figure 6. Example usage of the high-level grid remapping func-
tionality in OMUSE. In this example, the grid attribute ssh (for
“sea surface height”) is remapped from the source grid to the target
grid, both stored inside the community codes, using a second-order
conservative remapping scheme (the default). Unit conversions are
performed automatically by the interface of the receiving commu-
nity code.

Figure 7. Example of a state model in OMUSE. The diagram gives
the states that a simulation code can be in. Transitions between
these can be triggered by explicit calls to the corresponding func-
tion (e.g., initialize_code from START to INIT) or implic-
itly (e.g., querying the grid state of a code may only be possible in
the RUN state, and in this case the framework will call the necessary
functions in order to get to the RUN state, guaranteeing a consistent
state of the simulation code in the process). Adapted from Pelupessy
et al. (2013).

Support for remapping between unstructured grids is
limited in the CDO library. Conservative interpolation
of fields represented on unstructured mesh discretiza-
tions (Farrell et al., 2009) is being generalized in the
libsupermesh library (libSupermesh, 2016) and could be
utilized in the future.

2.5 State model

The internal work flows of different codes are in general not
the same, even if they represent similar physics. This can be
due to the differences in the algorithms or simply because
of design choices. For example, a change in one of the grid
variables may necessitate a reinitialization of variables in one
code, while in another code this may not be needed. It is easy
to add the corresponding functions for such reinitialization to
the interface. The problem with this is that it introduces dif-

ferences between the interfaces, and is obviously error-prone
if controlled by the user. In order to manage this, the inter-
faces in OMUSE can be supplied with a representation of
the work flow of a code. This is done in the form of a graph
consisting of model states as the vertices and the transitions
between them as the edges. Model states each have a set of
allowable interface function calls. Such an interface call can
trigger a transition between states (and for each transition
there is a respective interface function). With this state model
OMUSE keeps track of the state of a code, changing the state
when needed (and calling the corresponding interface meth-
ods). The state model will change state automatically if an
operation is requested that is not allowed in the current state.
If the request can not be fulfilled an error is returned. The
state model is flexible: states can be added and removed as
required. Most codes can be made to conform to a simple
state model similar to the six-state model shown in Fig. 7.

2.6 Object-oriented interfaces

The object-oriented, or high-level, interfaces are the recom-
mended way of interacting with the community codes. They
consist of the low-level MPI interface to a code, with the unit
handling, data model and state model on top of this. At this
level the interactions with the code are uniform across dif-
ferent codes and the details of the code are hidden as much
as possible. A lot of the bookkeeping (such as the explicit
indexing of arrays and unit conversion) is absent in the high-
level interface formulation. This makes the high-level inter-
face much easier to work with and less prone to errors: the
user does not need to know what internal units the code is
using and does not need to remember the calling sequence or
the specific order of calls.

2.7 I/O (input/output)

Community codes that are included into OMUSE will usu-
ally contain subroutines to read in and write simulation data.
While calls to these can be added to the interface, this func-
tionality is preferably not used within OMUSE. Instead, all
simulation data are to be written and read from within the
OMUSE script (although in practice there can be reasons to
retain the original functionality as part of the interface, for
example to use existing post-processing scripts). OMUSE in-
cludes a default output format based on HDF56 that writes
out all data pertaining to a data set, effectively standardizing
the I/O for all the codes included in the framework. In or-
der to simplify import and export of data, OMUSE contains
a framework for generic I/O to and from different file for-
mats. A number of common file formats used in the oceano-
graphic and climate modeling community are implemented
(ADCIRC grid files, netCDF), as well as generic table-format
file readers.

6http://www.hdfgroup.org
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2.8 Data analysis

After a simulation, the generated data need to be analyzed.
Python has good numerical and plotting libraries available,
such as Numpy and Matplotlib (Dubois et al., 1996; Hunter,
2007), and thus data analysis can be easily incorporated into
the OMUSE workflow. While the simulation codes are run-
ning, their internal state (as exposed through the interface)
is accessible. This provides opportunities for efficient online
data analysis and also monitoring (or visualizing) of the state
of a running simulation. Based on the state of the model, the
simulations can also be scripted beyond what is originally
implemented in the simulation code (examples of the latter
are event-driven data output, or repeat simulation and resam-
pling according to predefined conditions).

3 Component modules

In the present version, OMUSE contains an initial set of
ocean models, namely QG (a quasi-geostrophic solver), AD-
CIRC, POP and SWAN (ideally one would like to reach a
“Noah’s arc” milestone of having at least two independent
application codes per domain; Portegies Zwart et al., 2009).
The implementation in OMUSE of the code interfaces is de-
scribed in this section. The models cover different physics
and/or ranges of validity and allow for a number of different
couplings between them. They also represent different levels
of complexity in terms of code implementation, numerical
schemes and a variety of discretizations (described below).
In addition to the simulation codes, OMUSE also contains
support codes, including for example the CDO package in-
troduced above in Sect. 2.4.2 which is used to implement
remapping schemes between different grids.

3.1 Simulation codes

3.1.1 QG

OMUSE includes QG, a code to calculate the dynamics
of quasi-geostrophic ocean flow. The flow on a β-plane
with Coriolis parameter f = f0+β0y is described by the
barotropic stream function ψ of the depth-integrated current
velocity u= (u,v), with zonal velocity u=−∂ψ/∂y and
meridional velocity v = ∂ψ/∂x. QG solves the governing
barotropic vorticity equation (BVE) for ψ (Pedlosky, 1996),

∂

∂t
∇

2ψ + J (ψ,∇2ψ)+β0
∂ψ

∂x
= (1)

1
ρ0H

(
∂τ y

∂x
−
∂τ x

∂y

)
−RH∇

2ψ +AH∇
4ψ,

where the Jacobian J , here representing the advection of rel-
ative vorticity, is defined by

J (F,G)=
∂F

∂x

∂G

∂y
−
∂F

∂y

∂G

∂x
, (2)

and τ = (τ x,τ y) represents the wind stress. QG can also
solve for the first baroclinic mode of a mode expansion of
the continuously stratified quasi-geostrophic vorticity equa-
tion (Flierl, 1978). The parameters ρ0 and H are the refer-
ence ocean density and reference ocean depth, respectively.
RH and AH are the bottom and lateral friction coefficients.
QG solves Eq. (1) on a rectangular domain using a Carte-
sian grid. Boundary conditions consist of no-mass flux and/or
no tangential stress (see for example Dijkstra and Katsman,
1997).

The QG code is written in Fortran 90 and uses the Pois-
son solver from the fishpack7 or Intel MKL8 libraries (de-
pending on compiler). Although conceptually simple, QG
provides an instructive case study for importing a code in
OMUSE, with its simple internal state and without the com-
plications of coordinate transformations, and serves as a tem-
plate for other ocean models in OMUSE.

3.1.2 POP

The Parallel Ocean Program is a parallel global circulation
model for ocean flows that solves the 3-D primitive equa-
tions for a stratified fluid using the hydrostatic and Boussi-
nesq approximations (Smith et al., 2010). POP is often used
to calculate strongly eddying ocean circulation models. How-
ever, resolving eddies on a scale that captures the instabilities
that lead to ocean eddies requires the use of a high-resolution
grid. Such high-resolution runs are computationally expen-
sive, and POP is also frequently used for simulations at lower
resolutions; in this case the effect of eddies is captured using
subgrid parameterizations (Gent and McWilliams, 1990).

The POP grid is a structured 2-D grid in the horizontal
dimensions, usually in a dipolar or tripolar configuration.
POP requires that the grid dimensions are set at compile
time. Therefore, we currently support two modes in which
POP can be used through the OMUSE interface. The high-
resolution mode assumes a grid size of 3600× 2400, corre-
sponding to a 0.1◦ resolution. The low-resolution mode as-
sumes grid dimensions of 320× 384 horizontal grid points,
corresponding to a 1.0◦ resolution with tropical stretching.
Vertically, the grid contains 40 or 42 nonequidistant layers,
increasing in thickness from several meters near the surface
to 250 m just above the lower boundary at 6000 m.

OMUSE interfaces with a version of POP (based on ver-
sion 2.1) that contains several extensions (van Werkhoven
et al., 2014) 9. This implementation includes a flexible load-
balancing scheme and optionally uses graphics processing
units (GPUs) to accelerate computing-intensive parts of the
code. Considering the fact that it takes at least 1000 simu-
lated years to reach a near-statistical equilibrium state, it is
common practice to restart POP from a spun-up solution. The

7www2.cisl.ucar.edu/
8software.intel.com/en-us/intel-mkl
9https://github.com/NLeSC/eSalsa-POP
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so-called “restart file” and other settings can be set through
the OMUSE Python interface after the code has been instan-
tiated and reached the “START” state (see Fig. 7).

As with all codes in OMUSE, the POP interface employs
a state machine that tracks the model state and ensures con-
sistency by automatically calling the appropriate transition
functions in the low-level interface. To be able to set many
of the configuration options through the Python interface it
was necessary to split several of the initialization routines
in the POP source code. This was required because these
routines used to read their configuration from a namelist file
and immediately proceeded to initialize the model using that
configuration. Within OMUSE, the model parameters are set
through the interface as part of the Python script.

As such, the namelist file is only used to provide the code
with default settings. After the settings have been read from
the namelist, the model halts and waits for the settings that
are specific to the experiment to be passed through the in-
terface. When the user has completed configuring the exper-
iment, the state machine will automatically call a state tran-
sition function to complete the model initialization and ad-
vance the model to a state from which the user can interact
with the model data or begin evolving the model.

The POP interface provides two different ways to supply
the model with forcings, such as wind stress, surface heat flux
and surface freshwater flux. The first method involves setting
the location of a file containing monthly averages of forcing
data that will automatically be interpolated in time by the
model. It is also possible to directly supply the model with
forcing data through the interface, allowing POP to be cou-
pled with, for example, an atmospheric model. When forcing
data are supplied through the interface, POP will not use data
from file for that type of forcing.

In the OMUSE examples repository10, we have included
an example Python script for setting up a POP run in high-
resolution mode in a cluster environment. The user script has
to specify the location of the cluster head node and provide
the requested number of nodes and cores and time required
for the simulation. After that the user can instantiate the in-
terface to create a running simulation and interact with the
model.

3.1.3 ADCIRC

The Advanced 3-D Circulation model solves the shallow-
water primitive equations on a triangular unstructured mesh
in either two or three dimensions. Water surface elevations
ζ are obtained by solving the vertically integrated conti-
nuity equation in the generalized wave continuity equation
(GWCE) formulation (Leuttich and Westerink, 2004). The
momentum equations are either solved in vertically inte-
grated form (2-D mode) or in 3-D (applying the Boussinesq
and hydrostatic pressure approximations). In three dimen-

10https://bitbucket.org/omuse/omuse-examples/

sions, ADCIRC uses a generalized stretched vertical coor-
dinate system (Leuttich and Westerink, 2004).

The ADCIRC mesh is represented in the OMUSE inter-
face as an unstructured grid of nodes and elements (which
can be accessed as the nodes and elements attributes of
an ADCIRC instance), representing the nodes and triangu-
lar elements of the grid. In the case of ADCIRC all prog-
nostic variables (with the exception of the wet–dry status of
elements) are defined by a linear P1 finite-element Galerkin
representation over the entire domain, described by coeffi-
cients associated with mesh node positions. For example, in
the simplest 2-D case these are the water level and its time
derivative and the current velocities. The attributes of the ele-
ments are the nodes of each triangle and a status variable (in-
dicating whether an element is dry or wet). In addition to this,
the interface defines a forcings grid, which accepts the
(possibly time-dependent) forcings. Depending on the pa-
rameters of the simulation these can be wind stresses, atmo-
spheric pressure, tidal potential, wave stresses, etc. Bound-
aries are represented as sets of grids (one for each segment
defined) with a reference to the nodes in the boundary seg-
ment, a type attribute (describing the type of boundary) and
any extra attributes necessary to specify the boundary con-
dition (e.g., the water level for a boundary with prescribed
elevations).

3.1.4 SWAN

In addition to the above models of hydrodynamical ocean
circulation, OMUSE includes an interface to the Simulating
Waves Nearshore model, a code to calculate the propagation
of wind-driven surface waves (Zijlema, 2010, and references
therein). SWAN uses a statistical description of the space-
and time-varying wave properties, solving for the evolution
of the action density N(x, t;σ,θ), defined in terms of the
wave energy density spectrum E as N = E/σ , where N is a
function of space x, time t , relative radian frequency σ and
direction θ . The evolution of the action density is governed
by the action balance equation (e.g., Komen et al., 1994),

∂N

∂t
+∇x ·

[
(cg+U)N

]
+
∂(cσN)

∂σ
+
(∂cθN)

∂θ
=
Stot

σ
, (3)

with cg the wave group velocity, U the (depth-averaged) cur-
rent velocity, and cσ and cθ the propagation velocities in
spectral and directional space, respectively. The source–sink
term Stot represents the physical processes which generate,
dissipate or redistribute wave energy. Amongst them, SWAN
includes generation of waves by wind, nonlinear transfer of
wave energy (including three- and four-wave interactions)
and wave decay due to whitecapping, bottom friction and
wave breaking (see SWAN, 2015, for more information).

SWAN discretizes Eq. (3) on rectilinear, curvilinear (struc-
tured) or unstructured (triangular) grids in one or two dimen-
sions. The OMUSE interface to SWAN supports rectilinear
and unstructured grids (curvilinear grids can be added). The
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type of grid, as well as the type of grid for the forcings are
determined when the code is instantiated. Depending on the
selected grid the interface defines a regular grid grid or
an unstructured grid with nodes and elements attributes.
These have an attribute to access the action density N of the
grid. In addition to this, the bathymetry can be specified and
a number of potentially time-varying forcing inputs, such as
water levels, water current velocities and wind velocities, can
be used (again a separate grid is used for the forcings).

To simplify the interface a few restrictions are placed on
the forcings. For example, all the forcings in the interface use
the same grid (whereas SWAN supports different grids for
different forcings). This is not a limitation: within OMUSE,
any regridding (if necessary because the sources of the forc-
ings use different grids) can be done on the framework level.
If both calculation grid and input grid are unstructured, they
are both assumed to use the same grid.

In the case of stationary calculations, the interface still de-
fines an evolve_model, but it simply calculates the sta-
tionary action density (for all input times). It can still make
sense to evaluate this in a time-dependent fashion, as the in-
put forcings (and thus the equilibrium state) may change with
time.

3.2 Support modules

In addition to the simulation codes, support modules written
in different languages can be included in OMUSE. Such a
support module may, for example, provide functionality for
coupling models. A support module can be interfaced with
the same remote function interface as that used for simula-
tion codes. Currently, the only support module specific to
OMUSE is CDO, which is used for computing grid remap-
ping weights and performing the remapping of quantities be-
tween different grids.

3.2.1 CDO

Climate Data Operators (CDO, 2015) is a command-line
tool, developed and maintained by the Max Planck Institute
Hamburg, containing over 400 operators that can process and
manipulate climate data stored in self-describing file formats,
such as netCDF.

An OMUSE interface to CDO was created to be able to
access the grid remapping functionality within CDO. This
library contains a reimplementation of the SCRIP package
(Jones, 1999), which is used in other climate model cou-
plers, such as OASIS (Valcke, 2013) (while other couplers
such as the Model Coupling Toolkit, Jacob et al., 2005, can
use the remapping weights and addresses). In particular, the
second-order conservative remapping scheme implemented
in SCRIP is used to compute remapping weights for conser-
vative exchanges of (e.g., heat and water) fluxes at the ocean–
atmosphere interface.

A number of minor code modifications were necessary
to be able to access the functionality in CDO as a library
rather than as a command line tool. The low-level interface in
OMUSE has to ensure that the internal state of CDO is con-
sistent even though the code is not running as a command
line tool. To do this, all grid information has to be propa-
gated correctly to the different grid data storage structures
used internally by CDO. In addition, the interface mimics
some of the behavior of CDO to produce the exact same re-
sults as when invoked from the command line. These include
ignoring any land masks in the source and target grids and
increasing the number of search bins in the computation of
remapping weights.

OMUSE implements a high-level object-oriented inter-
face (called CDORemapper) on top of the low-level inter-
face to CDO. This remapper can be initialized in three ways:
(1) using a precomputed weights file as produced by CDO
from the command line, containing all information about
the source and destination grids, as well as the remapping
weights; (2) using netCDF files for storing source and des-
tination grid information (as used by CDO and SCRIP); and
(3) setting OMUSE grid data types as a source or destination
grid. Modes (2) and (3) can be combined (if desired), and for
these modes the remapping weights are computed automati-
cally as the remapper initializes.

When using the default second-order conservative remap-
ping scheme, the implementation of CDO also computes the
gradients of the source field each time a quantity is being
remapped. Note that the second-order conservative remap-
ping scheme comes with limitations: the source grid has
to be a structured grid for the calculation of the gradients
(needed for second-order accuracy; for more information see
the CDO documentation).

In Fig. 8 we show the result of a remapping performed by
the CDO remapper using the OMUSE interface. A sea sur-
face temperature field is remapped from POP using a 0.1◦

tripole grid to an unstructured grid. The second-order con-
servative remapping scheme was used to compute the remap-
ping weights based on the grid information presented by the
OMUSE interfaces of both simulations.

3.3 Extending OMUSE

The effort required to import or interface an additional code
with OMUSE varies with the code complexity and depending
on whether a similar code already exists within the frame-
work (in this respect the codes already included provide a
good starting point). In order to be interfaced, a code needs
to be written in a programming language for which MPI or
socket bindings are available. The complete procedure (along
with examples) is described in detail in the documentation
section of the source distribution and the project website;
here we only briefly outline the procedure.

To import a community code, one first creates a direc-
tory in the OMUSE community code base directory with
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(a) (b)

Figure 8. Result of a remapping performed by the CDO remapper using the OMUSE interface. A sea surface temperature field is remapped
from POP using a 0.1◦ tripole grid (a) to the elements of an unstructured grid (b).

the name of the module. The original source tree is im-
ported in a subdirectory (by convention named “src”). The
top-level directory contains the Python side of the interface
(“interface.py”), the interface in the native language of
the code (e.g., “interface.c”) and a file for the build sys-
tem (“Makefile”).

The Python interface (described in the file
interface.py) typically defines two classes: the
low-level and the high-level interfaces. The former contains
the function definitions of the calls which are redirected
through the MPI communications channel to the correspond-
ing call defined in the native interface file (interface.c).
The high-level interface defines the units of the arguments
of the function calls (see Sect. 2.3). In addition it specifies
the parameters of the code, the state model (Sect. 2.5)
and the mapping of the object-oriented data types to the
corresponding low-level calls. By default, the data of the
simulation is maintained in the community code’s memory
(and accessed transparently as described in Sect. 2.4).

For modern and modular codes, often little to no changes
in the original source code base (in “src”) are needed. In
other cases, a code may need significant source code changes
(e.g., to separate the initialization stages and time stepping)
or additions to implement functionality that is required for
the OMUSE interface (e.g., externally imposed boundary
conditions for grids). In these cases more effort is required
to import the code and this will also make it more difficult to
update the interface to a new version of the community code.

In our experience, writing an interface to a new code,
which also involves writing tests, testing and debugging the
interface, represents a modest amount of work. While every

code is different and has its own peculiarities, it is typically
something that can be completed (by someone with some fa-
miliarity with the source code) during a short working visit
or small workshop. Defining an interface for a new physical
domain can take longer, as these need refinement over time.

4 Code couplings

In addition to providing a unified interface to various types of
codes, OMUSE has the objective of facilitating multiphysics
simulations. For example, one would like to be able to cou-
ple a large-scale ocean circulation code with a regional ocean
model (coupling across different scales) or couple a wave
propagation model to an ocean flow model (coupling of dif-
ferent physics). Within OMUSE, community codes can be
combined into coupled models which have wider applicabil-
ity than the original codes. The setup of OMUSE allows for
this in a transparent manner, such that the coupled models
have a similar interface to the individual models.

The types of coupling that OMUSE can be applied to is
large, and range from simple input–output coupling to dy-
namic one-way coupling and to the development of two-way
coupled solvers (see Pelupessy et al., 2013 for more exam-
ples). OMUSE provides the following features to facilitate
the building of coupled models: simplified, uniform access
to the code simulation state; unified interfaces to the state
of the simulation domain and its boundary conditions; and
extensive automation of data transfer and conversion opera-
tions.
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(a) (b)

Figure 9. Schematic (a) and (abbreviated) definition of the refined QG model class (b) with an example (2) of its instantiation.

4.1 Example: QG model couplings

Some care is needed in the design of the code interfaces to
ensure that couplings are as simple as possible. For example,
the internal state of the QG simulation consists of the stream
function ψ on two time levels; these are represented as a grid
object with attributes psi, dpsi_dt and positions x and y.
It is more convenient to represent the two time levels as the
(backward) time derivative dpsi_dt, because this represen-
tation is independent of the time step (which can be different
between codes). The stream function ψ (and its derivative)
can also be queried at any position using an interface function
get_psi_state_at_point. This function performs an
(averaging) sampling and provides a grid-independent way
to query and communicate the physical state. Another way
to achieve this would be to perform a copy using a remap-
ping channel, as described in Sect. 2.4.2.

In addition, QG has two mechanisms to receive input from
other codes: it calculates the evolution of the stream func-
tion using an input wind stress field. This wind stress field
can be set by changing the wind stress attributes tau_x
and tau_y on the forcings grid. These can be copied or
remapped from another grid (read in from disk or generated
dynamically by another code) or by defining a (time- and/or
position-dependent) functional form (from an analytic wind
model, for example). Other possible inputs are the bound-
ary conditions: ψ and ∂ψ/∂t on the domain boundary. These
consist of four grid objects (one for each cardinal direction)
of size No× 2, where No is the number of grid points (in
the corresponding dimension). Using these boundary grids,
it is possible to implement two different strategies to vary the
resolution over and/or the shape of the domain, namely grid
nesting and domain decomposition.

4.1.1 Nested grid refinement

Depending on the parameters, Eq. (1) allows solutions with
very narrow western boundary currents. Numerically this
presents a challenge as the required resolution at this bound-
ary may be much higher than for the rest of the basin. This

is a typical situation where a nested solver (e.g., Debreu and
Blayo, 2008) may efficiently be employed. We can imple-
ment such a multigrid coupled solver within OMUSE using
the base QG as an underlying engine. The solution of Eq. (1)
is obtained on a base grid with a refined region of higher res-
olution where the two grids are solved by separate instances
of the QG.

Practically speaking, the following refinement strategy is
followed (Fig. 9). Given a parent domain Lx ×Ly a refined
sub domain is defined by its offset, extension lx × ly and res-
olution dx. The low-resolution region consists of the whole
domain Lx ×Ly (including the refined region). The QG is
used to solve for the flow on Lx ×Ly . A second instance
of the QG is used to solve the flow Eq. (1) on the high-
resolution subdomain lx×ly given appropriate boundary con-
ditions. This high-resolution solution is then resampled and
copied back (restriction operation) to correct the correspond-
ing part of the domain on the low-resolution grid.

If the boundary of the high-resolution domain coincides
with the boundaries of the parent domain (e.g., the east and
south boundaries in Fig. 9), the boundary conditions are in-
herited from its parent. Otherwise, the boundary of the high-
resolution region lies in the interior of Lx ×Ly , and in this
case ψ and ∂ψ/∂t of the boundary can be obtained by in-
terpolation of the low-resolution grid. In our template imple-
mentation of this multigrid solver, we implement it as a de-
rived interface in OMUSE (Fig. 9). It implements the same
high-level interface (i.e., it has the same methods) as the base
QG, which allows these two to be used interchangeably. In
particular, a refined region can itself have refinements.

4.1.2 Domain decomposition

Instead of overlapping domains, we can implement a simi-
lar coupling for (two or more) nonoverlapping (or partially
overlapping) domains. A problem here is that the informa-
tion used for the interpolated state on either side of a domain
boundary does not carry information of the other domain. In
the nested case the low-resolution solution is available over
the whole domain, so it can provide this information.
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This can be solved by iteration, but as the required step
at each iteration (solving for ∂ψ/∂t using a Poisson solver)
is quite expensive, this would be prohibitively inefficient. For
this case, the problem can be accelerated by using accelerated
vector extrapolation methods such as minimum polynomial
extrapolation (MPE, Cabay and Jackson, 1976), i.e., we are
solving for the fixed points of

xk+1
= F (xk), (4)

where xk is the vector consisting of the ∂ψi/∂t values on the
boundaries (of all mutually neighboring domains). In Eq. (4),
F is the operator determining the next vector in this se-
quence, with iteration index k. This operator is provided by
the instances of the QG, which calculates a new set of ∂ψ/∂t
values from previous set. The MPE method does not need
explicit knowledge of the sequence generator, and as such is
especially well-suited for the problem here (this information
in our case is “hidden” in the QG code). In practice the so-
lution converges within a handful of iterations to satisfactory
precision.

The evolve loop of a compound QG consisting of N
domains then proceeds as follows: (1) update the internal
boundaries of each domain N . Values of ψ are interpolated
from neighboring grids, a consistent set of ∂ψ/∂t values are
calculated using the MPE method. (2) All the domains are
stepped forward in time. An example of this will be shown
in Sect. 5.2 below.

Note that both preceding examples (in Sect. 4.1.1
and 4.1.2) implement fairly close couplings. Nevertheless,
the OMUSE framework can be used to implement these effi-
ciently (both from the viewpoint of effort required to imple-
ment them and from a computational viewpoint). The most
CPU-intensive parts of the computations (i.e., the solutions to
the BVE, Eq. 1) are executed by the (optimized) QG solver,
while on the framework level a limited amount of operations,
such as data transfer and conversions, are handled.

5 Applications

To demonstrate the capabilities of OMUSE we present a
number of example applications. These illustrate the applica-
tion of the unified interfaces of OMUSE to calculate the same
problem using different codes (Sect. 5.1), the use of OMUSE
to implement intracode domain decomposition (Sect. 5.2),
a two-way coupling between codes with different physics
(Sect. 5.3), the embedding of a high-resolution region in
a low-resolution domain using different codes (Sect. 5.4)
and the addition of data analysis to a running computation
(Sect. 5.5).

5.1 Critical transitions in a single-gyre ocean
circulation model

The idealized classical model of a homogeneous midlatitude
wind-driven ocean (Sverdrup, 1947; Stommel, 1948; Munk,

1950) has been extensively studied using dynamical sys-
tems theory (e.g., Ierley and Sheremet, 1995; Sheremet et al.,
1997), where the successive bifurcations in single-layer (con-
stant density) models are analyzed as the parameters of the
model are varied. Here we will use two completely different
simulation codes to obtain equilibrium solutions and study
the bifurcation diagram in a single-gyre setup (Viebahn and
Dijkstra, 2014).

The first code, QG, solves the BVE (Eq. 1), while AD-
CIRC solves the primitive equations and does not impose
the quasi-geostrophic approximation. In this sense this sim-
ple numerical experiment will illustrate a posteriori the valid-
ity of the approximations made in deriving Eq. (1). We run
the QG simulation for a 1000× 1000 km basin with a res-
olution of No = 200× 200 with parameters β0 = 1.8616×
10−11 (m s)−1 RH = 0 s−1, AH = 1194 m2 s−1 and a wind
stress

τ x =−
τ0

π
cos(πy/L) ; τ y = 0, (5)

where τ0 is determined by the adopted Reynolds num-
ber Re = τ0/(ρ0β0AHH) (ρ0 = 1025 kg m−3 and H =

4000 m). For ADCIRC, a triangular grid matching this geom-
etry is generated by subdividing the cells of a (No = 50×50)
Cartesian grid into four triangles by adding a vertex to the
center of the cell. The parameters of ADCIRC are chosen
to match the parameters in QG, and the same wind stress is
applied.

In Fig. 10 we compare the stable stationary solutions of
the two codes (these are obtained by running until the maxi-
mum fractional changes in either stream function ψ (for QG)
or sea surface elevation η (for ADCIRC) between two suc-
cessive diagnostic time intervals changes less than 10−4).
As can be seen, the two codes calculate solutions that agree
well (although small differences can be seen). Figure 11
shows the corresponding bifurcation diagram when varying
the Reynolds number. The correspondence between the two
codes is good for low Reynolds number, showing the same
qualitative behavior. At the bifurcation (above Re ≈ 25) we
found that the solutions obtained by ADCIRC become un-
stable to a basin-wide fast gravity wave mode, which is not
represented in the QG model.

5.2 QG on a composite domain

As a first example of the use of OMUSE to construct new
solvers by composing various subcodes, we show the results
of an idealized calculation solving the BVE (Eq. 1) on com-
posite domains. The coupled solver presented in Sect. 4.1.2
is employed for this. It uses separate instances of QG to cal-
culate the ocean flow (i.e., solutions to Eq. 1) for a compos-
ite domain. In Fig. 12 the solution is calculated on a domain
with a western boundary that is stepped. The domain (shown
in Fig. 12) consists of a 4000× 4000 km basin extended on
the western side with a 1200× 2000 km subdomain (the re-
spective subdomains are indicated in the figure by the green
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Figure 10. Comparison of QG and ADCIRC for a simplified midlatitude ocean configuration. Shown is the equilibrium SSH for a square
domain basin of equal depth, driven by surface wind stress using the setup of Viebahn and Dijkstra (2014) (resulting in a single-gyre solution)
at two different Reynolds numbers: Re = 1 (a, b) and Re = 10 (c, d), where Re = UL/AH and U = τ0/(ρβ0LH) is a characteristic
horizontal velocity. In each case, the left panel shows the solution obtained using QG, and in the right panel the ADCIRC solution is shown.

and cyan rectangles). The single-gyre forcing of Eq. (5) is
employed (with a Reynolds number Re = 10). The solution
is shown after 15 days of evolution (at this early stage one
can distinguish the Rossby waves moving east to west from
the interior of the large basin, into the smaller domain).

Using such a composite domain, it is possible to calcu-
late the effects of topographic features on the dynamics of
boundary currents, or change the resolution across the do-
main. Such idealized modeling on a simplified domain is of-
ten useful to reduce the real-world topography to its essential
features, e.g., Le Bars et al. (2012). The example above im-
plements a tailored solver using the high-level OMUSE inter-
face to QG. This demonstrates that the interfaces of OMUSE
are capable of expressing fairly tight couplings. The alter-
native, and maybe more obvious, way to implement such a
solver is to adapt the underlying Poisson solver to various
domain shapes, which may involve changing the data repre-
sentation. In contrast, the implementation here is done with-
out reference to the underlying data structures and in prin-
ciple does not depend on the grid type or shape used in the
underlying solver.

5.3 Implementation of a coupled SWAN–ADCIRC
model

The propagation of wind-driven surface waves is sensitive
to water levels and current velocities. The properties of the
underlying circulation will affect the evolution of the wind-
driven wave field and the location of wave-breaking zones.
However, wind-driven wave transport can generate radiation
stress gradients that can in turn drive circulation set-up and
currents. Currents can also be affected by changes in the ver-
tical momentum mixing and bottom friction stresses gener-
ated by the wind-driven wave field. Thus, in many coastal
applications, such as the calculation of storm surges, waves
and circulation processes, should be mutually coupled.

Here we will demonstrate the implementation of such a
coupling within the OMUSE framework, applying it to a cou-
pling of the ADCIRC circulation model and the SWAN wave
propagation model. A fully integrated coupled ADCIRC–
SWAN model exists (Dietrich et al., 2011), and below we
compare and contrast our method of coupling with this exist-
ing approach. The physical interactions between the differ-
ent simulated components are schematically given in Fig. 13.
Figure 14 shows the (somewhat simplified) OMUSE code
corresponding to this model coupling. Note that in this cou-
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Figure 11. Part of the bifurcation diagram showing the upper and
lower branches of steady and oscillatory solutions for a single-gyre
ocean model. Shown are the mean (dashed) and maximum (solid)
values of the stream function for QG (black) and ADCIRC (green)
model runs, as a function of the Reynolds numberRe. For ADCIRC
the stream function is calculated as ψ = gζ/f0, where ζ is the free-
surface height. The values shown represent time-averaged values in
case the system shows oscillatory behavior. The flow undergoes a
cyclic fold bifurcation near Re = 25, as indicated by the vertical
dashed lines (Viebahn and Dijkstra, 2014). The ADCIRC solution
becomes (numerically) unstable at this bifurcation.

Figure 12. Stream function ψ for a nonrectangular domain run with
QG on a composite domain. Plotted is ψ after 15 days of evolution
with the composite QG code (Sect. 4.1.2) on a domain consisting
of two coupled subdomains, indicated by the cyan and green rect-
angles.

pling both SWAN and ADCIRC use the same unstructured
(triangular) grid. The communication between the codes (as
shown in Fig. 14) is handled by channels, whereby the
framework handles the copying (and unit conversion) of data.

Wind stress Wind velocity

Nodes

Nodes Nodes

ForcingsForcings

Current Wave
stress

Figure 13. Schematic representation of the ADCIRC–SWAN cou-
pling.

(1) channel1=hurricane.grid.new_channel_to( swan.forcings )

(2) channel2=hurricane.grid.new_channel_to( adcirc.forcings )

(3) channel3=adcirc.nodes.new_channel_to( swan.forcings )

(4) channel4=swan.nodes.new_channel_to( adcirc.forcings )

(5) while time<tend:

(3) hurricane.evolve_model(time+dt/2)

(4) channel1.copy_attributes(["tau_x","tau_y"])

(5) channel2.copy_attributes(["vx","vy"])

(6) adcirc.evolve_model(time+dt/2)

(7) swan.evolve_model(time+dt/2)

(8) channel3.copy_attributes(["current_vx","current_vy"])

(9) channel4.copy_attributes(["wave_tau_x","wave_tau_y"])

Figure 14. Definition of communication channels and evolve step
corresponding to Fig. 13.

As an example, we apply the coupled code to calculate the
wave height and storm surge of hurricane Gustav (2008)11

in the Gulf of Mexico. The hurricane is modeled using an
analytic prescription (Holland, 1980) from data of a hur-
ricane storm track (positions, central pressures, maximum
wind speed, storm radius) read in from file. Implementa-
tion of this analytic model is in the form of a Python class
mimicking a full simulation code. ADCIRC is run in 2-D
barotropic mode with meteorological forcing from the hurri-
cane model and wave stresses provided by SWAN. There is
no forcing on the open-ocean boundaries. For the discretiza-
tion of the action density, SWAN uses 36 bins in the direc-
tional space and 32 bins in frequency (from 0.05 to 1 Hz).
The standard set of third-generation wave parameters, in-
cluding the effects of wave breaking, bottom friction and 3-
wave interaction is used. The time step (dt) between updates
of the coupled quantities is 600 s.

In Fig. 15 we show the resulting wave heights calculated
by the model during the development of hurricane Gustav
at three different times. The results of the OMUSE coupling
are similar to the results of the integrated coupling imple-
mentation (Dietrich et al., 2011, and above mentioned web-
site). Technically the coupling in OMUSE differs from the
implementation by Dietrich et al. (2011), as the latter directly
copies data in the unified memory space of a single binary

11The data for this example come from http://www.caseydietrich.
com/2012/06/27/example-input-files-for-swanadcirc/
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Figure 15. Significant wave heights for hurricane Gustav (2008),
calculated using a coupled ADCIRC–SWAN simulation. The sig-
nificant wave height field (shading, with contours at 1, 3, 6, 9 and
12 m) is shown with the (model) wind field superimposed (arrows,
where the arrow on the lower left corresponds to 30 m s−1), and the
storm track (dashed line). Shown are frames (a) 156, (b) 168 and
(c) 180 h after start of the simulation (25 August 2008, 00:00 UTC).

(and for that reason is more efficient). However, both imple-
ment the same coupled processes, and the approach taken by
OMUSE does not depend on the particular aspects of the se-
lected codes – exactly the same script could be used by other
codes using the same interfaces.

5.4 Embedded regional model

A recurring problem for regional or coastal modeling is the
application of realistic boundary conditions from the open
ocean, even more so when one is interested in the effect of
large-scale or global processes on the regional level. One
approach to obtain realistic boundary conditions at the re-
quired scale is the nesting of a high-resolution and small-
scale model in a lower resolution but larger scale model (e.g.,
Debreu et al., 2012; Djath et al., 2014).

Here we illustrate the implementation of (one-way) nest-
ing in OMUSE by embedding a regional high-resolution
barotropic ADCIRC model of the Caribbean and North
American Atlantic coast into a POP global circulation model
(see Fig. 16). In this case, since POP uses a curvilinear struc-
tured grid and ADCIRC an unstructured triangular mesh, it
is necessary to perform a remapping when transporting vari-
ables from one code to the other (these functional remapping
channels are indicated in Fig. 16 by the labeled arrows).

For the actual implementation of the coupling in OMUSE,
the difference between using a remapping channel and a
normal (data copying) channel (such as the ones used in
Sect. 5.3) is small: the only difference with a normal channel
is that upon initialization the actual remapping method to be
used needs to be specified for a new remapping channel. The
usage of the remapping channel to prescribe the data flow in
the coupled model (Fig. 17) uses the same semantics.

In order to calculate the dynamics of the nested regional
model, ADCIRC in 2-D barotropic mode needs an input wind
stress field and the specification of either the sea surface
level or normal fluxes on the boundary. In addition to this,
the model can be initialized from remapped flow variables
(barotropic velocities and sea surface heights). Note that a
fully consistent coupling between the two codes is not pos-
sible since they solve for a different set of variables (2-D
barotropic vs. 3-D baroclinic). For the (conceptual) example
here, a coupling was made on the sea surface elevation, and
the bathymetry of the ADCIRC grid was limited to 500 m
depth (so the barotropic basin represented in ADCIRC can
only be compared with the upper 500 m layer of POP). The
time step for the coupling (updates of the boundary surface
elevations) is taken to be equal to the POP internal time step
of approximately 30 min. The remappings are performed at
each time step for the wind stresses and for the sea surface
heights.

Figure 18 shows the sea surface heights and velocities
on the original low-resolution POP grid and the embedded
higher resolution ADCIRC grid after 30 days of adjustment
(after this the ADCIRC solution follows the (slow) variations
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Wind stress
Forcings

Forcings

Grid
Nodes

Boundary

Remap

Remap
Initial cond.

Interp.

Figure 16. Schematic representation of the POP–ADCIRC one-way coupling for an embedded domain. The labeled arrows indicate the use
of remapping channels. “Remap” stands for a conservative remapping between the structured POP grid and the unstructured ADCIRC grid,
while “Interp.” indicates that the variables are interpolated.

(1) forcings_channel=pop_forcings_grid.new_remapping_channel_to(

adcirc.forcings, conservative_spherical_remapper )

(2) boundary_channel=pop_grid.grid.new_remapping_channel_to(

adcirc.elevation_boundary, interpolating_remapper )

(3) while time<tend:

(4) pop.evolve_model( time+dt/2 )

(5) forcings_channel.copy_attributes( ["tau_x","tau_y"] )

(5) boundary_channel.copy_attributes( ["ssh"] )

(6) adcirc.evolve_model( time+dt )

(7) pop.evolve_model( time+dt )

(8) time+=dt

Figure 17. Definition and use of remapping channels for the POP-ADCIRC embedding of Fig. 16.

Figure 18. Sea surface heights and velocities of a ADCIRC run embedded in a global circulation POP model. Top panels show the sea surface
height (SSH) of a region covering the western North Atlantic Ocean, Caribbean Sea and Gulf of Mexico. Panel (a) shows the high-resolution
ADCIRC SSH field (superimposed on the POP field) and panel (b) the low-resolution POP field. The black square indicated in (b) is shown
in more detail in (c) and (d), where the SSH with velocities superimposed are shown (in the case of ADCIRC the barotropic velocities are
shown, for POP the are the surface velocities). The dashed line in (b) is the open-ocean boundary of the regional ADCIRC model.
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of POP). A fully consistent coupling is possible when using
ADCIRC in baroclinic mode. In this case, the coupling pro-
ceeds (with a larger number of coupling variables involved)
along similar lines.

5.5 On-the-fly data analysis

In addition to consuming massive amounts of CPU time, cur-
rent large-scale simulations are capable of generating enor-
mous amounts of data. Usually, it is possible to store only a
very limited subset of this data; this limits the data analysis
that can be performed. One solution to this has been to do all
or part of the analysis on the fly. Online data analysis offers
several opportunities, including the fact that special actions
can be taken when interesting events occur. Such special ac-
tions may include inspecting the model internal data at res-
olutions, both spatial and temporal, that are not available or
feasible with offline data analysis. While running simulations
through OMUSE, the simulation state is accessible, and this
allows for data analysis while a simulation is running.

As a proof-of-concept application we add an online ocean
eddy tracker on top of the POP model. The interest in ocean
eddies comes from the fact that eddies transport consider-
able energy and mass and as such influence the dynam-
ics of large-scale ocean circulation and the climate (e.g.,
Viebahn and Eden, 2010; Griffies et al., 2015). To understand
eddy properties and variability, several mesoscale eddy-
tracking algorithms have been proposed in recent years. We
have adapted a sea-surface-height-based eddy-tracking code
that is implemented in Python, called py-eddy-tracker
(Mason et al., 2014). The code uses high-pass-filtered sea
level anomaly (SLA) fields. On the filtered fields, con-
tours are computed at 1 cm intervals for levels between
−100 and 100 cm. These contours are then searched to
locate eddies based on their shape, area and amplitude.
py-eddy-tracker tracks eddies across successive SLA
fields using a search ellipse, bounded by the local (long baro-
clinic) Rossby wave speed.

We have generalized the code in order to use differ-
ent data sources, including output that is obtained directly
from numerical models. To this end, we have modified the
py-eddy-tracker to be able to handle grids that con-
tain gaps, as land-only blocks are not part of the simula-
tion in POP. We use Basemap12 to compute a land mask
for the given grid and apply it to the SLA field. Finally,
we have created a simple, but easy to use, interface to the
py-eddy-tracker that understands the grid data struc-
tures and units used in OMUSE.

Figure 19 shows the code required to build an on-
line eddy-tracking program with OMUSE. The interface
EddyTracker is given the OMUSE grid data type used
by POP and automatically performs unit conversions and ex-

12http://matplotlib.org/basemap/

from omuse.ext.eddy_tracker.interface import EddyTracker

from omuse.community.pop.interface import POP

p=POP( ... ) # start POP as you would do normally

dt_analysis = 7 | units.day

tracker = EddyTracker( grid=p.nodes, domain=’Regional’,

lonmin=0. | units.deg, lonmax=50. | units.deg,

latmin=-45. | units.deg, latmax=-20. | units.deg, dt_analysis )

tnow = p.model_time

stop_time = p.model_time + (1 | units.yr)

while (tnow < stop_time):

p.evolve_model( tnow + dt_analysis )

tracker.find_eddies( ssh=p.nodes.ssh, rtime=p.model_time )

tnow = p.model_time

tracker.stop()

p.stop()

Figure 19. This example demonstrates how to build an application
that analyzes data from a running simulation using OMUSE. This
code implements an online eddy-tracking program that tracks the
eddies based on sea surface height every 7 days for 1 year of POP
simulation.

tracts the information that it needs (i.e., the sea surface height
and the coordinates of the grid points).

Figure 20 shows the output of the online eddy-tracking
program that uses sea surface height data directly from a
running POP simulation. In this image, we can clearly see
the large anticyclonic eddies that result from the retroflection
of the Agulhas Current, as well as many smaller eddies be-
ing tracked over time by the online eddy-tracking algorithm.
The data generated by the online eddy tracker can, for exam-
ple, be used to compare the statistics of the simulated eddies
to the analysis made using py-eddy-tracker (or other
tools) of altimetry data.

6 Summary and discussion

We have presented OMUSE, an environment which provides
a homogeneous interface to existing or newly developed
ocean models. As illustrated by the results in the previous
section, the usage opportunities for OMUSE range from run-
ning simple numerical experiments with single codes (e.g.,
Sect. 5.1), to combining simulation codes and data analy-
sis tools (Sect. 5.5) and setting up fairly complicated and
strongly coupled solvers (Sect. 5.2) to solve problems that
are intrinsically multiscale (Sect. 5.4) and/or require differ-
ent physics (Sect. 5.3). Using OMUSE, simulations can be
easily scripted and on-the-fly data analysis can be added.

The implementation of the different use cases is facili-
tated by several aspects of the OMUSE design. OMUSE de-
fines standardized interfaces and data structures for different
codes. The data structures and the state model as well as the
communication model used in OMUSE are flexible and al-
low a wide variety of codes, written in different languages, to
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Figure 20. Output of the online eddy-tracking application using data from a running POP simulation, showing a region around the southern
tip of Africa. The green lines show the contours between areas of different sea level anomaly values. Red indicates areas of elevated sea
level, and is used to detect anticyclonic eddies. Similarly, blue indicates a lower sea level and is used to identify cyclonic eddies. The red or
blue lines indicate the track that an eddy has traveled since it was first detected.

be integrated with OMUSE. OMUSE also works well with
established methods to generate initial conditions and ana-
lyze the resulting data.

OMUSE shares some of the goals of a number of
other coupling frameworks that have been developed in the
Earth system modeling community (e.g., Hill et al., 2004;
Buis et al., 2006; Gregersen et al., 2007; Jacob et al., 2005;
Larson, 2005; Peckham et al., 2013; Valcke, 2013). While
they follow quite different design strategies, these coupling
frameworks share the ability to initialize different models,
move (and if necessary regrid) data between them and man-
age the time evolution of the component models. As men-
tioned in the introduction, they can roughly be divided into
integrated coupler systems and coupling library frameworks
(Valcke et al., 2012). For example, the Earth system Model-
ing Framework (ESMF, Hill et al., 2004) presents an exam-
ple of the integrated approach, where component modules
are made to conform to a simple calling sequence and called
from a single executable (which also implements the cou-
pling algorithm). Cossarini et al. (2017) provide an example
of the coupling library approach. In this case the coupler con-
sists of a wrapper around a the Biogeochemical Flux Model
(BFM) code that can be called from another code (MIT-
gcm). OMUSE shares the characteristic of the integrated ap-
proaches that the component models are called from a single
executable (in our case by writing a concise Python script ex-
pressing the physics of the model). However, the component

models in OMUSE, while called from the framework, are
running independently of one another and the user process
acts like a coupler providing regridding and data conversion
services, sharing this property with coupling library frame-
works such as OASIS (Valcke, 2013) and PALM (Buis et al.,
2006).

The closest equivalent to OMUSE may be the Commu-
nity Surface Dynamics Modeling System (CSDMS; Peck-
ham et al., 2013). CSDMS and OMUSE follow a similar de-
sign philosophy (as summarized in Peckham et al., 2013),
by aiming for a modular-component-based modeling frame-
work. The CSDMS BMI (basic model interface) and CMI
(component model interface) are roughly equivalent to the
OMUSE low-level interface. The main differences between
OMUSE and CSDMS are that the former presents Python
as the main user interface for programming an application,
while for the CSDMS there are various choices, including
a GUI front end. In addition, OMUSE simplifies the inter-
action with the community codes using high-level object-
oriented data structures on top of the low-level interface and
OMUSE has a more extensive and flexible state model, al-
lowing for further automation. The similarity of the CSDMS
and OMUSE interfaces translates, in principle, into interop-
erability between these frameworks, since the interface com-
ponents of a code in the CSDMS can be converted to an
OMUSE interface (possibly by a general converter of a BMI
to an OMUSE low-level interface). The reverse (using an

Geosci. Model Dev., 10, 3167–3187, 2017 www.geosci-model-dev.net/10/3167/2017/



I. Pelupessy et al.: OMUSE 3185

OMUSE low-level interface as BMI) would also be possible,
but not all functionality provided by an OMUSE interface
necessarily maps to the BMI.

It is important to ensure the accuracy, reliability and re-
producibility of a integrated framework such as OMUSE.
We employ a number of strategies to ensure this is the case.
The framework itself is tested daily and upon the commit of
changes using more than 2000 component tests that cover ap-
proximately 80 % of the framework code and range from ba-
sic tests of the interfaces to the simulation codes as a whole.
The simulation codes themselves are validated by compar-
ing the results of test problems run using OMUSE with the
results of the code running stand-alone (usually a number
of test problems are developed for the simulation codes). In
some cases (for example the ADCIRC–SWAN coupling) the
results of a coupled solver implemented within OMUSE can
be compared with a reference coupling implementation (e.g.,
Dietrich et al., 2011). In any case, to ensure the correctness of
a new application in OMUSE, one should conduct the usual
tests to ensure the validity and verify the results.

An important concern of a coupling framework such as
OMUSE is performance. While the initial driver for the de-
velopment of OMUSE is to simplify the setup and devel-
opment of coupled simulations, the architecture of OMUSE
is designed with a high degree of parallelism. The internal
data structures are efficient. Also the individual simulation
codes are often highly optimized. So the performance of an
OMUSE application is rarely a concern, but this is strongly
problem-dependent. In practice, the overhead imposed by the
framework is often measured to be rather small (less than
a few percent), but it is not difficult to formulate problems
where the strength of the coupling is intrinsically so strong
that very frequent communication between the component
solvers is necessary.

In this respect a limitation of the current design of OMUSE
is the fact that the communication between solvers is han-
dled by a single-process user script. This imposes a bottle-
neck for the performance of the communication between,
for example, two parallel codes. While in the current setup
there are some mitigating techniques that can be applied
(asynchronous communication or grouping and spawning
the communication-intensive subprocesses), ultimately we
would need to implement a distributed communication chan-
nel that would direct the data flow from the sending to the
receiving process directly. Note that such distributed com-
munication channels would not change the semantics of the
use of a channel between data structures.

Code availability. OMUSE is available at the project website https:
//bitbucket.org/omuse (archived versions will be available at the
Zenodo archive, doi:10.5281/zenodo.809336). It is foreseen to grow
over time with new codes and capabilities and can easily be adapted
for private use. OMUSE comes with basic tests, and a separate
repository with examples is set up at the aforementioned website.

OMUSE is distributed under an Apache 2.0 license. This refers
only to the framework and interface code, not to the simulation
codes (including their native interface). Where these are distributed
under an open-source license, community codes can be included in
the framework source distribution; otherwise these codes must be
downloaded separately. New codes or extensions, as well as bug
fixes, may be submitted to the repository. OMUSE encourages the
practice of distributing simulation codes by reporting automatically
upon conclusion of an OMUSE script the community codes that
were used and providing the relevant references for inclusion in
publications resulting from their use.
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