41 research outputs found

    A Branch-and-Cut Algorithm for the Capacitated Open Vehicle Routing Problem

    Get PDF
    In open vehicle routing problems, the vehicles are not required to return to the depot after completing service. In this paper, we present the first exact optimization algorithm for the open version of the well-known capacitated vehicle routing problem (CVRP). The algorithm is based on branch-and-cut. We show that, even though the open CVRP initially looks like a minor variation of the standard CVRP, the integer programming formulation and cutting planes need to be modified in subtle ways. Computational results are given for several standard test instances, which enables us for the first time to assess the quality of existing heuristic methods, and to compare the relative difficulty of open and closed versions of the same problem.Vehicle routing; branch-and-cut; separation

    Mixed Integer Programming Model for open Vehicle Routing Problem with Fleet and driver Scheduling Considering Delivery and Pick-Up Simultaneously

    Get PDF
    Vehicle Routing Problem (VRP) is a key element of many logistic systems which involve routing and scheduling of vehicles from a depot to a set of customers node. This is a combinatorial optimization problem with the objective to find an optimal set of routes used by a fleet of vehicles to serve a set of customers It is required that these vehicles return to the depot after serving customers’ demand. This paper investigates a variant of VRP, in which the vehicles do not need to return to the depot, called open vehicle routing problem (OVRP). The problem incorporates time windows, fleet and driver scheduling, pick-up and delivery in the planning horizon. The goal is to schedule the deliveries according to feasible combinations of delivery days and to determine the scheduling of fleet and driver and routing policies of the vehicles. The objective is to minimize the sum of the costs of all routes over the planning horizon. We model the problem as a linear mixed integer program. We develop a combination of heuristics and exact method for solving the model

    Revisión del estado del arte del problema de ruteo abierto (OVRP)

    Get PDF
    En este documento se lleva a cabo una revisión bibliográfica del estado del arte del problema de ruteo abierto (OVRP; Open Vehicle Routing Problem). Se realiza la definición del problema, una clasificación de sus variantes y de los artículos e investigaciones publicadas en las bibliotecas virtuales: Scopus, Science Direct y Google Scholar acerca del tema. Además, se plantean los modelos de solución utilizados por los autores, las aplicaciones del estudio y las tendencias o futuras líneas de investigación. El OVRP es un problema de planificación de rutas de transporte, generalización del Problema del Agente Viajero muy conocido y ampliamente estudiado, tiene como característica diferenciadora que los vehículos una vez finalizadas las entregas correspondientes no están obligados a regresar al punto de partida o depósito. La revisión observa lo publicado hasta mayo del año 2017

    Improved Ant Colony Optimization for Seafood Product Delivery Routing Problem

    Get PDF
    This paper deals with a real-life vehicle delivery routing problem, which is a seafood product delivery routing problem. Considering the features of the seafood product delivery routing problem, this paper formulated this problem as a multi-depot open vehicle routing problem. Since the multi-depot open vehicle routing problem is a very complex problem, a method is used to reduce the complexity of the problem by changing the multi-depot open vehicle routing problem into an open vehicle routing problem with a dummy central depot in this paper. Then, ant colony optimization is used to solve the problem. To improve the performance of the algorithm, crossover operation and some adaptive strategies are used. Finally, the computational results for the benchmark problems of the multi-depot vehicle routing problem indicate that the proposed ant colony optimization is an effective method to solve the multi-depot vehicle routing problem. Furthermore, the computation results of the seafood product delivery problem from Dalian, China also suggest that the proposed ant colony optimization is feasible to solve the seafood product delivery routing problem

    The Relationship between Vehicle Routing & Scheduling and Green Logistics - A Literature Survey

    Get PDF
    The basic Vehicle Routing and Scheduling Problem (VRSP) is described followed by an outline of solution approaches. Different variations of the basic VRSP are examined that involve the consideration of additional constraints or other changes in the structure of the appropriate model. An introduction is provided to Green Logistics issues that are relevant to vehicle routing and scheduling including discussion of the environmental objectives that should be considered. Particular consideration is given to VRSP models that relate to environmental issues including the timedependent VRSP, the transportation of hazardous materials and dynamic VRSP models. Finally some conclusions are drawn about further research needs in this area and the relation to road pricing

    Study of capacitated vehicle routing problem based on particle swarm optimization

    Get PDF
    Vehicle Routing Problem (VRP) is one of the common problems that happen in human life. There are many applications of VRP such as garbage disposal, mail delivery, school bus routing, airline schedule and many more. The main objective of VRP is to minimize the distance of the route starting from a depot, serves all of customers demand, and return back to depot. VRP is one of the optimization problems that belong to NP- hard (Non-deterministic Polynomial-time hard) problem and difficult to solve. VRP has also becomes one of the important topic to discuss and analyze. There are many types of VRP; this research is focusing on capacitated VRP (CVRP). CVRP is defined as the problem of determining optimal routes to be used by vehicles starting from one or more depots to serve all customers’ demand, observing some constraints. Particle Swarm Optimization (PSO) method will be used to solve the VRP problems because there are lots of advantages of PSO. PSO is a population based stochastic optimization technique, inspired by social behavior of bird flocking or fish schooling. The experiment has been done to test this algorithm. Three variants of PSO have been used which are PSO with inertia weight, PSO without inertia weight, and PSO with constriction factor. The results show that the PSO with inertia weight strategy which include PSO with inertia weight and PSO with constriction factor have the best total distance. It can be concluded that PSO with inertia weight strategies have better performance because they take less iteration to arrive at the optimum value. The second comparison also showed that small range of inertia weight has the best total distance

    Solving school bus routing problems through integer programming

    Get PDF
    In this paper, an exact solution approach is described for solving a real-life school bus routing problem (SBRP) for transporting the students of an elementary school throughout central Ankara, Turkey. The problem is modelled as a capacitated and distance constrained open vehicle routing problem and an associated integer linear program is presented. The integer program borrows some well-known inequalities from the vehicle routing problem, which are also shown to be valid for the SBRP under consideration. The optimal solution of the problem is computed using the proposed formulation, resulting in a saving of up to 28.6 in total travelling cost as compared to the current implementation. © 2007 Operational Research Society Ltd. All rights reserved

    A Mixed Integer Programming Formulation for the Heterogeneous Fixed Fleet Open Vehicle Routing Problem

    Get PDF
    The heterogeneous fixed fleet open vehicle routing problem (HFFOVRP) is one of the most significant extension problems of the open vehicle routing problem (OVRP). The HFFOVRP is the problem of designing collection routes to a number of predefined nodes by a fixed fleet number of vehicles with various capacities and related costs. In this problem, the vehicle doesn’t return to the depot after serving the last customer. Because of its numerous applications in industrial and service problems, a new model of the HFFOVRP based on mixed integer programming is proposed in this paper. Furthermore, due to its NP-hard nature, an ant colony system (ACS) algorithm was proposed. Since there were no existing benchmarks, this study generated some test problems. From the comparison with the results of exact algorithm, the proposed algorithm showed that it can provide better solutions within a comparatively shorter period of time

    A Combined Metaheuristic Algorithm for the Vehicle Routing Problem and its Open Version

    Get PDF
    Abstract: The Open Vehicle Routing Problem (OVRP) is one of the most important extensions of the vehicle routing problem (VRP) that has many applications in industrial and service. In the VRP, a set of customers with a specified demand of goods are given and a depot where a fleet of identical capacitated vehicles is located. We are also given the ‘‘traveling costs’’ between the depot and all the customers, and between each pair of customers. In the OVRP against to VRP, vehicles are not required to return to the depot after completing service. Because VRP and OVRP belong to NP-hard Problems, an efficient hybrid elite ant system called EACO is proposed for solving them in the paper. In this algorithm, a modified tabu search (TS), a new state transition rule and a modified pheromone updating rule are used for more improving solutions. These modifications lead that the proposed algorithm does not trapped at the local optimum and discovers different parts of the solution space. Computational results on fourteen standard benchmark instances for VRP and OVRP show that EACO finds the best known solutions for most of the instances and is comparable in terms of solutions quality to the best performing published metaheuristics in the literature
    corecore