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Abstract—Vehicle Routing Problem (VRP) is  a  key  element  of  many  logistic  systems  which involve  routing  and  scheduling  of  vehicles 

from a depot to  a set of customers node. This  is  a  combinatorial optimization  problem  with the objective to find   an  optimal set  of  routes 

used  by  a fleet  of  vehicles to  serve a set of  customers  It is required that these vehicles return to the depot after s erving customers’ demand. 
This paper investigates a variant of VRP, in which the vehicles do not need to return to the depot,  called open vehicle routing problem (OVRP). 

The problem incorporates  time windows, fleet and driver scheduling, pick-up and delivery in the planning horizon. The goal is to schedule the 

deliveries according to feasible combinations of delivery days and to determine the scheduling of fleet and driver and routing policies of the 

vehicles. The objective is to minimize the sum of the costs of all routes over the planning horizon. We model the problem as a linear mixed 
integer program. We develop a combination of heuristics and exact method for solving the model. 

 
Keywords- Logistics, Integer programming, Heuristics, Neighborhood search 
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I.  INTRODUCTION  

Vehicle Routing Problem (VRP) is one of the important 
issues that exist in transportation system. This  is  a  well 
known  combinatorial optimization  problem  which   consists 
of a customer population with deterministic demands, and a 
central depot which acts as the base of a homogeneous fleet of 
vehicles. The objective is to design a set of Hamiltonian cycles 
(vehicle routes) starting and terminating at the central depot, 
such that the demand of customers is totally satisfied, each 
customer is visited once by a single vehicle, the total demand 
of the customers assigned to a route does not exceed vehicle 
capacity, and the overall travel cost,  taking  into  account  
various  operational constraints. VRP  was first introduced  by  
[8]. Since then  many researchers have been working in this 
area to discover new methodologies in selecting the best routes 
in order to find the better solutions. There are a number of 
survey can be found in literature for VRP, such as ([6], [5], [1] , 
[3]), and books ([2],  [7]). 

 
Mathematically, VRP can be defined as follows: vehicles 

with a fixed capacity Q must deliver order quantities iq  

( 1, ,i n  ) of goods to n customers from a single depot (i = 

0). Knowing the distance ijd  between customers i and j 

( , 1, ,i j n  ), the objective of the problem is to minimize 

the total distance traveled by the vehicles in a way that only  
one vehicle handles the deliveries for a given customer and the 
total quantity of goods that a single vehicle delivers is not 
larger than Q  [18]. 

 
In some cases, particularly, when the business firms do not 

own a vehicle fleet, or their private fleet is inadequate for fully 
satisfying customer demand, distribution services would be 
carried out by  external contractors, such as a hired vehicle 
fleet. Therefore vehicles are not required to return to the central 
depot after their deliveries have been satisfied. This distribution 
model is referred to as an open vehicle routing problem 
(OVRP).  Open vehicle routing problem is an expansion 

problem of the classic vehicle routing problem. The most 
significant difference between OVRP and VRP is that in the 
OVRP, vehicles do not return to the original depot after 
servicing the last customer on the route, or if they are required, 
they return by traveling the same route back. Open vehicle 
routing problem is a key step of logistics optimization and the 
indispensable part of the ecommerce activities. 

 
Following the VRP which belongs to an NP-hard problem 

the OVRP is also an NP-hard; therefore to deal with OVRP 
instances of practical size, researchers have focused their 
interest on the development of effective heuristic and 
metaheuristic solution approaches. 

 
The article of [13] which classifies the features encountered 

in practical routing problems was the first to distinguish 
between closed trips traveled by private vehicles, and open 
trips assigned to common carrier vehicles. The first solution 
approach for the OVRP is due to [12]. Their paper deals with a 
practical routing problem faced by the airplane fleet of FedEx. 
In specific, airplanes layover at the end of their delivery routes, 
to later perform their pick-up trips. These delivery routes can 
be seen as an application of the OVRP, in the sense that 
airplanes do not return to the depot. Their solution approach is 
a variant of the [21] algorithm adapted to the examined 
problem. 

  
Following the VRP which belongs to an NP-hard problem 

the OVRP is also an NP-hard; therefore to deal with OVRP 
instances of practical size, researchers have focused their 
interest on the development of effective heuristic and 
metaheuristic solution approaches. Reference [14] address a 
heuristic method based on a minimum spanning tree combined 
with a penalization procedure for solving OVRP. Reference 
[11] presents a tabu search procedure which makes use of 
customer insertion and swap local search operators. Reference 
[15, 16] have presented  studies of meta-heuristics on the 
OVRP, which belong to the threshold accepting category of 
algorithms. The first one [15] proposes an annealing based 
method that utilizes a backtracking policy of the threshold 

http://www.ijritcc.org/


International Journal on Recent and Innovation Trends in Computing and Communication                                 ISSN: 2321-8169 

Volume: 3 Issue: 9                                                                                                                                               5508 - 5513 

______________________________________________________________________________________ 

5509 

IJRITCC | September 2015, Available @ http://www.ijritcc.org                                                                 

_______________________________________________________________________________________ 

value when no acceptances of feasible solutions occur during 
the search process, whereas the second one [16] presents a 
single-parameter metaheuristic method that exploits a list of 
threshold values to intelligently guide an advanced local search 
method.  

 
Reference [17] have also published an adaptive memory 

approach for the OVRP.  Their approach involves a pool of 
routes that belong to the highest quality solutions encountered 
through the search process. Sequences of customers are 
extracted from the adaptive memory to form new partial 
solutions later to be improved by a tabu search procedure. The 
routes of these improved solutions are used to update the 
adaptive memory contents, forming in this way a cyclic 
algorithm. Note that the aforementioned three works aim at 
solely minimizing the total distance of the open routes, 
disregarding the required fleet size.  

 
Reference  [9,10] propose a metaheuristic framework which 

constructs an initial OVRP solution via a farthest-first heuristic. 
This solution is then improved by a tabu search method which 
employs the well-known relocation, swap, and 2-opt operators. 
reference [18] have dealt with the OVRP by developing a local 
search metaheuristic algorithm which uses the concept of 
record-to-record travel [19]. In their work, they introduce eight 
large-scale OVRP instances which have served as a comparison 
basis for the effectiveness of recent OVRP methodologies. 
These works include the general routing heuristic of  [20] 
which has been effectively applied to the OVRP variant. Their 
approach involves the application of the adaptive large 
neighborhood search framework. 

 
Hybrid genetic algorithm was used by [22] to solve a 

variant of OVRP which involve single and mixed fleet strategy. 
Reference [23] propose a hybrid ant colony metaheuristic 
approach for OVRP. They present  a new transition rule, an 
efficient candidate list, several effective local search techniques 
and a new pheromone updating rule in a way to achieve better 
solution. 

 
From literature survey mentioned before most of the 

research are on how to solve OVRP using metaheuristic. In 
reality there some variant for this OVRP  This paper concerns 
with a comprehensive model for the variant of OVRP which 
incorporated time windows, fleet and driver scheduling, pick-
up and delivery (OVRFDPDTWP) . The basic framework of 
the vehicle routing part can be viewed as a Heterogeneous 
Vehicle Routing Problem with Time Windows (HVRPTW) in 
which a limited number of heterogeneous vehicles, 
characterized by different capacities are available and the 
customers have a specified time windows for services. We 
propose a mixed integer programming formulation to model the 
problem. A feasible neighbourhood heuristic search is 
addressed to get the integer feasible solution after solving the 
continuous model of the problem. 

II. MATHEMATICAL FORMULATION OF OVRDPDTWP 

Using graph, OVRP can be defined as follows.  Let a graph 

G = (V, E), where V = {v0, v1, …, vn} is the vertex set and E = 

{(vi, vj): vi, vj∈V, i ≠ j, j ≠ 0} is the arc set. Vertex v0 

represents the central depot where a fleetof vehicles is 

located, each of them with maximum carrying load equal to 

Q. The remaining n vertices of V \ {v0} represent the customer 

set. With each customer vertex is associated a non-negative 

known demand qi, whereas with each arc (vi, vj) ∈ E is 

associated a cost cij which corresponds to the cost (travel 

time, distance) for transiting from vi to vj. As with most 

previous OVRP approaches, we consider that the cost 

matrix is obtained by calculating the Euclidean distances 

between vertex pairs, so that cij = cji (0 < i, j ≤  n, i ≠ j). The 

objective of the  problem is to design the set of Hamiltonian 

paths to serve all customers such that: the number of vehicles is 

minimized, as well as to minimize the total cost of the 

generated paths. There are some restrictions which must be 

satisfied, such as, every path originates from the central depot 

v0,  each customer vertex is assigned to a single path, and  the 

total demand of the customer set assigned to a single path does 

not exceed the maximum carrying load Q of the vehicles 

(capacity constraint).  

 

To formulate the model, firstly we denote T as the planning 

horizon  and D as the set of drivers. The set of workdays for 

driver l D  is denoted by lT T . The start working time 

and latest ending time for driver l D  on day t T  are 

given by 
t

lg  and 
t

lh , respectively. For each driver l D , let 

H denote the maximum weekly working duration. We denote 

the maximum elapsed driving time without break by F and the 

duration of a break by G . 

 

Let K denote the set of vehicles. For each vehicle k K , 

let Qk and Pk denote the capacity in weight and in volume, 

respectively. We assume the number of vehicles equals to the 

number of drivers. Denote the set of n customers (/nodes) by 

 1,2, ,N n  . Denote the depot by  0, 1n . Each 

vehicle starts from  0  and terminates at  1n . Each 

customer i N  specifies a set of days to be visited, denoted 

by iT T  . On each day it T , customer i N  requests 

service with demand of 
t

iq  in weight and 
t

ip  in volume, 

service duration 
t

id  and time window  ,i ia b . Note that, for 

the depot  0, 1i n   on day t, we set 0t t t

i i iq p d   . 

Denote the set of preferable vehicles for visiting customer i by 

Ki ( iK K ) and the extra service time per pallet by e if a 

customer is not visited by a preferable vehicle. The travel time 

between customer i and j is given by ijc . Denote the cost 

coefficients of the travel time of the internal drivers by A and 

the working duration of the external drivers by B. 

We define binary variable 
t

ijkx  to be 1 if vehicle k travels 

from node i to j on day t, binary variable 
t

iw  to be 1 if 

customer i is not visited by a preferred vehicle on day t. 

Variable 
t

ikv  is the time that vehicle k visits node i on day t. 

Binary variable 
t

ikz  indicates whether vehicle k takes a break 

after serving customer i on day t. Variable 
t

iku  is the elapsed 
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driving time for vehicle k at customer i after the previous 

break on day t. Binary variable 
t

lky  is set to 1 if vehicle k is 

assigned to driver l on day t. Variables 
t

lr and 
t

ls  are the total 

working duration and the total travel time for driver l on day t, 

respectively. 

 

 

 

Notations used are defined as follows. 

Set: 

T  The set of workdays in the planning horizon, 

D  The set of drivers D = DI ∪ DE, 

Tl  The set of workdays for driver l ∈ D, 

K  The set of vehicles, 

N  The set of customers, 

N0  The set of customers and depot N0 = {0, n + 1} 

∪ N, 

Ki  The set of preferable vehicles for customer i ∈ 

N, 

Ti  The set of days on which customer i N  

orders, 

Parameter: 

Qk  The weight capacity of vehicle k K , 

Pk  The volume capacity of vehicle k K , 

cij  The travel time from node 0i N  to node 

0j N , 

[ai, bi]  The earliest and the latest visit time at node 

0i N , 

t

id   The service time of node 0i N  on day it T , 

t

iq  The weight demand of node 0i N  on day 

it T , 

t

ip  The volume demand of node 0i N  on day 

it T , 

e  The extra service time per pallet when a non-

preferable vehicle is used, 

[
t

lg , 
t

lh ]  The start time and the latest ending time of 

driver l D  on day t T , 
t

i              Pick up quantity for customer i on day it T , 

t

i              Delivery quantity for customer I on day it T , 

H  The maximum working duration for each 

internal driver over the planning horizon, 

F  The maximum elapsed driving time without 

break, 

G  The duration of the break for drivers, 

A                  The cost factor on the total travel time 

Variables: 

t

ilkx   Binary variable indicating whether vehicle 

k K  travels from node 0i N to 0j N  

on day t T , 
t

iw   Binary variable indicating whether customer 

0i N  is visited by a non-preferable vehicle on 

day t T , 
t

ikv   The time at which vehicle k K  starts service 

at node 0i N  on day t T , 

t

ikz   Binary variable indicating whether vehicle 

k K  takes break after serving node 0i N  

on day t T , 
t

iku   The elapsed driving time of vehicle k K  at 

node 0i N  after the previous break on day 

t T , 
t

lky   Binary variable indicating whether vehicle 

k K  is assigned to driver l D  on day 

t T , 
t

lr   The total working duration of driver l D  on 

day t T , 
t

ls  The total travel distance of driver l D  on day 

t T , 
t

jk            Number of pick up demand of customer j served by 

vehicle k K on day t T  
t

jk            Number of delivery demands of customer j served 

by vehicle k K on day t T  

 

 

The problem can be presented as a mixed integer linear 

programming model. 

 

The objective of the problem is to minimize cost. Firstly, 

we sum up the total travel time in the planning horizon, and 

then we multiply the result with cost factor A. Therefore the 

objective can be expressed as follows. 

Minimize 

 

0

0 0( )t t t

jk jk ijk

j N k K t T i N j N k K t T

A c x c
      

 
                      (1)

 

        

  (1) 

Subject to: 

0

0

t

i

i N

x d


                       d D, t  T               (2) 
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01 , (3)t

ji

j N

x i N t T


                                    

         

    

0

1 , (4)t

ij

i N

x j N t T


                                    

  0\

,
i

t t

ijk i

k K K j N

x w i N t T
 

                            (5)  i  N, t  Ti (5) 

0

,t t

i ijk k

i N j N

q x Q k K t T
 

                         (6)  k  K, t  T (6) 

0

,t t

i ijk k

i N j N

p x P k K t T
 

  
                 

        (7) 

  k  K, t  T (7) 

(1 )t t t t

jk ik ij ijk iku u c M x Mz       

                                    i, j  N0,  k  K, t  T                (8) (8) 

 

(1 )t t

jk ij ijku c M x    i, j  N,  k  K, t  T        (9)        

 i, j  N, k  K, t  T (9)  

0

t t t

ik ij ijk ik

j N

u c x F Mz


  
 

                                        

i  N0,  k  K, t  T         (10)       

 i  N0,  k  K, t  T (10) 

(1 )t t t t t t t

jk ik i i j ij ik ijkv v d e p w c G z M x            

                                  i, j  N0,  k  K, t  T                (11) i, j  N0,  k  K, t  T (11) 

 
t

i ik ib v a                   i  N,  k  K, t  T            (12)    

 i  N,  k  K, t  Ti (12) 

0 ( )t t t

k l lk

l D

v g y


                     k  K, t  T           (13)     

 k  K, t  T (13) 

1, ( )t t t

n k l ik

l D

v h y



                    k  K, t  T            (14) k  K, t  T (14) 

0 0

(1 )t t t

l ij ijk ik

i N j N

s c x M y
 

  
 

                                        

 , ,l D k K t T             (15)  l  DI, k  K, t  Ti (15) 

1, (1 )t t t t

l n k l lkr v g M y      

                                         

, ,l D k K t T              (16)  l  D, k  K, t  Ti (16) 

l

t

l

t T

r H


                              l D                           (17)  l  DI (17) 

      
t t

jk j

k K

 


                             ,j N t T               (18) 

     

t t

jk j

k K

 


                             ,j N t T               (19) 

, , , {0,1}t t t t

ijk i ik lkx w z y    

                         i, j  N0, l  D, k  K, t  T               (20)  

, , , 0t t t t

ik ik l lv u r s     

                         i, j  N0, l  D, k  K, t  T              (21)   

, {0,1,2,...}t t

jk jk  
 

                                   
, ,j N k K t T                   (22) 

As this is an OVRP, the vehicles used are only dispatched 

from depot. Constraint (2) is to make sure that the number of 

vehicle dispatches from depot should be the same as the 

number of driver. Constraint (3) expresses that at each node, 

beside depot, there should be exactly one entering arc coming 

from a customer node or from the depot. The other way 

around is expressed in Constraint (4). Constraints (5) define 

whether each customer is visited by a preferable vehicle. 

Constraints (6-7) guarantee that the vehicle capacities are 

respected in both weight and volume.  

 

Constraints (8-9) define the elapsed driving time. More 

specifically, for the vehicle (k) travelling from customer i to j 

on day t, the elapsed driving time at j equals the elapsed 

driving time at i plus the driving time from i to j (i.e., 
t

jku  ≥ 

t

iku  + cij ) if the vehicle does not take a break at customer i 

(i.e., 
t

ikz = 0); Otherwise, if the vehicle takes a break at 

customer i (i.e., 
t

ikz  = 1), the elapsed driving time at j will be 

constrained by (1) which make sure it is greater than or equal 

to the travel time between i and j (i.e., 
t

jku  ≥ cij). Constraints 

(10) guarantee that the elapsed driving time never exceeds an 

upper limit F by imposing a break at customer i (i.e., 
t

ikz = 1) 

if driving from customer i to its successor results in a elapsed 

driving time greater than F. 

 

Constraints (11) determine the time to start the service at 

each customer. If j is visited immediately after i, the time 
t

jkv to start the service at j should be greater than or equal to 

the service starting time 
t

ikv  at i plus its service duration 
t

id , 

the extra service time 
t

ie p  if i is visited by an inappropriate 

vehicle (i.e., 
t

jw  = 1), the travel time between the two 

customers cij , and the break time G if the driver takes a break 

after serving I (i.e., 
t

ikz  = 1). Constraints (12) make sure the 

services start within the customers’ time window. 

 

Constraints (13-14) ensure that the starting time and ending 

time of each route must lie between the start working time and 

latest ending time of the assigned driver. Constraints (15) 

calculate the total travel time for each internal driver. 

Constraints (16) define the working duration for each driver on 

every workday, which equals the time the driver returns to the 

depot minus the time he/she starts work. Constraints (17) 

make sure that the internal drivers work for no more than a 

maximum weekly working duration, referred to as 37 week-

hour constraints. Constraints (18 – 19) define the pick up and 

delivery for each customer. Constraints (20-21) define the 

binary and positive variables used in this formulation. 

 

http://www.ijritcc.org/


International Journal on Recent and Innovation Trends in Computing and Communication                                 ISSN: 2321-8169 

Volume: 3 Issue: 9                                                                                                                                               5508 - 5513 

______________________________________________________________________________________ 

5512 

IJRITCC | September 2015, Available @ http://www.ijritcc.org                                                                 

_______________________________________________________________________________________ 

The problem expressed as a mixed integer programming 

model contains a large number of variables.  

III. NEIGHBORHOOD SEARCH 

It should be noted that, generally, in integer programming 

the reduced gradient vector, which is normally used to detect 

an optimality condition, is not available, even though the 

problems are convex. Thus we need to impose a certain 

condition for the local testing search procedure in order to 

assure that we have obtained the “best” suboptimal integer 

feasible solution. 

 

Further in [4] has proposed a quantity test to replace the 

pricing test for optimality in the integer programming 

problem. The test is conducted by a search through the 

neighbors of a proposed feasible point to see whether a nearby 

point is also feasible and yields an improvement to the 

objective function. 

 

Let []k be an integer point belongs to a finite set of 

neighborhood N([]k) We define a neighborhood system 

associated with []k, that is, if such an integer point satisfies 

the following two requirements 

 

1. if []j  N([]k) then []k  []j, j   k.  

2. N([]k)  = []k  + N(0)  

  

With respect to the neighborhood system mentioned above, the 

proposed integerizing strategy can be described as follows. 

Given a non-integer component, xk, of an optimal vector, 

xB. The adjacent points of xk, being considered are [xk] dan [xk] 

+ 1. If one of these points satisfies the constraints and yields a 

minimum deterioration of the optimal objective value we 

move to another component, if not we have integer-feasible 

solution. 

 

Let [xk] be the integer feasible point which satisfies the 

above conditions. We could then say if [xk] + 1 N([xk]) 

implies that the point [xk] + 1 is either infeasible or yields an 

inferior value to the objective function obtained with respect to 

[xk]. In this case [xk] is said to be an “optimal” integer feasible 

solution to the integer programming problem. Obviously, in 

our case, a neigbourhood search is conducted through 

proposed feasible points such that the integer feasible solution 

would be at the least distance from the optimal continuous 

solution. 

IV. THE ALGORITHM 

We combine exact method and heuristics for solving this 

large scale mixed integer programming problem. Firstly, we 

solve the linear programming part after relaxing the integer 

restriction. Then, we using the following heuristics for 

searching a suboptimal but integer-feasible solution.  

Let 

x = [x] + f,    0  f  1 

be the (continuous) solution of the relaxed problem, [x] is the 

integer component of non-integer variable x and  f  is the 

fractional component. 

Stage 1. 

 

Step 1. Get row i* the smallest integer infeasibility, such that  

*
min{ ,1 }

i i i
f f     

              (This choice is motivated by the desire for minimal 

deterioration in the objective function, and clearly 

corresponds to the integer basic with smallest integer 

infeasibility). 

Step 2. Do a pricing operation  

 
1

* *

T T

i i
v e B


  

Step 3. Calculate 
*

T

ij i j
v   

 With  corresponds to 

min
j

ij

jd



  
 
  

 

Calculate the maximum movement of nonbasic j at 

lower bound and upper bound. 

 Otherwise go to next non-integer nonbasic or 

superbasic j (if available). Eventually the column j* is 

to be increased form LB or decreased from UB. If 

none go to next i*. 

Step 4.  Solve  Bj* = j*  for  j* 

Step 5. Do ratio test for the basic variables in order to stay 

feasible due to the releasing of nonbasic j* from its 

bounds. 

Step 6. Exchange basis  

Step 7.   If row i* = {} go to Stage 2, otherwise 

 Repeat from step 1. 

Stage 2. Pass1 : adjust integer infeasible superbasics by 

fractional steps to reach complete integer feasibility. 

              Pass2 : adjust integer feasible superbasics. The 

objective of this phase is to conduct a highly 

localized neighborhood search to verify local 

optimality. 

V. CONCLUSIONS 

This paper is intended to develop efficient technique for 
solving one of the most economic importance problems in 
optimizing transportation and distribution systems. The aim of 
this paper is to develop a model of open vehicle routing with 
Time Windows, Fleet and Driver Scheduling, Pick-up and 
Delivery Problem This problem has additional constraint which 
is the limitation in the number of vehicles. The proposed 
algorithm employs nearest neighbor heuristic algorithm for 
solving the model.  
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