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Solving school bus routing problems through 
integer programming 
T Bektag1,2* and Seda Elmasta?2'3 
1Universite" de Montreal, HEC Montreal, Quebec, Canada; 2Batkent University, Ankara, Turkey; and 
3Bilkent University, Ankara, Turkey 

In this paper, an exact solution approach is described for solving a real-life school bus routing problem (SBRP) 
for transporting the students of an elementary school throughout central Ankara, Turkey. The problem is 
modelled as a capacitated and distance constrained open vehicle routing problem and an associated integer 
linear program is presented. The integer program borrows some well-known inequalities from the vehicle 
routing problem, which are also shown to be valid for the SBRP under consideration. The optimal solution 
of the problem is computed using the proposed formulation, resulting in a saving of up to 28.6% in total 
travelling cost as compared to the current implementation. 
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1. Introduction 

The school bus routing problem (SBRP) is simply concerned 
with transporting students to schools via public transportation 
systems (such as buses). This is a problem which has received 
attention from the scientific community for over 30 years. 
The generality of the problem makes it very important and 
scientific ways should be employed to deal with it. However, 
it is often the case that the routings are planned rather intu- 
itively in real life, which may result in excessive cost for the 
transportation. 

In some ways, the SBRP resembles the vehicle routing 
problem (VRP), which is extensively studied in the operations 
research literature (see, eg, the book by Toth and Vigo (2002)). 
However, as also pointed out by Mandl (1979), there are some 
specific characteristics of the problem and these are outlined 
below: 

1. The buses in general do not have to return to the school 
after completing their tours. In specific, they may end their 
tours at any point other than the depot. Consequently, the 
routes of the buses in an SBRP will be paths as opposed 
to the tours of the VRP. 

2. The total number of students each bus carries cannot 
exceed the capacity of the bus. 

3. The length (or time) of each tour is restricted by a certain 
amount, since the students must be transported to the 
school before a specific time. 

In fact, the problem described above falls into another version 
of the VRP, namely the open vehicle routing problem (OVRP), 
which has recently attracted attention of several researchers 
(see, eg, Fu et al (2005), Tarantilis et al (2005), Li et al (2006), 
and Repoussis et al (2006)). 

In this study, we are concerned with an SBRP that arises 
in transporting the students of an elementary school that is 
located in central Ankara, Turkey. The school has a contractor 
firm, which takes care of transporting the students. It is of 
interest for the contractor firm to minimize the total cost 
associated with transporting the students to and from the 
school to their homes. The firm also has to obey the capacity 
and distance constraints stated above. 

The problem considered here corresponds to a capacitated 
and distance constrained OVRP. In this paper, we present 
an integer linear programming formulation for this problem 
which is solved to optimality using a commercial integer 
programming optimizer. 

The paper is organized as follows: We briefly review the 
related work on the SBRP and the OVRP in the next section. 
Section 3 formally defines the problem considered in this 
paper and presents the associated integer linear programming 
formulation, along with some valid inequalities. Input data 
and the solution of the integer linear programming formu- 
lation are discussed in Section 4. Finally, the last section 
presents our conclusions. 

2. Related work 

In this section, we present some previous work related to 
school bus routing. Our attempt is by no means to provide an 
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exhaustive review on the subject, but rather to focus on the 

type of problem and the solution approach considered in each 

study (For a detailed literature review, the reader is referred 
to the relevant sections of these studies). 

One of the earliest studies on the subject is due to Angel 
et al (1972). In this study, the authors presented an algorithm 
for a school bus scheduling problem, which minimizes the 
number of buses and the total distance covered, such that 

capacity and time constraints are respected. The case study 
for which the algorithm is developed consists of transporting 
1500 students located on a region of about 150 square miles, 
in Indiana, USA. 

Braca et al (1997) offered a computerized approach for the 

transportation of students to multiple schools located in New 
York, USA. Their problem includes capacity, distance and 
time window constraints. In addition, they require that a lower 
bound on the number of students that form a route should 
also be respected. The problem consists of 4619 students 
to be picked up from 838 bus stops and transported to 73 
schools. The authors proposed a routing algorithm based on 
the location-based heuristic for the capacitated VRP. One 

interesting aspect of this study is the estimation of distances 
and travel times, which are performed via a geographic infor- 
mation systems-based program (MapInfo) and a regression 
analysis, respectively. The authors also presented two integer 
programming formulations, namely a set partition model and 
an assignment-based model, although these do not explic- 
itly include the capacity and distance constraints and are not 
utilized in the proposed routing algorithm. 

A recent study related to the subject is due to Li and Fu 
(2002). These authors provided planning techniques for a 

single SBRP in Hong Kong, China, which consists of trans- 

porting 86 students located at 54 pick-up points. The problem 
is of a multi-objective nature, including the minimization of 
the total number of buses used, the total travel time of all the 
students, the total bus travel time and balancing the loads and 
travel times between buses. A heuristic algorithm is proposed 
to solve the problem. The authors also presented a three- 
index flow-based integer programming formulation, which, 
however, is not utilized in the solution algorithm. 

The OVRP has recently attracted attention from the oper- 
ations research community. One of the first studies on the 
OVRP is due to Sariklis and Powell (2000), who proposed 
a heuristic to solve the capacity constrained version. Later 
on, Tarantilis et al (2005) described a single parameter meta- 
heuristic algorithm for the problem. To the best of our know- 
ledge, the only exact method to solve the capacitated OVRP 
is due to Letchford et al (2006). 

The OVRP may have additional constraints besides the 
capacity restrictions. In a recent study, Repoussis et al 
(2006) studied the OVRP with capacity and time window 
constraints and described a greedy look-ahead route construc- 
tion heuristic algorithm to solve the model that is proposed 
for the problem. For the OVRP with capacity and distance 
constraints, Brandao (2004) and Fu et al (2005) presented 

tabu search algorithms, and Li et al (2006) described a 
record-to-record travel heuristic. To our knowledge, there is 
no exact solution algorithm offered for the solution of the 
OVRP with distance and/or time window constraints. 

In what follows, we break away from the previous studies' 

problem-specific solution approaches for the SBRP. Our 

approach and contribution lies in presenting an integer linear 

program for the problem under consideration, which also 
has a potential to be used for other similar problems. As the 
case study is of moderate size, our focus is on well-model 

building rather than devising a specialized solution procedure. 
The formal definition of the problem and the corresponding 
integer programming formulation are presented in the next 
section. 

3. Problem definition and integer programming 
formulation 

The SBRP we consider in this paper is defined as follows: 
A number of buses are to be used to transport the students 
between an elementary school and their houses. Each bus is 
dedicated to a single path and this bus utilizes the same path 
for both picking-up or dropping-off the students. In addition, 
each bus has a limited capacity with an upper bound on the 
total amount of distance it may traverse. Each pick-up or 

drop-off point is visited only once by a single bus, that is, 
no partial pick-ups are allowed. The problem lies in finding 
the minimum number of buses required for the transportation 
of all the students and their corresponding routes, so as to 
minimize the total cost of transportation. 

We formulate the problem on a complete graph G = (V, A) 
with I V I nodes and IA I arcs. The distances between each node 

pair is characterized by a symmetric distance matrix D := 

[dij], where dij represents the distance required to traverse 
from node i to node j (and also from node j to node i). The 
node set is partitioned as V = {0} U I, where node 0 is the 

depot (the school) and I is the set of intermediate nodes. Each 
intermediate node i E I has a number of students (denoted by 
qi) to be picked up. Then, the SBRP consists of determining 
k node disjoint paths connected to the depot such that the 
total capacity on each path does not exceed a pre-determined 
capacity limit (denoted by Q) and the total length of each 

path does not exceed some amount (denoted by T). A feasible 
solution to an SBRP resembles a star-like topology on the 
graph G, where there are k paths all starting from the depot, 
that is, node 0. Hence, we have a number of paths originating 
from a single origin point rather than a collection of tours (as 
in the case of the VRP). Note that this problem corresponds to 
the OVRP with capacity and distance constraints. Therefore, 
the following formulation is also valid for this problem. 

In order to model the SBRP, we introduce a 'dummy' node 
d, to which all the last nodes of each path will be connected 
to. In this case, the problem reduces to finding k node disjoint 
paths between two points on an expanded graph G'=(V', A'), 
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such that all intermediate nodes are visited exactly once. In 
the expanded graph, V'= VU{d) and the new distances in A' 
are defined as follows: 

0 ifi E I and j = d 

di 
= M if i E 0 and j =d 

dij otherwise 

Before presenting the integer linear program, we define the 

following binary variable: 

S= 1 if arc (i, j) is traversed in the solution 
xi 

= 
0 otherwise 

Then, the integer program is constructed as follows: 

minimize cijxij + f.k (1) 
ieV' jEV' 

subject to 

Exoi k (2) 
iEI 

EXid k (3) 
ielI 

xij =1 Vi E (4) 
jEIU{d} 

Z xij-=1 
Vj EI (5) 

iEIU{o} 

+ capacity constraints (6) 

+ distance constraints (7) 

xij E {0, 1} 'i, j E V' (8) 

In this formulation, the objective function represents the total 
cost of the travel and the fixed cost of the number of buses 
used. Here, cij is the cost of traversing arc (i, j) and is typi- 
cally a function of the distance as cij = adij, with a being 
the unit distance cost. In the second term, f is the fixed unit 
cost of dispatching a bus. Constraints (2) and (3) allow at 
most k vehicles to depart from node 0 and arrive to node d. 
Constraints (4) and (5) are the degree constraints, which force 
each intermediate node to be visited exactly once. Capacity 
and distance restrictions imposed on each bus are denoted by 
(6) and (7). In what follows, we will present the associated 
capacity and distance constraints that are polynomial in size 
and which also ensure that valid paths will be formed. 

3.1. Capacity restrictions 

By definition, the SBRP requires that the capacity of each bus 
is respected, that is, no bus can carry more than its capacity. 
To impose such a restriction, we use the Miller, Tucker, and 
Zemlin (MTZ)-based constraints (Miller et al, 1960) for the 

capacitated vehicle routing problem. These constraints are 
given as follows: 

ui - uj + Qxij + (Q - qi - qj)xji ? Q - qj 
Vi #j E I (9) 

ui - qi Vi E I (10) 

ui - qixoi + Qxoi Q vi E I (11) 

Note that under these constraints, variables xij and xji are 
only defined if qi +? qj < Q. Constraints (9) and (10) are those 
presented by Kara et al (2004). Constraint (11) is derived 
specially for the SBRP. In these constraints, the variable ui 
represents the total amount of students picked up by the 
vehicle just after leaving node i. The following propositions 
show the validity of these constraints. 

Proposition 1 The constraints (9), (10) and (11) are valid 
capacity constraints for the SBRP. 

Proof We first observe that constraints (10) and (11) imply 
that if i E I is the first node on a path (ie, xoi = 1), then 

ui = qi. Also observe that if xij = 1 in a solution to SBRP, 
writing constraints (9) for pairs (i, j) and (j, i) results in 

uj = ui + qj. Now, consider a path := {il, i2, 
.... 

i1, ik} in 
a solution to the SBRP. Writing constraints (9) for each pair 
of arc in path 0 results in Uik = qik qi, 4- .. + qi2 + qil, 
that is, uik represents the total capacity on path 3?. Since ik is 
the last node on the path, constraints (10) implying uik, Q 
restrict the total capacity of the path by Q. D 

We now show that the capacity constraints presented 
above also prevent the formation of illegal tours that are not 
connected to the depot, which are named as subtours in the 
routing literature. 

Proposition 2 Constraints (9) prevent the formation of 
subtours within the intermediate nodes. 

Proof It is shown in the proof of Proposition 1 that 
constraints (9) 'link' all the nodes in a single path via the ui 
variables. Now, assume an illegal subtour as (k, 1, m, k) where 
k, 1, m E I. Then, constraints (9) imply uk = Um + qk = 
+ 4qm + qk = Uk i 1 ql qm +- qk, which is impossible since 
qi > O, Vi e I (any i with qi = 0 can be removed from 
the graph without loss of generality). By raising a similar 
argument for all the subtours disconnected from the depot, 
we can conclude that no subtour will be formed among the 
intermediate nodes. O 

3.2. Distance restrictions 

Similar to the capacity restrictions, we now present distance 
constraints that restrict the total length of each path to some 
pre-determined amount T. The constraints are given in the 

This content downloaded from 131.247.152.60 on Wed, 22 Jan 2014 23:27:42 PM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp


1602 Journal of the Operational Research Society Vol. 58, No. 12 

following proposition: 

Proposition 3 Constraints 

vi -vj +(T -did -doj +dij)xij +(T -did -doj -dji)xji 
< T - did - doj Vi 0 j E I (12) 

vi - doixoi >0 Vi E I (13) 

vi - doixoi + Txoi < T Vi E I (14) 

are valid for the SBRP for doi + dij + djo< T for every pair 
(i, j), where the variable vi denotes the total length travelled 

from the depot to node i. 

Proof Similar to that of Proposition 1. O 

In these constraints, variables vi denote the distance that 
the vehicle travelled up until point i. Constraints (12) are 
liftings of those proposed by Naddef (1994) (see Desrochers 
and Laporte (1991) and Kara and Bekta? (2005) for the 
lifting results), whereas constraints (13) and (14) are specifi- 
cally derived for the SBRP. The former constraint is used to 
'connect' the nodes in each tour and the latter two are used 
to set initialize the value of vi to doi if i is the first node 
on the tour. We would like to note that these constraints can 
also be used to restrict the total travelling time of each bus 
in a similar fashion, since time is typically a function of the 
travelled amount of distance. 

As a result of the preceding discussion, the integer program- 
ming formulation of the SBRP may now be given in full as 
Minimize Eiv'~jev, cijxij : s.t. (2)-(5), (8), (9)-(14). In 
the next section, we will describe the solution of the problem 
under consideration using the proposed formulation. 

4. Solution and proposed implementation 

This section describes the current implementation of the case 
study, explains how the input data was processed and presents 
the results obtained by solving the integer program. 

4.1. Current implementation 

In the current implementation, the transportation of the 
students is handled by a contractor firm, which has k = 26 
identical vehicles with a common capacity of Q = 33. There 
are 519 students to be picked up from different locations in 
Ankara. The routing is planned rather intuitively, and the one 
currently implemented is presented in Figure 1. As demon- 
strated in the figure, most of the buses (23 out of 26) are 
dedicated to a single destination only. Total distance travelled 
by all buses in the current implementation is calculated to 
be 246.736 km. The school requires that each student should 
not travel more than a total of T = 25 km by bus. 

4.2. Input data processing 

Since the locations of the students are points scattered 
throughout Ankara, we have grouped all of these points 

\-r7 

Jr 

ii'2 

-Th - 

• 

Figure 1 The current routing plan. 

Table 1 The number of students located in each subregion 

Subregion Number of students 

1 25 
2 24 
3 26 
4 19 
5 18 
6 22 
7 24 
8 19 
9 22 

10 22 
11 9 
12 8 
13 24 
14 19 
15 24 
16 23 
17 32 
18 12 
19 13 
20 24 
21 12 
22 12 
23 22 
24 21 
25 11 
26 11 
27 5 
28 9 
29 7 

into approximately equal-sized clusters, which resulted in 
29 different subregions. These sub-regions along with the 
number of students located in each are given in Table 1. The 
centroid of each subregion is considered to be the pick-up 
point of all the students located in this subregion. Since the 
size of each sub-region is quite small as compared to the 
entire routing area, the inter-travel walking distances from 
the homes of each student to the central point in each region 
can be neglected. 
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Figure 2 The proposed routing plan. 

The distances between each pair of centres are calculated 
via MapInfo, by taking into account the inost often used paths 
in the current implementation and the paths on which the 
buses are allowed to travel according to the traffic regulations. 
The resulting distance matrix is symmetric but clearly non- 
Euclidean. 

The unit distance cost for each bus is calculated to be 
a = 300 Turkish Liras (TLs) per metre and the fixed cost 
of each bus is calculated to be f = 18 568 181 TLs. The 
total cost of transporting the students to school in the current 
implementation is calculated as 556 793 506 TLs, using 26 
buses in total. 

4.3. Solution of the model 

Using CPLEX 9.0 as the commercial optimizer, the integer 
linear program presented was solved to optimality in 202.31 
CPU seconds on a Sun UltraSPARC 12 x 400 MHz with 
3 GB RAM. The optimal solution came up with a total cost 
of 397 151058 TLs, using 18 buses in total. Compared to 
the current implementation, the reduction in the total cost is 
28.6%. The corresponding routing plan of the optimal solu- 
tion is given in Figure 2. 

We also present some data in Tables 2 and 3, relevant to 
the capacity utilization of the 26 buses used in the current 
implementation and the 18 buses used in the optimal solution, 
respectively. 

In Tables 2 and 3, the first column denotes the bus 
number, the second column indicates how many students are 
carried by this bus, the third column shows the respective 
capacity utilization (in percent) and the last column indicates 
the amount of distance traversed by this bus. These tables also 
present the maximum, minimum and average capacity utiliza- 
tion rates of all the buses. Table 2 indicates that the capacity 
utilization in the current implementation varies highly (about 
82% between the maximum and minimum values) and the 
average utilization rate of 60.49%, is rather low. On the other 
hand, the optimal solution has an average capacity utilization 

Table 2 Capacity utilization and distance figures for the buses 
in the current implementation 

Bus No. Used Cap. Cap (%) Distance 

1 25 75.76 7450 
2 24 72.73 6920 
3 26 78.79 6512 
4 19 57.58 13 820 
5 18 54.55 18020 
6 22 66.67 3290 
7 24 72.73 5420 
8 19 57.58 850 
9 22 66.67 4430 

10 22 66.67 3550 
11 9 27.27 13220 
12 8 24.24 16980 
13 24 72.73 7960 
14 19 57.58 3810 
15 24 72.73 5814 
16 23 69.7 4310 
17 32 96.97 8620 
18 25 75.76 10940 
19 24 72.73 7990 
20 24 72.73 9850 
21 22 66.67 8350 
22 21 63.64 13980 
23 22 66.67 8950 
24 5 15.15 26580 
25 9 27.27 8100 
26 7 21.21 21 020 

Avg 60.49 9489.84 
Min 15.15 850 
Max 96.97 26580 

Table 3 Capacity utilization and distance figures for the buses 
in the optimal solution 

Bus No. Used Cap. Cap (%) Distance 

1 25 75.76 7450 
2 29 87.88 24500 
3 26 78.79 6512 
4 25 75.76 21020 
5 33 100 10355 
6 32 96.97 17600 
7 31 93.94 10890 
8 33 100 6770 
9 22 66.67 3550 

10 24 72.73 7960 
11 31 93.94 12960 
12 24 72.73 5814 
13 32 96.97 13220 
14 32 96.97 8620 
15 32 96.97 15590 
16 24 72.73 7990 
17 33 100 16975 
18 31 93.94 11970 

Avg 87.37 11652.55 
Min 66.67 3550 
Max 100 24500 
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of 87.37%, as presented in Table 3, with the variation in the 
capacity usage being decreased (to about 33%). 

Comparing the current implementation with the optimal 
solution terms of distance, the total distance that the buses 
travel has decreased from 246 736 m to 209 746 m. However, 
the average distance that each bus travels has increased from 
9489.84 m to 11 652.55 m. 

5. Conclusion and further remarks 

In this paper, we have presented an integer linear program- 
ming formulation to solve a real-life SBRP. The integer 
program was solved to optimality easily, due to the moderate 
size of the case study. The optimal solution obtained for the 
SBRP considered here resulted in a 28.6% savings in total 
cost as compared to that of the current routing scheme. As 
the school bus routing is most often intuitively planned in 
real life, we see that one can surely benefit from a better plan 
offered through integer programming. 

It goes without argument that large-size problems 
do need specialized algorithms, as is the case in other 
studies mentioned previously, since such problems cannot 
in general be directly solved using commercial pack- 
ages. However, as the 
computer hardware and software technology is rapidly 
improving, we believe that the focus should be on developing 
better formulations for problems of moderate size, rather 
than devising solution algorithms that are problem-specific. 
This is exactly the approach taken in this paper. In fact, it is 
quite interesting to note that the integer program presented 
here could not be solved by CPLEX 8.0 on a Pentium III 
1400 Mhz PC running Linux (it was stopped after 900 CPU 
seconds without reaching an optimal solution), whereas the 
same integer program was easily solved on a faster computer 
using CPLEX 9.0. 

We finally note that the formulation presented here is also 
capable of accommodating several additional constraints, such 
as the upper and lower bounds on the number of students 
each bus carries or time-window constraints. In specific, the 
time window constraints presented by Desrochers and Laporte 
(1991) can be directly included in the formulation to restrict 
each node to be visited in certain time intervals. Further 
research might therefore consider testing the applicability of 
the proposed formulation in solving OVRP with capacity, 
distance and time window constraints using test problems 
taken from the literature. 

Acknowledgements- We are grateful to an anonymous reviewer, whose 
comments and careful reading of the manuscript have proved to be of 
great use in improving the paper. 
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