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Abstract 

The Open Vehicle Routing Problem (OVRP) is one of the most important extensions of the Vehicle Routing 

Problem (VRP) that has many applications in the industry and services. In VRP, a set of customers with a specified 

demand of goods is given, where a fleet of identical capacitated vehicles is located. The ‘‘traveling costs’’ between 

the depot and all the customers, and between each pair of customers are also defined. In OVRP against VRP, the 

vehicles are not required to return to the depot after completing service. Since VRP and OVRP belong to the NP-

hard problems, in this work, an efficient hybrid elite ant system called EACO is proposed for solving them. In this 

algorithm, a modified tabu search, a new state transition rule, and a modified pheromone-updating rule are used 

for more improved solutions. As a result of these modifications, the proposed algorithm is not trapped at the local 

optimum and discovers different parts of the solution space. The computational results of 14 standard benchmark 

instances for VRP and OVRP show that EACO finds the best known solutions for most of the instances, and it is 

comparable in terms of solution quality to the best performing published metaheuristics in the literature.   

Keywords: Vehicle Routing Problem, Open Vehicle Routing Problem, Elite Ant System, Tabu Search, NP-Hard 

Problems.

1. Introduction

The vehicle routing problem (VRP) is one of the 

most famous problems in combinatorial optimization 

problems analyzing efficient routes with the 

minimum total cost for a fleet of vehicles for serving 

some commodity to a given number of customers. 

Each customer is visited exactly once by one vehicle, 

while the vehicle activity is bounded by capacity 

constraints, duration constraints, and time 

constraints. Each route is a sequence of customers 

that starts at the depot and finishes at one of the 

customers or each route is a sequence of customers 

that begins at a defined customer and ends at the 

distribution depot, where goods are gathered [1]. 

From a graph theoretical viewpoint, VRP is defined 

as a complete undirected graph G = (V,E), in which 

V = {0, . . . , n} and {( , ) : , , }E i j i j V i j   . 

Vertex 0 represents the depot and the other vertices 

represent the customers. The cost of travel from 

vertex i to vertex j is denoted by ijc . A fleet of K

identical vehicles located at the depot, each of 

capacity 0Q  , is given and each customer i has a 

non-negative demand 0 iq Q  . Each customer 

must be serviced by only one vehicle, and no vehicle 

may serve a set of customers whose total demand 

exceeds its capacity. The objective is to define the set 

of vehicle routes that minimizes the total costs such 

that each vehicle starts at the depot and end at it after 

visiting some customers. The description of this 

important variant of VRP appeared in the literature 

over 30 years ago but has 
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just recently attracted the attention of scientists and 

researchers [2]. If the sum of demands of each cycle 

in figure 1 is less than Q, this is a feasible solution 

for VRP. 

 
Figure 1. A feasible solution for VRP. 

 

The open vehicle routing problem (OVRP) differs 

from the well-known VRP in that the vehicles do not 

necessarily return to the depot after delivering goods 

to customers and ends its route in a customer. In the 

recent years, OVRP has been envisaged in many 

practices such as the home delivery of packages and 

distribute newspapers. Furthermore, companies that 

use contractors to deliver newspapers to residential 

customers do not require the contractors and their 

vehicles to return to the depot. These real life 

applications of the OVRP concerns the case, where 

the company does not have vehicles at all or the 

vehicles owned by the company are not enough to 

use them for the distribution of the products between 

the customers. In both cases, the company has to hire 

some vehicles to realize the distribution of the 

products. When the vehicles finish their jobs, they do 

not return to the depot. This problem also belongs to 

the category of the third party logistics (3PL) 

problems. As a result, the researcher’s interest in 

OVRP has increased dramatically, and a wide variety 

of new algorithms has been developed to solve the 

problem over the last twenty years. This problem, 

similar to VRP, involves routing a homogeneous 

fleet of vehicles with fixed capacity Q that start to 

move simultaneously from the depot but not come 

back to the depot after visiting the customers. In other 

words, each route in OVRP is a Hamiltonian path and 

maybe a route-length constraint to limit the 

maximum distance traveled by each vehicle. Each 

customer has a known demand and is serviced by 

exactly one vehicle. The objective is to design a set 

of minimum cost routes to serve all customers [3]. In 

addition, we need to find the minimum number of 

vehicles required to deliver goods to all customers. 

Figure 2 shows a feasible solution for OVRP with 10 

vehicles and 20 customers.  

From the combinatorial optimization viewpoint, the 

main difference between VRP and OVRP is that in 

the first case, the route is a Hamiltonian cycle, while 

in the second case, the route is a Hamiltonian path 

[4]. On the other hand, OVRP turns out to be more 

common than VRP in the sense that any closed 

version with n customers can be converted into an 

open version of VRP with n customers but the 

transformation in the reverse direction is not 

possible. Figure 3 shows the feasible solutions to 

both the open and closed versions of VRP for the 

same input data. In general, this figure shows that the 

feasible solution for the open version of VRP can be 

different from that for the closed version. In this 

figure, the depot and customer are represented by 

square and circle, respectively. 

 
Figure 2. A feasible solution for OVRP. 

 
Figure 3. Two solutions for VRP and OVRP. 

 

OVRP has received sparse attention in the literature 

compared to VRP [5]. While the earliest description 
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of OVRP offered by Schrage [6] appeared in the 

literature over 20 years ago, OVRPs have just 

recently attracted the attention of practitioners and 

researchers. He dedicated to the description of 

realistic routing problems. 

As it has been mentioned, OVRP consists of 

Hamiltonian paths originating at the depot and 

terminating at one of the customers, and the 

Hamiltonian path problem is equivalent to the 

traveling salesperson problem, which is known to be 

NP-hard [7], then the best Hamiltonian path is NP-

hard. Besides, this problem with a fixed source node 

must be solved for each vehicle in OVRP, and the 

OVRP solutions involve finding the best 

Hamiltonian path for each set of customers assigned 

to a vehicle. Consequently, OVRP is also an NP-hard 

problem. For this reason, exact algorithms cannot 

solve most of the practical examples of this problem 

to optimality within a reasonable time and the 

algorithms used in practice are the heuristic and 

metaheuristic algorithms. These approaches can find 

the optimal or near optimal solutions within a 

reasonable computing time. For example, a tabu 

search (TS) algorithm has been proposed by Fu et al. 

[8], in which the initial solution is provided by a 

‘furthest first heuristic’ and the exchanges are based 

upon the two-interchange generation mechanism. In 

this algorithm, a combination of vertex reassignment, 

2-opt, vertex swap, and ‘tails’ swap within the same 

route or between two routes are used simultaneously.  

Ozyurt et al. have presented a modified Clarke-

Wright parallel savings algorithm, the nearest 

insertion algorithm, and a tabu search heuristic for 

the open vehicle routing problem with time 

deadlines [9]. Some random test problems and a 

real-life school bus routing problem have been 

considered and solved by these heuristics. Finally, 

the results of this algorithm have been compared 

with other algorithms. 

Li et al. [10] have developed a variant of record-to-

record travel algorithm for the standard OVRP that 

avoids the premature convergence and found high 

quality solutions in a short computing time. In this 

algorithm, a fixed-length neighbor list with 20 

customers is used, and they generate an initial 

feasible solution using a sweep algorithm. Besides, 

the minimum number of vehicles required to service 

all the customers is calculated. They use each 

customer as a starting point in the sweep algorithm 

so that one solution is generated for each customer. 

If no solution uses the minimum number of vehicles, 

the solution is selected that uses the smallest number 

of vehicles to service all the customers. 

Repoussis et al. have considered OVRP with time 

windows (OVRPTW) in which customers' service 

can take place within fixed time intervals that 

represent the earliest and latest times during the day 

[11]. They formulate a comprehensive mathematical 

model to capture all aspects of the problem, and 

incorporated all the critical practical concerns. The 

model is solved using a greedy look-ahead route 

construction heuristic algorithm, which utilizes time 

windows related information via composite customer 

selection and route-insertion criteria. The 

computational results on a set of benchmark 

problems from the literature provide very good 

results, indicating the applicability of the 

methodology in real-life routing applications.  

Pisinger and Ropke [12] also have offered an 

effective metaheuristic based on adaptive large 

neighborhood algorithm, in which customers are 

removed randomly from the current position and 

reinserted in the place with the cheapest possible 

route. Furthermore, for diversifying and intensifying 

the search, some removal and insertion heuristics are 

used. Moreover, several well-known metaheuristics 

have been proposed for the versions of OVRP 

involving only capacity constraints. For example, in 

2005, Tarantilis et al. offered a population-based 

algorithm and a heuristic based on the threshold-

accepting type for solving OVRP [13].  

Marinakis et al. have presented a relatively new 

swarm intelligence algorithm called BBMO that 

simulates the mating behavior for solving OVRP 

[14]. For testing the quality of the algorithm, two sets 

of instances were considered, and the results 

obtained showed that the proposed algorithm was 

very satisfactory in most instances. 

A real-world problem has been proposed by an 

international company in Spain and modeled as a 

variant of OVRP by López-Sánchez et al. [15]. In this 

problem, the maximum time spent on the vehicle by 

one person must be minimized. Thus, a metaheuristic 

algorithm was proposed to obtain high quality 

solutions. In order to analyze the algorithm, 19 

school-bus routing problems in the literature were 

considered on nine hard real-world instances. 

Brito et al. have proposed the close–open vehicle 

routing problem, where the routes can be opened and 

closed [16]. This variant is nowadays a standard 

practice model in business. Furthermore, they 

formulated a model of this novel variant with time windows, and a hybrid metaheuristic was proposed 
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for its solutions. This algorithm was applied to a real 

problem with outsourcing. Finally, Erbao et al. have 

proposed OVRP with uncertain demands. In this 

paper, firstly, the customer’s demand was described 

and then an optimization model was proposed to 

minimize the transportation costs. They have also 

proposed four strategies to handle the uncertain 

demand and an improved evolution algorithm to 

solve the robust model. Furthermore, the 

performance of four different robust strategies was 

analyzed by considering the extra costs and unmet 

demand.  

In [17], a variable neighborhood search-based 

algorithm has been proposed to solve the newspaper 

delivery optimization problem for a media delivery 

company in Turkey by reducing the total cost of 

carriers as a real-world OVRP problem. The results 

of the proposed algorithm on varieties of small- and 

large-scale benchmark suites show that not only the 

algorithm provides either the best known solution or 

a competitive solution for each benchmark instance 

but also the real-world company’s solutions is also 

improved by more than 10%. 

Finally, Niu et al. studied fuel consumption in the 

context of third party logistics, and the mathematical 

model of the green open vehicle routing problem 

with time windows (GOVRPTW) was described 

based on the comprehensive modal emission model 

(CMEM) in their work [18]. Furthermore, they 

proposed a hybrid tabu search algorithm involving 

several neighborhood search strategies to solve this 

problem. Computational experiments were 

performed on realistic instances based on the real 

road conditions of Beijing, China. The effect of 

empty kilometers was analyzed by comparing 

different cost components. Compared with the closed 

routes, the open routes reduced the total cost by 20% 

with both the fuel emissions costs and the 

CO2 emissions cost down by nearly 30%. For the 

experiments with congested nodes, the fuel and 

emissions cost rose by 12.3%, and the driver cost 

even increased by 31.3%. 

In the last years, some publications using different 

exact, heuristic, and metaheuristic algorithms for 

VRP and OVRP have been published. Since these 

problems are NP-hard problems, the instances with a 

large number of customers cannot be solved in 

optimality within a reasonable time period. For this 

reason, a large number of approximation techniques 

have been proposed for its solution in the recent ten 

years. These techniques have been classified into 

three main categories including the classical 

heuristics, the single solution-based metaheuristics, 

and the population-based metaheuristics. Besides, 

according to some shortcomings like its slow 

computing speed and local-convergence in ACO, the 

basic of this algorithm cannot be directly applied to 

the problem with an acceptable performance, and 

few researchers have proposed new methods to 

improve the original ACO and applied them. 

Therefore, to achieve the effectiveness and efficiency 

of ACO, we try to improve the quest for the 

performance of hybrid algorithms. As a result, in this 

work, an efficient hybrid elite ant system with tabu 

search called EACO is proposed to improve both the 

performance of the algorithm and the quality of the 

solutions. The proposed algorithm uses the elite ant 

system (EAS) for solving the VRP and OVRP 

problems and then improves the global ability of the 

algorithm. When the best-found solution is not 

changed for five times in EAS, the tabu search has 

been used as an effective local search for n best 

solutions until now (n is the number of customers for 

that instance). Then if the quality of the best solution 

of tabu search is not increased for five times, these 

solutions are considered and released with 

pheromone. These steps are continued until the stop 

condition is satisfied. The results in the fourteen 

instances proposed by Christofides and the two 

problems represented as F11 and F12 by Fisher show 

that the proposed algorithm can obtain high quality 

solutions compared to the other metaheuristic 

algorithms. 

The structure of the remainder of the paper has been 

organized as what follows. In the next sections, the 

model of the problem and the proposed EACO are 

explained, respectively. This algorithm mainly 

consists of the iteration of the three steps including n 

ants build the solution independently, apply the tabu 

search (TS) algorithm to improve the solution, and 

update the global pheromone information. In this 

section, we describe each step in more details. In 

Section 4, the proposed algorithm is compared with 

some of the other algorithms on standard problems 

belonging to the VRP and OVRP library. Some 

concluding remarks are given in the final section. 

 

2. Description and formulation 

From a graph theoretical viewpoint, we can define 

OVRP as follows. A complete undirected graph G = 

(V,E) is given (if the graph is not complete, we can 

consider the lack of each arc with a infinite size) with 
V = {0, . . . , n} and {( , ) : , , }E i j i j V i j   . 

Vertex 0 represents the depot, and the other vertices 
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represent customers. The cost of travel from vertex i 

to vertex j is denoted by ijc . A fleet of K identical 

vehicles located at the depot, and each capacity 

0Q  , is given. Each customer i has a non-negative 

demand 
iq with 0 iq Q  . Each customer must be 

serviced by a single vehicle, and no vehicle may 

serve a set of customers whose total demands exceed 

its capacity. Each vehicle route must start at the depot 

and end at the last customer it serves. The objective 

is to define the set of vehicle routes that minimizes 

the total costs such that each vehicle starts at the 

depot and ends at a customer. We present the 

following mathematical formulation for OVRP using 

variables and ijy , where ijx  takes the value of one if 

a vehicle travels directly from customer i to customer 

j, and 0 otherwise denotes the route. The flow 

variables ijy  specify the number of goods that a 

vehicle is carrying when leaves customer i to service 

customer j.  
K n n

k k

ij ij

k 1 i 0 j 0

Min c x
  

                                              (1) 

subject to  

K n
k

ij

k 1 i 0

x 1 j 1,2,...,n
 

                   (2) 

K n
k

ij

k 1 j 1

x 1 i 1,2,...,n
 

                  (3) 

n n
k k

ij ji

i 1 i 1

0 x x 1 j(k) 1,2,...,n(K)
 

              (4) 

K n K n
k k

ij ji j

k 1 i 0 k 1 i 0

y y q j 1,2,...,n
   

                  (5) 

k k k

j ij ij i ijq x y (Q q )x i, j,k 0,1,...,n (K)    
      

(6) 

n
k

i0

j 1

x 0 k 1,2,...,K


                 (7) 

 k

ijx 0,1 i, j 0,1,...,n ,i j, k 1,2,...,K           (8) 

k

ijy 0 i, j 0,1,...,n , k 1,2,...,K                (9)

        

 
 

The objective function (1) gives the sum of the total 

variable routing cost. Constraints (2) mean that only 

one arc can be entered for each customer; however, 

constraints (3) show that almost one arc can be exited 

from each customer. Constraints (4) state that if a 

vehicle visits a customer, it can remain there or 

depart from it. Equality equations (5) proved that the 

demands of all customers were fully satisfied. 

Constraints (6) state that the vehicle capacity is never 

exceeded. Constraints (7) guarantee that there is no 

arc from each customer to the depot. Constraints (8) 

describe that each arc in the network has the value 

one if it is used, and 0 otherwise. Finally, restrictions 

(9) force the flow to remain non-negative. 

 

3. Proposed algorithm 

The ant colony optimization (ACO) was inspired by 

the behavior of real ant colonies in nature in order to 

find routes between their nests and food sources. In 

1991, Dorigo et al. used this concept and proposed 

ACO to solve the combinational optimization 

problems. In this section, an efficient hybrid EACO 

is proposed to solve VRP and OVRP, in which the 

best solutions constructed by ants until now are 

ranked in each iteration. Then TS is used as an 

improved procedure. EACO has made three main 

contributions, as follow: 

 

3.1. Building solution 

The first phase of EACO is solution construction, in 

which for n groups, m ants are initially positioned on 

the depot and each ant of the colony efforts to build 

a feasible solution represented as a single route based 

on the pheromone trail and heuristic information. 

The proposed EAS presents a new transition rule to 

find the better customer for each vehicle in every 

iteration. According to the following transition rule 

in formula (10), the next node j from node i in the 

route is selected by ant k among the unvisited nodes
k

iJ ,  

 

( )
( ) ( )

,
( ) ( )

k

ij

k
i

ij ij k

i

ir ijr J

P t
t t

j j
t t

 

 

 

 


  


                       (10) 

 

where 

( ) :
ij

t  The amount of pheromone on edge joining 

nodes i and j. 

( ) :ij t  The savings of combining two nodes on one 

tour as opposed to serving them on two different 

tours. The savings of combining any two customers i 

and j are computed as

0 0ij i j ijc c c    , where node 0 is the depot and
 ijc  denotes the distance between nodes i and j. 
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:and   The control parameters. 

 

3.2. Applying TS 

The literature on algorithms tells us that in order to 

find high-quality solutions by metaheuristics, a 

powerful local search algorithm is required [19-22]. 

Therefore, among the best solutions proposed, TS is 

used as a local search algorithm until the best 

obtained solution is not improved for five iterations. 

In figure 4, a diagram for the proposed algorithm is 

shown; the second figure presents the solution 

obtained by EAS and the third one shows the solution 

after using TS. 

 

 
Figure 4. General diagram of EACO. 

 

The TS algorithm is one of the most important local 

search algorithms that can obtain high quality 

solutions for many optimization problems. This 

algorithm requires an initial solution from which the 

search process begins, namely the definition of the 

neighborhood and the consequent first move. The 

pseudo-code of TS is shown in figure 5 [23]. In 

applying TS to VRP and OVRP, most of the studies 

have paid little attention to the initial solution. 

Generally, the initial solution, i.e. assigning each 

customer to a route, is trivial or is obtained with a fast 

and well-known heuristic. We think that the main 

reasons for this are the belief that the initial solution 

has very little influence on the quality of the final 

solution, and the need for finding a starting solution 

very quickly, leaving the improved work for the TS 

algorithm. This practice has not impeded the 

attainment of very good results because TS is 

effective when correctly applied. However, in this 

algorithm, the initial solutions are calculated with 

EAS and still give an important contribution to 

enhance the final solution. In the selection of the 

method to produce the initial solution, our goal was 

to find a solution with a good structure, and less 

importance was given to its cost. Thus in this 

algorithm, n best found solutions to EAS were 

considered as the initial solutions to TS. 
 

 

Figure 5. Pseudo-code of TS. 

 

The proposed TS comprises three types of 

neighborhood moves including the 2-Opt, insert, and 

swap moves. Although all customers are the 

candidates to be moved, n number of neighborhoods 

are produced by the mentioned algorithms, in which 

30, 35, and 35 percent of them belong to the 2-Opt, 

insert, and swap exchanges, respectively. It is to be 

noted that these moves are not equally performed in 

each iteration because of diversifying the search and 

keeping the computing time at reasonable levels. In 

multiple routes, edges (i,i+1) and (j,j+1) that form a 

criss-cross and belong to different routes are 

considered, and the 2-Opt move is applied. The insert 

move transfers a node from its position in one route 

to another position in a different one. In the 
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swap move, two nodes from different routes are 

selected and changed. The same procedure is 

conducted in the case of multiple routes.  

It is to be noted that in this step, tabu list (TS) is used 

to prevent the return to the most recently visited 

solutions for a specific number of iterations (tabu 

tenure) in order to avoid cycling. At this time, 

"aspiration criteria" are used for some of the tabu 

solutions, which must now be avoided, could be of 

excellent quality, and might not have been visited. In 

the proposed algorithm, it is possible to move from 

the current solution to the best solution in its 

neighborhood that should not be in the TL or satisfies 

some aspiration criteria. For a strong diversification 

technique in the proposed algorithm, the size of TL 

is considered as a variable. In more details, if MTS 

cannot improve the best known solution for a pre-

specified number of iterations, direction of the 

proposed algorithm should change towards a part of 

solution space that has not been explored yet. 

Therefore, the length of TL is increased. After the 

diversification policy, the search process is increased 

by declining the value of TL for a number of 

consecutive iterations. At this stage, if TS cannot 

improve the solution for five iterations, all the n 

solutions are returned to EAS.  

 

2.3. Global pheromone updating 

The pheromone updating of EAS includes the local 

and global updating rules. In contrast to AS, the 

pheromone of all edges belonging to the route 

obtained by ants called local updating will not be 

used in EAS. In addition, EAS uses only global 

updating after producing the solution to VRP or 

OVRP in the current iteration. In other words, when 

quality of the best solution until now is not increased 

for five times, the proposed modified TS is used to 

improve it. After applying this algorithm for n best 

known solutions, the global updating is applied.  

In this step, the arcs belonging to the n solutions are 

released with pheromone and are encouraged with 

the constant coefficient e based on Formula (11). 

This process causes that the arcs belonging to the best 

routes until now in any iteration are more 

highlighted, and to be updated according to the value 

of the route Lf for solution f. It is to be noted that the 

less the value for Lf the more pheromones are 

released on the arcs. In the proposed algorithm, when 

the best solution until now is not changed for five 

times, the modified TS algorithm is used to improve 

the new solution.  

( 1) (1 ). ( ) ( ),
ij ij ij

f
t t t                                         (11) 

 

where:  

f: Number of the best solutions. 
: A parameter in the range [0, 1] that regulates the 

reduction of pheromone on the edges.  

 

:fT  The collection of arcs passed over by the ant f 

with the best solution until now. 

/ ( ) ( , )
( )

0 ( , )
,

f f

f

ij f

e L t i j T
t

i j T



 







             (12)    

 

e : A constant coefficient determined by the ser. 

At this stage, if the best found solution until now is 

iterated for 20 times, the algorithm ends and the 

results obtained and values up to now are considered 

as the best values and results of the algorithm. 

Otherwise, the algorithm is iterated by returning to 

the transition rule step. Figure 6 shows the pseudo-

code of the proposed algorithm.  

 

4. Computational experiments 

In this section, the results of the proposed algorithm 

are compared with other algorithms for solving the 

VRP and OVRP instances. Since EACO is a meta-

heuristic algorithm, the best solution found for ten 

independent runs is reported in the next tables for the 

VRP and OVRP instances. The algorithm is 

implemented in C programming language and runs 

on a 3.5 GHz Intel Pentium 3 processor and 4 GB of 

RAM running Microsoft Windows 7 Ultimate. There 

are 14 test problems denoted as C1–C14, taken from 

Christofides et al. in 1979 [24] and identified by their 

original number, prefixed, respectively, with the 

letters C available in the literature. The cost of an 

edge is then taken to be equal to the Euclidean 

distance and computed with real numbers. We had to 

decide the precision of computation in these 

distances. Besides, these benchmark instances with 

50–199 customers have been widely used as 

benchmarks. The first ten instances have customers 

that are randomly distributed around the depot. In the 

last four instances, the customers appear in clusters, 

and the depot is not centered. All the test instances 

are subjected to capacity constraints, while problems 

6–10, 13, and 14 also have the route length 

limitations. The information for the 14 instances is 

shown in table 1.  
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Initialize pheromone trails, alpha, beta, e, n, k=0, 

    ** ( ), ( ).s Thebest solution v Thebest value    

While (k<=10)         

Begin 
 Construct n solutions si by using formula (1) 

Rank the solutions and select the f best solutions until now. 

If vcurrent< v* (s*=scurrent;k=0),else k=k+1;k’=0; 
If (k==5)  

      {While (1)      

           Apply TS for f best solutions;  
           If vcurrent< v*  (s*=scurrent;k

’=0),else k’=k’+1; 

           If (k’==5) Break; 

      End}  
Global update pheromone for the BKSs.  

End 

Show s* and v*. 
End // procedure // 

Figure 6. Pseudo-code of EACO 

 

In this table, column instance shows the name of 

problems, and columns n and k are the numbers of 

customers and vehicles, respectively, and column 

BKS is the best known solutions obtained by other 

algorithms. Besides, columns 5-8 show the results of 

genetic algorithm (GA) [25], scatter search algorithm 

combined by ant colony optimization (SS_ACO) 

[26], particle swarm intelligent (PSO) [27], and 

genetic algorithm and particle swarm intelligent 

(GAPSO) [28]. GA is the weakest algorithm among 

all the presented algorithms in table 1 because it is 

only able to find the best solutions in one of the 

fourteen examples. In comparison with GA, 

SS_ACO has been able to find better solutions and 

come up with the best solution in 12 examples. PSO 

is another metaheuristic that has failed to improve the 

solutions in 10 examples and has come up with 

solutions similar to the ones found by GA. From the 

comparison between GAPSO and the proposed 

algorithm, it can be seen that GAPSO in the two 

examples has been able to find better solutions than 

the proposed algorithm. However, EACO also has 

found better solutions than this algorithm for two 

examples. Generally, the results of this table show 

that EACO can find the optimal solution for 11 out 

of 14 problems, and is a competitive algorithm 

compared to BKS. Furthermore, the gap between 

other problems is less than 1% and so the proposed 

algorithm finds nearly the best known solutions. 

In addition to the VRP problems, the results of the 

proposed algorithm are compared with other 

algorithms for OVRP instances. Thus the fourteen 

problems denoted as C1-C14 and two problems 

represented as F11 and F12 taken from Fisher are 

considered in table 2. In this table, the first column 

gives the instance name, and the second till seventh 

column show the results of six algorithms. Finally, to 

show the EACO performance more clearly, we 

present BKS, published in the related literature. It is 

to be noted that some algorithms use a different 

number of vehicles in this table. Besides, each 

algorithm consists of two sub-column including the 

best gained solution and CPU time. All the CPU 

times reported in the tables are in seconds. We 

compare the results obtained by the proposed 

algorithm on the above-mentioned instances with 

some algorithms including TSF and TSR based on 

TS by Fu et al. [29], TSAN based on TS by Brandao 

[4], ORTR used record-to-record travel algorithm to 

handle very large instances of the standard OVRP by 

Li et al. [30], ALNS with 50,000 iterations based on 

adaptive large neighborhood search used the 

minimum spanning tree by Pisinger and Ropke [12], 

VNS based on a variable neighborhood search by 

Fleszar [31].  

The results obtained show that with the minimum 

number of vehicles as specified by the lower bound 

of K, EMEAS finds 10 optimal solutions published 

in the literature and obtains nearly BKS for instances 

C2, C3, C5, C8, C10, and C14, and the maximum 

relative error is 1.05% for the instance C5 and the 

average relative error is 0.27%. It is to be noted that 

for each problem in the table, the proposed algorithm 

is used. Besides, the best algorithm except EACO is 

VNS because it finds the optimal solution for 5 out 

of 16 problem instances in the literature. Besides, 

TSF, ALNS 50K, ORTR, and TSAN can find 4, 4, 4, 

and 0 optimal solutions thorough these instances. 

These results indicate that EACO is much better than 

the results of these algorithms. For better 

comparisons between our algorithm and other 

algorithms for OVRP, mean gap is used and 

computed for all instances.  

The gap is computed by Formula (4), in which a zero 

value indicates that the best known solution of 

instance in the literature is equal to the best solution 

found by the algorithm (BKS1). 

Gap= ((BKS1-BKS)/BKS)*100                         (14) 

Based on table 2, the average gap for 16 instances is 

2.27%, 6.38%, 1.29%, 1.37%, and 1.58% for TSF, 

TSAN, ORTR, ALNS, and VNS, respectively. These 

results show the efficiency of the proposed algorithm 

with 0.27% compared to the mentioned five 

algorithms. Moreover, ORTR performs better than 

ALNS, and ALNS obtains much better solution than 

VNS. Therefore, the algorithms in terms of their 

performance of mean gap from the worst to the best 

are: TSAN, TSF, VNS, ALNS, ORTR, and 
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EACO. In addition, two of the solutions found in the 

examples in table 2 are presented in figure 6. It 

should be noted that in both examples, C12 (left 

figure) and F12 (right figure) presented in this figure, 

the proposed algorithm was able to find BKS. 

 

Table 1. Comparing Results of EACO with other metaheuristic algorithms. 

Instance n k L GA SS_ACO PSO GAPSO EACO BKS 

C1 50 5 - 524.61 524.61 524.61 524.61 524.61 524.61 

C2 75 10 - 849.77 835.26 844.42 835.26 835.26 835.26 

C3 100 8 - 840.72 830.14 829.40 826.14 826.14 826.14 

C4 150 12 - 1055.85 1038.20 1048.89 1028.42 1069.23 1028.42 

C5 199 17 - 1378.73 1307.18 1323.89 1294.21 1291.45 1291.45 

C6 50 6 180 560.29 559.12 555.43 555.43 555.43 555.43 

C7 75 11 144 914.13 912.68 917.68 909.68 909.68 909.68 

C8 100 9 207 872.82 869.34 867.01 865.94 865.94 865.94 

C9 150 14 180 1193.05 1179.4 1181.14 1163.41 1193.05 1162.55 

C10 199 18 180 1483.06 1410.26 1428.46 1397.51 1395.85 1395.85 

C11 120 7 - 1060.24 1044.12 1051.87 1042.11 1042.11 1042.11 

C12 100 10 - 877.8 824.31 819.56 819.56 819.56 819.56 

C13 120 11 648 1562.25 1556.52 1546.20 1544.57 1544.57 1541.14 

C14 100 11 936 872.34 870.26 866.37 866.37 866.37 866.37 

 

Table 2. Results of EACO compared to other metaheuristic algorithms. 

Instance 
TSF TSAN ORTR ALNS 50K VNS EACO 

BKS 
Cost Time Cost Time Cost Time Cost Time Cost Time Cost Time 

C1 408.5 170.2 438.2 1.7 416.06 6.2 416.06 230 416.06 17.6 408.5 3.11 408.5 

C2 587.8 202.1 584.7 4.9 567.14 31.3 567.14 530 567.14 29.0 567.14 11.35 564.06 

C3 644.3 719.9 643.4 12.3 639.74 39.5 641.76 1280 639.74 239.6 622.13 21.23 617 

C4 734.5 1610.3 767.4 33.2 733.13 128.6 733.13 2790 733.13 585.0 733.13 32.52 733.13 

C5 878.0 2060.5 1010.9 116.9 924.96 380.6 896.08 2370 905.96 292.1 879.37 55.19 870.26  

C6 400.6  128.0 416.0 1.4 412.96 10.3 412.96 310 412.96 75.8 400.6 3.75 400.6 

C7 565.7  292.4 581.0 3.4 568.49 32.2 583.19 330 596.47 22.3 560.4 10.12 560.4  

C8 638.2  987.8 652.1 10.4 644.63 53.2 645.16 1140 644.63 587.6 644.63 15.62 638.2 

C9 758.9  1635.2 827.6  25.2 756.38  195.1 757.84 1850 760.06 1094.1 752.00 35.91 752.0 

C10 891.3  1922.2 946.8 100.1 876.02 363.5 875.67 2240 875.67 1252.4 876.02 43.65 875.67 

C11 753.8 735.8 713.3 15.7 682.54 121.6 682.12 1410 682.12 231.6 682.12 16.18 682.12 

C12 549.9 413.4 543.2 7.8 534.24 32.9 534.24 1180 534.24 163.7 534.24 26.61 534.24 

C13 943.0  741.1 994.3 25.8 896.50 120.3 909.80 1160 904.04 1820.1 896.50 29.24 896.50  

C14 586.8  463.2 651.9 8.1 591.87 62.9 591.87 750 591.87 389.0 591.87 15.41 586.8 

F11 178.0 256.0 179.5 5.7 177.00 19.5 177.00 1040 178.09 140.2 175.00 6.23 175.0 

F12 789.7 1044.8 825.9 32.7 769.66 158.2 770.17 3590 769.66 1237.5 769.66 23.41 769.66 

 

Figure 6. Some of the OVRP solutions found by EACO. 
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6. Conclusion 

With the rapid development of the sharing economy, 

outsourcing logistics operations to third party 

logistics has become an efficient way of reducing the 

costs in freight transportation. It can be modeled as a 

variant of OVRP, where the vehicles do not return to 

the depot after servicing customers. This problem is 

different from most variants of vehicle routing 

problems reported in the literature, in which the 

vehicles do not return to the depot after delivering the 

last customer. The practical importance of OVRP has 

been established some years ago but it has received 

very tiny attention from scientists and researchers. In 

this research work, we created an effective hybrid 

EAS called EACO that could find very good 

solutions for the instances of VRP and OVRP in a 

short computation time. We introduced some 

modifications to improve the algorithm. In this 

algorithm, the n obtained best solutions until now are 

considered and released with pheromone. Besides, 

the proposed tabu search (TS) algorithm comprises 

three kinds of neighborhood algorithms including the 

2-Opt, 0-1, and 1-1 exchanges. These moves are 

distinguished regarding the exchanges performed to 

convert one tour into another.  

To improve the TS further, the size of tabu list is 

considered as the minimum and maximum values for 

the diversification and intensification policies, 

respectively. We compared its performance with 

other meta-heuristic algorithms published recently 

and designed for the same purpose. The results 

obtained showed that the proposed algorithm was 

efficient for both problems. For example, the average 

quality of gap was 0.49% and 0.27% for the VRP and 

OVRP instances, respectively. Besides, the average 

quality of gap for EACO was less than 1% for both 

problems when only the travel distance was 

minimized for the two instances proposed by Golden. 

The algorithm was also compared with a number of 

metaheuristic, evolutionary, local search, and nature 

inspired algorithms from the literature. The 

experimental results showed that the EACO 

algorithm was very efficient and competitive in terms 

of the solution quality. We are convinced that this 

technique will be applied in some versions of vehicle 

routing problems such as the vehicle routing problem 

with pickup and delivery or general vehicle routing 

problem in the future.  
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 نشریه هوش مصنوعی و داده کاوی

 

 

 

 رکیبی برای حل مساله مسیریابی وسیله نقلیه و نسخه باز آنیک روش فراابتکاری ت

 

  ،*2 نرگس محمودی دارانی و 1 مجید یوسفی خوشبخت

 .ریاضی، دانشکده علوم، دانشگاه بوعلی سینا، همدان، ایرانگروه  1

 .، ایرانکرجگروه ریاضی، دانشگاه ازاد اسلامی، واحد هشتگرد،  2

 01/00/7502 پذیرش؛ 10/52/7502 بازنگری؛ 72/50/7502 ارسال

 چکیده:

( است  هته رارای بستیاری از هاربررهتا رر VRP( یکی از مهمترین نسخه های مساله مسیریابی وسیله نقلیه )OVRPمساله مسیریابی وسیله نقلیه باز )

از مشتریان به همراه مقدار هالا مورر نیازشان راره شده اس  رر حالی هته یتن ناونتان از وستایل نقلیته  مجموعه ای، VRPصنع  و خدمات اس . رر 

، وسایل نقلیه لازم نیس  هته VRPبرخلاف  OVRP ظرفی  رار موجور اس .  به علاوه هزینه حره  بین انبار و مشتریان نیز راره شده اس . رر مساله

برای حتل  EACOسخ  تعلق رارند، رر این مقاله ین الگوریتم ترهیبی نمونه مورچگان به نام -NPبه انبار هالا باز نررند. چون این رو مساله به مسایل 

ن قانون جدیتد انتختاو و یتن روش اصتلاحی بروزرستانی فرمتون آنها ارایه شده اس . رر این الگوریتم برای بهبور بیشتر، الگوریتم جستجوی ممنوع، ی

جو قرار رهتد. ارایه نرریده اس . براساس این اصلاحات، الگوریتم توانسته هه از بهینه های محلی فرار هند و مناطق بیشتری از فضای نمونه را مورر جست

به بهترین جواو ها رس  پیتدا هترره است  و  برای بیشتر مسایل EACOتم مثال برای این رو مساله نشان می رهد هه الگوری 01نتایج محاسباتی روی 

   .اس رر مقایسه با ریگر الگوریتم های فراابتکاری رر معیار هیفی  جواو ها بسیار مقایسه پذیر 

 .سخ -NPمساله مسیریابی وسیله نقلیه، مساله مسیریابی وسیله نقلیه باز، الگوریتم نمونه مورچگان، جستجوی ممنوع، مسایل  :کلمات کلیدی

 


