3,680 research outputs found

    Visual Inspection Algorithms for Printed Circuit Board Patterns A SURVEY

    Get PDF
    The importance of the inspection process has been magnified by the requirements of the modern manufacturing environment. In electronics mass-production manufacturing facilities, an attempt is often made to achieve 100 % quality assurance of all parts, subassemblies, and finished goods. A variety of approaches for automated visual inspection of printed circuits have been reported over the last two decades. In this survey, algorithms and techniques for the automated inspection of printed circuit boards are examined. A classification tree for these algorithms is presented and the algorithms are grouped according to this classification. This survey concentrates mainly on image analysis and fault detection strategies, these also include the state-of-the-art techniques. Finally, limitations of current inspection systems are summarized

    AUTOMATIC OPTICAL INSPECTION-BASED PCB FAULT DETECTION USING IMAGE PROCESSING

    Get PDF
    Increased Printed Circuit Board (PCB) route complexity and density combined with the growing demand for low-scale rapid prototyping has increased the desire for Automated Optical Inspection (AOI) that reduces prototyping time and production costs by detecting defects early in the production process. Traditional defect detection method of human visual inspection is not only error prone but is also time-consuming given the growing complex and dense circuitry of modern-day electronics. Electric contact-based testing, either in the form of a bed of nails testing fixture or a flying probe system, is costly for low-rate rapid prototyping. An AOI is a non-contact test method using an image processing algorithm that quickly detects and reports failures within the PCB layer based on the captured image. A low-cost AOI system has been created using commercial off-the-shelf components specifically for low-rate production prototyping testing allowing testing of varying layers or various electronic designs without additional setup cost. Once the AOI system is physically configured, the image processing defect detection algorithm compares the test image with a defect-free reference image or by a set of pre-defined rules generated through Electronic Design and Analysis software. Detected defects are then classified into two main categories: fatal and potential. Fatal defects lead to the board\u27s rejection, while potential defects alert the operator to determine if the board should be rejected or will still satisfy pre-defined prototyping criteria. The specifications of an imaging system, camera sensor, imaging lens, and illumination set-up used in the creation of the AOI were designed considering a test PCB article already in production. The algorithm utilized is based on a non-reference defect detection method utilizing mathematical morphology-based image processing techniques to detect defects in the PCB under test

    The Use of a Convolutional Neural Network in Detecting Soldering Faults from a Printed Circuit Board Assembly

    Get PDF
    Automatic Optical Inspection (AOI) is any method of detecting defects during a Printed Circuit Board (PCB) manufacturing process. Early AOI methods were based on classic image processing algorithms using a reference PCB. The traditional methods require very complex and inflexible preprocessing stages. With recent advances in the field of deep learning, especially Convolutional Neural Networks (CNN), automating various computer vision tasks has been established. Limited research has been carried out in the past on using CNN for AOI. The present systems are inflexible and require a lot of preprocessing steps or a complex illumination system to improve the accuracy. This paper studies the effectiveness of using CNN to detect soldering bridge faults in a PCB assembly. The paper presents a method for designing an optimized CNN architecture to detect soldering faults in a PCBA. The proposed CNN architecture is compared with the state-of-the-art object detection architecture, namely YOLO, with respect to detection accuracy, processing time, and memory requirement. The results of our experiments show that the proposed CNN architecture has a 3.0% better average precision, has 50% less number of parameters and infers in half the time as YOLO. The experimental results prove the effectiveness of using CNN in AOI by using images of a PCB assembly without any reference image, any complex preprocessing stage, or a complex illumination system. Doi: 10.28991/HIJ-2022-03-01-01 Full Text: PD

    Automatic PCB Inspection Systems

    Get PDF
    There are more than 50 process steps required to fabricate a printed circuit board (PCB). To ensure quality, human operators simply inspect the work visually against prescribed standards. The decisions made by this labor intensive, and therefore costly, procedure often also involve subjective judgements. Automatic inspection systems remove the subjective aspects and provide fast, quantitative dimensional assessments. Machine vision may answer the manufacturing industry\u27s need to improve product quality and increase productivity. The major limitation of existing inspection systems is that all the algorithms need a special hardware platform to achieve the desired real-time speeds. This makes the systems extremely expensive. Any improvements in speeding up the computation process algorithmically could reduce the cost of these systems drastically. However, they remain a better option than increasingly error prone, and slow manual human inspectio

    On flexibly integrating machine vision inspection systems in PCB manufacture

    Get PDF
    The objective of this research is to advance computer vision techniques and their applications in the electronics manufacturing industry. The research has been carried out with specific reference to the design of automatic optical inspection (AOI) systems and their role in the manufacture of printed circuit boards (PCBs). To achieve this objective, application areas of AOI systems in PCB manufacture have been examined. As a result, a requirement for enhanced performance characteristics has been identified and novel approaches and image processing algorithms have been evolved which can be used within next generation of AOI systems. The approaches are based on gaining an understanding of ways in which manufacturing information can be used to support AOI operations. Through providing information support, an AOI system has access to product models and associated information which can be used to enhance the execution of visual inspection tasks. Manufacturing systems integration, or more accurately controlled access to electronic information, is the key to the approaches. Also in the thesis methods are proposed to achieve the flexible integration of AOI systems (and computer vision systems in general) within their host PCB manufacturing environment. Furthermore, potential applications of information supported AOI systems at various stages of PCB manufacturing have been studied. It is envisaged that more efficient and cost-effective applications of AOI can be attained through adopting the flexible integration methods proposed, since AOI-generated information can now be accessed and utilized by other processes

    Spring contact probes: wear characteristics testing for electrical and mechanical parameters

    Get PDF
    The study considers the development and evaluation of spring contact probes used for automated testing of printed circuit boards (PCBs) and assemblies. It considers the evolution of circuit technology which originated from the introduction of the thermionic valve at the beginning of the century. Since the introduction of the integrated circuit in the 1960's, the industry has seen considerable advances in integrated and printed circuit miniaturisation with its associated effect on the testability of the completed assembly. The close spacing between the tracks and pads within the printed circuit board, which is possibly loaded on both sides with integrated circuits and other components with fine pitch termination spacings, has initiated the rapid development of a specialised electronic test industry to ensure product quality. [Continues.

    Earth resources technology satellites. Volume 10 - Soldering program plan Final report

    Get PDF
    Conductor to terminal soldering and printed circuit soldering for Earth Resources Technology Satellit

    PCB Quality Metrics that Drive Reliability (PD 18)

    Get PDF
    Risk based technology infusion is a deliberate and systematic process which defines the analysis and communication methodology by which new technology is applied and integrated into existing and new designs, identifies technology development needs based on trends analysis and facilitates the identification of shortfalls against performance objectives. This presentation at IPC Works Asia Aerospace 2019 Events provides the audience a snapshot of quality variations in printed wiring board quality, as assessed, using experiences in processing and risk analysis of PWB structural integrity coupons. The presentation will focus on printed wiring board quality metrics used, the relative type and number of non-conformances observed and trend analysis using statistical methods. Trend analysis shows the top five non-conformances observed across PWB suppliers, the root cause(s) behind these non-conformance and suggestions of mitigation plans. The trends will then be matched with the current state of the PWB supplier base and its challenges and opportunities. The presentation further discusses the risk based SMA approaches and methods being applied at GSFC for evaluating candidate printed wiring board technologies which promote the adoption of higher throughput and faster processing technology for GSFC missions
    corecore