

н нам на н

•

.

# SPRING CONTACT PROBES, WEAR CHARACTERISTICS TESTING FOR ELECTRICAL AND MECHANICAL PARAMETERS

by

## MICHAEL ELSTON

A Master's Thesis submitted in partial fulfilment of the requirements for the award of Degree of Master of Philosphy of the Loughborough University of Technology

January 1990

©Michael Elston 1989...

# 49318502

| Laura | and a second s |
|-------|------------------------------------------------------------------------------------------------------------------|
| ofT   | ochnology Utwary                                                                                                 |
| Dria  | An 90                                                                                                            |
| Cirs  |                                                                                                                  |
| 100   | 09423402                                                                                                         |

¥

## ACKNOWLEDGEMENTS

The author wishes to thank Professor I. R. Smith, Head of the Department of Electronic and Electrical Engineering for permission and encouragement to complete the project. I am also most grateful to Dr R. Jones of the Department of Manufacturing Engineering for his choice of subject advice and guidance throughout the unsupervised study. An acknowledgement is extended to Multiprobe Ltd., Bollington, Cheshire for help and advice received. I would like to acknowledge the help given by Mr D. Walters for his advice and assistance on the Epic Computer and to Mr J. T. W. Smith with respect to Photography and Metrology during the assessment of the effects of wear on the mechanical parameters. Acknowledgements are due to Mr A.D. Bailey for his advice and help in low resistance measurement, to Mr F. Page for the work on the (SEM), to Mr D. W. Hurrell for help during the lengthy experimental programme and to Mr D. Womersley for advice and encouragement throughout.

My final thanks are extended to my wife for her great efforts and tenacity in overcoming the hidden gremlins within the wordprocessor software and also for her sustained support and encouragement from the early stages of the project.

#### Thesis Title:

Spring Contact Probes, Wear Characteristics Testing for Electrical and Mechanical Parameters.

#### Synopsis.

The study considers the development and evaluation of spring contact probes used for automated testing of printed circuit boards (PCBs) and assemblies. It considers the evolution of circuit technology which originated from the introduction of the thermionic valve at the beginning of the century. Since the introduction of the integrated circuit in the 1960's, the industry has seen considerable advances in integrated and printed circuit miniaturisation with its associated effect on the testability of the completed assembly. The close spacing between the tracks and pads within the printed circuit board, which is possibly loaded on both sides with integrated circuits and other components with fine pitch termination spacings, has initiated the rapid development of a specialised electronic test industry to ensure product quality.

Automated test equipment (ATE) has evolved to satisfy the demand for rapid testing of printed circuit boards which are becoming loaded with more sophisticated and complex components. The ATE system is computer based, controlling a range of signal injection and measurement units, thus replacing signal generators, oscilloscopes and meters and enabling faults to be rapidly located down to component level.

4

In order to identify and locate faults rapidly, a connection between the ATE and the PCB must be established for each land or termination point on the unit under test (U.U.T.). This interface normally comprises of a wiring harness and test fixture, loaded with spring probes enabling rapid repetitive contact onto the test point of each U.U.T.

There are often problems encountered during automated testing of PCBs, the majority of which are due to spring loaded test probes not establishing a repetitive low impedance contact onto the U.U.T. test lands. This may be caused by a number of factors such as probe wear or contamination and misalignment. Unfortunately no standards have been established for the specification of test probes. This study analyses the operation and performance of the probes and an experimental method for the evaluation of probe characteristics during life cycle tests has been developed.

Extended life tests were conducted on a range of probe samples with the results showing the breakdown of probe resistance values during the life cycle. The work emphasises the significant effect of interfacial contact insulating layers developing on contact surfaces, and its effect on the variability of the results.

## LIST OF FIGURES

|   | ٠ | ٠ | ٠ |
|---|---|---|---|
| v | 1 | ŧ | 1 |
| • | 4 |   |   |

## CHAPTER 1: INTRODUCTION

| 1.1          | ELECTRONIC CIRCUIT DEVELOPMENTS                                    | 1                       |
|--------------|--------------------------------------------------------------------|-------------------------|
| 1.1.1        | The Introduction and Development of Printed Wiring Boards          | 2                       |
| 1.1.2        | Wired Circuit Boards                                               | 4                       |
| 1.1.3        | Printed Circuit Production Processes                               | 5                       |
| 1.2          | INTEGRATED CIRCUIT DEVELOPMENT                                     | 7                       |
| 1.2.1        | Hybrid Circuits                                                    | 9                       |
| 1.3          | PRINTED CIRCUIT TESTING                                            | 10                      |
| 1.3.1        | Automated Test Equipment Fault Coverage                            | 14                      |
| 1.3.2        | Unverifiable Faults                                                | 15                      |
| 1.3.3        | Fault Spectrum                                                     | 16                      |
| 1.3.4        | The Test Fixture, A Preliminary Description                        | 17                      |
| 1.3.5        | Test Probe Construction                                            | 23                      |
| 1.3.6        | Surface Mounting on Both Sides of the PCB                          | 25                      |
| <b>I.3.7</b> | Reasons & Problems Encountered in the Testing of PCBs & Components | 25                      |
| 1.4          | ECONOMIES OF QUALITY ASSURANCE                                     | 26                      |
| 1.5          | METHODS OF TESTING COMPONENTS & PCBs                               | 29                      |
| 1.5.1        | PCB Board Testing                                                  | 31                      |
| 1.6          | ADVANTAGES OF ATE                                                  | 34                      |
| 1.7          | FIXTURING METHODS AND PROBLEMS                                     | 36                      |
| 1.8          | SPRING TEST PROBES                                                 | 42                      |
| 1.8.1        | Probe Performance                                                  | 49                      |
| 1.8.2        | Route Taken by the Current in the Probe Assembly                   | 56                      |
| 1.8.3        | Probe Head to Target Resistance                                    | 56                      |
| 1.8.4        | The Mechanical Effects of Probe Wear                               | <b>5</b> 7 <sub>.</sub> |
| 1.8.5        | Spring Materials                                                   | 57                      |

## CHAPTER 2: THEORETICAL APPROACH

| 2.1   | GENERAL                                       | 58   |
|-------|-----------------------------------------------|------|
| 2.2   | ELECTRICAL RESISTANCE MEASUREMENT             | 63   |
| 2.3   | ENVIRONMENTAL CONTAMINATION OF PROBES         | 63   |
| 2.3.1 | Testing in the Fixture                        | 66   |
| 2.3.2 | Probe Life Simulation Testing Machine         | 66   |
| 2.4   | MEASUREMENT OF LOW OHMIC RESISTANCE           | 67   |
| 2.4.1 | Test Current for Resistance Measurement       | 70   |
| 2.5   | DURABILITY OF LIFE SIMULATION MACHINE DESIGN  | 70   |
| 2.6   | TEST MACHINE INSTRUMENTATION                  | 71   |
| CHAI  | TER 3: THE DEVELOPMENT AND MANUFACTURE OF THE |      |
|       | OF THE EXPERIMENTAL TESTING MACHINE           |      |
| 3.1   | GENERAL                                       | . 72 |
| 3.2   | ELECTRO MECHANICAL DRIVE SYSTEM               | 72   |
| 3.3   | CONSTRUCTION AND ASSEMBLY OF BASE STRUCTURE   | 73   |
| 3.4   | ELECTRICAL AND ELECTRONIC CONTROLS DEFLECTION |      |
|       |                                               |      |

|       | COUNTER                      | 76 |
|-------|------------------------------|----|
| 3.4.1 | Probe Resistance Measurement | 76 |
| 3.4.2 | Control System               | 81 |

## CHAPTER 4: EXPERIMENTAL PROCEDURE

| 4.1   | GENERAL                                           | 90 |
|-------|---------------------------------------------------|----|
| 4.2   | CALIBRATION OF RESISTANCE MEASURING SYSTEM        | 90 |
| 4.3   | MEASUREMENT OF THE SPRING PROBES MECHANICAL       |    |
|       | PARAMETERS                                        | 92 |
| 4.3.1 | Measurement of Probe Spring Force                 | 92 |
| 4.4   | INSERTING THE PROBES INTO THE MACHINE RECEPTACLES | 93 |
| 4.4.1 | Probe Deflection Adjustment                       | 94 |
| 4.4.2 | Probe Cycling Time                                | 94 |

CHAPTER 5: RESULTS

-

.

•

| 5.1   | GENERAL                                                  | 97  |
|-------|----------------------------------------------------------|-----|
| 5.1.1 | The Experiments                                          | 99  |
| 5.2   | PROBE TESTING PERFORMANCE EVALUATION                     | 100 |
| 5.2.1 | Average Resistance Values                                | 101 |
| 5.3   | PRELIMINARY TESTING                                      | 118 |
| 5.4   | CONTACT RESISTANCE                                       | 119 |
| 5.4.1 | The Increase of Contact Resistance                       | 124 |
| 5.4.2 | New Probe Contamination                                  | 127 |
| 5.4.3 | The Development of Dark Marks on PCB Target              | 134 |
| 5.4.4 | Contact Resistance Variation                             | 134 |
| 5.4.5 | The Formation of Insulating Coatings During Testing      | 136 |
| 5.5   | POSSIBLE ARC DAMAGE TO THE PROBE TIPS                    | 137 |
| 5.5.1 | Probe Internal Resistance                                | 137 |
| 5.5.2 | Relaxed and Compressed Probe Resistance                  | 144 |
| 5.6   | HIGH VALUES IN FLAT AND ANGLED TARGETS                   | 147 |
| 5.6.1 | Probe Performance Comparisons of Flat and Angled Targets | 149 |
| 5.7   | MECHANICAL PERFORMANCE EVALUATION                        | 151 |
| 5.7.1 | Mechanical Parameters                                    | 153 |
| 5.7.2 | Probe Resistive Performance after 1.2 Million Cycles     | 174 |
| 5.8   | STAINLESS STEEL TARGET                                   | 175 |
| 5.9   | GENERAL OBSERVATIONS                                     | 177 |
| CHAF  | TER 6: DISCUSSION                                        |     |
| 6.1   | DISCUSSION OF TEST RESULTS                               | 178 |
| 6.1.1 | Repetitive Simulated Machine Testing                     | 178 |
| 6.1.2 | The Correct Probe for a Particular Target                | 179 |
| 6.2   | PROBE INTERNAL RESISTANCE MONITORING                     | 180 |
| 6.2.1 | Probe Spring Pressure                                    | 181 |
|       |                                                          |     |

95

vi

| 6.2.2 | Side Play                                            | 183 |
|-------|------------------------------------------------------|-----|
| 6.3   | INCREASING CONTACT RESISTANCE                        | 184 |
| 6.3.1 | Probe Performance During Testing                     | 187 |
| 6.3.2 | Contact Resistance Concerning High & Low Energy      | 188 |
| 6.3.3 | Performance Variations for Test Probes               | 192 |
| 6.4   | MECHANICAL FAILURE                                   | 193 |
| 6.4.1 | Contact Cleaning                                     | 194 |
| 6.5   | TEST PROBES THE WEAK LINK IN MOST ATE SYSTEMS        | 195 |
| 6.6   | POSSIBLE ALTERNATIVES FOR RESOLVING TEST PROBLEMS IN |     |
|       | THE FUTURE                                           | 199 |
| 6.6.1 | Contactless Probing                                  | 199 |
| 6.6.2 | The 3D-X Ray PCB Inspection System                   | 202 |
| 6.6.3 | Automatic Visual Testing                             | 203 |
| 6.7   | PROBLEMS OF PROBE TESTING                            | 204 |
|       |                                                      |     |
| CHAF  | TER 7: CONCLUSIONS AND FURTHER WORK                  |     |
| 7.1   | GENERAL                                              | 207 |
|       |                                                      |     |

| 207 |
|-----|
| 208 |
| 209 |
| 210 |
|     |

| REFERENCES | 212 |
|------------|-----|
| APPENDICES | A1  |

## LIST OF FIGURES

| Fig. No | o. Title                                                       | Page |
|---------|----------------------------------------------------------------|------|
| 1.1     | Bed of Nails Fixture                                           | 11   |
| 1.2     | Spring Loaded Probes & Receptacle                              | 12   |
| 1.3     | Vacuum Fixture                                                 | 18   |
| 1.4a    | Mechanical Fixtures                                            | 19   |
| 1.4b    | Manual Test Fixture Diagram                                    | 20   |
| 1.5a    | Pneumatic Test Fixture                                         | 21   |
| 1.5b    | Pneumatic Test Fixture Diagram                                 | 22   |
| 1.6     | Component Diagram of Probe Assembly                            | 24   |
| 1.7     | A Clam Shell Double Sided Fixture                              | 38   |
| 1.8     | Interchangeable Probe and Receptacle                           | 45   |
| 1.9     | Old Style Probe with External Spring                           | 45   |
| 1.10    | Different Style Probe Heads                                    | 47   |
| 1.11    | Contact Surface Asperities                                     | 51   |
| 1.12    | Contact Contamination                                          | 51   |
| 1.13    | Gold Contact Surface                                           | 52   |
| 1.14    | Contaminated Contact Surface                                   | 52   |
| 1.15a   | Resistance Analogy Diagram                                     | 53   |
| 1.15b   | PCB - ATE Interface                                            | 53   |
| 1.16a   | Probe Manufacturers Average Resistance Projections             | 54   |
| 1.16b   | Probe Manufacturers Average Resistance Projections             | 55   |
| 2.1a    | Test Probe Points                                              | 59   |
| 2.1b    | Typical Probe Types shown in their Normal Testing Environment. | 60   |
| 2.2     | Angled Target Diagram                                          | 62   |
| 2.3     | Probe Manufacturers Projected Performance Graph                | 64   |
| 2.4     | Random Variable High Resistance Performance Graph              | 65   |
| 2.5     | Four Wire or Kelvin Method Resistance Measurement              | 68   |

| 2.6   | Resistance Measurement Four Wire Method                              | 69  |
|-------|----------------------------------------------------------------------|-----|
| 3.1   | Cam Deflection Mechanism & Side Elevation                            | 74  |
| 3.2a  | The General Assembly Front Elevation                                 | 75  |
| 3.2b  | The Infrared Source Sensor Counting Mechanism                        | 75  |
| 3.3   | Probe Deflection Adjustment Mechanism                                | 77  |
| 3.4   | General Assembly Plan Elevation including Front Angled Control Panel |     |
|       | layout                                                               | 78  |
| 3.5   | Probe Deflection Counter and Stepper Motor Drive Systems             | 79  |
| 3.6   | Probe Testing Machine Resistance Measuring Circuit                   | 82  |
| 3.7   | Power and Rectification Wiring Diagram                               | 84  |
| 3.8   | P.S.U. Smoothing and Regulation                                      | 85  |
| 3.9   | Electronic/Electrical Block Diagram                                  | 86  |
| 3.10a | Front View of Probe Testing Machine                                  | 87  |
| 3.10b | Side View of Probe Testing Machine                                   | 87  |
| 3.11  | Side View of Probe Testing Machine                                   | 88  |
| 3.12a | Probes & Recepticles Fitted into Epoxy Glass Base Plate              | 88  |
| 3.12b | PCB/ATE Contact Interface                                            | 89  |
| 4.1   | Low Resistance Measurement Instrumentation                           | 91  |
| 5.1   | Probe 7. Test 105. Cat.1. Diagram.                                   | 102 |
| 5.2   | Probe 9. Test 105. Cat.2. Diagram                                    | 102 |
| 5.3   | Probe 10. Test 105. Cat.3. Diagram                                   | 103 |
| 5.4   | Probe 2. Test 103. Cat.4. Diagram                                    | 103 |
| 5.5   | Probe 5. Test 103. Cat.5. Diagram                                    | 104 |
| 5.6   | Probe 1. Test 103. Cat.6. Diagram                                    | 105 |
| 5.7   | Probe 9. Test 102. Cat.7. Diagram                                    | 106 |
| 5.8   | Probe 7. Test 106. Cat.8. Diagram                                    | 107 |
| 5.9   | Probe 4. Test 105. Cat.9. Diagram                                    | 108 |
| 5.10  | Probe Performance Categories                                         | 109 |
| 5.11  | Test 101. Flat CU Target Table                                       | 110 |
| 5.12  | Test 102. 45 Degrees Angled Target Table                             | 111 |
| 5.13  | Test 103. Angled Target Table                                        | 112 |

/.

| 5.14  | Test 104. Flat Target Table                             | 113 |
|-------|---------------------------------------------------------|-----|
| 5.15  | Test 105. Flat Target Table                             | 114 |
| 5.16  | Test 106. 60 Degrees Angled Target Table                | 115 |
| 5.17  | Test 102 Averaged over Ten Probes                       | 116 |
| 5.18  | Test 103 Averaged over Ten Probes                       | 116 |
| 5.19  | Test 105 Averaged over Ten Probes                       | 117 |
| 5.20  | Test 106 Averaged over Ten Probes                       | 117 |
| 5.21a | Insulating Contamination on Probe Contact               | 120 |
| 5.21b | Insulating Contamination on Cu Target                   | 120 |
| 5.22  | High Value Events Reverting to Normal Performance       | 121 |
| 5.23  | Summary of Test Results for Contact Resistance          | 122 |
| 5.24  | Summary of Probes in their categories                   | 123 |
| 5.25  | Summary of Performance Categories                       | 125 |
| 5.26  | Contact Fretting on Copper Target                       | 126 |
| 5.27a | Probe Particulate Contamination                         | 128 |
| 5.27b | Probe Particulate Contamination                         | 128 |
| 5.27c | Contact Target Surface Contamination                    | 129 |
| 5.27d | Contact Target Surface Contamination                    | 129 |
| 5.28a | Worn Probe Plunger Showing Wear Debris                  | 130 |
| 5.28b | Excessive Probe Wear Restricted to One Side Only        | 130 |
| 5.28c | Probe Plunger Showing Loose Wear Debris                 | 131 |
| 5.28d | Loose Wear Debris Ejected from the Probe Structure      | 131 |
| 5.29  | Elemental X ray showing Wear through Tip to Copper Base | 132 |
| 5.30  | High Initial Readings Graph                             | 133 |
| 5.31a | Dark Marks on PCB Target Area                           | 135 |
| 5.31b | Electron Micrograph Showing Dark Marks on PCB Surface   | 135 |
| 5.32  | Internal/Interfacial Values Test 101                    | 138 |
| 5.33  | " " Test 102                                            | 139 |
| 5.34  | " " Test 103                                            | 140 |
| 5.35  | " " Test 104                                            | 141 |
| 5.36  | " " Test 105                                            | 142 |

.

| 5.37          | " " Test 106                                             | 143 |
|---------------|----------------------------------------------------------|-----|
| 5.38          | Contact Cleaning Table Test 106                          | 145 |
| 5.39          | Stainless Steel Contact Cleaning Table                   | 146 |
| 5.40          | Probe Deflection Non Linear Performance Test 109         | 148 |
| 5.41a         | Spring Worn Through Probe Barrel                         | 150 |
| 5.41Ъ         | Plunger Badly Worn                                       | 150 |
| 5.41c         | Probe Bent Due to Jammed Assembly                        | 150 |
| 5.42          | Summary of Mechanical Events                             | 152 |
| 5.43          | Test 108. Test Spring Force Values Table                 | 154 |
| 5.44          | Test 101. Test Spring Force Values Table                 | 155 |
| 5.45          | Comparison of Spring Values Tests 107/108                | 156 |
| 5.46          | Mechanical Performance. Test 101                         | 158 |
| 5.47          | " " Test 102                                             | 159 |
| 5.48          | " " Test 103                                             | 160 |
| 5.49          | " " Test 104                                             | 161 |
| 5.50          | " " Test 105                                             | 162 |
| 5.51          | " " Test 106                                             | 163 |
| 5.52          | " " Test 107                                             | 164 |
| 5.53          | " " Test 108                                             | 165 |
| 5.54          | " " Test 109                                             | 166 |
| 5.55          | " " Test 110                                             | 167 |
| 5.56          | Spring Force Measurement over Probes Range of Deflection | 168 |
| 5.57a         | Chipped Probe Point Showing Rocklike Copper Substrate    | 170 |
| <b>5.5</b> 7b | Probe Head Contamination and Wear                        | 170 |
| 5.58a         | Probe Internal Wear Debris Predominately Copper          | 172 |
| 5.58b         | Probe Internal Wear Debris Predominately Copper          | 172 |
| 5.59          | Xray Photographs Showing Normal & Broken Springs         | 173 |
| 5.60          | Stainless Steel/Copper Target Comparison Graph           | 176 |
| 6.1           | Wear Debris Attached to Probe Plunger                    | 182 |
| 6.2           | Wear Debris Expelled from the Probe Assembly             | 182 |
| 6.3a          | Particulate Airborne Contamination                       | 189 |

٠

| 6.3b | Particulate Airborne Contamination     | 189 |
|------|----------------------------------------|-----|
| 6.4  | J.H.Whitley Table on Voltage Breakdown | 191 |
| 6.5  | New Tip Style to Deal with Dirty Pads  | 196 |
| 6.6  | ATE - UUT Interface Connecting Wiring  | 197 |
| 6.7  | Probe Component Contact Junctions      | 198 |

~

CHAPTER 1

#### **1 INTRODUCTION**

#### **1.1 ELECTRONIC CIRCUIT DEVELOPMENTS**

One of the earliest electronic devices to be mass produced was the radio receiver in the 1920s. In those days the active devices used in the circuits were thermionic valves, which were some-what larger than the transistors and integrated circuits used today. The electronic circuits of the early radios were generally constructed by using a metal chassis onto which all the main components were fixed. The chassis was also used as a ground plane for shielding, incorporating a common ground earth return path. The connections between the terminals of the main components were achieved by wiring, which was supported by insulated stand offs known as tag strips. Small components such as resistors, capacitors, and inductors could be soldered between the terminals of the main components and the tags or tag strips. If a number of wires took the same route, they would be bound together by lacing cord to form a wiring harness to give better rigidity and tidiness. By using insulated clips the wiring harness would be secured to the chassis using screws. As all the wiring was carried out by hand, there were generally some variations between wiring resistors, capacitors and inductors to achieve the exact component values specified in the design.

Chassis built electronic circuits became standard throughout the world for consumer domestic equipment, as well as industrial electronic instruments and military equipment, until the introduction of the printed circuit around 1940. Routine checking of wiring relied on resistance and insulation testing before most of the components were inserted to minimise alternate parallel paths within the circuitry. Tested components were used to ensure that the circuit was likely to work first time, provided the correct value components had been inserted in the right positions.

Circuit assembly methods using the chassis as a base for components and wiring were not well suited to automated production, for they were labour intensive, requiring soldering and testing to be done by hand. A number of wiring faults related to human error would be unavoidable, as each unit was wired individually, tracking down and correcting faults would be expensive for it would require skilled electronics technicians after the final test routine. By comparison the printed circuit design, once tried and tested, would continue to produce a high percentage of quality circuit boards, each circuit produced being an exact copy of the original design. Automation can be used in most if not all of the production processes, for example, soldering, component insertion and testing.

#### 1.1.1 The Introduction and Development of Printed Wiring Boards

Todays acceptance and widespread use of the printed wiring or circuit board, has caused a revolution in the manufacture of electronic wiring and component assemblies in the electronic manufacturing industry. Its introduction has made it possible to manufacture more complex electronic circuits, while at the same time achieving increased miniaturisation. In 1969 Draper stated, that in the future printed wiring would be considered to be one of the major advances of the 20th Century. Without printed wiring there would be little advance in the electronics industry (1).

The initial ideas relating to the printed circuit were conceived between the years 1923 – 1939. During that period a large number of patents were granted describing different methods, including stamping out metal foil, the pouring of low melting point metal into grooves, metal spraying, die casting, electro- deposition and the chemical etching of metal foil. Around 1940 Dr Paul Eisler became interested in the etched foil technique and a number of patents were subsequently granted, however, practical exploitation of this technique was delayed until after the second world war, due to lack of interest from industry and government (2).

Dr Eisler claimed to be the inventor of printed circuit wiring, although this has been contested. He could claim that the impetus which his work gave to the development of printed wiring was significant. It is evident that miniaturisation of electronic assemblies, could not have been achieved without the development of printed wiring (1-3). Dr Eisler is said to have produced the first printed circuit with Parker in 1942, followed by a further 48

in 1943. The circuits produced were radio assemblies using thermionic valves. The British Government and the radio industry showed little interest despite the impetus provided by the Second World War. Unfortunately, some of the early attempts to produce printed circuits, concentrated on printing almost all of the components in one operation, including all the connecting wiring, which further delayed the development of the printed wiring system in use today (2). In 1947, it was revealed that the U.S. industry had used the principles of printed wiring and had applied them in military projects during the Second World War. One of the first applications was for proximity fuses for a mortar shell, the circuit was printed in silver on a ceramic base by means of a stencil screen process. The circuit contained resistors and capacitors in addition to the printed wiring. Mass production of the printed circuit boards began in 1945, and eventually production rates of 5000 assemblies a day were achieved (2-4).

Until 1947 it appeared that no UK firm or government department had used printed circuit board technology in production. The 1947 release of information brought about a significant change in attitude, allowing printed circuits to become established as an important feature of products in the armaments and consumer industry. In the U.S.A, the Bureau of Standards undertook a study of printed circuit applications, issuing two publications in succession. The second being the proceedings of the first technical symposium on printed wiring boards, held on October 15th 1947, in Washington DC. The proceedings did not cover earlier development work carried out by Eisler in the UK (4). The etched foil technique which differs very little from the conventional process of engraving, has become the most well established method of producing the majority of printed circuits, however, other techniques were gaining popularity, notably plated circuits (2).

After 1947 there was a rapid development in printed circuits, followed by the invention of the point contact transistor by Bardeen and Brattain (5-6-7). A year later William Shockley working in the Bell research laboratories, invented the junction transistor (8). The transistor was significantly smaller than the thermionic valve and was therefore more suited to PCB application, its use resulted in considerable reduction in circuit size. It is worth noting, that soon after the transistor became established as the active device in the majority of electronic circuits, virtually all electronic manufacturers started using printed wiring assemblies. The transistor radio receiver introduced in the 1950's was the first device using only transistors, rather than a mixture of transistors and valves. During the transitionary period circuits were designed, using both valve and transistor technology in the same circuit, but by using only transistors, significant miniaturisation was achieved. Reduced power consumption greatly extended battery life on portable equipment, as there were no cathodes which required heating. In addition most thermionic valves had only a relatively short life time, compared with the transistor which was more robust.

## 1.1.2 Wired Circuit Boards

Alternative techniques to printed wiring boards have been tried, but have not become established as a viable alternative. One example is known as strip wiring where a punched metal strip is used, having teeth which are pushed into holes in the insulating board, thus securing the strip to the board. The components are then inserted and clinched over the strips before dip or wave soldering. Another technique is wrapped wiring; component leads are wrapped around a rectangular tag in the form of a U or I shape, while interconnecting wire is wrapped around the tags to form connections between circuit components. The pierced matrix board is another method in use, today, mainly as a prototype bread board system (this has been used in the past for production). Double or single sided pins are inserted into the holes to support the components and interconnecting wiring joints are hand soldered. This method allows components to be mounted on both sides of the board between the double sided matrix pins. The circuit acquires a rather bulky appearance compared with the double sided printed circuit board due to the components being spaced off the board by the pins. Another method of constructing circuits is by using matrix board where the component leads are inserted through the holes, thereby soldering component and interconnecting wires on the lower side of the board, leaving components on the upper side only. A further method of circuit construction, is the use of strip board usually known as "vero board", its structure is based on an insulating substrate with parallel copper tracks pierced at fixed points, ready for component lead insertion before soldering. Individual circuits are formed by cutting and bridging the tracks with jump wires to form the desired circuit configuration, it is in use today for one off prototype wiring systems. Probably one of the most sophisticated methods of board production is the multiwire system where a special machine lays down insulated wires onto a board covered in "glue". Many wires can be overlaid with the interconnection provided by drilled holes. This method is expensive but allows a high degree of flexibility particularly for prototype work (9).

From 1950 progressive development in component miniaturisation has taken place, resulting in increased circuit and component density. Some of the more notable developments are: the double sided printed circuit board; followed by the plated through hole process; the multilayer circuit boards; surface mounting of components on both sides of the board. It should be noted at this stage that the developments in printed wiring boards has resulted in more complex circuits, which also means that considerable skill is required to test them.

1.1.3 Printed Circuit Production Processes

Most processes start with a copper-clad insulating substrate material. Early circuits used paper or paper/cloth impregnated with phenolic resin, which is still in use today. Other materials more recently introduced, are the range of glass reinforced plastics (GRP). In the form of woven cloth, glass is combined with phenolic, polyester, epoxide, melamine or silicone resins. Epoxide/glass cloth laminates offer the best compromise between mechanical, thermal and electrical properties at reasonable cost. The good dielectric loss characteristics and high insulation resistance are maintained under high humidity (10). These materials in general, have better electrical and mechanical properties, but tend to be more expensive.

A number of methods have been used for producing the conductive tracks, the most crude have been mechanical methods, where the foil was cut with a sharp knife and the copper stripped off by hand (11). Mechanical engraving has been used for "one-offs" and small production runs where shallow grooves, just deep enough to remove the foil, are cut by means of a rotary tool similar to an end mill, the width of the groove being equal to the diameter of the tool (11). The etched foil process first used in Britain in the early 1940s by Eisler is now the most established process in use today. Etching is a chemical process whereby, all the unnecessary copper is removed chemically from the laminate, while the copper which is protected by an etch resist is retained and forms the conductor pattern itself (12-13).

There are various methods of depositing an etchant resist pattern on the copper surface of the board, some using printing as a basis for the transfer of an image, others using photo sensitive resist coatings in the form of a varnish or a polymer film. The screen printing technique is the oldest and simplest method of printing an etchant resist circuit pattern on the copper clad board, it is necessary to print a positive image on the copper foil. It may be used to deposit either a conducting paint, or alternatively, an etchant resisting paint or ink. Various other printing methods have been used e.g. wood block, offset-litho, but they have not resulted in much success in production. Stencil screen superiority lies principally in its ability to provide a deposit of adequate thickness, resulting from hand or photographic preparation of the stencil. The resolution achieved by screen printing is inadequate for boards with narrow conductors and close spacing (12).

In order to overcome the limitations imposed by screen printing, photo resist methods are now established for the production of the majority of circuit boards. The technique of forming an etchant resist by exposure to light, has a long history and in common with many systems now used in the electronics industry, owes its beginning to the pioneers of photography and printing. In 1824 Nuephore Nie'pce found that a natural bitumen was sufficiently light sensitive to harden under exposure to light, the non exposed areas being dissolved away with solvent. Fifteen years later, Mungo Ponton discovered, that a potassium dichromate would produce an image by exposure and this principle was used by Fox Talbot, for his "photographic engraving process" in 1852 (14-15).

Current photo resists in use are based on solvent soluble copolymers in the form of liquid varnish, or a dry polymer film, which is applied to the board as a thin film. Commonly used photo resists are negative acting and polymerise on exposure to ultraviolet light, becoming insoluble to the solvent developers which dissolve away the areas of non polymerised film, leaving a bare copper pattern ready to be etched away, the rest of the pattern being protected by the resist film. Image transfer is from a photo sub master, using ultraviolet light transferred to the board, using contrast printing techniques. Photo mechanical processes are economical, provide excellent line definition with good dimensional stability, and are considered technically the best processes available (11).

#### 1.2 INTEGRATED CIRCUIT DEVELOPMENT

The development of the monolithic integrated circuit was a natural progression from the invention of the junction transistor by William Shockley in 1948, and by using the newly discovered diffusion processes it was found possible to diffuse more than one active device on a single silicon wafer. Semiconductor junctions were built up by the diffusion of P and N type impurity atoms into a silicon wafer using a tubular furnace, containing impurity atoms in a gas phase within the furnace tube. Further development allowed the epitaxial growth of an impurity doped silicon crystal layer from a vapour phase of gases, containing a silicon compound with impurity atoms. In the process, silicon along with impurity atoms rained down on the silicon substrate interlocking with the crystalline structure of the impurity doped substrate. By using diffusion, epitaxial growth and ion implantation layers of P and N type silicon can be built up, to form any type of semiconductor device from a diode or transistor to a thyristor. The conductivity of the silicon can be changed from an insulator to a conductor, by the amount of impurity diffused or grown in the crystal lattice, enabling conductive interconnecting networks to be formed within the silicon structure.

Electrical isolation of separate components within the structure can be achieved by diffusing or growing a reversed biased PN or NP junction, by using a PNP or NPN sandwich, isolation would be achieved in both directions equivalent to a back to back diode configuration. Low resistance conductive networks can also be produced by evaporating a metal (usually aluminium) in a vacuum, where condensation occurs on the surface of the silicon wafer, leaving a conductive metallic layer. By using masking, photo resists, and etching, a conductive network can be formed on the surface of the wafer. Insulating layers within the silicon wafer are formed by oxidising the surface of the wafer, before epitaxial crystal growth of the next layer. Windows etched into the oxide layer will form semiconductor junctions between the P & N type layers, furthermore the windows are also used to diffuse P & N type impurity atoms into a silicon substrate or epitaxial layer, enabling the fabrication of a semiconductor device. Resistors and small capacitors can be formed by diffusing or growing isolated strips or layers of doped P or N type silicon. Resistivity is controlled by doping levels.

Resistors and capacitors use relatively large amounts of space on the silicon wafer compared with semiconductor junctions, restricting their use in the circuit design. By using more semiconductors and less resistors and capacitors, circuit dimensions can be minimised, although some external larger components may be required. Very large numbers of individual circuits are manufactured on one silicon slice, in the region of 50 to 100 mm diameter. Every circuit on the entire wafer is tested and the defective ones marked. The wafer is then scribed by a diamond stylus or a laser and broken into hundreds or thousands of individual chips. Wafers may alternatively be sawn into chips by means of a diamond saw. Individual chips are called dice (singular die) and are now ready for bonding onto the aluminium termination pads of the silicon wafer.

Before the bonding process takes place, the silicon wafer has to be mounted into a termination package, industry standards are now reduced to two main types, which include the less popular TO5 can type package and the dual in line flat pack. Connections are now made from the metallised pads on the silicon wafer, to the pin outs on the TO5 package, or the dual in line lead frame assembly in the flat pack version.

Integrated circuits can be bonded by a wide variety of techniques using ultrasonics, thermosonics, soldering, thermocompression, epoxy bonding insulating or conductive (16). Bonding the wafer to the header or package, is followed by the bonding of the outgoing connections to the package terminals, using wires, pads or fingers. A number of monolithic circuits can be fabricated in one package to produce one integrated circuit, although todays trend is towards producing all the circuits on one chip. The monolithic circuit is particularly attractive for application, where identical circuits are required in relatively large quantities, and have substantial advantages over their discrete component counterparts, and represent at least a 1000 fold reduction in size.

## 1.2.1 Hybrid Circuits

The hybrid circuit is one in which separate component parts are attached to a ceramic substrate, and interconnected by means of either, a metallisation pattern or wire bonds (17). It is possible for a hybrid circuit to contain one or more monolithic dice, plus a number of thick or thin film circuits in one encapsulation. In addition it could also contain individual component parts as required for circuit function.

Hybrid technology is more suited to small quantity custom designed circuits, because the circuit can be fabricated from readily available mass produced circuits, married together to produce the desired circuit functions without incurring the initial design and production costs. It is entirely conceivable that, as the state of the art progresses, this technique will be superseded entirely by the monolithic process.

A hybrid circuit could contain component circuits using thin or thick film technology. The manufacture of thick film circuits is an adaption and refinement of the ancient art of silk screen printing. Conductors, resistors and less commonly capacitors, are produced by this technique. Discrete components such as ceramic chips, capacitors, diodes, transistors or integrated circuits, may be attached to the passive thick film circuit to complete its functional capability (18). Thick microcircuits are produced by depositing conductor and passive component films onto a passive substrate. The thick film circuit process uses a paste screening system, similar to silk screen printing, followed by a firing process at a temperature of around 1000 C, causing the paste to adhere to the substrate as a permanent thick film approximately 1mm thick. Repeating the screening and firing processes adds layers of conductive dielectric, or resistive films, which need to be trimmed afterwards to obtain tolerances of less than 5%. Active and passive circuit components are attached to the substrate ready for the circuit to be encapsulated in plastic, ceramic or metal packages.

The alternative process to thick film, is the use of vacuum deposition to lay down a thin metallic layer on a glass, alumina or beryllia substrate known as a thin film circuit. It is primarily used for the production of resistor networks where small size close tolerances, and precise definition are required. Many different materials are used, but nicrome for resistors, and gold for conductors are the most commonly used. The circuit designs are produced on masks, similar to those used for thick film circuits, using photoresists to produce an etchant resist pattern. Electron beam, sputtering or evaporation may be used in the vacuum process. One of the most difficult tasks, is making contact with the thin film element, which must form a low resistance junction. Care is required to avoid reactions between the contact metal film and resistor film, which when heated during contact deposition, may produce undesirable compounds that will prevent the contact from being ohmic. Once the circuit is complete, discreet devices are added to the circuit which may include monolithic chips, transistors, inductors and capacitors.

## **1.3 PRINTED CIRCUIT TESTING.**

Almost all electronic equipment is built on printed circuit boards (PCBs). Manufacturers dealing with large numbers of these boards, either as a user or a manufacturer, have reason to test them. If quantities are large enough, the best way to do this is by using computer based automatic test equipment (ATE).

Computer based testers contain standard electronic test instruments and can be programmed to quickly test boards for faults and function. Depending upon the product they are testing they can be complex and expensive items. The tester gains access to the PCB through either the edge connector or to individual node points by means of a bed of nails fixture (Fig.1.1). The bed of nails fixture contains spring loaded probes (Fig.1.2) which make individual contacts and they can be used for testing bare or populated boards. They are available or can be designed for use with test equipment, ranging from simple panels of lamps to sophisticated electronic systems tied to mainframe computers. The board configuration, test parameters, and ATE interface requirements determine the design of the test fixture and the type of probes to be used.



Fig. 1. 1 BED OF NAILS FIXTURE.



## Fig. 1. 2 SPRING LOADED PROBES AND RECEPTACLE.

There is now much greater pressure for manufacturers to test circuit boards during and after the production processes, as greater cost savings may be achieved by eliminating faults at an early stage, since it is much easier to identify and rectify faults early in production, due to the increasing product complexity as it passes through progressive stages of manufacture.

Testers are available to locate specific types of faults as quickly as possible, or alternatively, a tester may be designed to contain the whole spectrum of faults on one machine. The number and type of testers required, will depend on the number of faults produced in various categories over the fault spectrum. For instance if faults produced by a process were 99% solder shorts, then the only tester required would be a shorts and opens tester. Another factor effecting the choice of tester would be the number of products requiring testing, for instance, a manufacturer producing occasional batches of circuits every few days would require a tester to cover the whole spectrum of possible circuit faults. However, companies using their process lines continuously, could have a predominant number of faults developing in part of the spectrum, requiring a specific type of tester to overcome the problem.

An important factor for consideration is the ability of the range of testers chosen to detect the highest possible percentage of faults in the minimum time. It is possible due to changing conditions on the production line (with different component suppliers feeding into the system) for the fault spectrum to change on a daily or weekly basis thus needing a change in the order which different types of testers are used. With complex circuit designs certain faults may become masked by other components within the circuit design, resulting in a small percentage of unverifiable faults for the ATE system used in the process line.

In the past low cost, low density boards could be scrapped if the cost of testing and repair approached the cost of the board, but with todays high density double sided boards, their value will often be too high for them to be discarded. The amount of time spent on fault identification will therefore increase. In the 1960s and 1970s, most of the testing and repair work was done by skilled technicians using a wide variety of test equipment. This often comprised of parts of the product along with conventional electronic test instruments, sometimes interconnected using a buss, controlled by a small computer (19). By 1975, there was a range of purpose designed testers available, using a computer as an operating system controlling the various test instruments.

The range of testers available include testers designed for only one specific type of testing, for example, the bare board shorts and opens tester, or the functional circuit board tester, being capable of performing only one test function. Other testers such as the combinational tester, as its name implies, can perform a combination of tests using only the one tester. This type of tester would be found to be more useful in a production unit operating well below its maximum capacity, as its flexibility with increasing use could cause it to become a bottle neck. Circuit board testing ensures better quality while at the same time monitors production plant processes, so avoiding more costs in diagnostic and rework activity at a later stage.

## 1.3.1 Automated Test Equipment Fault Coverage

While studying a circuit schematic diagram, it is often found that components are masked from fault detection, by one or more of the different types of testing used by the ATE but detectable by another. In a small minority of cases, it may be found that faults are undetectable on a loaded PCB (20) which is why it may be desirable to test at various stages of manufacture. An indication of fault coverage is confirmed by the results of fault detection at later stages of testing, assuming the testers used, are capable of detecting the fault. Fault coverage in testing may be effected by whether the board is digital or analog or a combination of the two, as well as relating to the complexity of the circuitry to be tested.

Fault coverage claims by tester manufacturers are surprisingly high, figures of between 80% and 98% are given for functional testers compared with 85% to 96% for in-circuit testers (21). The time taken in test execution and programming is an important consideration when considering the merits of various types of ATE. The in-circuit tester uses three levels

during testing, short circuits, unpowered component testing, followed by powered component testing. Using this approach, damage to components can be minimised during the testing of faulty boards, as the first two stages of testing will identify serious damaging faults before power is applied. There may be long diagnostic times with functional board testers, due to operator intervention, followed by further probing required to localise faults.

1.3.2 Unverifiable Faults

The number of unverifiable faults, although relatively small in percentage terms (around 2% at the moment), is bound to increase with increased board density and complexity. ATE will therefore need to become more sophisticated and faster, if it is to maintain or reduce unverifiable fault levels. As mentioned earlier, it is possible that components in a part of a circuit may mask certain types of faults, but other unverifiable faults may be due to problems in the ATE interface connection to the circuit boards or unit under test (UUT). Connection difficulties may be caused by contaminated solder pads on the PCB or the spring loaded test probes used to make contact with the PCB. The probes may become contaminated with flux or other material used on the PCB, or become bent, or misaligned. Internal springs within the probe may become broken or worn or cause the test probe to jam. Another problem is that the springs often become weak after considerable use and do not exert the required force to produce a low ohmic contact.

Wear debris within the probe may also be responsible for this type of defect developing, causing unreliable intermittent contact to the UUT. A suitable choice of appropriate style test probe heads, which should be compatible with the PCB contact target, will minimise unverifiable faults. Almost 80% of all faults found in manufacturing circuit boards are process errors. These faults, which include opens; shorts; components that are incorrect; defective; incorrectly positioned; missing, can be easily found by measuring their impedance signature. A procedure which is much more cost effective than that needed to identify the 20% or so of faults that are dynamic or functional in nature. A tester designed for this purpose is the manufacturing defects analyzer, developed to find faults at one quarter to one tenth the cost of in circuit testers. About 90% of all faults can be found with in circuit testing, while the final 10% require functional testing (22).

About half of all board defects are due to shorts and opens. However, depending on specific manufacturing processes and complexity of the circuit board, each board will have a slightly different fault distribution. Defects are introduced into the circuit boards as they travel through the production process. Typical figures quoted for production defects in electronic manufacturing journals are, boards with no defects 74%, boards with one defect 22.2%, boards with 2 defects 3.3%, and boards with three defects 0.3% (22).

1.3.3 Fault Spectrum

The fault spectrum is the distribution of the different types of defects that occur on a board, on a collection of boards, or from an entire production process. Defect categories consist of many kinds of faults such as solder shorts, missing components, wrong value components and timing race conditions. While there are literally hundreds of defect categories, they all fall into three fault classes. Which are:- (1). Device Faults; (2). Assembly Faults; (3). Operational Faults.

Device faults include defect categories associated with the components themselves on or off the board. Examples of device faults are, out-of-tolerance components, "non-working devices, mismarked packages, broken leads etc..

Assembly faults arise from defects which occur to components and to the sub-assembly itself as it proceeds through various stages of manufacture, solder shorts, mis-inserted or missing components and cold solder joints are typical assembly defects.

Operational faults are problems which cause functional failures on the board, that cannot be traced by the test system in use to a particular device or an assembly problem. In other words, the board has no identifiable construction defects but it still will not work. Timing race conditions between different sections of the board, tolerance build up (where all the components in a circuit are within their specified tolerance, but perhaps all at one end of the tolerance bond such that the entire circuit falls out of specification) are typical operational faults.

1.3.4 The Test Fixture, a Preliminary Description

The Bed of Nails test fixture (23), which interfaces a PCB to the ATE often represents the true limit of test capability. The fixture may introduce electrical and mechanical parameters which limit the ATEs ability to locate faults accurately down to component level.

There are three main type of test fixture: Vacuum; mechanical and pneumatic. The major difference is in the way in which they are actuated. Vacuum fixtures are the most widely used (Fig.1.3). Air is evacuated from a sealed chamber between the boards and the probe matrix then draws the board onto the probe tips. Mechanical fixtures sometimes known as manual fixtures, push the board down onto the probe tips by a manually operated pressure plate (Fig.1.4). Pneumatic fixtures are similar in many respects to mechanical fixtures, but they force the board down onto the probe tips by air cylinders rather than arm power and a lever (Fig.1.5).

The test probe is perhaps the most important component in an ATE system. It is the probe which makes the physical and electrical contact with the board, and through which information flows from the board to the ATE. Therefore the probes must be totally suited for the specific application.

The important probe characteristics are its electrical properties, contact shape, length and diameter, they are available in both long and short stroke length, as required. The probe diameter is more critical, because it controls the minimum allowable centre spacing and maximum current carrying capacity.







.

1


20



# Pneumatic Test Fixture.

Fig. 1.5a

rsion for contacting from both sides and mbined in-circuit and functional testing obe Location Unit with integrated erface for interfacing to the HP panel essure pad system can be lowered manuy and pneumatically





FIG. 1.5b

#### 1.3.5 Test Probe Construction

The main parts of a probe, are the barrel, plunger and spring (Fig.1.6), with variations available in each. The barrel acts as a housing for the entire probe assembly, and also as a bearing surface for the sliding portion of the plunger. Barrels are generally made of phosphor-bronze tubing, although other materials may be used to give desired probe characteristics.

The probes spring can only provide a certain number of operating cycles at a precise load at fully compressed operating pressures, however, manufacturers usually guarantee probes for a certain number of cycles, a typical value being one million. Heat treated beryllium copper, which offers excellent bearing characteristics is used for the moving plunger section. Hard gold plate over a nickel preplate, provides the corrosion resistance, copper creep restraint, and the electrical conductivity characteristics required for a good connection.

To make probe removal easier for cleaning and replacement, each is housed in a receptacle, which is wired into a matrix on the bottom of the board. It is important that the receptacles hold the test probes firmly in place at specific test points within the fixture, receptacles are connected to the ATE interface by hand wiring. There are four main methods of connecting wires to the receptacles: (1) wire wrapping; (2) soldering; (3) crimping; (4) plugging. Wire wrapping is the most widely used technique, as it provides an excellent mechanical and electrical connection, which is economical whilst being removable, without damaging the receptacle. Soldering is the second most popular method being stronger than wire wrapping, but has the disadvantage of being permanent. Crimping, like wire wrapping is economical, provides a good electrical contact, but where there are dense pin fields on close centres there is little space to use a crimping tool, and is time consuming. It is much faster and easier to wire pins with a wire wrapping tool, because once crimped, removal or replacement of the wire is almost impossible. Plugging as a wiring option has almost fallen into disuse, because it does not provide a good connection either mechanical or electrical. However it does offer a replacement connection and may possibly be used for closely spaced probes.



s .

Fig. 1. 6 COMPONENT DIAGRAM OF PROBE ASSEMBLY.

24

#### 1.3.6 Surface Mounting on Both Sides of the PCB

The practice of mounting components on both sides of the PCB is now well established. Instead of using holes through the board for component leads to be anchored to solder pads on the opposite side of the board, epoxy adhesive is used to secure the component to the PCB dramatically reducing the number of holes required. Components are therefore held by the solder bond to the tracks as well as the epoxy bond to the PCB. This eliminates the majority of holes, and means that both sides of the board can be used for circuit tracks and mounted components, greatly increasing circuit and component density.

The trend towards surface mounting of components however, leads to problems when trying to test a completed PCB. There is the possibility of tracks, pads and component terminals being inaccessible to test probes, partly due to chip component connections made on the underside of the component. There is also the further problem of the surface mount components on both sides of the circuit board which requires access by the test probes to the tracks and pads both sides of the PCB simultaneously.

The effect of increased component density and miniaturisation is to increase the amount of precision required in the test fixture. In order to overcome obscured PCB pads, tracks, and component terminals, additional test pads need to be designed into the initial design to overcome some of the problems encountered.

#### 1.3.7 Reasons & Problems Encountered in the Testing of PCBs & Components

Most electronic manufacturers use a wide variety of test activities that can be divided into three general categories: (1). incoming inspection testing of parts; (2). testing of assembled circuit boards; (3). final system test when the product is completely assembled and ready for dispatch. Because of the increasing complexity of electronic components assembled into more complex units, testing is becoming one of the more important aspects of the production cycle. It is necessary to test at all stages of manufacture to eliminate defects at an early stage and identify defective processes and increase product yield. The advantages of adopting a total quality approach are now well known and lead to an improved reputation and business image. The costs of introducing and implementing a suitable quality system, are far out-weighed by the savings made in reduced operating expenses and product failure costs. Productivity can often be increased, by the monetary savings translated into increased R & D expenditure or improved production techniques (24).

Nowhere has the increasing complexity and cost of manufacturing electronic products become more apparent than at the circuit board test stage, because new technology keeps demanding new test approaches.

#### 1.4 ECONOMIES OF QUALITY ASSURANCE

Printed circuit board testing is now well accepted as an important tool in helping to achieve improvements in product quality. By being able to determine the presence of faults, computer controlled test equipment has made it possible to report back, so that production faults can be corrected at source. Testing is therefore, an aid in the quest for improved quality and it has to be recognised, that fundamentally these reporting and data analysis processes are only useful, as long as the basic test and diagnosis facilities are capable of isolating a large percentage of faults. Design for testability has always been important for electronic companies wishing to minimise manufacturing cost and improve production quality. A great deal of time and money can be saved by taking a little extra care during the design and lay out of any PCB. New production processes are required to accommodate the rapid progress to higher levels of integration in semiconductor circuits. Increased integration affects both the components of the electronic assembly, as well as the techniques used to assemble and test the completed circuit. However new processes are emerging, which lend themselves to and in many cases demand automation. The benefits of new technology are many, greater circuit density, smaller product size, better performance, product reliability, and ultimately resulting in lower production costs.

In many cases, traditional in-process inspection and probing/fixturing techniques for electrical testing are no longer effective or applicable. Visual inspection is becoming less efficient as circuits become more complex with narrower tracks and smaller spaces. This is unfortunate since in many cases not only is the basic integrity of the circuit important, but consistency of line widths and spaces are critical to the function of a high speed assembled circuit (25).

As circuit integration progressively increases, so does the demand for improved circuit board quality with the ability to eliminate faults at the earliest possible stage in the production line. Testing is often left until all the components have been assembled and soldered into the circuit board, greatly increasing the costs of fault detection. Due to increased miniaturisation, a larger proportion of faults will be caused by inadequate circuit board quality. J. Page-Walton states, that typical yield in PCB manufacturing is said to be between 85% and 90%, depending on pattern complexity. Since the X10 rule states that with each step of the manufacturing process, the value of the product increases by ten, inspecting the bare board at the earliest stage is one of the cheapest ways in which to detect errors (26).

Consideration should therefore be given to bare board testing and inspection, where track thickness and spacings are fine. Electrical testing will find existing causes of failure, but not potential causes of failure such as protrusions, undersized lines, track bites, or registration problems. Optical inspection would detect potential weakness which would go undetected using electrical test methods, and which might not become evident until the board had passed through several more processes, and had increased in value. In the worst case the fault could find its way out into the product, failing after weeks, months or years of service.

Another method being considered to improve PCB quality is high voltage testing, designed to "weed" out potential shorts likely to appear when the board is powered up during final testing, or in operation.

Poor quality PCBs can cause considerable increases in cost, as board faults would be assumed to be due to component or soldering defects. Loaded board testing would mask any faults existing in the printed wiring board, and would probably show up as component faults and could mean extensive fault finding time by a skilled technician, with resultant increased costs. Printed circuit board quality can be adversely affected during the soldering process, if the process control conditions are not set or maintained to suit the board being soldered. Automated soldering processes have been used to solder components into printed wiring boards for the last thirty years, but once again, as with PCB testing, fine lines and spaces have put greater strain on the soldering process.

Poor quality joints can be caused by oxide coating on the PCB or the component leads, furthermore a poor quality PCB design can lead to soldering defects. For high quality production, solderability tests should be carried out on all PCBs, components, and connections before they find their way into the production line. Better quality in production can save money in the long term by cutting the cost of testing, rework, and scrap production.

According to D.Elliott there are 2000 defective solder joints for every million joints soldered. At this rate, the industry is producing 400 million defective solder joints per year. The Institute for Interconnecting and Packaging Electronic Circuits (IPC), reports that 26% of the cost of assembling PCBs, is for repair and rework plus another 30.2% for testing. When one includes the cost of field repairs and the number of times that an assembly must be tested and retested, it can cost a surprising \$1.00 - \$2.00 for each defective joint. This equates to \$400 million dollars per year (27).

The aims of any electronic manufacturer must be to achieve a near zero defect soldering programme, to eliminate solder repairs and reduce in-circuit testing. Circuit board handling should be kept to a minimum throughout all the production processes, as greasy fingerprints due to handling, may cause increased soldering defects which would probably be incorrectly attributed to the soldering machine. Most latent solder defects are not detectable by the usual test routines employed, but are mainly attributed to cold or oxidized solder joints. Most latent faults will occur during the early mortality phase after a short period of thermal cycling, leaving a small percentage of mature failures over a much longer period, in the order of months or years. A large percentage of latent faults can be detected by rapid power and temperature cycling in an environmental test cabinet. From the quality cost and reliability view-point, it is better to concentrate on eliminating solder defects, rather than detect and repair soldering faults that may occur.

Bateson states that the cost of correcting faults after PCB assembly and soldering, ranges from \$3.99 to \$6.50. The cost of correcting a fault at system test ranges from \$30.00 to \$65.00. Further, correcting a defect in the field costs between \$300.00 to \$650.00 at 1985 prices. Obviously, it is economically advantageous to find and rework faults at the earliest possible point in the production process (28).

Soldering faults are included in the faults that can be induced by the manufacturing process, other faults in this category are: components which are wrong, missing or wrongly polarised; leads that are missing, broken or bent; wiring that is missing, broken or wrong. Manufacturing process faults account for 50% of all faults with 30% static assembly and component faults, leaving 10% each for dynamic component faults and dynamic unit faults (29).

Although defect free manufacturing will probably be unattainable, electrical testing has proved its ability to raise the quality of the delivered product, and reduce the cost of manufacture. Quality control is basically the supervision of a product throughout its production and up to delivery to the consumer. The product must meet basic minimum standards through each phase of the production processing cycle, assuring quality and long term reliability in the final product.

#### 1.5 METHODS OF TESTING COMPONENTS & PCBs

Component testing is the only way of ensuring a supply of high quality components despite overall component quality improvements, it is only in more recent years that the failure rates on even the most common components were generally known. Increasing quality awareness and the competitive need to make products more reliable, has led to a better understanding by the user, and further improvement from the components manufacturers. Although vendor quality assessment schemes have helped to reduce received goods inspection in general, at the moment there is no indication that component failure rates are becoming so low that the user does not need to test.

Electronic equipment manufacturers have to be more aware of the reliability of the devices they manufacture, by screening out marginal components that may cause intermittent faults causing the product to fail early in its life. As more complex and expensive assemblies become common, they are at the same time becoming difficult to repair and yet too costly too discard, furthering the need for incoming component testing over a wider range of products. Companies may now have to turn to incoming testing of all components in an effort to increase quality and reduce production costs. In circumstances where component quality can be proved to be very high, switching to batch sample testing may prove to be more economic, although allowing a very small number of faulty components onto the production line.

Goods inward testing, can be automated by the use of automatic handling machines in conjunction with the component tester. This may take the form of an automatic L.C.R. bridge for testing passive components such as: resistors, capacitors or inductors, or in-circuit testers configured to test either passive, active or integrated circuits of all types. Automated testing of components may require the use of a fairly simple test fixture, to make contact with the device pins or wire leads, but some testers have a range of test heads suited to the types of components to be tested. There is often little or no difference in the testers used for goods inwards testing, and testers used in production testing.

Large users of high technology devices, are using sophisticated ATE for incoming inspection purposes in an attempt to increase quality, and reduce the number of units that have to be discarded as scrap.

The increasing use of surface mount components with more complex and dense packaging, can often mean that a component can be near impossible to replace, or several devices may have to be replaced, because the ATE cannot diagnose a fault to component level. Component testing before assembly may save considerable time and money, leading to a more reliable and better quality product. In an ideal environment one could test every item entering the production line, or better still with 100% quality there would be no need to test them at all. Unfortunately, component testing is still necessary as a method of assuring quality and reducing the amount of rework after final testing. In the case of consumer domestic products, it may be considered impractical or uneconomic to test every component used in a product, therefore, testing only a small percentage of each batch delivered. It may be worth while considering BS 6001 with respect to sampling, inspection and testing of components (30).

With the ever increasing use of automatic test equipment, the cost per parameter for each device is far less than a bench test or post- production rework. Automatic test equipment can perform the primary tasks of receiving inspection testing in a matter of seconds to assure acceptable parameters (31).

#### 1.5.1 PCB Board Testing

Printed circuit board testing can be divided into a number of categories, the first being, bare board testing where the circuit board is tested without components. The objective being, to locate any faults caused by the printed circuit board manufacturing processes, as it is a much easier task to locate circuit board faults at this early stage of the production process. At this early stage all faults will either be shorts or opens, detected by electrical or vision methods of inspection. Faulty boards can be inspected after testing to locate and rectify faults, or alternatively, automated testers will indicate fault locations by directing a flashing light or laser beam to pin point the exact position. Bare board testing may pay economic dividends by reducing the cost of testing and reworking loaded boards, which have become high value added near the end of the production processes. Bare board testing techniques range from hand held probes, to bed of nails test fixtures as a method of making contact with the board under test.

Another system in use, uses computer driven moving probes that access any point on the bare boards testing for shorts opens and high resistance leakage. The moving probes eliminate the need for expensive dedicated test fixtures, but the system's sequential nature limits the test speed to a rate of 350 points per minute. It has been shown that up to 50% of all circuit board faults can be found at bare board level (32). The most obvious method of testing is with two moving probes, using continuity to detect open circuits, but by using this method the time could become prohibitively long to test a complex board. Using another concept, both shorts and opens can be uncovered by using capacitance for detection, and resistance for verification. Some testers use a two or four probe configuration and can provide access to both sides of a double sided board. Visual methods of inspection do not functionally test a board but they do identify design rule violations e.g. narrow tracks, which may cause breakdown in service.

The manufacturer of printed circuit boards dates from the post war years, but electrical testing of bare boards has only had serious consideration since the late 1960s or early 1970s, mainly due to higher circuit density and miniaturisation. With technology producing more complex components packaged on even smaller circuit boards with finer line configurations, its value has become increasingly high and the need for suitable test methods has increased.

Today it is becoming more generally accepted, that printed circuit boards are supplied tested, especially the double sided fine line designs. However, there is still a large number of manufacturers that do not test before delivery, in spite of the speculation that failure rates on some PCB lines may initially be as high as 50%.

Loaded board testing is required to detect the whole range of faults, which may be in the circuit board, components, or faults induced by manufacturing defects within the production system. The ideal test system is one that finds the largest range of fault classes at the smallest cost. There may be a justification in the argument that detecting component and assembly faults at the earliest possible stage, by relatively simple equipment, will result in the downstream test costs being reduced. A general figure quoted in journals is that 80% of the faults at the first test are assembly related.

32

In use today are four categories of circuit board tester, the first being, the bare board tester mentioned earlier, the others being, in circuit, functional and the loaded board shorts tester sometimes known as the pre screen tester.

In a situation where shorts are the predominant process fault, it may be cost effective to use a loaded-board shorts tester as a pre screener, before in-circuit or functional testing. This screening improves the test capability, which in turn increases the production throughput. A loaded board shorts tester will rapidly identify shorts in a single pass, and will produce failure messages to guide rework. Alternatively, an in-circuit analyzer may be used to rapidly test for shorts, resistance, capacitance and semi conductor junctions on an unpowered PCB. The in-circuit analyzer may be used independently or as a screener before in circuit or functional testing, thereby producing a very cost effective method of increasing the product fault coverage, improving the finished unit yield throughput, by first testing for shorts and secondly testing for component failures.

In order to cover the full range of circuit board faults. The in-circuit tester is necessary, using a guarding principle to measure the performance of individual components by electrically isolating them from the surrounding circuitry. It is also capable of detecting shorts and opens as well as testing passive components on an unpowered PCB. At the next stage of testing, power is applied to enable active component testing. In circuit testers can cover a larger fault spectrum, displaying specific failure messages. The tester may be used independently, or as a screener before the functional tester. It can be a cost effective method of increasing the product fault coverage, thereby increasing throughput and the finished unit yield, but the test and diagnostic time is considerably faster than that of other testers considered. In-circuit testers are capable of identifying multiple faults within each of its levels of test hierarchy.

Functional testing of a circuit board is the only way to prove that all the manufacturing and component induced faults have been eliminated at the end of the manufacturing processes. In order to prove that the circuit board can achieve all of its design functions, it is subjected finally, to the functional board tester, which has the largest fault coverage capability by simulating all the operating conditions. In testing, it produces stimuli measuring the response of the PCB in the final product environment. The functional tester is essentially independent of the rest of the test systems, but has an extremely rapid go/no go test time with an extremely slow diagnostic time, it produces general failure messages which may require some interpretation. The functional tester is designed for general purpose use and not for a specific range of boards. In addition the programming costs associated with functional testing can be high and the programming time lengthy.

#### **1.6 ADVANTAGES OF ATE**

The objective of electronic production engineering is to optimise product quality, while at the same time try to maximise throughput of the production line, both in the most cost effective manner possible. Increasing the throughput beyond a certain point may lead to increased production, but at a loss of product quality. There is a need to employ automated test equipment to reduce costs, increase profits, increase productivity, reduce the need for skilled labour, and increase product reliability. The cost of detecting and reworking a PCB fault increases significantly as the production process advances, optimising in field service and repair on the customers premises under product warranty. Automated Test Equipment includes the whole range of circuit board testers from the bare board testers, the loaded board shorts tester, the in circuit tester, the in circuit analyzer, the in-circuit and functional board tester, being the whole range of test equipment in use today. ATE is now beginning to play an increasing role in the field service and repair environments as a way of reducing costs, reducing the need for skilled and experienced technicians leaving only circuit board replacement in the customers premises. In the PCB production environment, testing ensures subassembly quality and monitors the manufacturing processes to avoid more costly diagnostic rework, at a later stage.

There may be certain circumstances where, not testing a circuit board may be a sound economic decision. For instance, where the PCB is extremely simple and has a very high pass yield, or extremely low volume. Manual testing is quite common in small companies with low volume PCB production requirements. Testing consists of a technician using an array of bench instruments following a routine test procedure to verify correct circuit function, followed by defective PCBs being further diagnosed by a higher level technician. Test cost per PCB is usually very high because of the labour intensive nature of the operation.

There are a number of less automated ATE systems in use, where a group of IEEE 488 bussed instruments are connected to a PCB test fixture, and are controlled by a micro processor or mini computer. This type of ATE is sometimes known as "rack and stack", and offers a large degree test configuration with flexibility at a moderate cost. Unfortunately, the set up time is long and requires a test engineer and skilled technician. Test quality will depend on the skill of the programmer with a fairly high unit test cost. Rack and stack testing is common in small to medium size companies for low volume testing.

When considering the set of test functions performed automatically, most of the testing operations would be performed simultaneously. Print outs would be produced more rapidly with near 100% accuracy, other advantages are the ability to store data for further use at a later date. The elimination of human error with very little operator judgement is an added advantage. PCB units with marginal performance are easily removed from the production line for further diagnosis and rework. There may be circumstances where it may be desirable to test also for variable parameters in a system to be tested. Variable parameters may readily be controlled electrically more easily than manually, with logic matrices replacing mechanical switches, or relays replacing switches. These functions are more rapidly performed automatically, and thus contribute to test time reduction. In most cases, electrical control is more efficient than mechanical methods.

Tracking down malfunctions within a complex system, is a demanding and time consuming operation. A fast overall operational check, eliminates much of these time consuming fault location procedures, saving time and labour to free skilled personnel for more important work. Unfortunately in complex electronic systems, it is possible to arrive at inaccurate fault diagnosis if manual testing is used, but with the use of ATE, faulty diagnosis is more unlikely.

35

ATE will produce a higher quality and consistency of test results, therefore redundancy and over-testing is minimised, and sometimes is virtually eliminated. Automation can save money in all phases of its operation and offers the advantage of 100% repeatability with mistakes in timing, measurement reading, and sequencing, which are all likely occurrences with manual equipment, largely avoided in an automated programme. Controlled equipment has the inherent capacity to provide the collection and storage of test data on a cumulative basis. Such a capacity is particularly valuable in a failure mode analysis, where the individual parameters monitored may be too numerous for effective manual observation. ATE can determine the failure and record the cause, allowing a test system to be set up whereby the units are sorted as they are tested, resulting in a higher salvage rate than could be obtained by a manual process.

Inspection testing is a significant production expense and can no longer be treated as a manufacturing after-thought. It is evident, that fully automated testing is emerging as a vital factor in manufacture, and a way of controlling the line processes for optimum quality and production rates. Testing costs therefore can be considered as a profit factor, rather than a production burden.

#### 1.7 FIXTURING METHODS AND PROBLEMS

Any item of ATE equipment can only be effective and reliable if it is able to make consistent and reliable connections onto the PCB under test.

One of the methods used to make contact with the board under test, is to make use of the finger connectors on the circuit board, the test interface being a wiring harness with plugs and sockets, making contact with the ATE and the circuit board being tested. Unfortunately, this type of test interface would be only suitable for functional testing of the PCB, since the diagnosis of faults down to component level would require test points available down to every node on the PCB.

36

In order to facilitate node access, a test fixture is used to register the PCB in a fixed location, whilst accurately positioned test probes are used to give reliable repetitive contact to every board being tested. Test fixtures are mainly vacuum actuated, using spring loaded test probes to make contact with the PCB test points. In the majority of cases, an individual test fixture is required for each circuit board to be tested, but universal fixturing can be used to a limited extent if PCB circuits are designed on a standard grid pattern. Generally test fixture probes access the board from one side only, however a "clam shell" or "toaster" type fixture can be used for double sided board testing. This type of fixture is designed to make contact with both sides of the board simultaneously and is primarily used for boards with surface mounted components (Fig.1.7).

In general, test fixture systems are classified by the method of actuation: manual, mechanical, vacuum or pneumatic. Each type of fixture system is then subdivided into fixed or interchangeable test heads, and fixed or removable probes. The vacuum fixture with interchangeable test heads and removable probes is used almost exclusively by the in-circuit market. The board under test is seated on a probe field by a vacuum, drawn down by a neoprene rubber diaphragm, a movable top plate, or a fixed top plate with flexible gasketing. Each type has its own advantages & disadvantages for different applications. The vacuum is drawn from the test head, either by a hose or a manifold. The probe density is a function of the probe pressure, measured at 75% of its travel with the vacuum pumps employed (33).

In the smaller companies with low throughput, in house built mechanical fixtures may be used, which may be hand or semi automatically operated depending on production line requirements. Test fixtures can be designed as a single or two stage fixture with probes of different lengths, the first set for in-circuit, followed by the second for functional testing of the same PCB. Double vacuum or pneumatic actuating systems are used to make contact to the appropriate set of circuit nodes.

Test fixtures for earlier generations of PCBs with wide lines and spacing between tracks and pads, did not present too many problems for the PCB fixture designer, but for todays PCBs with increased integration and component packing density, the design of test fixtures has





## FIG. 1.7 A CLAM SHELL DOUBLE SIDED FIXTURE

become more difficult. The use of more double sided PCBs with surface mounted components on both sides of the board, has made testing and fixture design progressively more expensive. With pin spacing on I.C. components steadily getting closer, there is a greater need for more precision and accuracy in the test fixture.

Surface mounted components on both sides of the PCB may obscure tracks, nodes, and pads preventing access by the test probes. However, this problem may be overcome by the design of test pads in the PCB layout using redundant space that may be available.

Manufacturers may offer a kit to build PCB fixtures. The user drills the fixture and inserts the probe receptacles, wire, gasket, etc. The fixture kit can reduce the typical finished fixture turn around time of 4 to 6 weeks, to 1 to 2 weeks. In many cases the NC drill tape or the bare PC board will serve as a template. Many manufacturers send the fixture plates to the manufacturers of their PC boards for drilling since they have the necessary hole coordinate information.

The advantage of universal fixtures is a reduction in fixturing costs and test head storage. The disadvantage is that if the main portion of the universal fixture malfunctions, the whole test system is down for a considerable time. There is also a high initial cost, equivalent to 4 to 10 individual custom test fixtures. It now appears, that the test fixture is becoming the product of high precision engineering. The accuracy and tolerances that are being demanded to meet todays high technology test applications, can only be achieved by using very high precision machine tools and CNC drills. Fixturing for functional test equipment is considered comparatively simple, because in general, only an edge connector is required to interface the tester to the board to be tested.

For bare board, in-circuit, prescreen, combinational and some functional testers, a more complicated approach is required. Each test point on the board needs to be accessed by a probe, which in turn is connected to a test channel in the system. A bed of nails fixture is used and has to be dedicated to the board type to be tested. It may need to be connected to automatic handling and loading equipment, and in most cases, the fixture needs to be removable so that other board types can be tested.

The concept of the universal fixture was first developed for the bare board testers in the early 1980s. The idea was to build a bed of nails fixture from a number of reusable parts, such as the base plate, frame and probes. The fixture can be easily built, broken down and rebuilt, thus saving time and expense. A top plate dedicated to the board under test is drilled to accept the correct combination and location of probes from the bed of nails. For small board design, only a small bed of nails needs to be installed. Each board type has a personality plate drilled to the correct configuration for the probes. Wire terminals are installed in the contact bed and wired to the probes. When the vacuum fixture is activated, the required probes are raised to make contact with the board under test. Once installed, the fixture allows the user to reprogram the fixture for different PCBs, by changing the personality plate.

The base plate is drilled to a standard grid pattern, but for off grid design, a pitch adaptor plate is also incorporated. There seems to be a small, but growing trend towards designing in a standard grid pattern. Some journals report that at present around 90% of all designs are made off a standard grid. There is increasing pressure for all PCBs to be designed for testability where the increasing use of surface mount components may make a PCB untestable. Double sided test fixtures are not required if all the test points are brought through to one side of the board at the design stage. Typically in any double sided board design, 70% to 80% of all test points will appear on one side. It takes little extra effort to ensure, at the design stage, that all remaining test points are brought through to the same side of the PCB.

The problems of accessing densely packed components or fine tracks and via holes can be solved at the design stage. The designer must regard a test point pad as an essential component and design it into the circuit design. Typically, the inclusion of test pads for the probes would take up about 1% of board space, but there is often up to 20% of unused board space on a design. To enable accurate probing, test pads should be no closer than 0.1" minimum spacing between test points. There are a range of fine probes available for the more miniaturised precision testing applications. Finer probes are required because the lead pitch of SMDs, has reduced the traditional 0.1" to 0.05" currently preferred by the American component manufacturers, and 0.040" favoured by the Japanese.

However, components on 0.030", 0.025" and 0.020" pitches are being manufactured with the forecast of further reductions in the near future. Device availability, shape, pitch and terminations, are all design restraints and affect the production equipment needed for assembly, soldering, test and repair. Target size determination becomes a critical issue when dealing with close centre testing, therefore, it is essential for the circuit design engineer to define a minimum size target area for probing. The relationship of tooling location pins, used to align the unit under test and the test pad pattern with respect to the aligned edges of the PCB, must be carefully assessed. For example, the expected error encountered in drilling the fixture test head, generated by inaccuracies in the CNC drill machine, drill bit flexibility and material properties, can be anything between 0.05 to 0.1 mm. This fixturing error represents the absolute minimum ideal condition and does not indicate any mechanical errors in the probe itself. The recommended target pad size of 0.85 mm may be larger than the available board space will allow. A more practical dimension, such as 0.5 X 0.5 mm would generally work well because the chances of all the tolerances being in the same direction are minimal. Based on experience, an average size of 0.64 X 0.64 mm has proven to be adequate, but if space permits, an 0.85mm target may avoid any probe target misses. In addition, other testability related problems have surfaced: such as fixture and tooling pin tolerances; circuit pad and track spacing; probe tips style; mechanical probe tolerances and probe electrical specifications. The maximum component height will effect the design of the test fixture and selection of test probes, as the probe may have to be extended above the probe plate, to compensate for the difference (34).

It is important to keep all test pads at least 9.66mm from tall components when possible, and group tall components together in case relief cavities are needed in the test head. To make a test, the product to be tested is placed on top of the rubber gasket inside the product dam, which is close fitting to produce a good seal. Air is then evacuated from the space between the probe plate and the support plate, effectively causing the support plate to move down and bring the product in contact with the spring probes, thus allowing the tester to scan the PCB in the test mode required.

#### **1.8 SPRING TEST PROBES**

The effectiveness of automatic test equipment used in the testing of printed circuit boards depends on making a reliable reproducible low impedance contact onto the printed circuit board, in order to prevent degradation of the test signals to and from the ATE system. In the majority of cases this connection to the PCB nodes is achieved using spring loaded telescopic test probes fitted to the test heads. Unless careful consideration is given to these test probes, production delays may occur due to poor connections between the UUT and ATE system, thus making expensive reworking necessary.

Many different types of probes are now available to suit most testing requirements. The first logic boards to be produced were manually tested, but this was a time consuming operation that was also very costly and did not support high volume production. As the complexity of boards increased, manual testing was replaced by automatic testing, and with the introduction of computer based ATE, diagnostic software became available. The early single sided boards with widely spaced tracks were easy to inspect visually, but ATE was developed as double-sided boards, multiple-layer boards and reduced track spacing were introduced.

The first ATE was developed from testers that were originally used for checking backplanes and wiring looms. The equipment was fitted with a platen containing a number of test probes, known colloquially as a bed of nails. The bed of nails technique for contacting PCBs is used for loaded boards and bare board testing, but a higher density of probe concentration is necessary for the latter, due to the need to check each track end to end and prove track continuity. The flat surface of the PCB permits the use of probes with shorter plunger movement, than are required for loaded boards where the surfaces to be contacted are not of uniform height. Test heads for PCBs with relatively few test points i.e. 150 to 200, and low volume production are usually operated manually, depending on the total amount of spring pressure that is required. The maximum theoretical vacuum force available is 14 lbs/in2. but typically it is 15in of mercury (about 7.5lb/in2). A typical loaded board probe needs 6 - 8oz spring pressure, therefore the 7.5lb/in2 available would limit the probe density to a maximum of 15 - 20 probes per square inch. However, the use of smaller probes with lower spring pressure would allow more densely populated probe field. High initial vacuum leakage occurs before the board has sealed itself down, some leaks are due to holes in the board, so the vacuum pump has to have sufficiently large capacity to accommodate such leakage.

Similar problems exist when testing bare boards, but in order to prevent air leakage through the holes the boards are not used as a sealing device. A pressure plate is fitted over the boards, forcing them hard down on the platen contacting the exposed probes. Pneumatically operated test heads are used in circumstances where the probe density and total spring pressure exceeds that recommended for manual or vacuum operated heads. The fixture can be similar to a manual fixture, but is operated by pneumatic cylinders, which can exert more force on the board than is possible when using the other methods of operation.

The first test probes (35) were ordinary sewing needles which slid up and down inside brass ferrules and springs produced by factory model shops. These probes were fitted into the test fixture permanently, and worked well where the test requirement was undemanding. However, the major problems with this style of probe included their large size, which limited the closeness of spacing, and the wire connection. With the latter soldered to the probe needle the up and down movement, which occurred when the probe was depressed, eventually fractured the joint. These probes were used almost exclusively on single sided PCBs with large test pad areas.

The arrival of integrated circuits and a later, more specific, requirement to perform in-circuit testing to see whether components were correctly fitted or, indeed, there at all, made it necessary to probe along ic legs and other components with test points close to each other. The old type of probe was therefore unsuitable and several manufacturers designed ranges of probes using an integral spring. Because it was desirable to have a range of tip styles to cope with various contact surfaces, these probes tended to be of an interchangeable design, consisting of the spring probe assembly and a receptacle into which the probe could be inserted and removed if required.

An illustration of one style is shown in (Fig.1.8). However, one manufacturer produced an integrated range of five sizes, later expanded to seven, to a common design standard, each size having a range of tip styles with in it. Additionally a choice of two spring rates was available, the higher pressure items being useful in helping to cut through various types of test point contamination. This range was so satisfactory that the designs were widely copied, and now form a useful core of established designs that allow more or less complete interchangeability between probes and receptacles from a number of different manufacturers.

Other early probes used in ATE test fixtures were comparatively large, fitted with external springs, with wires connected directly to the plunges. These connecting wires were continuously flexed as the probes were operated, and often fractured. In areas where the probe density was concentrated, the wires fouled each other causing frequent delays.

The original probes used, were pointed and proved to be satisfactory with defined test pads, eventually the test pads were omitted as component density increased and it became necessary for the probes to access the stub ends of component leads. It would therefore appear, that with the introduction of surface mounted devices which require test pads that the technology has gone "full circle".

These probes (Fig.1.9) have now been displaced by two part assemblies, consisting of probe and receptacle (See Fig.1.8). The probes were originally designed for a 0.1 in pitch and a stroke of 0.16" and could readily access ICs and most components which was not possible with the original probe with its external spring. Probes were continuously developed to provide longer throws, consistent with testing more difficult boards with badly cut leads and terminal posts.



INTERCHANGEABLE PROBE AND RECEPTACLE

FIG. 1.8





FIG. 1.9

A variety of different style probe heads (Fig.1.10) became available to cope with the many different types of problems encountered in testing. Some probes had heads with inverted cups to capture cut through leads, flat heads for large terminals, or triangulated known as pyramid heads for contacting via holes. Heads were developed for penetrating the flux and oxide deposits present on contaminated boards, such heads including tulip, crown, super crown and flexible. The flexible probe has a spring which will operate with a low pressure with a surgical sharp needle designed to pierce flux contamination. Its flexibility enables it to return to a normal shape after making contact with a misaligned component. Tulip and crown heads with centre points but lower outer points were developed to contact wide spread lead throughs, with their deep set serration to pierce the contamination, without the troughs of the heads filling and reducing the efficiency of the probe.

Rotating probes have now been developed for testing severely contaminated boards. These are manufactured with a small helix which caused the plunger to turn through 90 degrees, when the probe is subject to compression, and therefore cut through the contaminating material. Early test fixtures were dedicated to a specific design of PCB and were assembled by the user, but as probe densities increased, more precision was required to ensure correct drilling and alignment of the assembly.

Localised heating reduces probe life, therefore, the largest probes possible should be used on given spacing in order to increase the current carrying capacity of the probe. The larger probes are more robust and will last longer. Several probes connected in parallel to the same track or node will reduce probe current density by dividing the current by the number of probes used. By minimising the current density per probe, spring degradation and internal damage may be reduced or avoided. It is necessary to ensure that the probe is stationary during the application of current, to prevent variations in contact resistance occurring within the probe. Small changes in resistance caused by relative internal movement, can have significant effects with large current density, and apart from contributing to earlier failure, they reduce the accuracy of measurement.



# Fig. 1. 10 DIFFERENT STYLE PROBE HEADS.

It is also important to consider the effects of low probe currents in connection with the probe contact resistance, as these can seriously effect the accuracy of measurement when the test current is only of the order of a few micro amps. Probes of different sizes can be mixed providing the stroke length is the same for each type of probe. There is no problem in this respect when testing bare boards, but where boards contain different terminal profile components, they may introduce the need for probes of different stroke lengths. Although this difference may be small perhaps 0.010 inch when it is related to a large number of operations during the life of the probe, it can be seen there will be significant differences between the total distances travelled by the probe plungers, with a related reduction in life of the probes subjected to the greatest movement.

Reasonable uniformity of probe life in the test fixture can be preserved if the platen is drilled to depths related to the differences in plunger travel before fitting the probe receptacles. The platen should be drilled with the first board or with a common template, to ensure that the probe location in the test fixture is accurately aligned with the target areas of the boards. It is recommended that PC boards are cleaned before testing, but probe tips which are specially designed for the penetration of flux and oxide residues may be selected. Maximum penetration of the surface is achieved by using probes which operate with the highest spring pressure, but it is important that the total force required to compress all of the probe springs in the test fixture is considered when making this choice.

If a certain type of probe has been chosen for testing a bare board measuring  $8" \times 12"$ , and containing 3000 holes, then the total compression force on the test head has to be evaluated. Initially, reference to the probe manufacturers data shows that these probes are available with two values of spring force, the first being 80g and 155g. There is also a plus or minus 20% tolerance on all spring pressures. Selecting the highest spring pressure (155g) for maximum penetration and allowing for the worst case, gives a total compression force of 3000 (5.4 + 20%) 16 X 2240 = 0.55 tons (558.16 kg). This emphasises the need for overall consideration of the test fixture parameters.

For vacuum fixtures the holes in PCBs must be blocked (except tooling holes) to preserve vacuum integrity, as just six plated through holes left open can prevent fixture operation. Special sealing methods are available from some fixture manufacturers, but failure to seal holes can result in a reduced probe density due to loss of available vacuum.

#### 1.8.1 Probe Performance

It is desirable to achieve a consistent probe performance throughout its life, where the probe behaves as a fixed resistor of low ohmic value. A variable resistance characteristic would adversely affect the reliability and accuracy of the ATE system as a whole. The performance of a test unit is only as good as the quality of the simple test probe making contact with the PCB under test. A very time intensive investigation into the tester board interface is undertaken, but most of the blame is usually allotted to the spring probes due to the effects of mechanical wear.

Investigations into the test probe head "zone of contact" shows it is not by any means the actual contact area, and as the electron is only a very small particle, only  $10^{-24}$ g in mass, it cannot jump very far. So when two pieces of metal make contact with each other as in a connector, the actual electronic junction is made over a minute area, known as an "asperity". An analogy is to turn upside down a range of hills and mate them with the same hills the right way up, therefore very few tips would be in contact with each other, this being the situation with all metal to metal contacts. Bringing the tips together creates friction, making cold welds over minute areas. These areas are where the electrical contact is made and although small, are sufficient for the electrical connection.

Comparing the specified zone of contact and the real contact area, shows an amount of redundancy which is a feature of every electrical connection (Fig.1.11). The principle factors for consideration, are heating due to the passage of current through the closed contact resistance, and erosion of material from the active contact surface of the probe, leading to an inevitable increase in resistance. Other considerations are the mechanical force applied, the shape of contact faces, and the condition of such faces with respect to surface contamination due to coatings used on PCBs, and the formation of oxides with their associated affect on contact resistance (Fig.1.12), (Fig.1.13), (Fig.1.14).

Looking at the probe more closely, it is possible to divide the probe into four separate resistors, two variable and two fixed. (1). The fixed probe outer barrel to receptacle resistance. (2). The variable plunger to outer resistance. (3). The fixed resistance of inner probe plunger. (4). The variable resistance of the probe target contact. This analogy is shown in (Figs.1.15a & 1.15b).

Resistance values of the fixed elements within the probe should remain reasonably constant over the probe life time, with the remaining two variables showing an average gradual increase, as seen in manufacturers sales literature (Figs.1.16a & 1.16b). However, there are random reductions and increases in values over the probe life due to the build up of wear debris and fluctuating spring pressure within the probe assembly. Preliminary tests have already shown that probes may become solid after extensive use, leaving the spring unable to exert the necessary force to return the probe to its extended position. It is possible for the probe to remain permanently jammed or sometimes revert back to normal operation, often resulting in part of a batch being rejected by the ATE adding extra cost and time to the production process.



Fig. 1. 11 CONTACT SURFACE ASPERITIES.



Fig. 1. 12 CONTACT CONTAMINATION.



,01 mm

Surface of electroplated gold contact.

Fig. 1.13





Corrosion solids on porous gold-plated nickel after exposure

Fig. 1.14

## PROBE RESISTANCE

### RESISTANCE ELEMENTS WITHIN THE STRUCTURE

- **R1 PROBE BARREL HOUSED IN RECEPTACLE**
- R2 MOVING CONTACT RESISTANCE OF BARREL TO PLUNGER
- **R<sub>3</sub>** FIXED RESISTANCE OF INNER PLUNGER
- R<sub>4</sub> .VARIABLE RESISTANCE OF PROBE TIP TO TARGET



 $R_1$  and  $R_3$  FIXED VALUE  $R_2$  and  $R_4$  VARIABLE

Fig. 1.15a



R1. R4 = CONTACT RESISTANCE. R2 = ISOLATION IMPEDANCE. R3 = LINE RESISTANCE. L = LINE INDUCTANCE C1 = COUPLING CAPACITANCE Z0 = CHARACTERISTICS IMPEDANCE





Fig. 1. 16a PROBE MANUFACTURERS AVERAGE RESISTANCE PROJECTIONS.



Each of the above graphs are based upon 128 randomly selected probes which were mechanically cycled and tested according to the specification below. Over a 500,000 cycle test, each probe was measured at 2,000 cycle intervals, giving 32,000 data points for each graph. It should be noted that all of the data falls within the shaded regions and that the average probe resistance is represented by the dark lines. Test stroke: (1600 series).130 inches/3.3mm

(1600 series) .130 inches/3.3mm (2500 series) .170 inches/4.3mm (0500 series) .045 inches/1.14mm 100 milliamperes max. 2.50 volts max.

Test current:

Test voltage:

Fig. 1. 16 b PROBE MANUFACTURERS AVERAGE RESISTANCE PROJECTIONS.
#### 1.8.2 Route Taken by the Current in the Probe Assembly

From the electrical view point the probe has become a spring loaded, telescopic cylindrical connector, comprising of two fixed resistance elements with another two which are variable, all connected in series. As in all electrical circuits the current will take the path of least resistance with little current flowing through the spring, due to its greater resistivity and longer length. But it is possible, as the sliding cylindrical assembly becomes worn with associated increase in resistance, there will be a greater percentage of current flowing through the spring causing increased heating.

The accumulation of oxidised wear debris between the sliding cylindrical contacts, which is continuously being moved by probe action, will cause random variable values of resistance which is also due to a looser fit of the probe components. This effect was developed and used in the old telephone carbon microphone, where variable pressure waves in the air were converted to variable electric currents by carbon particles between two electrodes.

Lateral forces between the two loose fitting cylindrical contacts, have the effect of pushing the mating contact surfaces either closer together or further apart, depending on the relative co-axial position of the internal probe surfaces and the lateral force applied by the probe target. The result being substantial changes in resistance values over successive probe operations, ranging from low values to open circuit over several circuit board engagements. In circumstances where the relative co-axial position within the probe, remains unchanged for a long period, the surface gold coating becomes completely worn away on specific areas of the probe, resulting in further variation of test values.

#### 1.8.3 Probe Head to Target Resistance

Considerable variations in values may be measured due to several factors, one being, the inability of the probe head to penetrate oxide and other coatings, due to wear of the probe point or points. Another factor may be insufficient or variable spring pressure affecting contact pressure between the probe head and the PCB target, as contact pressure is a function

of contact resistance (36). A better connection can be achieved where there is a substantial voltage gradient available, to break down resistive coatings on both contacts with a moderate current to initiate a cold weld. Where test voltages and currents are very low, problems often arise in making a good connection to the PCB, because of the lack of energy available to initiate the current.

#### 1.8.4 The Mechanical Effects of Probe Wear

As the probe becomes worn, its concentric components become loose, resulting in a reduction in its pointing accuracy, with a greater chance of the probe tip missing or shorting its target pads or pins. This is now of greater importance due to increased probe field density with smaller probes and closer spacings. The effect of tolerance build up through the fixture, probes, and the PCB leads to more unnecessary board failures on test.

1.8.5 Spring Materials

As probe size continues to decrease and working loads increase, material selection for the spring becomes more critical. The most commonly used materials for this application are music/piano wire, stainless steel and beryllium copper. Each material has good and bad characteristics which should be evaluated in terms of the users design requirements.

Music/piano wire is the strongest of the three materials, it is high carbon steel wire which may be obtained in diameters as small as 0.004" and is known for its consistency and strength. Stainless steel derives its strength from cold working and is available in fine wire diameters. It is frequently used in high temperature applications and corrosive environments. Although its tensile strength is somewhat less than music wire, it fatigue prolongation is excellent. Because it is corrosion resistant, processing consists of passivating and stress relieving.

Beryllium copper is the weakest of the three materials. Its strength is derived by heat treating to spring temper, but has a much lower electrical resistance (37).

## CHAPTER 2

#### 2 THEORETICAL APPROACH

#### 2.1 GENERAL

The investigation of the electrical & mechanical parameters of PCB test probes was undertaken using a test machine to simulate as close as possible the conditions experienced by probes in a typical test fixture. To evaluate the probes parameters, it is necessary to state the objectives of the probes performance during normal routine PCB testing. The characteristics required for a perfect probe, looking in the first instance from the electrical viewpoint, is a probe with low internal resistance which has little or no variation in value throughout the probes life cycle. Interfacial contact resistance measured from the probes receptacle to the PCB contact target should in ideal circumstances be low and constant in value, but during testing values may increase due to insulating layers developing on contact surfaces. Test probe points are designed to access a range of PCB targets and penetrate any insulating layers or contamination, (Fig.2.1). Ten experiments were conducted using ten sets of near identical style probes (100 probes in total) and resistance measurements were logged every 10,000 cycles with a probe deflection rate of 123 cycles per minute and measurements taken at 80 minute intervals, thus producing results of the probes resistive performance as part of the test circuit. These experiments were conducted between two to three million cycles on average. Probe life is guaranteed by manufactures up to one million cycles and so accordingly probes were assessed for performance at 1.2 million.

One of the principle objectives of this study, is the analysis of electrical contact reliability. Most probe manufacturers give data related to probe life resistance performance measured usually to an ideal target, which does not include any detrimental effects experienced in the field of manufacture and testing (See Fig.1.16).

As the probe is one of the most important parts within the test interface, its electrical resistance is measured on a regular basis during life simulation for the analysis of electrical contact reliability. The two factors affecting contact reliability are: (1). the wear and debris



6 sided star recomended for bare board testing







FIGURE 2.1(a) TEST PROBE POINTS



within the probe structure; (2). the ability of the probe/points to penetrate a test node sufficiently to produce a low impedance contact.

Testing the probes requires deflecting the probes through two thirds of their total travel for (on average) up to 2 million cycles, to determine their electrical and mechanical longevity, in order to permit the comparison of one set of probes with another. The survival rate is determined by the percentage of probes that will continue to function after life simulation.

To evaluate the electrical and mechanical parameters of the PCB test probes, it is necessary to simulate as close as possible the operating conditions within the test fixture, while at the same time speeding up the probe operation rate so that probes may be tested in a reasonable amount of time. The process may only be speeded up to a rate where the probe remains within its normal temperature operating range, due to the subsequent loss of lubrication from the probe assembly during testing.

The wide range of probe targets encountered on a PCB from flat pads to solder mounds or component leads, means the probes may be subjected to random variable side loads during their life-time in a test fixture. It is therefore necessary to include some side pressure on the probes during life simulation testing, which may require an angled plane as a target. Preliminary tests have already shown a considerable reduction in probe life, when tested to angled targets with their associated side pressure on the probe assembly (Fig.2.2).

The measurement of the total side to side movement of the plunger, in relation to the barrel, is made before and after life simulation and is used as an indication of wear, usually referred to as side play.

Previous probe evaluations have shown that some probes can have extremely long life cycles in order of 2 to 3 million operations, and may even perform satisfactory up to 4 million cycles, which means that considerable time is needed for testing.



FIG. 2.2 ANGLED TARGET PROBE DIAGRAM

#### 2.2 ELECTRICAL RESISTANCE MEASUREMENT

It is necessary to measure electrical resistance at frequent intervals in order to obtain a detailed picture of the probes resistive performance within the PCB test circuit. As the probe wears its electrical resistance slowly increases restricting the measuring ability of the ATE, particularly in cases where low ohmic value components are involved. Resistance measurements of the probe indicate significant changes in an upward or downward direction between readings taken over a short interval, with the average trend in an upward direction (Fig.2.3).

In service the probes produce a number of random high resistance, or less often, open circuit readings leading to good quality boards being rejected by the ATE. Due to the random variations in probe resistive values, it is not possible to compensate for them in the ATE software. Random opens may be explained where the probe jams over one cycle or a number of cycles, and then reverts to normal operation. It could also be caused when the probe does not penetrate the surface of the target, producing a high resistance or open reading (Fig.2.4). As the probe wears, its side play will gradually increase, leading to random opens where the probe misses its target due to wear and tolerance build up within the PCB and test fixture, producing a false open reading. These types of open readings can only be detected in tests where the probe is aligned to a designated pad or another target.

#### 2.3 ENVIRONMENTAL CONTAMINATION OF PROBES

A considerable range of probe point styles are available, suited to various types of targets used for test evaluation, but in trying to decide on a pin style that is best for a given application, it becomes apparent that regardless which pin is chosen, the end result is a level of performance that is less than perfect. This fact is perhaps due to environmental conditions as well as being caused by the composition of the pin itself (See Fig.1.10). Contaminates can be deposited on the tip as well as penetrating the barrel during depression. For the most part these problems are sporadic, that is they only occur for a small percentage of the time, yet



FIG. 2.3 PROBE MANUFACTURERS PROJECTED PERFORMANCE GRAPH



when this failure rate is multiplied by a high pin usage then an undesirable level of failure can occur (23).

#### 2.3.1 Testing in the Fixture

Life simulation testing is possible using a test fixture to simulate the exact conditions that the probe is normally subjected to in daily use, but this can lead to problems due to the probes long life. In some cases the fixtures may become worn out after testing only a few sets of probes with up to 50% failure. Due to the relatively slow operating cycle time of fixtures compared with testing machines, testing would be a very time consuming exercise using the test fixture. It also has to be considered that there are vacuum, mechanical and hand operated fixtures in general use with their own environmental conditions. One of the problems with vacuum actuation, is where environmental dust is drawn into the probe field, each test operation leading to external and internal contamination of the probes. If the vacuum fixtures were used under these circumstances, the test results would be more directly related to local atmospheric pollution conditions rather than normal wear. It is not possible to simulate average conditions without fixed standards being available, with respect to standard test dust which is freely available. Testing, therefore, in a clean environment would produce no more valid results than in an average laboratory.

#### 2.3.2 Probe Life Simulation Testing Machine

It is desirable to observe probes subjected to life simulation testing to enable any abnormalities such as probes becoming jammed, which would not be possible using a test fixture. Test machines used by probe manufacturers are either motor and cam driven, or operated by pneumatic cylinders driven by compressed air. The probes are deflected through a percentage of their travel which is made adjustable in the machine design, usually 66.6%.

Both systems usually use a moving target plate which can accommodate a PCB as an alternative target which becomes part of the test circuit. Angled planes or other profiles may be attached to the target plate as required, to simulate any target profile.

#### 2.4 MEASUREMENT OF LOW OHMIC RESISTANCE

Resistance measurements are made from the target to the probe receptacle using the four wire method to gain better accuracy over low ohmic ranges.

Methods of measurement which are suitable for medium resistances are in most cases unsuitable for low resistance measurements, chiefly because contact resistances cause serious errors. It is clear that contact resistances in the order of 0.001 ohm - negligible though they may be when a resistance of a 100 or more ohms is to be measured, are of great importance when the resistance to be measured is of the order of 0.01 ohm.

It is usually essential, with low resistance, that the two points between which the resistance is to be measured shall be very precisely defined. Thus the methods which are specially adapted to low resistance measurement employ potential connections. i.e.connecting leads which form no part of the circuit whose resistance is to be measured, but which connect two points in this circuit to the measuring circuit. These two points are spoken of as the potential terminals and serve to fix, definitely, the length of circuit under test (38), (Fig.2.5).

In low valued resistors, the use of four leads, rather than two leads, permits the measurement of the main resistance without the inclusion of the resistor leads. This can be seen in the application of a four terminal resistor measurement. The potential leads are attached as close as possible to the main body resistance. There is no current flow through the potential leads and this eliminates their resistance from the measurement. Resistance between the potential leads may then be determined without inclusion of the resistance of the current leads into the measurement (39), (Fig.2.6).

Test probes when new, depending on their type, have resistance values ranging from around 10 milliohms to 50 milliohms for the smaller closer spacing types, requiring precise measurement at frequent intervals within the low resistance range of measurement. Probe

# THE TWO AND THREE WIRE METHODS ARE NOT RECOMMENDED







3 WIRE



THE FOUR WIRE TEST CIRCUIT PROVIDES THE MOST ACCURATE RESISTANCE MEASUREMENT

FIGURE 2.5 FOUR WIRE OR KELVIN METHOD RESISTANCE MEASUREMENT



FIG. 2.6 RESISTANCE MEASUREMENT - FOUR WIRE METHOD

current ratings range from one amp to eight amps for the larger size probes in parallel for larger current requirements.

#### 2.4.1 Test Current for Resistance Measurement

Measurement of the probes resistance is made when the probe is statically compressed at the rated stroke. Tests have also been made for comparison at the probes minimum compression, to verify changes in the internal resistance of the probe. A test current of 100 mA at 10v DC using the four wire method is used to measure the probes resistance. Each pin under test, in turn, has an accurate current source output routed by means of two wires, with a separate two wires to measure the voltage drop across the spring probe receptacle and the probe contact target.

The oscillatory frequency of the test machine is one hundred and twenty three strokes per minute. Other frequencies used by probe manufactures are, Augat using three hundred strokes per minute and I.D.I. using two hundred and twenty strokes per minute, higher rates would cause the probes to rise above their normal temperature range. Probe resistance measurements are made around every 10,000 operations but may be varied as dictated by the probes performance requirement (40).

#### 2.5 DURABILITY OF LIFE SIMULATION MACHINE DESIGN

Life simulation testing may require the machine to run for long periods, running into days or even weeks in some cases. This being the case, the machine itself is subjected to the elements of sustained testing over a long period, therefore, the spring probe testing device must be designed to operate in a trouble free manner without attention for long periods of time. Its design must be robust, reliable and long lasting in order to repeatedly test sets of probes for over 3 million cycles.

In order to reduce testing time thus testing a larger sample of probes, it is an advantage from the time and statistical viewpoints, to be able to test a number of probes at the same

time, because a larger sample will give a more accurate result. There have been cases where 20% of probes have failed within their first day of testing, so there are considerable advantages in using a machine able to test a number of probes simultaneously.

#### 2.6 TEST MACHINE INSTRUMENTATION

Resistance testing, switching and measurement along with probe cycle counting instrumentation can be incorporated within the basic machine design, giving it a stand alone capability if required. Alternatively, all the electronic counting and measurement functions can be undertaken by a personal computer (PC), data logger or the ATE system itself. Another alternative is to have a basic stand alone system which can be plugged into a date logger or P.C. for more automated data acquisition. This arrangement will enable probes to be tested when data-logging or computer facilities are not available, due to a higher priority user or a breakdown situation. A test run on a set of probes may take up to six weeks or more in the worst circumstances, tying up equipment for long periods.

It is possible to test a single probe against a variety of targets with different profiles, unfortunately, this method is extremely slow as only one probe may be tested at a time. A stepper motor is used to drive a target plate round, changing the test profile as it moves. This method would not produce very statistically accurate results, due to the small sample of test results available.

### CHAPTER 3

.

.

•

### 3 THE DEVELOPMENT AND MANUFACTURE OF THE EXPERIMENTAL TESTING MACHINE

#### 3.1 GENERAL

The design criteria for the testing machine was for a quiet compact bench top design capable of continuous testing for periods of up to four to six weeks on average. A rigid mechanical design was essential with long life mechanical components because of the extended periods of continuous operation needed for probe testing. In achieving the criteria a rigid and reliable mechanical drive system was developed enabling extended variable probe deflection testing throughout the project. The choice of a motor drive rather than a pneumatic system resulted in a machine which was reasonably quiet in operation without the need for continuous running of the air compressor.

#### 3.2 ELECTRO MECHANICAL DRIVE SYSTEM

The probe life simulation testing machine was developed and manufactured as follows:

Using a small Parvalux geared single phase motor of one eighth HP (93.25 WATTS). The rotational motion from the output of the motor gear box is converted by an eccentric mechanism, to produce a vertical downward force. This is exerted on the top of the target table by a cam and bearing assembly. Mounted on top of the target plate, is a variable inclined plane mechanism to allow adjustment of the probe displacement in the vertical plane.

Adjustment of the inclined plane enables probe deflection to be adjusted to any desired value. Probe manufacturers normally specify a maximum recommended probe deflection of two thirds of normal travel, by using this method any percentage deflection may be selected during probe testing.

Linear bearings are used to fix the target plate in position, biased by springs in an upward direction, causing the plate to return to its highest possible position after deflection has occurred due to the cam action. Two linear bearings with springs are used to secure and bias the target plate, resulting in a rigid structure. Screws are used to secure the linear bearing shafts to the target table, while the lower outer section relies on a tight push fit into the top GRP material of the upper section of the base unit.

The underside of the target plate has a dual rail recessed on the upper side, to enable any PCB desired target to be secured to the underside of the target plate. This allows the target to be slid in or out after tightening or untightening of the securing screws. As the target plate is pushed down by the cam's action it makes contact with the probe field directly beneath, deflecting the probes through a proportion of their travel. The distance by which the probes are compressed, can be selected by adjusting the angle of the variable inclined plane to achieve the desired value of probe deflection (Fig.3.1).

The drive motor chosen was a standard type single phase induction motor with a permanently connected phase shift capacitor. It was chosen because of its reliability, and availability as a stock item with a reasonably short delivery time.

#### 3.3 CONSTRUCTION AND ASSEMBLY OF BASE STRUCTURE

It was decided to use steel of 1mm thickness and 12mm GRP laminate (G10) for the main base structure in order to produce a rigid construction, providing adequate damping against vibration caused by the motor and mechanical drive system.

The base plate is constructed from steel with the sides and top section made of GRP laminate which supports the motor and the reciprocating mechanism, resulting in a compact rigid assembly. The base design incorporates all the necessary space to house the electronic instrumentation (Fig.3.2).



.

÷

### FIG. 3.1 CAM DEFLECTION AND SIDE ELEVATION

74



The probe receptacle can take up to ten probe receptacles if required, probes are inserted and removed from the receptacles before and after testing. The plate is of epoxy glass material, 12mm in thickness giving a good dimensional stability as well as high electrical resistance characteristics.

Electrical connections for the resistance measurement circuitry to the probe receptacles are made by soldered joints. Screws are used to secure the plate to the upper section of the base unit, which is recessed to accommodate the receptacle plate.

The probe target plate makes use of nylon in the plates construction in order to insulate the resistance measurement circuit from the mains earth system with its burden of mains interference. The plate is of 10mm nylon in order to support the variable inclined plane mounted on its upper side. The plate angle is adjusted by a screw and locknut with the PCB target board fixture mounted underneath (Fig.3.3).

#### 3.4 ELECTRICAL AND ELECTRONIC CONTROLS DEFLECTION COUNTER

All the controls are mounted on the front angled control panel (Fig.3.4). They include mains switches for power and motor control, the remainder being for instrumentation.

There are two L.C.D. panel meters, the left one to count the number of probe deflections which is driven by a slotted disk on the gearbox shaft.

An infra-red emitter and sensor is used to detect the interruptions introduced by the slotted rotatory disk, producing an electrical pulse to trigger the counter (Fig.3.5), (See Fig.3.2b).

#### 3.4.1 Probe Resistance Measurement

The right hand L.C.D. Panel Meter is used to indicate probe resistance measurement, converted from a volt meter to measure milliohms, using the four wire method. By feeding a reference voltage, the meter is converted to an ohm meter giving a maximum reading of 2000 milliohms.



FIG. 3.3 PROBE DEFLECTION AJUSTMENT MECHANISM



FIG. 3.4 THE GENERAL ASSEMBLY, PLAN ELEVATION INCLUDING FRONT ANGLED CONTROL PANEL LAYOUT



FIG. 3.5 PROBE DEFLECTION COUNTER AND STEPPER MOTOR DRIVE SYSTEMS

The dual ramp method of analogue digital conversion was devised in the 1960's, and was the subject of British Patents 852848 and 869262. The method allows high accuracy measurements to be achieved without the need for particularly close tolerance components. Consequently, it lends itself readily to lowcost and mass production methods. Several integrated circuit systems are available from various manufacturers.

The unit chosen for the measurement system is RS part no 332004 and includes not only the analogue to digital conversion circuitry, but also a liquid crystal display and attendant drivers. R.S data sheet no 3627 includes both mechanical and electrical specifications.

The dual ramp method is essentially a comparison method. In the chosen unit, the input voltage is compared with a reference voltage, in such a way that the display shows a number 2000 x V in  $/V_{ref}$ . Generally the module is used as a voltmeter, and a source of reference voltage is provided which has a temperature coefficient of 200ppm/degrees C.

The most obvious method of measuring a resistance would be to pass a known current through the resistor, to measure the voltage developed across it, and then to use Ohm's Law to calculate resistance. However the result would be subject to variations not only from the errors in determining voltage, but also from uncertainty about the value of current.

The improved arrangement is a ratiometric method, in which the test current passes not only through the resistor under test, but also through a reference resistor. The voltage developed across the latter is used as the reference voltage for the panel meter.

Hence:- 
$$V_{in} = I R_x$$
  
 $V_{ref} = I R_{ref}$ 

Displayed number = 2000 x I  $R_x/I R_{ref}$  = 2000 x  $R_x/R_{ref}$ 

Since this arrangement does not use the module's reference voltage source, the problems which its temperature coefficient would have caused are avoided. Notice also that the exact value of the current I is not important, as it does not appear in the ultimate equation. Some constraints should be placed upon the value of this current however to ensure satisfactory operation:-

(a) I x  $R_{ref}$  should be about 100mV. This is the value of  $V_{ref}$  the module is designed to work with. Smaller values will unduly increase the significance of any errors in the analogue input circuitry of the module. Overlarge values of  $V_{ref}$  may cause saturation and non-linearity.

(b) Should the current (I) vary with time, it should do so at low frequency. The two resistors  $R_x$  and  $R_{ref}$  are unlikely to have the same stray capacitance and inductance, so high frequency variations would not be properly cancelled out.

(c) The current (I) should be within the current carrying capacity of the resistors, and very much larger than the input bias current of the panel meter.

This was realised by choosing  $R_{ref} = 1$  ohm, I = 100mA derived from the 50hz mains supply , rectified, smoothed and regulated to about 12V and fed via a 120 ohm resistor. Since  $R_{ref}$ is 1 ohm, the displayed number is a direct reading of  $R_x$  in milliohms (Fig.3.6).

3.4.2 Control System

#### a). Probe Selection:

Using a dual thumb wheel switch, four wire resistance measurement can be switched to measure all ten probe resistance values accurately in turn.

#### b). Data logging Plug:

The termination is available for four wire resistance measurement by an external device, such as a ATE system, a Datalogger or a Personal Computer (PC), if required.







. 82

c). Stepper motor driven target plate:

A synchronised stepper motor drive is available to drive a multiprofile target plate, to enable testing a probe to a variety of typical targets. The drive uses an astable multivibrator to supply the correct frequency to the stepper motor drive circuit.

The motor will only run when there is an output from the counter transducer. The motor used is a Parvalux permanent capacitor induction type with a speed of 1400 RPM and a gear reduction to 123 RPM. The motor is mains powered at mains voltage.

d). Internal DC power supplies:

The DC supplies required to drive the electronic system are housed in the base unit, using a printed circuit card designed and manufactured for the purpose.

It is loaded mainly with voltage regulators, in order to supply the instrumentation with the appropriate voltage and current reference supplies. The transformer chosen has two windings, in order to achieve two isolated supplies required for the resistance measurement circuitry. A stepper motor drive system is also located on the PCB (Figs. 3.7 & 3.8).

A set of both mechanical and electrical drawings were completed after the design stage, in order to construct and assemble the test machine efficiently (See Figs.3.1, 3.2, 3.4).











.

. 86



FIG 3.10a : FRONT VIEW OF PROBE TESTING MACHINE



FIG 3.10b : SIDE VIEW OF PROBE TESTING MACHINE



FIG 3.11 : SIDE VIEW OF PROBE TESTING MACHINE



FIG 3.12a : PROBES & RECEPTICLES FITTED INTO EPOXY GLASS BASE PLATE



FIG. 3.12 P.C.B./ATE CONTACT INTERFACE
# CHAPTER 4

,

.

.

### **4 EXPERIMENTAL PROCEDURE**

# 4.1 GENERAL

The experimental programme was designed to evaluate probe characteristics during extended life testing. This resulted in the measurement of all appropriate electrical and mechanical parameters during the testing of ten sets of ten probes (100 probes in total) over a period of ten months.

It is possible to use the machines on-board measurement instrumentation, but a more affective way is to use a calibrated standard instrument in order to verify the calibration of the on-board system when the probes are in the machine. Measurements are taken of probes resistance before they are fitted in the life simulation machine, using the calibration standard instrument and afterwards in test machine. By using this method any difference in values may be compensated for in the resistance test measurements results.

The calibration standard instrument may also be used for verification when using an external computer or ATE logging of probe field resistance, before and after life simulation testing.

# 4.2 CALIBRATION OF RESISTANCE MEASURING SYSTEM

The calibration standard instrument uses the four wire method of measuring low resistance, the meter has four test leads two of each connected to a double contact test clip. On each test clip, one connection is used to inject the test current of 5 mA, while the other is used to measure the potential drop across the probe. By using a four terminal network, the inaccuracies caused by lead resistance are eliminated from the measurement circuit.

It is possible to measure resistance values over the range of 0.001 ohm to 200 ohms with an accuracy of plus/minus 0.1% of the range, using a test power of 5 MW maximum, with 0.1%/degree centigrade ambient temperature drift (RS No. 611953), (Fig. 4.1). Most of the





FOUR WIRE RATIOMETRIC METHOD USED TO MEASURE LOW RESISTANCE

measurements taken are in the range of 5 milliohms to 2000 milliohms, which is the range of the on-board measurement system used on the test machine.

It may be necessary to make occasional measurements using the calibration standard instrument, where high or open circuit values are encountered.

### 4.3 MEASUREMENT OF THE SPRING PROBES MECHANICAL PARAMETERS

The spring test probes mechanical parameters are checked before the probes are inserted into the receptacles of the test machine, to confirm whether they conform to their manufacturers published specifications. In the case of the probes used for testing in the machine, there were no great variations in the values measured prior to testing.

Test specifications for probe spring force are quite loose in that the spring force is quoted as plus or minus 20% of the probes stated value in the case of one manufacturer, which means the spring force before testing can differ by 40% compared with another probe from the same batch. In other words, one probe could have a spring value of plus 20% while another could have a value of minus 20%, both from the same batch installed in the same test fixture (41).

# 4.3.1 Measurement of Probe Spring Force

A.J.J. Lloyd M 5 K Tensile Testing Machine is used to measure the probes spring force before and after probes have been subjected to testing in the life simulation machine.

The machine is a versatile and compact bench mounting materials testing machine, used for evaluating the tensile, compressive, bending and stiffness properties of a wide range of ductile and rigid materials. There are two digital displays on the panel, the left hand display shows the load values, while the right hand display shows the extension or distance travelled. It is possible to display the resultant information in graph form on the machines XY recorder. A quick and easily interchangeable range of stiff electronic load cells are available for any material or force range.

The probes for spring testing are fitted between the base anchor point and the load cell extension bar, which is supported by the motor driven cross head section. During testing, the cross head is driven downwards compressing the spring probe through the force transducer. The two parameters of force – Newtons and displacement in mm, are continuously being displayed during the test by the machines two digital indicators. It is possible to select the rate or time in which the probe is deflected, by adjusting the speed at which the cross head is driven.

# 4.4 INSERTING THE PROBES INTO THE MACHINE RECEPTACLES

To avoid probe damage occurring during insertion into the life simulation tester, it is advisable to remove the probe target plate which ensures that damage does not occur to the probes during insertion or withdrawal. Probes can however be inserted or withdrawn without this operation, but there is a risk of probe damage occurring. It is a relatively simple task to replace, secure and tighten after probe insertion or removal, as there are only two screws involved.

While the probe target plate is removed, the PCB target may be examined or replaced with one of a different profile or angle. Two of the four wires in the measuring circuit are connected to the PCB target, using soldered joints for a reliable low resistance connection. It is necessary to use extra flexible wire leads for this purpose as the probe target plate is continuously in motion, deflecting the probes during testing.

Once the probes have been inserted and the target plate positioned, initial measurements of probe resistance can be made to ensure sound connections exist throughout the measurement circuit. It is advisable to examine the machine for loose parts and lubrication in view of test duration, which may be several days or weeks.

### 4.4.1 Probe Deflection Adjustment

The distance the test probes are deflected through, can be set by adjusting the angle of the variable inclined plane, this enables adjustments to be made from 0 to 100 percent deflection for most types of probes.

Manufacturers recommendations are usually no more than two thirds in order to preserve spring life. However, testing has to be performed beyond this point in order to effectively evaluate probe performance. Adjustment is achieved by turning a screw with an allen key, and locking its position with a spanner and locknut (See Fig.3.1).

At this stage, the machine can be switched into operation, where the probe resistance values can be logged at regular intervals. It is possible to take resistance measurements from zero deflection up to the set value determined by the angle of the inclined plane, usually two thirds travel as specified by probe manufacturers.

Most measurements are taken at (a). zero and (b). two thirds, in order to compare relative changes during life testing, but it may be found necessary to take measurements at other deflection values, determined by test results.

A visual examination can be made when probe resistance measurements are taken to check whether probes have become jammed or bent, as most of those conditions would not be evident when taking probe resistance values into sole consideration. Preliminary testing has shown, that partly jammed probes produce comparable resistance values with a probe which has not become jammed, bent or deformed.

4.4.2 Probe Cycling Time

The probes resistance measurements are logged every ten thousand cycles (approximately every eighty minutes). Most probes will be tested to between two to three million cycles, depending on the type of target the probes are tested to. Severe angled targets cause the probes to wear more quickly due to the side pressure applied to them, sometimes causing probes to fail in less than a million cycles. While others directed to a smooth flat target, may reach two to three million cycles before severe mechanical or electrical failure occurs. If however a probe becomes jammed when it is in the extended position, it will be buckled, bent or jammed solid into the probe receptacle, by the action of the target plate. In this case it is often difficult, or impossible to remove the test sample from the probe receptacle. Test probes in this condition cannot be fully evaluated due to damage caused in their removal from the receptacle, and in some cases it is not possible to measure spring pressure and side play in these probes. It is therefore desirable to test a reasonable size sample on each occasion.

In order to remove probes from the machine, it is necessary to first remove the target plate with its attached PCB target on the underside, which is the same operation as fitting the probes, except in reverse order. In most cases, 80% to 90% of the probes can be removed without difficulty, as they are designed to be a push fit in the receptacle and only need withdrawing using normal finger pressure. Some probes that cannot be removed by normal means may be removed by the use of normal electronic servicing tools. The odd probe that defies attempts of removal, is often destroyed with its receptacle defying all attempts before destruction. This is only the case where probe tests are extended towards total mechanical failure, requiring the replacement of receptacle and probe before testing can commence.

Once the probe samples have been removed, they can be identified by their switching position number which is used in their resistance testing sequence of measurement. The probes may be attached to an adhesive label or stored in a numbered container, for further evaluation for the effects of wear.

4.4.3 Post Testing Probe Evaluation

Evaluation of mechanical and electrical parameters (which is in addition to the log of resistance measurements taken over the test period) includes: (a). the measurement of side

play movement; (b). the measurement of probe tip wear due to contact with the PCB; (c). the measurement of probe spring pressure; (d). the static measurement of probe resistance, compressed and relaxed as a calibration reference for the on-board resistance measuring instrumentation.

Photographic records are taken to demonstrate the effects of wear on various component parts of the probe assembly, using both light and X ray photography.

# CHAPTER 5

.

,

.

#### 5. EXPERIMENTAL RESULTS

#### 5.1 GENERAL

The performance of automatic test equipment used in testing printed circuit boards depends on the type and quality of test probes fitted within the test fixture, and a large number of probes were tested to evaluate their performance. The probe is the critical link between the UUT and the test system, for without a reliable spring probe performance high speed automatic test equipment would not be very reliable. Yet the spring probes performance has often been overlooked, resulting in costly delays. High resistance values are the main problems during service, whilst mechanical factors due to flexibility or wear of probe components are responsible for the so called false errors during PCB testing. It is for this reason that the resistance monitoring experiments were conducted in order to assess the probes electrical and mechanical performance over various test periods.

The apparatus developed to perform life simulation testing can accommodate up to ten probes for a given test. To simulate actual conditions the probes were tested on a range of targets from flat through to angular; in increments up to 60 degrees. The probe targets used were copper clad PCB or stainless steel for flat targets the resist film was stripped off immediately before the test commenced to achieve an oxide/contamination free target. In the case of angled targets a copper angled section was soldered onto the printed circuit board target, with any flux or other contamination being removed by using a fine abrasive followed by trichloroethylene, thus leaving a bright clean uncontaminated copper surface. The resistance of each probe was taken using the external measurement system before each set of ten probes was inserted into their receptacles, located on the probe tester platform. Resistance measurements were then undertaken once again, in order to verify calibration of the on-board resistance measurement circuit.

Electrical resistance measurements were logged every ten thousand cycles of testing. This value was chosen to make direct comparisons with probe manufacturers published data. Using the four wire D.C. method of resistance measurement (42) (see figs.2.5 & 2.6),

readings were taken over each set of ten probes (100 in total) at two thirds compression (which is the manufacturers recommended deflection), for one, two or three million cycles as deemed necessary for each experiment. The cyclic deflection rate of the testing machine was 123 revs per minute and for 10,000 operations this required the probe resistance measurements to be taken approximately every 80 minutes. Resistance values were fed into a computer to produce a graphical standard printout, see appendix 1. The graphs of electrical resistance were plotted for each probe tested, enabling comparisons to be made for each probe's performance within its test environment.

The probe chosen for life simulation was the tulip style head probe, recommended for 2.54mm (0.10inch) centres with a spring force of 189,9 GM (6.7 oz), current rating 3 amps. The new probe contact and internal resistance is specified by the manufacturers at a maximum value of 50 milliohms; the probe materials are contact barrel of nickel/silver and gold lined; the spring material is stainless steel; the plunger is of full hard beryllium copper, rhodium plated over nickel (or optional gold plated over nickel). A maximum probe deflection of 6.35mm (0.250inch) is available but only two thirds of this is recommended for test applications. There are approximately eight suppliers of test probes world wide, each producing a considerable range of similar types.

Probe performance depends on the materials from which the probe is manufactured, and its ability to maintain a consistently low interfacial contact resistance on every target (43). Probe life is measured in cycles, one cycle being the depression and release of the plunger. Alignment of the fixture, spring and barrel material and plunger travel, all affect probe life. Most spring probes are designed for a spring life exceeding a million cycles if used under approved conditions (no severe side loading and free of environmental contamination). Since the spring is the most important of the probe components it means that should it break the probe will fail. The spring provides the compliant force to the plunger which allows the probe tip to access non uniform PCB surfaces, enter holes in the PCB and adjust to variations in component lead lengths. The spring force should be high enough to provide a low electrical resistance contact, and it may vary from less than one ounce to sixteen ounces, depending on the surface material to be contacted. The cleanliness of the PCB target and probe tip are a key factor in ensuring a low resistance contact. A clean gold plated circuit or substrate requires low plunger force, sometimes as low as half an ounce, whilst a solder plated PCB may require three to five ounces and a plunger tip geometry suitable to penetrate surface and tin oxides. If flux or other contaminates are present forces of 5 to 8 ounces may be required.

### 5.1.1 The Experiments

The ten experiments performed were split into two categories, the first being a group of six tests with the primary objective of investigating contact resistance performance. Three of these tests were conducted at copper angled targets of 45 degrees and 60 degrees, whilst the remaining three were targeted at a flat copper PCB. Resistance values were measured every 10000 cycles for each of the ten probes. The 2.54mm centre tulip head probe had a noted spring force of 189.9 GMS, and was chosen for five of the six experiments because of its reputation amongst fixture manufacturers for long and robust reliable service. The first of the six tests (Test 101) used the same probe but with a lower spring force.

With these six experiments tested between 2 and 4 million cycles, there was only a small percentage of mechanical failures up to 1.2 million cycles (manufacturers guaranteed spring performance is up to 1 million). The only major mechanical failure was a probe plunger breaking off which was aligned to a 60 degrees target for the series of tests. Cycles after 1.2 million produced some mechanical failure associated with excessive wear. The resistance data was converted into graph form and categorised under ten performance headings, thus allowing comparisons to be made between various levels of performances. Experiments 101 to 106 produced a large amount of useful resistance test data with considerable differences in individual probe performance throughout the series of tests.

To identify all possible mechanical failure modes a second series of tests were conducted. These series of tests (107 to 109) used a similar probe type of comparable parameters with the previous six experiments but with a reputation amongst fixture manufacturers of producing a less durable performance. Tests were conducted using samples of ten probes to various stages of wear, and to almost destruction in a minority of cases. Their life ranged from half a million cycles to a maximum of two million in one experiment. Using data and information obtained from both series of experiments, a table of mechanical failure categories was produced. With the less durable B category test probes mechanical wear was evident at an earlier stage of the experiments, with wear debris visible around the probe receptacle mounting plate at an earlier stage. One of these mechanical tests was taken beyond the probes normal service life (as with some of the electrical parameters) in an effort to identify all possible mechanical failure categories.

Finally a much harder stainless steel flat target (test 110) was used to evaluate any different levels of performance between the normal copper target and this target. Early results were very interesting and showed that the initial high values of contact resistance slowly reduced as the points gradually penetrated deeper into the outer surface of the metal.

### 5.2 PROBE PERFORMANCE EVALUATION

The six tests were categorised according to their resistive performance from 0 to 1.2 million cycles, (the probe manufacturers guarantee performance up to 1 million cycles). Test continued after 1.2 million to identify any possible fault categories of a mechanical nature. One was extended up to 4 million cycles.

In order to evaluate and categorise a set of probes' performance during life simulation testing it is necessary to specify the probe's performance which is deemed acceptable. Values of more than 1000 milliohms between the UUT and ATE would, according to a major telecommunications test department, be unacceptable. To ensure detection of the majority of faults for all types of circuits preferred probe resistance values should be less than 100 milliohms.

Probe performance is divided into the ten categories listed below (in order that the resistive performance ranges could be assessed in detail):-

Category 1. Resistance values not exceeding: 50 milliohms (Fig.5.1) Category 2. Resistance values not exceeding: 150 milliohms (Fig.5.2) Category 3. Resistance values not exceeding: 250 milliohms (FIG.5.3) Category 4. Resistance values not exceeding: 500 milliohms (FIG.5.4) Category 5. Resistance values not exceeding: 750 milliohms (FIG.5.5) Category 6. Resistance values not exceeding:1000 milliohms (FIG.5.6) Category 7. Resistance values not exceeding:1250 milliohms (FIG.5.7) Category 8. Resistance values not exceeding:1500 milliohms (FIG.5.8) Category 9. Resistance values not exceeding:2000 milliohms (FIG.5.9) Category 10.Permanent open circuit value exceeding 2000 milliohms

Categories 1 to 6 would be acceptable commercially. Category 7 would be a borderline case and should be avoided if possible. Categories 8,9 and 10 would be unacceptable commercially.

Category suffix (a) - Stable Category Suffix (b) - Unstable (Fig.5.10).

The test results for each experiment were all categorised according to the above table and further divided into low, medium and high category values (Figs.5.11 to 5.16).

### 5.2.1 Average Resistance Values

In most cases the average resistance performance of a test batch of ten probes shows performance values which may seem reasonably acceptable (Figs.5.17 to 5.20), but when compared with the minority of probes producing unacceptable repetitive connections to the target, multiplied by the number of probes in a typical fixture the average value seems to have less significance (44). This is because it only needs one ineffective probe out of possibly two, three hundred or perhaps thousands installed in a test fixture for the ATE to reject a succession of perfectly good circuit boards due to this one ineffective node connection. The average resistance of a probe may be of less significance when looked at from this viewpoint, because a minority of probes producing consistent or sporadic high









FIG. 5.2 PROBE 9. TEST 105. CAT 2. 100m TOLLERANCE ENVELOPE FOR 10 READINGS









-

FIG. 5.5 PROBE 5. TEST 103. CAT 5. 750mΩ.







FIG 5.7 PERFORMANCE CAT. 7.1250Ω





FIG. 5.9 PROBE 4.TEST 105.CAT 9.

|                          | RES           |                  |                                     |
|--------------------------|---------------|------------------|-------------------------------------|
| PERFORMANCE<br>CATEGORY. | STABLE<br>A ( | UNSTABLE<br>)R B | RESISTANCE<br>RANGE.                |
| 1                        | *             | *                | 50 mΩ                               |
| 2                        | *             | *                | 100mΩ                               |
| 3                        | *             | *                | 250mΩ                               |
| 4                        | *             | *                | 500mΩ                               |
| 5                        | *             | *                | 750mΩ                               |
| 6                        | *             | *                | 1000mΩ                              |
| 7                        | *             | *                | 1250mΩ                              |
| 8                        | *             | *                | 1500mΩ                              |
| 9                        | *             | *                | 2000mΩ                              |
| 10                       | $\checkmark$  | . •              | PERMANENT<br>OPEN<br>CIRCUIT VALUE. |
| FIG. 5.10                | PROBE PERFO   | IRMANCE<br>ES.   |                                     |

•

| PROBE                                                             | PERFORMANCE     | RESISTANCE m Ω<br>2000 MAX. |              |              |               |                 |  |
|-------------------------------------------------------------------|-----------------|-----------------------------|--------------|--------------|---------------|-----------------|--|
| No.                                                               | SEE<br>FIG. 5-X | LOW                         | MEDIAN       | HIGH         | STABLE<br>(a) | UNSTABLE<br>(b) |  |
| 1                                                                 | 9ь              |                             |              | $\checkmark$ |               | $\checkmark$    |  |
| 2                                                                 | 4a              | $\checkmark$                |              |              | $\checkmark$  |                 |  |
| 3                                                                 | _ 4a            | $\checkmark$                |              |              | $\checkmark$  |                 |  |
| 4                                                                 | 9Ъ              |                             |              | $\checkmark$ |               | $\checkmark$    |  |
| 5                                                                 | 9Б              |                             |              | $\checkmark$ |               | $\checkmark$    |  |
| 6                                                                 | 9Ь              |                             |              | $\checkmark$ |               | $\checkmark$    |  |
| 7                                                                 | 9Ь              |                             |              | $\checkmark$ |               | $\checkmark$    |  |
| 8                                                                 | 9Б              |                             |              | $\checkmark$ |               | $\checkmark$    |  |
| 9                                                                 | 9b              |                             |              | $\checkmark$ |               | $\checkmark$    |  |
| 10                                                                | 5a              |                             | $\sim$       |              |               |                 |  |
| AV                                                                | 5<br>(mΩ)       |                             | $\checkmark$ |              |               | $\checkmark$    |  |
| RANGE<br>MAX.                                                     | 9b<br>(mΩ)      |                             |              | $\checkmark$ |               | $\checkmark$    |  |
| RANGE<br>MIN.                                                     | 1a<br>(mΩ)      | $\checkmark$                |              | -            | $\checkmark$  |                 |  |
| CATEGOR<br>TOTALS                                                 | Y 1 to<br>10    | 2                           | 1            | 7            | 3a            | 7ь              |  |
| FIG. 5.11 TEST 101 FLAT CU TARGET<br>1.2 X10 <sup>6</sup> CYCLES. |                 |                             |              |              |               |                 |  |

.

| PROBE                                                         | PERFORMANCE       | RESISTANCE mΩ<br>(2000 MAX.) |              |              |               |                 |  |
|---------------------------------------------------------------|-------------------|------------------------------|--------------|--------------|---------------|-----------------|--|
| No.                                                           | see<br>Fig. 5 - X | LOW                          | MEDIAN       | нібн         | STABLE<br>(a) | UNSTABLE<br>(b) |  |
| 1                                                             | 4a                | · 🗸                          |              |              | $\checkmark$  |                 |  |
| 2                                                             | 6a                |                              |              |              | $\checkmark$  |                 |  |
| 3                                                             | 9b                | $\checkmark$                 |              | $\checkmark$ |               | $\checkmark$    |  |
| 4                                                             | 9Ь                |                              |              | $\checkmark$ |               | $\checkmark$    |  |
| 5                                                             | 9Ъ                |                              |              | $\checkmark$ |               | $\checkmark$    |  |
| 6                                                             | 9Ь                |                              |              | $\checkmark$ |               | $\checkmark$    |  |
| 7                                                             | 6b                |                              | $\checkmark$ |              |               | $\checkmark$    |  |
| 8                                                             | 9Б                |                              |              |              |               | $\checkmark$    |  |
| 9                                                             | 9Ь                |                              |              | $\checkmark$ |               | $\checkmark$    |  |
| 10                                                            | 9Ь                |                              |              | $\checkmark$ |               | $\checkmark$    |  |
| AV                                                            | 5                 | $\checkmark$                 |              |              |               |                 |  |
| RANGE<br>MAX.                                                 | 9b                |                              |              | $\checkmark$ |               |                 |  |
| RANGE<br>MIN.                                                 | 1a                | $\checkmark$                 |              |              |               |                 |  |
| CATEGOR<br>TOTALS                                             | Y 1 to<br>10      | 2                            | 1            | 7            | <u>2</u> a    | <b>8</b> b      |  |
| FIG 5 - 12 TEST 102 RESULTS 45° ANGLED CU<br>2/3 COMPRESSION. |                   |                              |              |              |               |                 |  |

| PROBF                                                              | PERFORMANCE<br>CATEGORY |              | RESISTANCE mΩ<br>(2000 MAX.)          |              |               |                 |  |  |
|--------------------------------------------------------------------|-------------------------|--------------|---------------------------------------|--------------|---------------|-----------------|--|--|
| No.                                                                | see<br>Fig. 5 -         | LOW          | MEDIAN                                | HIGH         | STABLE<br>(a) | UNSTABLE<br>(b) |  |  |
| 1                                                                  | 6b                      |              | $\checkmark$                          |              |               | $\checkmark$    |  |  |
| 2                                                                  | 4a                      | $\checkmark$ |                                       |              | $\checkmark$  |                 |  |  |
| 3                                                                  | 9b                      | JA           | MMED A                                | T 310        | Kc∕s∙         | $\checkmark$    |  |  |
| 4                                                                  | 9b                      |              |                                       | $\checkmark$ |               | $\checkmark$    |  |  |
| 5                                                                  | 5a                      | $\checkmark$ |                                       |              | $\checkmark$  |                 |  |  |
| 6                                                                  | 9Ь                      | JAN          | MED A                                 | T 390        | Kc/s          | $\checkmark$    |  |  |
| 7                                                                  | 6a                      | $\checkmark$ |                                       |              | $\checkmark$  |                 |  |  |
| 8                                                                  | 1a                      | $\checkmark$ |                                       |              | $\checkmark$  |                 |  |  |
| 9                                                                  | <b>1</b> a              | $\sim$       |                                       |              | $\checkmark$  |                 |  |  |
| 10                                                                 | За                      | $\checkmark$ |                                       |              | $\checkmark$  |                 |  |  |
| AV                                                                 | 4a                      | $\checkmark$ | · · · · · · · · · · · · · · · · · · · | · · · · · ·  | $\checkmark$  |                 |  |  |
| RANGE<br>MAX.                                                      | 9b                      |              |                                       | $\checkmark$ |               | $\checkmark$    |  |  |
| RANGE<br>MIN.                                                      | 1a                      | $\checkmark$ |                                       |              | $\checkmark$  |                 |  |  |
| CATEGOR<br>TOTALS                                                  | Y 1 to<br>10            | 6            | 1                                     | 3            | 6             | 4               |  |  |
| FIG. 5 - 13<br>TEST 103 RESULTS ANGLED TARGET<br>1.2 X 106 CYCLES. |                         |              |                                       |              |               |                 |  |  |

| PROBE                                                                  | PERFORMANCE    | RESISTANCE mΩ<br>r (2000 MAX. |              |              |               |                 |  |
|------------------------------------------------------------------------|----------------|-------------------------------|--------------|--------------|---------------|-----------------|--|
| No.                                                                    | see<br>Fig. 5- | LOW                           | MEDIAN       | HIGH         | STABLE<br>(a) | UNSTABLE<br>(b) |  |
| 1                                                                      | 9              |                               |              | $\checkmark$ |               | $\checkmark$    |  |
| 2                                                                      | 9              |                               |              | $\checkmark$ |               | $\checkmark$    |  |
| 3                                                                      | 9              |                               |              | $\checkmark$ |               | $\checkmark$    |  |
| 4                                                                      | 4              | $\checkmark$                  | -            |              |               | $\checkmark$    |  |
| 5                                                                      | 9              |                               |              | $\checkmark$ |               | $\checkmark$    |  |
| 6                                                                      | 6              | $\checkmark$                  |              |              | $\checkmark$  |                 |  |
| 7                                                                      | 8              |                               |              | $\checkmark$ |               | $\checkmark$    |  |
| 8                                                                      | 9              |                               |              | $\checkmark$ |               | $\checkmark$    |  |
| 9                                                                      | 9              |                               |              | $\checkmark$ |               | $\checkmark$    |  |
| 10                                                                     | 9              |                               |              | $\checkmark$ |               | $\checkmark$    |  |
| AV                                                                     | 6              |                               |              |              |               |                 |  |
| RANGE<br>MAX.                                                          | 9Ь             |                               |              | $\checkmark$ |               | $\checkmark$    |  |
| RANGE<br>MIN.                                                          | 4b             |                               | $\checkmark$ |              |               | $\checkmark$    |  |
| CATEGOR`<br>TOTALS.                                                    | Y 1 to<br>10   | 2                             | 0            | 8            | 1             | 9               |  |
| FIG. 5.14 TEST 104 RESULTS FLAT TARGET<br>1.2 X10 <sup>6</sup> CYCLES. |                |                               |              |              |               |                 |  |

| PROBE                                                                  | PERFORMANCE    | RESISTANCE mΩ<br>(2000 MAX.) |        |              |               |                 |  |  |
|------------------------------------------------------------------------|----------------|------------------------------|--------|--------------|---------------|-----------------|--|--|
| No.                                                                    | SEE<br>FIG, 5- | LOW                          | MEDIAN | HIGH         | STABLE<br>(a) | UNSTABLE<br>(b) |  |  |
| 1                                                                      | 1              | $\checkmark$                 |        |              | $\checkmark$  |                 |  |  |
| 2                                                                      | 9              |                              |        | $\checkmark$ |               | $\checkmark$    |  |  |
| 3                                                                      | 1              | $\checkmark$ ,               |        |              | <b>√</b> .    |                 |  |  |
| 4                                                                      | 9              |                              |        | $\checkmark$ |               | $\checkmark$    |  |  |
| 5                                                                      | 2              | $\checkmark$                 |        |              | $\checkmark$  |                 |  |  |
| 6                                                                      | 9              |                              |        | $\checkmark$ |               | $\checkmark$    |  |  |
| 7                                                                      | З              | $\checkmark$                 |        |              | $\checkmark$  |                 |  |  |
| 8                                                                      | 9              |                              |        | $\checkmark$ |               | $\checkmark$    |  |  |
| 9                                                                      | 2              | $\checkmark$                 |        |              | $\checkmark$  |                 |  |  |
| 10                                                                     | 3              | $\checkmark$                 |        |              |               |                 |  |  |
| AV                                                                     | 4a             | $\checkmark$                 |        |              | $\checkmark$  |                 |  |  |
| RANGE<br>MAX.                                                          | 9b             |                              |        |              |               | $\checkmark$    |  |  |
| RANGE<br>MIN.                                                          | 1a             |                              |        |              | $\checkmark$  |                 |  |  |
| CATEGOR<br>TOTAL                                                       | Y 1 to<br>10   | 6                            | • 0    | 4            | 6             | 4               |  |  |
| FIG. 5-15 TEST 105 RESULTS FLAT TARGET<br>1.2 X10 <sup>6</sup> CYCLES. |                |                              |        |              |               |                 |  |  |

| PROBE             | PERFORMANCE                                                 | RESISTANCE mΩ<br>(2000 MAX.) |        |                           |               |                 |  |
|-------------------|-------------------------------------------------------------|------------------------------|--------|---------------------------|---------------|-----------------|--|
| 'No.              | SEE<br>FIG, 5-                                              | LOW                          | MEDIAN | HIGH                      | STABLE<br>(a) | UNSTABLE<br>(b) |  |
| 1                 | 9                                                           |                              |        | $\checkmark$              |               | $\checkmark$    |  |
| 2                 | 1                                                           | $\checkmark$                 |        |                           | $\checkmark$  |                 |  |
| 3                 | 1                                                           | $\checkmark$                 |        |                           | $\sqrt{1}$    |                 |  |
| 4                 | 1                                                           | $\checkmark$                 |        |                           | $\checkmark$  |                 |  |
| 5                 | 1                                                           | $\checkmark$                 |        |                           | $\checkmark$  |                 |  |
| 6                 | 9                                                           |                              |        | $\checkmark$              |               | $\checkmark$    |  |
| 7                 | 8                                                           |                              |        | $\checkmark$              |               | $\checkmark$    |  |
| 8                 | 10                                                          |                              |        | BROKEN OFF AT<br>230 Kc's |               |                 |  |
| 9                 | 9                                                           |                              |        | $\checkmark$              |               | $\checkmark$    |  |
| 10                | 9                                                           |                              |        | $\checkmark$              |               | $\checkmark$    |  |
| AV                | 4a                                                          | $\checkmark$                 |        |                           | $\checkmark$  |                 |  |
| RANGE<br>MAX.     | 9Ь                                                          |                              |        | $\checkmark$              |               | $\checkmark$    |  |
| RANGE<br>MIN.     | 1a                                                          | $\checkmark$                 |        |                           | $\checkmark$  |                 |  |
| CATEGOR<br>TOTALS | Y 1 to<br>10                                                | 4                            | 0      | 5                         | 4             | 5               |  |
| FIG. 5 - 16       | FIG. 5 - 16 TEST 106 RESULTS 60° TARGET<br>1.2 X 106 CYCLES |                              |        |                           |               |                 |  |



FIG. 5.18 TEST 103 AVERAGED OVER TEN PROBES







readings will be averaged by probes delivering consistent low resistance values. It is the probes that produce repetitive or sporadic high readings that will have the most undesirable effect upon the ATE with the rejection of perfectly good PCBs. Due to contact resistance phenomenon (as may be seen in a number of the graphs of contact resistance) ten successive readings taken on one probe may cover a resistance range from 25 milliohms to 4000 milliohms in one worse case set of readings (see Fig.5.9)

The range of resistance measurements taken during testing may go through cycles where the range of values widens and narrows throughout the testing period, or in other cases the values may remain narrow and consistent throughout testing to beyond 1.2 million.

### 5.3 PRELIMINARY TESTING

Initial preliminary testing was undertaken to develop a reliable method to validate the accuracy of data taken by the test machine, unfortunately variations in consecutive readings led to doubts regarding the accuracy of the resistance measurement, which was later attributed to contact asperity phenomenon. This is where the probe contact micro movement makes contact over variable areas of the surface, which means that different areas of potentially contaminated hill & valley profile make contact at different points every time the contacts are engaged. The result being a hit and miss situation with variable successive values recorded.

During these initial tests readings were taken at 10,000 cycle increments, but due to the problems of variable contact phenomenon, resistance values measured were of a random nature and not repeatable. A solution to the problem was found by taking ten readings per probe at the same interval of 10,000 cycles. Each reading taken (with two cycles operation between readings) produced results in the form of a tolerance envelope with its upper and lower limit. The ten readings per probe were used to calculate the average value for each reading with its upper and lower limit for the ten readings taken (see Fig.5.9).

Graphs illustrating the resistance tolerance envelope were produced for each of the ten probes in each of the six tests; 60 graphs in total. In some of the tests where probe performance was good and readings were reasonably constant, tolerance envelopes were narrow. In these cases contacts remained clean throughout with little or no contact fretting.

# 5.4 CONTACT RESISTANCE

New probes fitted into the testing machine initially exhibited a test resistance value between seven and twenty milliohms, whilst the testers resistance measurement ranges from zero to two thousand milliohms (readings above this value would be logged as open circuit). Values of resistance in excess of this value would severely inhibit the ATEs ability to make accurate confirmation of low impedance circuitry within the UUT.

Probe test data has shown that a number of probes subjected to life simulation testing developed sporadic high resistance characteristics during a testing sequence. This was found to be caused by insulating layers either on the probe tip or more likely on the surface of the copper target (Fig.5.21) (see Fig.5.9). Over a period of time these insulating layers on some probes were punctured or worn away thus allowing the contact to revert to its normal low value (Fig.5.22). On some of the probes this process was repeated, producing an intermittent contact connection (see Fig.5.6).

Over the range of resistance measurements taken from zero up to two thousand milliohms, a large percentage of the probes were classified in the high range category for the six tests. The overall average figure being 58.3% high, 5% median and 36.6% low. The 36.6% low probes produced low repetitive stable values up to 1.2 million cycles (Figs.5.23, 5.24). A small number of these probes (5%) went on producing low resistance values (of 30 to 70 milliohms) beyond the two million cycle, and in one case up to three million deflections. Probe samples from the same source often exhibited high value readings early into a test run with similar cleaning or test conditions. This was possibly caused by contamination at some stage during manufacturer, or thin or non existent noble plated layers over the probe tips.



FIG 5.21a : INSULATING CONTAMINATION ON PROBE CONTACT: MAG 75



FIG 5.21b : INSULATING CONTAMINATION ON CU TARGET : MAG 50



|                                                                                                    |                                                                                     | RESISTANC               | e perfor<br>Tegory.     | MANCE                  | MECHANICAL EVENTS                                                             |  |  |  |
|----------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|-------------------------|-------------------------|------------------------|-------------------------------------------------------------------------------|--|--|--|
| TEST                                                                                               | TARGET                                                                              | LOW                     | MEDIAN                  | HIGH                   | TO 1.3 MILLION.                                                               |  |  |  |
| 101                                                                                                | CU<br>FLAT                                                                          | 20%                     | 10%                     | 70%                    | P.6.<br>JAMMED ONCE AT 948K.                                                  |  |  |  |
| 102                                                                                                | CU<br>45°                                                                           | 20%                     | 10%                     | 70%                    | NONE                                                                          |  |  |  |
| 103                                                                                                | CU<br>45°                                                                           | 60%                     | 10%                     | 30%                    | P.3. JAMMED AT 320K<br>INTERMITTENT.<br>P.6. JAMMED AT 400K.<br>INTERMITTENT. |  |  |  |
| 104                                                                                                | CU<br>FLAT                                                                          | 20%                     | 0%                      | 80%                    | NONE                                                                          |  |  |  |
| 105                                                                                                | CU<br>FLAT                                                                          | 60%                     | 0%                      | 40%                    | NONE                                                                          |  |  |  |
| 106                                                                                                | CU<br>60*                                                                           | 40%                     | 0%                      | 50%<br>10%<br>(BROKEN) | P.8. BROKEN PLUNGER<br>AT 230K.                                               |  |  |  |
| AVERAGE ANGLE<br>TARGET.                                                                           |                                                                                     | 40%                     | 6.66%                   | 53.33%                 | 10%                                                                           |  |  |  |
| AVERAGE<br>TARGET.                                                                                 | FLAT                                                                                | 33.3%                   | 3,33%                   | 63.33%                 | 3.33%                                                                         |  |  |  |
| OVERALL                                                                                            | AVERAGE.                                                                            | 36,67%                  | 5%                      | 58.33%                 | 6,66%                                                                         |  |  |  |
|                                                                                                    |                                                                                     | MEC                     | HANICAL EV              | ENTS AFTER             | 1.3 MILLION.                                                                  |  |  |  |
| TEST 101                                                                                           |                                                                                     | P.3.4.6. BR             | oken sprin              | GS.                    |                                                                               |  |  |  |
| TEST 103                                                                                           |                                                                                     | P.4. WORN               | TULIP POIN              | T.                     |                                                                               |  |  |  |
| TEST 104                                                                                           |                                                                                     | P.1 & 4 WC<br>OF_DEF: W | )rn tulip<br>Orn plungf | PTS: Rough.<br>Ers.    | ·                                                                             |  |  |  |
| TEST 105                                                                                           |                                                                                     | P.3.4.10. V             | VEAR THROU              | JGH PLATES.            |                                                                               |  |  |  |
| TEST 106                                                                                           | TEST 106 BROKEN ON REMOVAL.<br>P.2.3. ROUGH, OF DEF: WORN PTS. WORN THROUGH PLATES. |                         |                         |                        |                                                                               |  |  |  |
| FIG. 5.23 SUMMARY OF TEST RESULTS FOR CONTACT RESISTANCE:<br>TEST 101 – 106 TO 1.2 MILLION CYCLES. |                                                                                     |                         |                         |                        |                                                                               |  |  |  |

| TEST                                                                                                                                                  | TADGET      | RESIST | ANCE PERFOR<br>CATEGORY. | MANCE                     | CONTACT RE | MECHANICAL<br>EVENTS |                    |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|--------|--------------------------|---------------------------|------------|----------------------|--------------------|--|
| (10 PROBES)                                                                                                                                           |             | LOW-R  | MEDIAN                   | HIGH-R                    | STABLE     | UNSTABLE             | TO END OF<br>TEST. |  |
| 101                                                                                                                                                   | CU<br>FLAT  | 2      | 1                        | 7                         | 3          | 7                    | 3                  |  |
| 102                                                                                                                                                   | CU<br>45°   | 2      | 1                        | 7                         | 2          | 8                    | 0                  |  |
| 103                                                                                                                                                   | CU<br>45°   | 6      | 1                        | 3                         | 6          | 4                    | 3                  |  |
| 104                                                                                                                                                   | CU<br>FLAT  | 2      | 0                        | 8                         | 1          | 9                    | 2                  |  |
| 105                                                                                                                                                   | CU<br>FLAT  | 6      | 0                        | 4                         | 6          | -4                   | 3                  |  |
| 106                                                                                                                                                   | CU<br>60°   | 4      | 9 probe<br>0             | SAMPLE<br>5<br>(1 BROKEN) | 4          | 5<br>1 BROKEN        | . 4                |  |
| TOTALS FOR<br>ANGLED TARGETS.                                                                                                                         |             | 12     | 2                        | 15<br>1 broken            | 12         | 17<br>1 broken       | 7                  |  |
| TOTALS F<br>FLAT TAR                                                                                                                                  | OR<br>GETS. | 10     | 1                        | 19                        | 10         | 20                   | 8                  |  |
| TOTALS FLAT &<br>ANGLED CATS.                                                                                                                         |             | 2.2    | 3                        | 34<br>(1 BROKEN)          | 22         | 37<br>1 broken       | 15                 |  |
| AVERAGE<br>TARGET.                                                                                                                                    | ANGLED      | 4      | 0.66                     | 5.33                      | 4          | 6                    | 2.3                |  |
| AVERAGE FLAT<br>TARGET.                                                                                                                               |             | 3.33   | 0.33                     | 6.33                      | 3.33       | 6.66                 | 2.6                |  |
| OVERALL AVERAGE<br>EACH TEST.                                                                                                                         |             | 3.67   | 0.50                     | 5.83                      | 3.67       | 6.33                 | 2.5                |  |
| Fig. 5.24 PROBE CONTACT RESISTANCE PERFORMANCE SUMMARY OF<br>EXPERIMENTAL RESULTS FOR CONTACT RESISTANCE. TESTS 101<br>TO 106. TO 1.2 MILLION CYCLES. |             |        |                          |                           |            |                      |                    |  |

.

,

.
Where ever base metal becomes exposed there is always the possibility of the onset of contact fretting due to a combination of oxidation and vibration.

The probe manufacturers specified value of 50 milliohms contact resistance was accurate in most of the early phases of testing, but this value was often followed by random sometimes cyclic high values as the experiments progressed. A number of graphs were produced illustrating the various types of probe resistance performance over the range of the six tests (See Figs.5.1. to 5.6.).

The resistive performance of the sixty probes tested, have been divided into ten performance categories for both angled and flat targets. Thirty two of the probes (53.3%) were in the worst category nine - 2000 milliohms; followed by category one - 50 milliohms with 13.3%; category four and six - 500 & 1000 milliohms were equal with 8.3%; category three - 250 milliohms had 5%; and categories two, five and eight all equal at 3.3%. Category ten which is open circuit accounted for 1.7% due to mechanical failure, and finally category seven (1250 milliohms) was the only division with zero per cent (Fig.5.25).

## 5.4.1 The Increase of Contact Resistance

High resistance values indicate that contamination is present and on investigation has been shown to be caused by the following:

Contact fretting detected on the PCB copper target during testing was responsible for considerable increases in contact resistance. Contact fretting is caused by a small amplitude oscillatory motion between two solid surfaces, contact wear occurs and if the debris oxidises or corrodes, as normally occurs with base metals insulating particles building up and increasing contact resistance (45-46). This is particularly the case where contacts are subjected to vibrations which are present in the testing machine (Fig.5.26).

The resistance increase or variation of some of the probes may point to the development of insulating layers on the contact interfacial surfaces due to chemical reactions caused by

| PERFORM               |                                                                                                                               |          | EXPER    | IMENTS   |          |                       | CATEG<br>TOT | ORY<br>ALS. |
|-----------------------|-------------------------------------------------------------------------------------------------------------------------------|----------|----------|----------|----------|-----------------------|--------------|-------------|
| ANC<br>CAT mΩ         | 101<br>F                                                                                                                      | 102<br>A | 103<br>A | 104<br>F | 105<br>F | 106<br>A              | NO           | %           |
| <br>50mΩ              |                                                                                                                               |          | 2        |          | 2        | 4                     | 8            | 13.33       |
| 2<br>100mΩ            |                                                                                                                               |          |          |          | 2        |                       | . 2          | 3.33        |
| 3<br>250mΩ            |                                                                                                                               |          | 1        |          | 2        |                       | 3            | 5           |
| 4<br>500mΩ            | 2                                                                                                                             | 1        | 1        | 1        |          |                       | 5            | 8.33        |
| 5<br>750mΩ            | 1                                                                                                                             |          | 1        |          |          |                       | 2            | 3.3         |
| 6<br>1000mΩ           |                                                                                                                               | 2        | 2        | 1        |          |                       | 5            | 8.33        |
| 7<br>1250mΩ           |                                                                                                                               |          |          |          |          |                       | 0            | 0           |
| 8<br>1500mΩ           |                                                                                                                               |          |          | 1        |          | 1                     | 2            | 3.33        |
| 9<br>2000mΩ           | 7                                                                                                                             | 7        | 3        | 7        | 4        | 4                     | 32           | 53.32       |
| 10<br>OPEN<br>CIRCUIT |                                                                                                                               |          |          |          |          | 1<br>MECH.<br>FAILURE | 1            | 1.7         |
| Fig. 5.25             | Fig. 5.25 SUMMARY OF TESTS FOR CONTACT RESISTANCE<br>TESTS 101-106 TO 1.2 MILLION CYCLES<br>(A. ANGLED TARGET F FLAT TARGET). |          |          |          |          |                       |              |             |



FIG. 5.26 GRAPHIC ILLUSTRATION OF CONTACT FRETTING COROSION PHENOMENA

outgassing of plastics, PCBs and components, thus producing the development of insulating layers on the contact surface.

Atmospheric pollution (which may be particulate contamination) affecting the contact surface or elements, may cause corrosion or the formation of insulating layers on the contact surfaces (Fig.5.27). Production contamination is due to such things as solder flux, lacquer or vapour out-gassing from different plastics.

Internal wear within the probe structure, followed by the accumulation of wear debris within the probe assembly becoming oxidised or polymerised also has the effect of causing increased contact resistance (Fig.5.28). The values recorded were always lower than the interfacial contact resistance component.

The noble plated layers wearing through to base metal on some probes caused the onset of contact fretting (Fig.5.29).

Friction polymers caused by sliding metal contacts such as spring probes, potentiometers relays and switch contacts may generate by-products due to wear, particularly after long cycling. In most cases, visible by-products are finely divided particulates of contact material and metallic oxides. They appear as black deposits near sliding surfaces and may cause intermittent or momentary spikes. The substance is formed in the presence of organic atmosphere cyclic action polymerising chemically organic vapours.

Due to the nonconformity of the insulating film thickness or asperities on contact surfaces, it is improbable that two successive readings on the same contact will be identical. What is important is that a high measurement means there is contamination on the surface (47).

5.4.2 New Probe Contamination

During testing it was noted that there were a small number of probes that exhibited high resistance characteristics at the beginning or early into the tests (Fig.5.30). To avoid these



FIG 5.27a : PROBE PARTICULATE CONTAMINATION: MAG 70



FIG 5.27b : PROBE PARTICULATE CONTAMINATION: MAG 70



FIG 5.27c : CONTACT TARGET SURFACE CONTAMINATION : MAG 100



FIG 5.27d : CONTACT TARGET SURFACE CONTAMINATION: MAG 50



FIG 5.28a : WORN PROBE PLUNGER SHOWING WEAR DEBRIS: MAG 100



FIG 5.28b : EXCESSIVE PROBE WEAR RESTRICTED TO ONE SIDE ONLY: MAG 50



FIG 5.28c : PROBE PLUNGER SHOWING (LOOSE) WEAR DEBRIS: MAG 200



FIG 5.28d : LOOSE WEAR DEBRIS EJECTED FROM PROBE STRUCTURE: MAG 1K



FIG 5.28c : PROBE PLUNGER SHOWING (LOOSE) WEAR DEBRIS: MAG 200



FIG 5.28d : LOOSE WEAR DEBRIS EJECTED FROM PROBE STRUCTURE: MAG 1K



FIG 5.29 LINK SYSTEMS ELEMENTAL ANALYSIS SHOWING WEAR THROUGH TIP TO COPPER BASE METAL

132



FIG. 5.30 PROBE 1, TEST 101, A SERIES OF EARLY HIGH VALUE CONTACT EVENTS.

•

occurrences considerable care was taken to ensure that the probe target was scrupulously clean. Another measure taken to verify the accuracy and calibration of the measuring system was to connect the probe body to the target plate to provide a low resistance circuit through to the probes tip. Any excessive value of resistance was likely to be interfacial contact resistance on the probe tip, as all the probes were new prior to being installed into the machine. The insulating layers therefore must have evolved during probe manufacture or during storage (48). The high values show the presence of an insulating layer between the tip and target. In certain cases these high values of resistance may persist well into or throughout the entire testing period, in other cases the insulation may become detached or worn over part of the testing cycle. The cause could be due to chemical residues (plating salts) left after the probe manufacturing processes, developing insulating layers on the gold plated surfaces. This phenomena has only occurred in a few cases, and therefore cannot be attributed to contact fretting which normally occurs later in test cycling.

## 5.4.3 The Development of Dark Marks on PCB Target Area

During the tests it was noticed that dark marks appeared at varying stages on the bright copper target, which were first thought to be wear marks where the probe tips had worn away the copper target. The appearance of the dark marks often coincided with increases in contact resistance which can be seen from some of the graphs (see Fig.5.9). The dark areas were located exactly at the points where the probes made contact with the copper PCB target. It would seem apparent that these marks were caused by fretting corrosion shown photographically as layers of oxide over the contact area in the micrographs (Fig.5.31). The symptoms were identical to work carried out by other researchers and a number of published papers have investigated the phenomena in considerable detail (49-50-51-52-53).

# 5.4.4 Contact Resistance Variation

Surface contamination is one of the most serious causes of failure of connectors, switches and other contact connecting devices. The most common types of contaminants are: oxide and corrosion products; particulates; films formed by thermal diffusion processes; debris



FIG 5.31a : DARK MARKS ON PCB TARGET AREA (CONTACT FRETTING)



FIG 5.31b : ELECTRON MICROGRAPH SHOWING DARK MARKS ON PCB SURFACE : MAG 200 produced by mechanical wear and fretting; outgassing and condensation on contact surfaces of volatiles from non contact materials. Insulating layers produced in this way tend to be non uniform with irregular contact surfaces on a microscopic scale. Plane surfaces tend to a wave profile with a rough texture to the surface. Peak to valley dimensions can be from tenths to several micrometers. As contacts are bought together they touch at only a few of the high profile asperities. If more contact force is applied more asperities come into contact as the surfaces move together. If the surface is covered by a non conductive layer such as oxide film and this film remains unbroken, then the contact area will remain zero (45). On surfaces where the contaminating film is seen to be uniform, the effect of asperities on contact surfaces means there will be a wide variation of resistance measurements taken at the same contact point. It is therefore improbable that two successive readings on the same contact will be identical (54).

#### 5.4.5 The Formation of Insulating Coatings During Testing

The time taken to test a set of ten probes up to 1.2 million cycles took on average four weeks, and a further one to three weeks depending on the number of cycles tested after 1.2 million. Samples were tested from 2 million to 4 million cycles, and during the test period the probes and target were exposed to the immediate atmospheric environment within the test laboratory which may have had an effect upon the probes and target.

Throughout the test period insulating layers formed upon the target and probes. As the probe targets for the six tests were copper they were more vulnerable to these effects than those of noble metal layers plated on the probes surface. Testing in a vacuum or inert gas atmosphere would help to prevent insulating layers developing on both contact surfaces, but would not represent the normal environmental conditions prevailing within a production test environment. Testing probes on a short time scale which is a feature of some probe manufacturers testing procedure, would not allow some types of insulating layers to develop which would normally occur during production testing in the fixture. The object of these tests however was to study the probes resistive behaviour, including the interfacial resistive connection to the probe target which is normally a PCB.

#### 5.5 POSSIBLE ARC DAMAGE TO THE PROBE TIPS.

To avoid load or arc damage to probe tips, the resistance measuring test current was only applied to closed probe contacts on the test machine, even though the test currents were quiet small (10mA). It may be possible in a UUT - ATE connection interface arrangement, for probe damage to occur if the test fixture actuation is not synchronised correctly to the ATE system. Probe damage would occur if the probes had to break for example a power supply circuit into a UUT. This would only happen if the ATE system had energised the UUT at the time of loading or unloading the UUT. Where a probe may have to carry a large current, for example, power supply or short circuit UUTs, and contact resistance is higher than that associated with clean surfaces significant heat is generated at the interface. This promotes oxidation of the contact material, further reducing the area of metallic contact. Heat may destroy probe lubricants, reducing further the probes life or performance. Fluctuating contact resistance can be one intermediate stage in contact failure.

## 5.5.1 Probe Internal Resistance

Throughout the programme of probe testing, results have shown that the internal resistance of the probe structure remained relatively low when compared with the high values of contact interfacial resistance. Even when probes were tested almost to destruction with springs broken or plungers worn through the side of probe barrels, internal resistances have been remarkably low in comparison with interfacial contact resistance measurements. (Figs.5.32 to 5.37). As contact resistance is a function of contact pressure, measurements of the probes spring pressure were taken but were found to be of the same order as the rest of the ten probe test sample, indicating that the high resistance values were not due to weakening spring pressure within the probe structure. During a test period a sample probe exhibiting high value readings at 170,000 thousand cycles was removed, to examine the probe tip prior to cleaning. The internal resistance was measured at 15 milliohms whilst the measurement taken of the probe target averaged 190.2 milliohms. After intensive cleaning with the solvent Trichloroethylene the average value taken over ten readings was 44.8 milliohms, a

|                                                                                                              | R                                                     | RESISTANCE mΩ                   |                                       |  |  |  |
|--------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|---------------------------------|---------------------------------------|--|--|--|
| PROBE<br>No.                                                                                                 | READINGS (1)<br>PER PROBE<br>TAKEN AT<br>1.5 x 106 Hz | PROBE<br>INTERNAL<br>COMPONENT. | INTERFACIAL<br>CONTACT<br>RESISTANCE. |  |  |  |
| 1                                                                                                            | 24                                                    | 7                               | 17                                    |  |  |  |
| 2                                                                                                            | 22                                                    | 12                              | 10                                    |  |  |  |
| 3                                                                                                            | 45                                                    | 10                              | 35                                    |  |  |  |
| 4 14                                                                                                         |                                                       | 11                              | 3                                     |  |  |  |
| 5                                                                                                            | 528                                                   | 12                              | 516                                   |  |  |  |
| 6                                                                                                            | 226                                                   | 18                              | 208                                   |  |  |  |
| 7                                                                                                            | 211                                                   | 16                              | 195                                   |  |  |  |
| 8                                                                                                            | 25                                                    | 15                              | 10                                    |  |  |  |
| 9                                                                                                            | 62                                                    | 22                              | 40                                    |  |  |  |
| 10                                                                                                           | 11                                                    | 11                              | 0                                     |  |  |  |
| AVERAGE                                                                                                      | 116.8                                                 | 13.4                            | 103.4                                 |  |  |  |
| RANGE<br>UPPER                                                                                               | 528                                                   | 22                              | 516                                   |  |  |  |
| RANGE<br>LOWER                                                                                               | 11                                                    | 7                               | 0                                     |  |  |  |
| RANGE                                                                                                        | 517                                                   | 15                              | 516                                   |  |  |  |
| FIG. 5.32 COMPARISON OF INTERNAL AND INTERFACIAL<br>VALUES. TEST 107 FLAT CU TARGET<br>TAKEN AT 1.5 X 106 Hz |                                                       |                                 |                                       |  |  |  |

|                             | RESI                                                                       | STANCE mΩ                      |                                      |
|-----------------------------|----------------------------------------------------------------------------|--------------------------------|--------------------------------------|
| PROBE<br>No.                | TOTAL<br>VALUE.                                                            | PROBE<br>INTERNAL<br>COMPONENT | INTERFACIAL<br>CONTACT<br>COMPONENT. |
| 1                           | 37                                                                         | 21                             | 16                                   |
| 2                           | 12                                                                         | 11                             | 1                                    |
| 3                           | 36                                                                         | 20                             | 16                                   |
| 4                           | 33                                                                         | 24                             | 9                                    |
| 5                           | 344                                                                        | 27                             | 317                                  |
| 6                           | 193                                                                        | 15                             | 178                                  |
| 7                           | 253                                                                        | 17                             | 236                                  |
| 8                           | 1609                                                                       | 16                             | 1593                                 |
| 9                           | 851                                                                        | 22                             | 829                                  |
| 10                          | 118                                                                        | 18                             | 100                                  |
| AVERAGE                     | 348.6                                                                      | 19.1                           | 329.5                                |
| RANGE<br>MAX.               | 1609                                                                       | 27                             | 1593                                 |
| RANGE<br>MIN.               | 12                                                                         | 11                             | 1                                    |
| RANGE                       | 1597                                                                       | 16                             | 1592                                 |
| FIG. 5.33 COM<br>VAL<br>2/3 | IPARISON OF INTERNAL A<br>LUES TEST 102 45° CU TA<br>DEFLECTION AT 2 X 106 | ND INTERFACIAL<br>ARGET<br>Hz. |                                      |

. .

**,** ·

|                                                                                                                                 | RESISTANCE mΩ                                                 |                                 |                                      |  |  |
|---------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------|---------------------------------|--------------------------------------|--|--|
| PROBE<br>No.                                                                                                                    | AVERAGE<br>FOR 10<br>READINGS<br>TAKEN AT 1.4X10 <sup>6</sup> | PROBE<br>INTERNAL<br>COMPONENT. | INTERFACIAL<br>CONTACT<br>COMPONENT. |  |  |
| 1                                                                                                                               | 11                                                            | 9                               | 2                                    |  |  |
| 2                                                                                                                               | 38                                                            | 12                              | 26                                   |  |  |
| 3                                                                                                                               | 2.37                                                          | 10                              | 227                                  |  |  |
| 4                                                                                                                               | 849                                                           | 12                              | , 837                                |  |  |
| 5                                                                                                                               | 25.4                                                          | 5                               | 20.4                                 |  |  |
| · 6                                                                                                                             | 49.8                                                          | 12                              | 37.8                                 |  |  |
| 7                                                                                                                               | 10                                                            | 10                              | 0                                    |  |  |
| 8                                                                                                                               | 10                                                            | 5                               | 5                                    |  |  |
| 9                                                                                                                               | 12                                                            | 4                               | 8                                    |  |  |
| 10                                                                                                                              | 43.1                                                          | 8                               | 35.1                                 |  |  |
| AVERAGE                                                                                                                         | 128.5                                                         | 8.7                             | 119.8                                |  |  |
| RANGE<br>MAX.                                                                                                                   | 849                                                           | 12                              | 837                                  |  |  |
| RANGE<br>MIN.                                                                                                                   | 10                                                            | 4                               | 0                                    |  |  |
| RANGE                                                                                                                           | 839                                                           | 8                               | 837                                  |  |  |
| FIG. 5.34 COMPARISON OF INTERNAL AND INTERFACIAL<br>VALUES . TEST 103 45* ANGLED CU TARGET<br>TAKEN AT 1.5 X 10 <sup>6</sup> Hz |                                                               |                                 |                                      |  |  |

.

|                                                                                                                         | RESISTANCE mΩ                                                     |                                             |                                      |  |  |  |
|-------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------|---------------------------------------------|--------------------------------------|--|--|--|
| PROBE<br>No.                                                                                                            | AVERAGE<br>FOR 10<br>READINGS<br>TAKEN AT 2.5x10 <sup>6</sup> Hz. | PROBE<br>INTERNAL<br>COMPONENT<br>TO TARGET | INTERFACIAL<br>CONTACT<br>COMPONENT. |  |  |  |
| 1                                                                                                                       | 2509                                                              | 45                                          | 2464                                 |  |  |  |
| 2                                                                                                                       | 1900                                                              | 37                                          | 1863                                 |  |  |  |
| 3                                                                                                                       | 1223                                                              | 53                                          | 1170                                 |  |  |  |
| 4 47                                                                                                                    |                                                                   | 45                                          | 2                                    |  |  |  |
| 5 9                                                                                                                     |                                                                   | 9                                           | 0                                    |  |  |  |
| 6 OPEN<br>CIRCUIT                                                                                                       |                                                                   | 82                                          | INF.                                 |  |  |  |
| 7                                                                                                                       | 24                                                                | 23                                          | 1                                    |  |  |  |
| 8                                                                                                                       | 8 11                                                              |                                             | 0                                    |  |  |  |
| 9                                                                                                                       | 1077                                                              | 53                                          | 1024                                 |  |  |  |
| 10                                                                                                                      | 3021                                                              | 36                                          | 2985                                 |  |  |  |
| AVERAGE                                                                                                                 | 1091.2                                                            | 39.4                                        | 1056.5                               |  |  |  |
| RANGE<br>MAX.                                                                                                           | 3021                                                              | 82                                          | 2985                                 |  |  |  |
| RANGE<br>MIN.                                                                                                           | 9                                                                 | 9                                           | 0                                    |  |  |  |
| RANGE                                                                                                                   | 3012                                                              | 73                                          | 2985                                 |  |  |  |
| FIG. 5.35 COMPARISON OF INTERNAL AND INTERFACIAL<br>VALUES TEST 104 CU FLAT TARGET<br>TAKEN AT 2.5 × 10 <sup>6</sup> Hz |                                                                   |                                             |                                      |  |  |  |

.

|                                                                                                                                 |                                                                | RESISTANC               | EmΩ                  |                                      |  |
|---------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------|-------------------------|----------------------|--------------------------------------|--|
| PROBE<br>No.                                                                                                                    | AVERAGE<br>OF LAST 10<br>READINGS<br>AT 2 X 10 <sup>6</sup> Hz | Compressed<br>Internal. | RELAXED<br>INTERNAL. | INTERFACIAL<br>CONTACT<br>RESISTANCE |  |
| 1                                                                                                                               | 19                                                             | 10                      | 12                   | 9                                    |  |
| 2                                                                                                                               | 1609                                                           | 11                      | 14                   | 1598                                 |  |
| 3                                                                                                                               | 14.6                                                           | 8                       | 9                    | 6.6                                  |  |
| 4                                                                                                                               | 38.5                                                           | 11                      | 14                   | 27.5                                 |  |
| 5                                                                                                                               | 32.1                                                           | 4                       | 7                    | 28.1                                 |  |
| 6                                                                                                                               | 19.4                                                           | 9                       | 8                    | 10.4                                 |  |
| 7                                                                                                                               | 30.2                                                           | 8                       | 7                    | 22.2                                 |  |
| . 8                                                                                                                             | 27                                                             | 14                      | 9                    | 13                                   |  |
| 9                                                                                                                               | 15.8                                                           | 4                       | 6                    | 11.8                                 |  |
| 10                                                                                                                              | 211.8                                                          | 7                       | 8                    | 204.8                                |  |
| AVERAGE                                                                                                                         | 201.7                                                          | 8.6                     | 9.4                  | 193.1                                |  |
| RANGE<br>Max.                                                                                                                   | 1609                                                           | 14                      | 14                   | 1598                                 |  |
| RANGE<br>MIN.                                                                                                                   | 14.6                                                           | 4                       | 6                    | 6.6                                  |  |
| RANGE                                                                                                                           | 1594,4                                                         | 10                      | 8                    | 1591.4                               |  |
| IG. 5.36 FINAL RESISTANCE TEST AT 2 X 10 <sup>6</sup> Hz TEST 105<br>FOR INTERNAL AND INTERFACIAL VALUES<br>CU STRAIGHT TARGET. |                                                                |                         |                      |                                      |  |

|                         |                                                                                                                       | RESISTANCE IN $M\Omega$ |                      |                              |                                      |  |
|-------------------------|-----------------------------------------------------------------------------------------------------------------------|-------------------------|----------------------|------------------------------|--------------------------------------|--|
| PROBE                   | AVERAGE<br>OF LAST 10<br>READINGS<br>AT 3x10 <sup>6</sup> Hz                                                          | COMPRESSED<br>INTERNAL  | RELAXED<br>INTERNAL. | PROBE<br>INTERNAL<br>VALUES. | INTERFACIAL<br>CONTACT<br>RESISTANCE |  |
| 1                       | 407                                                                                                                   | 110                     | 29                   | 28                           | 379                                  |  |
| 2                       | 673                                                                                                                   | 15                      | 12                   | 30                           | 643                                  |  |
| 3                       | 212                                                                                                                   | 27                      | 21                   | 8                            | 204                                  |  |
| 4                       | 49.1                                                                                                                  | 51                      | 19                   | 8                            | 41.1                                 |  |
| 5                       | 24.8                                                                                                                  | 21                      | 17                   | 6                            | 18.8                                 |  |
| 6                       | 64                                                                                                                    | 30                      | 18                   | 3                            | 61                                   |  |
| 7                       | 470.2                                                                                                                 | 15                      | 16                   | DISINTEGRATED                | 455.2                                |  |
| 8                       | BF                                                                                                                    | OKEN AT                 | 230 Kc <sup>s</sup>  |                              |                                      |  |
| 9                       | 105.3                                                                                                                 | 2.1                     | 9                    | 18                           | 87                                   |  |
| 10                      | 65,5                                                                                                                  | 12                      | 9                    | 4                            | 61.5                                 |  |
| AVERAGE                 | 230                                                                                                                   | 33                      | 16.6                 | 13.1                         | 216.6                                |  |
| RANGE<br>(MAX)          | 673                                                                                                                   | 110                     | 29                   | 30                           | 643                                  |  |
| RANGE<br>(MIN)          | 24.8                                                                                                                  | 12                      | 9                    | 3                            | 41                                   |  |
| RANGE                   | 648.2                                                                                                                 | 98                      | 20                   | 27                           | 602                                  |  |
| FIG, 5.37<br>0<br>TABLE | TEST 106 FINAL RESISTANCE TEST AT 3 X 10 <sup>6</sup> Hz<br>FOR INTERNAL AND INTERFACIAL VALUES<br>ANGLED 60° TARGET. |                         |                      |                              |                                      |  |

.

reduction factor of 4.25 in total contact resistance. A visual examination of the probe head showed no visual defects to the probe points, it would therefore appear that the problem was caused by insulating layers present on the probe's contact surfaces, due to manufacturing or the effects of life simulation testing. This procedure was repeated with test 106 and test 110 producing similar results (Figs. 5.38, 5.39).

The average recorded values for six tests were 19.1, 39.4, 13.1, 7.9, 13.1, 9.4, milliohms. These values would not impose any limitations on an ATE system in performing its task. The problems arise when interfacial values were considered; where the average recorded values by comparison were 329.5, 1056.5, 103.4, 119.8, 216.6, 193, measured at the end of each experiment. It should be noted that these values are averages which do not reflect the worse individual probe performance. It may be observed from the test results that the major limiting factor in 99% of cases is interfacial resistance with internal resistance imposing little limitation during testing.

#### 5.5.2 Relaxed and Compressed Probe Resistance

Measurements of the probe internal resistance were taken during Test 110 to establish any differences between relaxed and compressed readings. The measured probe internal values for a relaxed probe ranged from 2 to 12 milliohms, with an average reading of 7.9 milliohms for a set of ten probes. The compressed readings ranged from 3 to 10 milliohms with an average of 6.4 milliohms (See Fig.5.39). Similar results were observed during test 105 where in compression the average reading was 8.6 milliohms, and in the relaxed position reading was 9.4 milliohms (See Fig.5.36).

Measurements for test 101 and 102 were conducted for relaxed and compressed values, with the relaxed values being significantly larger. Test 101 showed a marked difference in recorded values for new probes and a new target. The measurement at two thirds deflection (compressed) averaged over the ten probe sample was 12.8 milliohms, whilst the average value recorded at minimum deflection (relaxed) was 25.9 milliohms. This demonstrates the effect of extra contact pressure which may be observed in the graphs showing spring performance

|                                                                                        | -                                                              | RESISTANC                                | EmΩ                                                  |                                  |
|----------------------------------------------------------------------------------------|----------------------------------------------------------------|------------------------------------------|------------------------------------------------------|----------------------------------|
| PROBE<br>No.                                                                           | AVERAGE<br>OF LAST<br>10 READINGS<br>AT 3 X 10 <sup>6</sup> Hz | AVERAGE<br>AFTER<br>CONTACT<br>CLEANING. | REDUCTION IN<br>INTERFACIAL<br>CONTACT<br>RESISTANCE | PROBE<br>INTERNAL<br>RESISTANCE. |
| 1                                                                                      | 407                                                            | 19.5                                     | 387.5                                                | 28                               |
| 2                                                                                      | 673                                                            | 11.9                                     | 661.2                                                | 30                               |
| 3                                                                                      | 212                                                            | 11.4                                     | 200.6                                                | 8                                |
| 4                                                                                      | 49.1                                                           | 18.6                                     | 30.5                                                 | 8                                |
| 5                                                                                      | 24.8                                                           | 12.6                                     | 12.2                                                 | 6                                |
| 6                                                                                      | 64                                                             | 10.9                                     | 53.1                                                 | 3                                |
| 7                                                                                      | 470.2                                                          | 13.1                                     | 457.1                                                |                                  |
| 8                                                                                      | BR                                                             | OKEN AT 23                               | 0 KHz                                                |                                  |
| 9                                                                                      | 105.3                                                          | 13.2                                     | 92.1                                                 | 18                               |
| 10                                                                                     | 65.4                                                           | 20.1                                     | 45.3                                                 | 4                                |
| AVERAGE                                                                                | 230                                                            | 14.5                                     | 215.5                                                | 13.1                             |
| RANGE<br>MAX.                                                                          | 673                                                            | 20.1                                     | 661                                                  | 30                               |
| RANGE<br>MIN.                                                                          | 24.8                                                           | 10.9                                     | 12.2                                                 | 3                                |
| RANGE                                                                                  | 648.2                                                          | 9.2                                      | 648.8                                                | 27                               |
| FIG. 5.38 FINAL RESISTANCE VARIATION DUE TO<br>CONTACT CLEANING<br>TEST 106 CU TARGET. |                                                                |                                          |                                                      |                                  |

|                                                                                                                                                                 | RESISTANCE mQ |       |            |            |            |                   |                   |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|-------|------------|------------|------------|-------------------|-------------------|
| PROBE                                                                                                                                                           | CONTACT TA    | ARGET |            | INTERNAL ( | OMPONENT   | INTERFACIAL VALUE |                   |
| No.                                                                                                                                                             | AVERAGED C    | DVER  | DIFFERENCE | RELAXED    | COMPRESSED | BEFORE            | AFTER<br>CLEANING |
|                                                                                                                                                                 | BEFORE        | AFIER |            |            |            |                   |                   |
| 1                                                                                                                                                               | 579           | 887.2 | +308.2     | 6          | 4          | 575               | 883.2             |
| 2                                                                                                                                                               | 121.8         | 40.9  | -80.9      | 11         | 6          | 115.8             | 34.9              |
| 3                                                                                                                                                               | 906.8         | 38.2  | -868.6     | 10         | 3          | 903.8             | 35.2              |
| 4                                                                                                                                                               | 241.5         | 111.5 | -130       | 6          | 8          | 233.5             | 103.5             |
| 5                                                                                                                                                               | 241.5         | 240   | -1.5       | 9          | 6          | 235.8             | 234               |
| 6                                                                                                                                                               | 24.8          | 32.1  | +7.3       | 5          | 8          | 16.8              | 24.1              |
| 7                                                                                                                                                               | 53.3          | 131.9 | +78.6      | 8          | 10         | 43.3              | 121.9             |
| 8                                                                                                                                                               | 387.2         | 131.9 | -255.3     | 2          | 6          | 381.2             | 125.9             |
| 9                                                                                                                                                               | 70.9          | 58.4  | -12.5      | 12         | 8          | 62.9              | 50.4              |
| 10                                                                                                                                                              | 1282          | 99    | -1183      | 10         | 5          | 1277              | 94                |
| AVERAGE                                                                                                                                                         | 390.8         | 177.1 | 213.7      | 7.9        | 6.4        | 384.5             | 170.7             |
| RANGE<br>UPPER                                                                                                                                                  | 1282          | 887   | +308       | 12         | 10         | 1277              | 883.2             |
| RANGE<br>LOWER                                                                                                                                                  | 24.8          | 32.1  | -1183      | 2          | 3          | 16.8              | 24.1              |
| RANGE                                                                                                                                                           | 1257.2        | 854.9 | -875       | 10         | 7          | 1260.2            | 859.1             |
| FIG. 5.39 COMPARISON OF INTERNAL AND INTERFACING VALUES<br>BY MOVING AND CLEANING CONTACT TARGET ONLY<br>TEST 110 STAINLESS STEEL FLAT TARGET TAKEN AT 420 kHz. |               |       |            |            |            |                   |                   |

(Fig.5.40). Similar measurements taken at one million cycles showed 298.5 milliohms compressed, and 391 milliohms relaxed and at two million cycles 116.8 milliohms compressed compared to 1331 milliohms relaxed (see appendix 1).

## 5.6 HIGH VALUES IN FLAT AND ANGLED TARGETS

During the initial tests with various copper targets (flat to angled targets of up to 60 degrees inclination), there was no intervention to remedy or verify any probes which were displaying relatively high values of resistance, in order to obtain an indication of the probes performance as supplied from the manufacturers. It was only after probes had been tested on various targets and undesirable effects were encountered, that investigations were undertaken to identify the cause or find a remedy for the problem. In the cases of high interfacial contact resistance, contact cleaning obviously reduces contact resistance, but in general the resistances will increase gradually to higher undesirable values as insulating layers form or contact fretting becomes established in copper or similar targets. In cases where values of high resistance value plus the interfacial contact resistance values, they may be separated into three components:-

1) Interfacial resistance due to insulating layers formed on the target plate.

2) Interfacial resistance due to insulating layers formed on the probe tip contact area.

3) Internal resistance values, which may be measured directly by using the normal four wire ohm-meter in the usual manner.

Deducting the internal value from the total will give the interfacial value due to the tip and target plate combined. By moving the target plate to a cleaned untested area, the target plate portion of interfacial resistance will disappear from the total value and may easily be calculated by subtraction from the previous reading, thus separating the three individual



component values. Using this method it is possible to attribute interfacial resistance to the target plate or the probe tip (see Figs.5.38 & 5.39).

#### 5.6.1 Probe Performance Comparisons Between Flat and Angled Targets

The average performance figures for angled targets show 40% of the probes producing low resistance values, 6.6% median and 53.3% high values. The figures for flat targets show only 33.3% producing low value readings, with 3.3% in the median range and 63.3% in the high range of measurement. This could be attributable to the absence of side pressure pushing the contact surfaces together (see Fig.5.23). The results show that angled targets are likely to produce a 10% better contact resistance performance compared with flat targets. Mechanical failure events however, indicate an overall incidence for angled targets of 10% compared with only 3.3% for flat targets. This shows as would be expected that side pressure is likely to cause a greater level of wear and probe breakages.

Some of the effects of side pressure resulted in uneven wear to the plunger and barrel components, sometimes with the exposure of the internal spring, or the plunger wearing partly through the side of the barrel where the probes were extended beyond their normal life (Fig.5.41). Probes subjected to side pressure displayed a lower overall resistance value, but in cases where there were no side loading, resistance measurements remained higher with greater fluctuations in values. Side loading keeps part of the coaxial interfacial sliding contact area pushed together, where contact pressure has the effect of lowering electrical resistance thus resulting in lower values measured across the probe assembly (See Fig.5.23). It is evident however that the increased wear on one side only reduces its overall useful life, due to increased side play and more variable resistance characteristics when the probe may also be targeted to a flat contact. Increased contact fretting to the target and wear debris oxidation, may also contribute to more variable resistance effects in the absence of side loading.



FIG 5.41a : SPRING WORN THROUGH PROBE BARREL



FIG 5.41b: PLUNGER BADLY WORN



FIG 5.41c : PROBE BENT DUE TO JAMMED ASSEMBLY

## 5.7 MECHANICAL PERFORMANCE EVALUATION

Throughout the six experiments set up primarily to monitor electrical resistance performance, there occurred only a few mechanical failures, with tests running from 2 million to 4 million cycles. As a measure to identify the occurrence and range of mechanical probe malfunctions more rigorous extended testing was conducted over three further experiments (tests 107-109). The tests used copper and steel, flat and angled targets up to 75 degrees in order to induce any potential mechanical failure categories. The probes used for testing were of a similar type to those used in the other series of six tests. In one of the experiments the probes were tested to almost destruction. From the information gained the mechanical failure test categories were:-

- 1. Jammed assembly,
- 2. Broken springs,
- 3. Bent plunger jammed in barrel,
- 4. Plunger broken (angled targets),
- 5. Plunger worn through the barrel side (angled targets),
- 6. Excessive wear caused plunger and barrel to become separated,
- Probe tip became worn electroplate worn off the probe point leaving a blunt point, which was worn down to base metal where it was subjected to contact fretting,
- 8. Probe assembly became excessively worn to the point of disintegration,
- 9. Weakening spring force which could also be caused by wear debris lodged in probe assembly,
- 10. Probe became deformed and was compacted into its receptacle resulting in difficulty in removal.

Most of the categories listed above would not normally be experienced in practice due to rigorous testing beyond manufacturers projected life expectation, but were considered necessary in order to evaluate all of the possible failure modes (Fig.5.42).

| TEST                                         | TARGET         | NEWTONS<br>AVERAGE<br>SPRING<br>FORCE | NEWTONS<br>NEW PROBE<br>AVERAGE<br>SPRING<br>FORCE. | mm<br>AVERAGE<br>SIDE PLAY. | MECHANICAL EVENTS<br>TO END OF TEST.                                                                                                                                     |
|----------------------------------------------|----------------|---------------------------------------|-----------------------------------------------------|-----------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 101                                          | CU<br>FLAT     | 0.5820                                | 0.5942                                              | 0.25                        | P3<br>DAMAGED DURING REMOVAL<br>P4 STOCK IN REC. BROKEN SPRING.<br>P6 BRKN. SPRING.WORN POINTS.                                                                          |
| 102                                          | CU<br>45°      | 0.8173                                | 0.8097                                              | 0.35                        | NONE                                                                                                                                                                     |
| 103                                          | CU<br>45°      | 1.048                                 | 0.7912                                              | 0.32                        | P3 JAMMED AT 320K INTERMITTENT<br>P4 WORN TULIP POINTS.<br>P6 JAMMED AT 390K INTERMITTENT                                                                                |
| 104                                          | CU<br>FLAT     | 0.9973                                | 0.7882                                              | 0.41                        | P1 WORN POINTS.ROUGHNESS OF<br>DEFLECTION.<br>P4 GOLD PLATE WORN THROUGH<br>ON PLUNGER.                                                                                  |
| 105                                          | CU<br>FLAT     | 0.7777                                | 0.8011                                              | 0.32                        | P3 WEAR THROUGH GOLD PLATE<br>P4 & 10 WEAR THROUGH<br>GOLD PLATE.                                                                                                        |
| 106                                          | CU<br>60°      | 0.9869                                | 0.7885                                              | 0.30                        | P2. WORN TULIP POINTS ROUGHNESS<br>OF DEFLECTION. P3 WORN POINTS.<br>ROUGHNESS OF DEFLECTION & WEAR<br>THROUGH GOLD PLATE.                                               |
| 107.                                         | STEEL<br>60°   | 0.5818                                | 0.5919                                              | 0.45                        | P3 & P5 WORN POINTS<br>P4 PLUNGER WORN THROUGH BARREL<br>P9 BENT<br>P10 DAMAGED.                                                                                         |
| 108                                          | CU<br>FLAT     | 0.5805                                | 0.5931                                              | 0.24                        | P2,3,4 SPRING FAILURE.<br>P7 & 8 JAMMED : WORN POINTS.<br>P10 DAMAGED DURING<br>REMOVAL.                                                                                 |
| 109                                          | STEEL<br>75°   | 1.589                                 | 1.453                                               | 0.21                        | P3 ROUGHNESS OF DEFLECTION WEAR<br>DEBRIS: GOLD PLATE WORN THROUGH.<br>P5 & 7 WORN TULIP POINT. ROUGH-<br>NESS OF DEFLECTION WEAR DEBRIS<br>GOLD WORN THRO'P9&10 BROKEN. |
| 110                                          | S-STL.<br>FLAT | 0.9262                                | 0.7959                                              | 0.33<br>0.318AV             | SOME CENTRE POINTS FLATTENED<br>DUE TO HARDER TARGET.                                                                                                                    |
| Fig. 5.42 SUMMARY OF MECHANICAL PERFORMANCE. |                |                                       |                                                     |                             |                                                                                                                                                                          |

## 5.7.1 Mechanical Parameters

Preliminary measurements of all mechanical parameters were taken prior to probe insertion into the tester receptacles. Parameters measured were: side play, spring deflection force, probe tip profile, surface finish (Figs.5.43 to 5.45).

SIDE PLAY: The total side to side movement of the plunger was measured with the barrel clamped in a fixed position as this would normally be the position held in a probe receptacle. These measurements were made before and after life simulation and may be used as an indication of internal wear. Side play measurements were made by clamping the probe (up to the point where it normally emerges from the receptacle) into a shadow graph device, which is capable of projecting a magnified image upon a calibrated ground glass screen. Wire was attached to the probe plunger below the tip and was used to exert a side to side force upon the probe plunger. Side to side movement was then read from the calibrated ground glass screen. Side to side force is limited to a value below the elastic limit of the probe assembly. During normal production activities steep angled targets would subject the probes to a greater than normal side to side deflection, especially in the cases where the probes may have endured considerable wear at an earlier stage.

There are two factors which jointly contribute to side play movement. The first being the intrinsic flexibility of tubular and solid plunger components of the probe assembly, which is a fixed value and changes little due to wear. The second is the variation of tolerance margins of the individual probe components, which are effected by wear processes and the accumulation of wear debris within the probe structure. The individual probe components slowly wear away during service, increasing the probes side play and its chance of missing the centre of the test target on each successive actuation. Typical values measured for a new probe during testing were 0.3mm in total of which 0.2mm was due to tolerance margins, thus leaving 0.1mm due to the flexibility of the probes telescopic structure. However, where angled targets were concerned variation in the ratios were noticed throughout testing. These values were for new untested probes of 2.54mm (0.100inch) centres which were the same type used throughout testing. The average value for a sample of fifty new probes was

| CONTACT SPRING FORCE N M                                             |                 |                  |  |  |  |
|----------------------------------------------------------------------|-----------------|------------------|--|--|--|
| PROBE                                                                | PRE-TEST<br>N/M | POST TEST<br>N/M |  |  |  |
| 1                                                                    | 0.5988          | 0.5855           |  |  |  |
| 2                                                                    | 0.5970          | 0.5733           |  |  |  |
| 3                                                                    | 0.5827          | 01               |  |  |  |
| 4                                                                    | 0.5967          | 0.5902           |  |  |  |
| 5                                                                    | 0.5978          | 0.5749           |  |  |  |
| 6                                                                    | 0.5923          | 0.5661           |  |  |  |
| 7                                                                    | 0.5982          | 2<br>0. JAMMED   |  |  |  |
| 8                                                                    | 0.5939          | 3<br>0. JAMMED   |  |  |  |
| 9                                                                    | 0.5982          | 0.5935           |  |  |  |
| 10                                                                   | 0.5759          | 04               |  |  |  |
| AV                                                                   | 0.5931          | 0.5805           |  |  |  |
| RANGE<br>MIN.                                                        | 0.5759          | 0. 5661          |  |  |  |
| MAX.                                                                 | 0.5988          | 0.5935           |  |  |  |
| FIG. 5,43, PRE & POST TEST SPRING FORCE<br>VALUES 2 X 10 6 TEST 108. |                 |                  |  |  |  |

| CONTACT                                                                                                            | SPRING         | FORCE NM             |  |  |  |
|--------------------------------------------------------------------------------------------------------------------|----------------|----------------------|--|--|--|
| PROBE                                                                                                              | PRE-TEST<br>NM | POST TEST<br>NM      |  |  |  |
| 1                                                                                                                  | 0.5969         | 0.5971               |  |  |  |
| 2                                                                                                                  | 0.5978         | 0.5885               |  |  |  |
| 3                                                                                                                  | 0.5939         | BROKEN               |  |  |  |
| 4                                                                                                                  | 0.5970         | JAMMED AT<br>1464 KC |  |  |  |
| 5                                                                                                                  | 0.5989         | 0.5688               |  |  |  |
| 6                                                                                                                  | 0.5850         | 948 KC<br>JAMMED     |  |  |  |
| 7                                                                                                                  | 0.5988         | 0.5817               |  |  |  |
| 8                                                                                                                  | 0.5967         | 0.5954               |  |  |  |
| 9.                                                                                                                 | 0.5939         | 0.5701               |  |  |  |
| 10                                                                                                                 | 0.5836         | 0.5725               |  |  |  |
| AV                                                                                                                 | 0.5942         | 0.5820               |  |  |  |
| RANGE<br>MIN.                                                                                                      | 0.5836         | 0.5688               |  |  |  |
| MAX.                                                                                                               | 0.5989         | 0.5971<br>LC5N       |  |  |  |
| 7.4 m/m de MAX. VALUES OCCUR BETWEEN 1.7& 4.4 m/m<br>FIG. 5.44 PRE- & POST TEST SPRING<br>TEST – 101 FORCE VALUES. |                |                      |  |  |  |

| CONTACT SPRING FORCE IN N.                              |                 |                                   |  |  |  |  |  |
|---------------------------------------------------------|-----------------|-----------------------------------|--|--|--|--|--|
| PROBE                                                   | TEST 107 500KHz | TEST 108 FLAT<br>TARGET 2×106 Hz. |  |  |  |  |  |
| 1                                                       | 0.5862          | 0.5855                            |  |  |  |  |  |
| 2                                                       | 0.5473          | 0.5733                            |  |  |  |  |  |
| 3                                                       | 0.5845          | DAMAGED                           |  |  |  |  |  |
| 4                                                       | 0.5849          | 0.5902                            |  |  |  |  |  |
| 5                                                       | 0.5837          | 0.5749                            |  |  |  |  |  |
| 6                                                       | 0.5797          | 0.5661                            |  |  |  |  |  |
| 7                                                       | 0.5916          | JAMMED.                           |  |  |  |  |  |
| 8                                                       | 0.5856          | JAMMED                            |  |  |  |  |  |
| 9                                                       | 0.5933 BENT     | 0.5935                            |  |  |  |  |  |
| 10                                                      | DAMAGED         | DAMAGED                           |  |  |  |  |  |
| RANGE<br>UPPER                                          | 0.5933          | 0.5935                            |  |  |  |  |  |
| RANGE<br>LOWER                                          | 0.5473          | 0.5661                            |  |  |  |  |  |
| RANGE                                                   | 0.0460          | 0.0274                            |  |  |  |  |  |
| AVERAGE                                                 | 0.5818          | 0.5805                            |  |  |  |  |  |
| REF-AVERAGE. VALUE FOR UNTESTED PROBE 0.5919 7.4 m/m de |                 |                                   |  |  |  |  |  |
| TABLE 5.45 POST TESTING SPRING FORCE<br>MEASUREMENTS.   |                 |                                   |  |  |  |  |  |

0.203mm, however, where angled targets were accessed the side movement would be much greater due to flexing of the probe structure, thus raising values up to 1mm. In certain cases, tests using angled targets have shown uneven wear to probe components, thus having its effect on side play measurements taken at 90 degrees increments. In one worse case measurement, successive values of 1.00mm at 0 degrees and 0.5mm at 90 degrees were recorded due to the probe wearing in one position. Results show that in the majority of cases wear from flat targets (over 360 degrees) was even, but was confined to one area for angled targets thus leaving a worn striped area down the plungers side. Extensive use may result in values up to 1mm side play in some angled target applications (See Fig.5.42). In situations where longer thinner probe types are used flexing may be much more of a problem than side play, especially where test pad targets are small because combinations of side play and flexing will cause even more probes sliding off or missing the target. The average side play value for new probes was 0.2mm and after testing the average value for one hundred probes was 0.318mm. In test 104 which was a flat cu target, probe one exhibited side play values (measured after 2.5 million cycles) of 0.98mm at 0 degrees and 1.10mm at 90 degrees. This was the worst example for the one hundred probes tested, although probe six in the same test had measured at 0.29mm for 0 degrees and 0.27mm at 90 degrees. The average values for the group were 0.41 at 0 degrees and 0.43 at 90 degrees, thus showing the considerable variation in individual probe performance (Figs.5.46 to 5.55).

SPRING PERFORMANCE ASSESSMENT: As the probe spring is one of the more important components of a test probe, its failure will immediately cause a probe to cease to function, therefore all the probes were tested before and after the experiments. Using the tensile test machine all probes were deflected through their noted travel producing a graph of spring force delivered to the probe plunger (Fig.5.56).

Sample batches of new probes were tested in order to produce average values for the probe types for comparison with the ten batch sample of probes used in life simulation testing. Comparative results showed insignificant variation in spring force before and after testing, except where plungers were jammed solid inside the probe barrel or where the springs became broken. A considerable amount of wear debris was discharged from inside the probe

| 00005                                                                     | PLUNGER FORCE                                                      |               | SIDE PLAY                             |             | MECHANICAL | RESISTANCE |  |
|---------------------------------------------------------------------------|--------------------------------------------------------------------|---------------|---------------------------------------|-------------|------------|------------|--|
| No.                                                                       | NEWTON                                                             | GRAM<br>OZ    | 0°                                    | 9 <u>0°</u> | EVENTS     | CATEGORY   |  |
| 1                                                                         | 0.5971                                                             | 60.89<br>2.14 | 0.30                                  | 0.31        | NONE       | 9Ь         |  |
| 2                                                                         | 0.5885                                                             | 60.01<br>2.11 | 0.29                                  | 0.28        | NONE       | 4a         |  |
| 3                                                                         | DAMAGED DURING REMOVAL FROM RECEPTACLE<br>BROKEN SPRING SUSPECTED. |               |                                       |             |            | 4a         |  |
| 4                                                                         | STUCK IN RECEPTACLE. BROKEN SPRING.<br>JAMMED ONCE AT 1464         |               |                                       |             |            | 9Ь         |  |
| 5                                                                         | 0.5688                                                             | 58.0<br>2.04  | 0.25                                  | 0.27        | NONE       | 9Б         |  |
| 6                                                                         | JAMMED 0.18 0.16                                                   |               | Broken spring<br>Worn Tulip<br>Point. | 9Ь          |            |            |  |
| 7                                                                         | 0.5817                                                             | 59.32<br>2.09 | 0.28                                  | 0.31        | NONE       | 9Ь         |  |
| 8                                                                         | 0.5954                                                             | 60.71<br>2.14 | 0.23                                  | 0.25        | NONE       | 9b         |  |
| 9                                                                         | 0.5701                                                             | 58.13<br>2.05 | 0.25                                  | 0.26        | NONE       | 9b         |  |
| 10                                                                        | 0.5725                                                             | 58.3<br>2.05  | 0.24                                  | 0.25        | NONE       | 5a         |  |
| AVERAGE<br>VALUE                                                          | 0.5820                                                             | 59.3<br>2.09  | 0.25                                  | 0.26        | -          | -          |  |
| AVERAGE<br>NEW                                                            | 0.5942                                                             | 60.59<br>2.13 | 0.20                                  | 0.20        |            | -          |  |
| Fig. 5.46 TEST 101. CU. FLAT. 2 MILLION CYCLES<br>MECHANICAL PERFORMANCE. |                                                                    |               |                                       |             |            |            |  |
| PROBE                                                                     | PLUNGER | FORCE           | SIDE PLAY |      | MECHANICAL                                    | RESISTANCE  |
|---------------------------------------------------------------------------|---------|-----------------|-----------|------|-----------------------------------------------|-------------|
| No.                                                                       | NEWTON  | GRAM<br>OZ      | 0°        | 90°  | EVENTS                                        | CATEGORIES. |
| 1                                                                         | 0.8160  | 83.214<br>2.935 | 0.35      | 0.35 | GENERAL THERE<br>WERE NO<br>MECHANICAL        | 4a          |
| 2                                                                         | 0.8391  | 85.570<br>3.018 | 0.25      | 0.25 | FAILURE CATE-<br>GORIES IN THIS<br>EXPERIMENT | 6a          |
| 3                                                                         | 0.8171  | 83.326<br>2.939 | 0.35      | 0.35 | •                                             | 9Б          |
| 4                                                                         | 0.8244  | 84.071<br>2.965 | 0.35      | 0.35 |                                               | 9Ь          |
| 5                                                                         | 0.8059  | 82.184<br>2.898 | 0.37      | 0.35 |                                               | 9Б          |
| 6                                                                         | 0.8340  | 85.05<br>3.000  | 0.39      | 0.34 |                                               | 9b          |
| 7                                                                         | 0.8166  | 83.275<br>2.937 | 0.35      | 0.37 |                                               | 6b          |
| 8                                                                         | 0.8216  | 83.785<br>2.955 | 0.34      | 0.36 | · · ·                                         | 9Ъ          |
| 9                                                                         | 0.7823  | 79.777<br>2.814 | 0.37      | 0.35 |                                               | 9Ь          |
| 10                                                                        | 0.8160  | 83.214<br>2.935 | 0.43      | 0.45 |                                               | 9b          |
| AVERAGE                                                                   | 0.8173  | 83.346<br>2.939 | 0.35      | 0.35 |                                               |             |
| AVERAGE<br>NEW<br>VALUE                                                   | 0.8097  | 82.56<br>2.912  | 0.195     | 0.20 |                                               |             |
| Fig. 5.47 TEST 102: CU. 45° : 2 MILLION CYCLES<br>MECHANICAL PERFORMANCE. |         |                 |           |      |                                               |             |

~

|                                                | PLUNGER           | FORCE            | SIDE PLAY<br>m m<br>0° 90° |      | ΜΕΓΗΔΝΙΓΔΙ                  | RESISTANCE  |
|------------------------------------------------|-------------------|------------------|----------------------------|------|-----------------------------|-------------|
| No.                                            | NEWTON            | GRAM.<br>Oz      |                            |      | EVENTS                      | PERFORMANCE |
| 1                                              | 0.8717            | 88.894<br>3.135  | 0.35                       | 0.37 |                             | 6b          |
| 2                                              | 0.7547            | 76.963<br>2.714  | 0.34                       | 0.30 |                             | 4a          |
| 3                                              | BROK<br>SPRI      | (EN<br>NG        | 0.32                       | 0.31 | JAMMED AT 320K              | 9b          |
| 4                                              | 0.8267            | 84.305<br>2.973  | 0.33                       | 0.35 | Worn Tulip<br>Point.        | 9Ъ          |
| 5                                              | 0.6501            | 66.296<br>2.338  | 0.31                       | 0.33 |                             | 5a          |
| 6                                              | BROKEN<br>Spring. |                  | 0.28                       | 0.30 | JAMMED 320K<br>INTERMITTENT | 9Ь          |
| 7                                              | 1.909             | 194.676<br>6.866 | 0.25                       | 0.27 |                             | 6a          |
| 8                                              | 1.791             | 82.643<br>6.442  | 0.27                       | 0.27 |                             | <b>1</b> a  |
| 9                                              | 0.8104            | 82.643<br>2.915  | 0.48                       | 0.48 |                             | 1a          |
| 10                                             | 0.7733            | 78.859<br>2.781  | 0.27                       | 0.30 |                             | За          |
| AVERAGE                                        | 1.048             | 106.909<br>3.770 | 0.32                       | 0.32 |                             | -           |
| AVERAGE<br>NEW<br>VALUE                        | 0.7912            | 80.68<br>2.84    | 0.21                       | 0.21 |                             | -           |
| Fig. 5.48 TEST 103: CU. 45°: 4 MILLION CYCLES. |                   |                  |                            |      |                             |             |

| PROBE                    | PLUNGER                                                                     | FORCE            | SIDE              | PLAY | MECHANICAL                                        |           |  |  |
|--------------------------|-----------------------------------------------------------------------------|------------------|-------------------|------|---------------------------------------------------|-----------|--|--|
| NO.                      | NEWTON                                                                      | GRAM<br>OZ       | ™™<br>0* 90*      |      | EVENTS.                                           | CATEGORY. |  |  |
| 1                        | 0.7665                                                                      | 78.166<br>2.757  | 0.98              | 1.10 | WORN TULIP SECTION:<br>ROUGHNESS OF<br>DEFLECTION | 9         |  |  |
| 2                        | 0.7896                                                                      | 80.522<br>2.840  | 0.41              | 0.43 |                                                   | 9         |  |  |
| 3                        | 0.8188                                                                      | 83.499<br>2.945  | 0.34              | 0.37 |                                                   | 9         |  |  |
| 4                        | 1.537                                                                       | 156.740<br>5.528 | 0.36              | 0.36 | gold worn through<br>on plunger.                  | 4         |  |  |
| 5                        | 0.9195                                                                      | 93.769<br>3.307  | 0.33              | 0.32 |                                                   | 9         |  |  |
| 6.                       | 0.8891                                                                      | 90.669<br>3.198  | 0.29              | 0.27 |                                                   | 6         |  |  |
| 7                        | 0.774 <u>9</u>                                                              | 79.023<br>2.787  | 0.31              | 0.32 |                                                   | 8         |  |  |
| 8                        | 0.8222                                                                      | 83.846<br>2.957  | 0.33              | 0.33 |                                                   | 9         |  |  |
| 9                        | 0.8807                                                                      | 89.812<br>3.167  | 0.41              | 0.42 |                                                   | 9         |  |  |
| 10                       | 1.775                                                                       | 181.011<br>6.384 | 0.39              | 0.41 |                                                   | 10        |  |  |
| AVERAGE                  | 0.9973                                                                      | 101.705<br>3.587 | 0.41              | 0.43 |                                                   |           |  |  |
| AVERAGE<br>NEW<br>VALUE. | 0.7882                                                                      | 80.37<br>2.835   | 0.22 <sup>°</sup> | 0.22 |                                                   |           |  |  |
| Fig. 5.49                | Fig. 5.49 TEST 104: CU: FLAT: 2.5 MILLION CYCLES<br>MECHANICAL PERFORMANCE. |                  |                   |      |                                                   |           |  |  |

l

|                                                                          | PLUNGEF | <b>₹FORCE</b>   | SIDE PLAY |          |                                              | RESISTANCE               |
|--------------------------------------------------------------------------|---------|-----------------|-----------|----------|----------------------------------------------|--------------------------|
| No.                                                                      | NEWTON  | GRAM<br>OZ      | mn<br>0°  | n<br>90° | MELHANILAL<br>EVENTS                         | PERFORMANCE<br>CATEGORY. |
| 1                                                                        | 0.7688  | 78.401<br>2.765 | 0.35      | 0.30     | ŕ                                            | 1                        |
| 2                                                                        | 0.8188  | 83.499<br>2.945 | 0.30      | 0.30     |                                              | 9                        |
| 3                                                                        | 0.8172  | 83.336<br>2.939 | 0.35      | 0.35     | TIP & PLUNGER WEAR<br>THROUGH GOLD<br>PLATE. | 1                        |
| 4                                                                        | 0.8588  | 87.579<br>3.089 | 0.30      | 0.29     | TIP & Plunger Wear<br>Through Gold<br>Plate. | 9                        |
| 5                                                                        | 0.7165  | 73.067<br>2.577 | 0.45      | 0.45     |                                              | 2                        |
| 6                                                                        | 0.8216  | 83.785<br>2.955 | 0.35      | 0.34     |                                              | · 9                      |
| 7                                                                        | 0.7474  | 76.218<br>2.688 | 0.30      | 0.29     |                                              | 3                        |
| 8                                                                        | 0.7384  | 75.30<br>2.656  | 0.30      | 0.30     |                                              | 9                        |
| 9                                                                        | 0.7991  | 81.49<br>2.874  | 0.25      | 0.25     |                                              | 2                        |
| 10                                                                       | 0.6912  | 70.487<br>2.486 | 0.29      | 0.30     | TIP & PLUNGER WEAR<br>THROUGH GOLD<br>PLATE. | 3                        |
| AVERAGE                                                                  | 0.7777  | 79.316<br>2.797 | 0.32      | 0.31     |                                              |                          |
| AV<br>NEW<br>VALUE                                                       | 0.8011  | 81.69<br>2.88   | 0.20      | 0.20     |                                              |                          |
| Fig. 5.50 TEST 105: CU FLAT: 2 MILLION CYCLES<br>MECHANICAL PERFORMANCE. |         |                 |           |          |                                              |                          |

| PPORE                                                                           | PLUNGE                                    | R FORCE          | SIDE PLAY |           | ΜΕΓΗΑΝΙΓΑΙ                                                             | RESISTANCE               |
|---------------------------------------------------------------------------------|-------------------------------------------|------------------|-----------|-----------|------------------------------------------------------------------------|--------------------------|
| No.                                                                             | NEWTON                                    | GRAM<br>I OZ     | ית<br>0°  | ות<br>90° | EVENTS.                                                                | PERFORMANCE<br>CATEGORY. |
| 1                                                                               | 1.002                                     | 102.182<br>3.604 | 0.30      | 0.30      |                                                                        | 9Ь                       |
| 2                                                                               | 1.309                                     | 133.489<br>4.708 | 0.30      | 0.32      | WORN TULIP POINT:<br>ROUGHNESS OF<br>DEFLECTION.                       | 1                        |
| 3                                                                               | 0.9802                                    | 99.959<br>3.525  | 0.25      | 0.25      | WORN TULIP POINT:<br>ROUGHNESS OF<br>DEFLECTION WEAR<br>THROUGH PLATE. | 1                        |
| 4                                                                               | 0.8661                                    | 88.323<br>3.115  | 0.30      | 0.30      |                                                                        | 1                        |
| 5                                                                               | 0.9302                                    | 94.860<br>3.346  | 0.20      | 0.22      |                                                                        | 1                        |
| 6                                                                               | 0.9319                                    | 95.033<br>3.352  | 0.48      | 0.51      |                                                                        | 9                        |
| 7                                                                               | BROKEN DURING REMOVAL<br>FROM RECEPTACLE. |                  |           |           |                                                                        |                          |
| 8                                                                               |                                           | BROKEN           | AT 2301   | ٢Hz       |                                                                        | 10                       |
| 9                                                                               | 0.9602                                    | 97.919<br>3.453  | 0.35      | 0.37      |                                                                        | 9                        |
| 10                                                                              | 0.9161                                    | 93.422<br>3.295  | 0.25      | 0.25      | -                                                                      | 9                        |
| AVERAGE                                                                         | 0.9869                                    | 100.648<br>3.549 | 0.30      | 0.31      |                                                                        |                          |
| AVERAGE<br>NEW<br>VALUE                                                         | 0.7885                                    | 80.40<br>2.836   | 0.21      | 0.215     |                                                                        |                          |
| Fig. 5.51 TEST 106; CU 60° ANGLED: 3 MILLION CYCLES.<br>MECHANICAL PERFORMANCE. |                                           |                  |           |           |                                                                        |                          |

.

| PROBE                                                                               | PLU    | NGER FOR          | RCE                  | SIDE PLAY         |                  | MECHANICAL                      |  |
|-------------------------------------------------------------------------------------|--------|-------------------|----------------------|-------------------|------------------|---------------------------------|--|
| No.                                                                                 | NEWTON | ΟZ                | GRAMS                | 0° <sup>س</sup> ا | <sup>m</sup> 90° | EVENTS                          |  |
| 1                                                                                   | 0.5862 | 2.108             | 59.779               | 0.25              | 0.40             |                                 |  |
| 2                                                                                   | 0.5473 | 1.968             | 55.812               | 1.00              | 0.51             | LOOSE ASSEMBLY                  |  |
| 3                                                                                   | 0.5845 | 2.102             | 59.606               | 0.40              | 0.30             | WORN TULIP<br>HEAD.             |  |
| 4                                                                                   | 0.5849 | 2.103             | 59.647               | 0.60              | 0.58             | Plunger worn<br>Through Barrel. |  |
| 5                                                                                   | 0.5837 | 2.099             | 59.524               | 0.40              | 0.45             | Worn Tulip<br>Point,            |  |
| 6                                                                                   | 0.5797 | 2.085             | 59.116               | 0.35              | 0.36             |                                 |  |
| 7                                                                                   | 0.5916 | 2.128             | 60.330               | 0.36              | 0.34             |                                 |  |
| 8                                                                                   | 0.5856 | 2.106             | 59.718               | 0.40              | 0.60             |                                 |  |
| 9                                                                                   | 0.5933 | 2.134             | 60.503               | 0.35              | 0.32             | BENT.                           |  |
| 10                                                                                  | C      | IAMAGED<br>FROM F | DURING F<br>RECEPTAC | REMOVAL<br>LE.    |                  | DAMAGED                         |  |
| AVERAGE                                                                             | 0.5818 | 2.092             | 59.337               | 0.45              | 0.42             |                                 |  |
| AVERAGE<br>NEW<br>VALUE.                                                            | 0.5919 | 2.129             | 60.361               | 0.20              | 0.20             |                                 |  |
| Fig. 5.52 TEST 107: STEEL 60° ANGLE: 1/2 MILLION CYCLES.<br>MECHANICAL PERFORMANCE. |        |                   |                      |                   |                  |                                 |  |

| PROBE                                                                    | PLUNGER FORCE SIDE |                               |          |                              | PLAY     | MECHANICAL                                                |  |
|--------------------------------------------------------------------------|--------------------|-------------------------------|----------|------------------------------|----------|-----------------------------------------------------------|--|
| No.                                                                      | NEWTON             | 0 <b>Z</b>                    | GRAMS    | 0° m                         | m<br>90° | EVENTS                                                    |  |
| 1.                                                                       | 0.5855             | 2.106                         | 59.708   | 0.30                         | 0.35     |                                                           |  |
| 2                                                                        | 0.5733             | 2.062                         | 58.464   | 0.30                         | 0.28     | SPRING<br>FAILED.                                         |  |
| 3                                                                        |                    |                               |          | 0.30                         | 0.35     | SPRING FAILED<br>: Worn Through<br>Plate.                 |  |
| 4                                                                        | 0.5902             | 2.123                         | 60.187   | 0.19                         | 0.21     | SPRING<br>FAILED.                                         |  |
| 5                                                                        | 0.5749             | 2.067                         | 58.627   | 0.20                         | 0.20     |                                                           |  |
| 6                                                                        | 0.5661             | 2.036                         | 57.729   | 0.20                         | 0.19     |                                                           |  |
| 7                                                                        | PLUNGE             | r jamme                       |          | Jammed & Worn<br>Tulip Head. |          |                                                           |  |
| 8                                                                        | PLUNGE             | r jamme                       | D INTO B | ARREL.                       |          | JAMMED                                                    |  |
| 9                                                                        | 0.5935             | 2.134                         | 60.524   | 0.201                        | 0.18     |                                                           |  |
| 10                                                                       | COMPA<br>DAMAG     | DAMAGED<br>DURING<br>REMOVAL. |          |                              |          |                                                           |  |
| AVERAGE                                                                  | 0.5805             | 2.088                         | 59.205   | 0.24                         | 0.25     | GENERAL. 6 BADLY WORN<br>1 BENT & JAMMED<br>1 BADLY WORN. |  |
| AVERAGE<br>NEW<br>VALUE.                                                 | 0.5931             | 2,133                         | 60.48    | 0.20                         | 0.20     | PLUNGER<br>WORN THROUGH<br>BARREL.                        |  |
| Fig. 5.53 TEST 108: CU FLAT: 2 MILLION CYCLES<br>MECHANICAL PERFORMANCE. |                    |                               |          |                              |          |                                                           |  |

| PROBE                                                | PLUNGER FORCE SIDE PLAY |          |                                                          | MECHANICAL      |                  |                                                                                 |
|------------------------------------------------------|-------------------------|----------|----------------------------------------------------------|-----------------|------------------|---------------------------------------------------------------------------------|
| No.                                                  | NEWTON                  | 02       | GRAMS                                                    | 0° <sup>m</sup> | <sup>m</sup> 90° | EVENTS.                                                                         |
| 1                                                    | 1.360                   | 4.89     | 138.6                                                    | 0.30            | 0.35             |                                                                                 |
| 2                                                    | 1.641                   | 5.90     | 167.3                                                    | 0.20            | 0.20             |                                                                                 |
| 3                                                    | 1.659                   | 5.96     | 169.1                                                    | 0.20            | 0.25             | Roughness of<br>deflection: wear<br>debris: gold<br>worn off.                   |
| 4                                                    | 1.480                   | 5.32     | 150.9                                                    | 0.20            | 0.20             |                                                                                 |
| 5                                                    | 1.723                   | 6.19     | 175.7                                                    | 0.25            | 0.23             | Worn tulip point:<br>roughness of<br>deflection: wear debris:<br>gold worn off. |
| 6                                                    | 1.6                     | 5.75     | 163.1                                                    | 0.20            | 0.25             |                                                                                 |
| 7                                                    | 1.723                   | 6.19     | 175.7                                                    | 0.15            | 0.20             | Worn tulip point<br>roughness of def:<br>wear debris:<br>gold worn off.         |
| 8                                                    | 1.526                   | 5.48     | 155.6                                                    | 0.20            | 0.20             |                                                                                 |
| 9                                                    | COMPA<br>DAMAG          | CTED INT | O RECEP<br>EMOVAL.                                       | TACLE           |                  | DAMAGED:<br>JAMMED SOLID                                                        |
| 10                                                   | ASSEMB                  | LY PART  | Plunger and barrel<br>detached due to<br>excessive were. |                 |                  |                                                                                 |
| AVERAGE                                              | 1.589                   | 5.715    | 162.                                                     | 0.212           | 0.235            |                                                                                 |
| AVERAGE<br>NEW<br>VALUE.                             | 1. <b>453</b>           | 5.22     | 148.1                                                    | 0.15            | 0.15             |                                                                                 |
| Fig. 5.54 TEST 109 STEEL 75°:<br>1/2 MILLION CYCLES. |                         |          |                                                          |                 |                  |                                                                                 |

| nrobe                                                                                    | PLU    | NGER FOR | RCE    |       |       | MECHANICAL       |  |
|------------------------------------------------------------------------------------------|--------|----------|--------|-------|-------|------------------|--|
| No.                                                                                      | NEWTON | 02       | GRAMS. | 0°    | 90°   | GENERAL.         |  |
| 1                                                                                        | 0.8597 | 3.092    | 87.6   | 0.37  | 0.35  |                  |  |
| 2                                                                                        | 0.9030 | 3.24     | 92.08  | 0.33  | 0.32  |                  |  |
| 3                                                                                        | 0.7868 | 2.83     | 80.2   | 0.28  | 0.27  | -                |  |
| 4                                                                                        | 0.8519 | 3.06     | 86.87  | 0.29  | 0.31  | SOME<br>CENTRE   |  |
| 5                                                                                        | 0.8204 | 2.95     | 83.66  | 0.41  | 0.38  | TULIP<br>POINTS  |  |
| 6                                                                                        | 0.7076 | 2.54     | 72.1   | 0.33  | 0.29  | DUE TO<br>HARDER |  |
| 7                                                                                        | 0.8087 | 2.90     | 82.46  | 0.32  | 0.31  | TARGET.          |  |
| 8                                                                                        | 1.095  | 3.93     | 111.66 | 0.30  | 0.32  |                  |  |
| 9                                                                                        | 1.168  | 4.20     | 119.1  | 0.41  | 0.43  |                  |  |
| 10                                                                                       | 1.261  | 4.53     | 128.5  | 0.28  | 0.29  |                  |  |
| AVERAGE                                                                                  | 0.9262 | 3.32     | 94.42  | 0.332 | 0.327 |                  |  |
| AVERAGE<br>NEW<br>VALUE                                                                  | 0.7959 | 2.85     | 81.16  | 0.193 | 0.207 |                  |  |
| Fig. 5.55 TEST 110: STAINLESS STEEL FLAT:<br>2 MILLION CYCLES<br>MECHANICAL PERFORMANCE. |        |          |        |       |       |                  |  |

•



, ,

FIG. 5.56 TEST 102 SPRING FORCE MEASUREMENT OVER PROBES RANGE OF DEFLECTION.

structure during the probes transfer from the life simulation machine to the JJ tensile testing machine. The Probes sliding action improved after storage or further testing, probably due to debris falling out. Testing was conducted in a vertical position with the probe heads uppermost (as would be the case in most test fixtures), and so most of the debris remained trapped inside the barrel until a change of orientation was effected, which happened during transfer and further testing. Stiff probes or probes exhibiting symptoms of roughness of deflection often slid more easily after testing or evaluation. In the cases where broken springs were suspected radiographs were taken to investigate and verify the cause of the probes failure. Spring failure often occurred after extended testing beyond the guaranteed one million cycles.

In the first series of experiments (tests 101 to 106) the main purpose was to evaluate contact resistance, there was no incidences of broken springs up to 1.2 million cycles. The broken springs occurred during extended testing beyond 1.2 million cycles. The three broken springs in test 101 occurred during testing between 1.2 million and 2 million cycles. (see Fig.5.23). In the second series of experiments, test 108 also produced three spring failures beyond the 1.2 million figure. Apparent broken springs may be due to a number of different causes, e.g. a bent plunger which may have caused the probe to become locked solid, or wear debris and the slight deformation of the plunger may cause a similar effect. By releasing or freeing a jammed probe, it was then possible to ascertain whether the problem was caused by the spring or a combination of other factors. Using X ray photography indisputable evidence was produced showing probe samples with broken springs. Test results confirm satisfactory performance up to 1.2 million deflections for the majority of 100 probes tested.

ELECTRON MICROSCOPY: Photographs show in considerable detail the effects of probe wear to the plunger and probe head. It can be seen in several cases where the tulip angled points are severely worn away, or chips of the base metal substrate are missing from the crown points leaving a rough rocklike appearance to a number of the probe crown points (Fig.5.57). Analysis of the probe contact point surfaces were performed visually during initial testing using an optical microscope. When the probes had completed their test cycle



FIG 5.57a : CHIPPED PROBE POINT SHOWING ROCKLIKE COPPER SUBSTRATE: MAG. 47.



FIG 5.57b : PROBE HEAD CONTAMINATION & WEAR: MAG 75.

170

programme they were again investigated on a scanning electron microscope (SEM). Elemental analysis of the probe contact area was achieved using the LINK facility of the SEM and AUGER electron spectroscopy, which showed conclusive evidence where the plated contact surface had become worn away to copper base metal (See Fig.5.29). Visual observations using the optical microscope indicated that fretting corrosion had taken place on the copper probe target. Black regions were visible at the probe target contact area both for angled and flat targets tested (See Fig.5.31).

Wear debris was collected from the probe assembly and subjected to analysis using the SEM which showed that the wear debris particles were predominately copper (Fig.5.58). In all the cases SEM investigations were conducted at the completion of the tests and not after an equal number of cycles. SEM investigations showed a considerable amount of particulate contamination to a number of the probe heads, most of the debris being airborne in origin, and of a non metallic or non mineral appearance. It is possible that it could have been deposited in the probe field area of the test machine by the action, for example, of the motor cooling fan. This event is similar in vacuum operated test fixtures due to the large amounts of air transferred over the probe field during test activity. The investigation into probe plunger outer bearing surfaces showed variable amounts of scoring into the cylindrical surface, either confined to mainly one area for angled targets or spread all around for flat targets. On some of the test samples variable amounts of metallic wear debris had been compacted into the worn cylindrical surfaces of the probe plungers. The wear debris often contributes to probe roughness of action or probes becoming completely jammed into the barrel.

X RAY PHOTOGRAPHY: The probes suspected of having broken springs were X rayed and were found to have broken springs. Once a spring breaks, the two halves of the spring start to screw the two broken spring sections together (usually due to the deflecting action of the test machine), which gradually reduces the spring force available to the plunger (Fig.5.59). In some cases a probe spring may break in more than one place as shown in one example where two broken sections became combined, but the third section remained separate thus leaving a visible gap. In another test sample the two broken sections of a



FIG 5.58a : PROBE INTERNAL WEAR DEBRIS PREDOMINATELY COPPER: MAG 5K



FIG 5.58b : PROBE INTERNAL WEAR DEBRIS PREDOMINATELY COPPER: MAG 10K



FIG 5.59a,b,c : XRAY PHOTOGRAPHS SHOWING 1 NORMAL & 2 BROKEN SPRINGS

spring also became combined with no deflecting force available at the plunger. The photograph of a new probe highlights the difference between good and failed test samples. Due to the grainy nature and the magnification of the X ray photographs, it is not possible to be certain whether the photographs show any wear debris trapped inside the probe assembly. There is no doubt however, that a considerable amount of debris did become trapped inside the probe assembly during simulated testing since the majority escaped during mechanical evaluation for spring pressure and side play.

#### 5.7.2 Probe Resistive Performance after 1.2 Million Cycles

In the majority of samples tested, the probe performance after 1.2 million cycles continued in a similar pattern as before. The average probe resistance values continued to rise slowly with an often widening spread of recorded values. However, resistance values measured often decreases during prolonged testing as was the case in experiment test 103 (45 degree target), where average resistance values peaked in the three million cycle and then reduced to earlier performance measurements, continuing low readings up to 4 million cycles. This could be attributed to lack of contamination and mechanical problems. The values recorded during test 105 (flat target) show on average a consistent performance throughout the test up to the final 2 million cycle reading.

The mechanical problems that developed on certain probes during testing before 1.2 million cycles were related to erratic resistive performance. These events were test 101/probe 6 jammed at 948 KHZ; test 103/probe 3 jammed at 320 KHZ (both probes performed erratically throughout the test); and finally test 103/probe 6 that developed sporadic resistive behaviour at 250 KHZ, eventually becoming permanently jammed for the remainder of the test. It would seem apparent from the mechanical/electrical relationship that in relatively major contact resistance variations the minor mechanical occurrences will have their effects on contact resistance, for in such cases maximum contact pressure is required to penetrate resistive layers which are present on the contact surfaces. Rough probe action may cause variable contact pressure when it occurs in repetitive PCB testing, as may be seen in the spring test graph (See Fig.5.40). Rough probe deflection may precede jamming in the

minority of cases with probes displaying erratic variable resistance behaviour at an earlier stage during the test.

# 5.8 STAINLESS STEEL TARGET

One of the later tests used a stainless steel target plate to try and eliminate the effect of contact fretting on the probe target. Initial test values were high when compared with a softer copper or solder target. Indeed some readings were logged as open circuit which is beyond the 2000 milliohms range of the on-board measuring system (Fig.5.60).

Test reading resistance values settled down to acceptable values for eight out of the ten probes undergoing life testing, thus leaving the remaining two exhibiting high values at 1000 milliohms. As an extra test to check the resistance measurement system, all probe bodies below the tip were, in turn, connected to the contact plate to further verify the internal resistance of each probe, and as a further verification of the measurement circuitry. In all ten cases, values were below 90 milliohms. It was deemed necessary to eliminate the contact plate as an element of suspect high surface resistance over some of its area, so the plate was moved four millimetres, effectively producing a new uncontaminated target area for each probe head. The measurement process was then repeated, showing no significant change in the overall readings, two of which were still showing the high readings displayed earlier, thus indicating interfacial contact resistance (see Fig.5.39).

The initial high values of resistance which decreased on testing are attributed to the inability of the probe points to penetrate the surfaces of the harder stainless contact plate with the associated reduced contact surface area. The reducing resistance values due to increased contact surface area, as the testing progresses, allows the probe points to penetrate further into the probe target surface. Probe tip wear may have the effect of wearing through any insulating layers present on the probe tips, as the testing progresses. Initial test results show on average, reducing resistance values in the early part of the experiment as the testing progresses, where normally in testing one would expect values on average to increase (55).



During lengthy testing the probe points often became domed or rounded with no sharp contact points to penetrate any possible insulating layers that were present which caused contact resistance often to increase.

#### 5.9 GENERAL OBSERVATIONS

The test results showed that high and variable contact resistance was the most likely factor to cause serious problems during PCB testing. In the tests conducted the probe & receptacle internal resistance values before, during and after testing generally stayed within low levels. There were only a small number of mechanical failures (when compared with the electrical failure events due to high contact resistance), and these occurred after extended testing. In the majority of cases mechanical events tended to be permanent compared with the often temporary nature of electrical contact resistance events that often reverted back to normal service. It was noted that large variations in spring pressure may effect contact resistance, where the contact may have become contaminated as the probe starts to wear due to clogging or jamming. Side play gradually increased due to wear, but there was no evidence of probe wear during the normal life of a probe (1 million cycle tests). The high contact readings for the 32 probes in category nine (during the normal life span of a probe), were due to interfacial resistance layers on one or both of the contact surfaces, except in a minority of cases when mechanical problems developed.

# CHAPTER 6

.

.

,

.

# 6 DISCUSSION

# 6.1 DISCUSSION OF TEST RESULTS

The range of experiments conducted are discussed with suggestions for overcoming some of the problems encountered during the test period. The mechanical performance of the probes during testing generally produced results indicating considerable reliability to beyond 1.2 million cycles, unfortunately the electrical performance over the same period produced less desirable results. The more undesirable effects were periods of cyclic or spasmodic high interfacial contact resistance predominating in most of the probe samples tested. This phenomena has been observed in all the experiments undertaken to verify the probes performance as one of a pair of electrical contacts. Contact resistance is a function of contact pressure, and so results indicating variations in the probe spring pressure and the effects of excessive side play during testing are included in the chapter. Possible future alternatives to multiple spring probe contacts particularly when considering miniaturisation of electronic circuitry are investigated.

#### 6.1.1 Repetitive Simulated Machine Testing

The conditions which exist in a normal test fixture compared to that of the simulated test machine show that in most cases, a probe in a normal test fixture will only make contact once with each PCB target pad as the UUT will be replaced by another after it has been tested. This means that in most cases the fixture probes have a new target during each testing operation, so in reality the targets may all be clean, or contaminated, or a combination of both, reflecting the conditions of the production line on a daily basis. As targets are accessed once or twice by the test probes it should not be possible for contact fretting corrosion to develop on probe target pads, but it would be possible for it to develop on probe tips after considerable use. In situations where high values of resistance were encountered the problem may be due to the interfacial insulating layers which may be on the target pads, or on the probe point tips, but the blame would probably be attributed to the probes. To simulate test fixture conditions it would be necessary to change the probe target every cycle the probes were deflected during a test. To operate in an inert gas environment due to the effect of the oxygen atmosphere would also be desirable since this would prevent contact corrosion fretting, but this would also eliminate the effect on the probe contact tips which is an equally unrealistic situation. This problem is overcome in some contact applications by using read relays, where the contact operates within an enclosed glass envelope with an inert gas or vacuum environment, a magnetic field is used to actuate the contact through the glass envelope. Other alternatives are to surround the contact area with a suitable inert jelly or grease, so preventing the development of insulating layers forming upon the interfacial surfaces, however this would not be possible when applied to PCB testing due to a new PCB target at every test.

#### 6.1.2 The Correct Probe for a Particular Target

Various factors have to be considered when selecting the correct probe for a particular application. Consideration must be given to a number of parameters for optimisation of probe performance e.g. the type of test system, continuity, in circuit or functional all affect the choice of spring probes. Other factors such as centre spacing have to be considered because of its limiting effect on the receptacle and plunger tip (probe sockets mounted to close together may cause a short circuit). Plunger travel refers to the distance the plunger may be depressed. Variations in target surface height and the fixture design can affect the amount the plunger needs to be depressed. Manufacturers recommend values for each product, however, deviation from the recommended value does not mean poor performances in all cases. Recommended travel is usually two thirds of the maximum value, which should provide variation for slightly over or under travel without loosing electrical integrity, whilst over deflection may lead to early spring failures.

Contact targets cover a range of materials which include copper, solder and gold. The gold because it is soft requires a smooth probe tip to prevent damage to the surface. The geometry of the tip in relation to the target is important because of its surface area, material and spring force, which are all contributing factors to the probes electrical characteristics and contact reliability.

# 6.2 PROBE INTERNAL RESISTANCE MONITORING

Probe internal resistance may be monitored during testing by attaching a pair of measurement connections to the probe head, which may be achieved by the use of a double contact bull dog clip, necessary when using the four wire resistance measuring method. However, there are problems due to the action of the testing machine causing the contact clip to become detached. This effect may be overcome by soldering the two test wires into position, but unfortunately the heat produced has a degenerative effect upon the probes subsequent performance, thus leaving the one option of clipping the measurement wires onto the probe head whilst making the measurement. This method eliminates any interfacial contact resistance due to insulating layers on either the target or the probe tip. Verification of accuracy may be achieved by using the external system of resistance measurement, connected between the probe receptacle and the probe head. Using this method it is necessary to transfer the double contact clip through all ten probe heads, whilst making internal resistance measurements. Wires that have been soldered onto probe heads during the experiments have eventually work hardened, subsequently breaking off due to the test machine action.

The internal probe resistance measured from the probe receptacle to a point on the probe head below it points, shows from information derived from the experiments, that probe internal resistance values remain of a low order compared with comparative interfacial values for the same tests. The resistance reading for most of the tests are in the range of 10 to 50 milliohms. There are however one or two readings that go as high as 82 milliohms out of 60 samples tested but generally compared with interfacial values, internal values are comparatively low (See Fig.5.35). The internal measured values will normally remain consistent for up to one or two million test cycles, which may be due to the sliding internal contact action which seems to keep the internal contact surfaces reasonably free from the development of insulating materials. Where the debris becomes free to move around within the probes telescopic structure the oxide formed is likely to be of a smaller particle size compared with most of the wear debris present, and will be ejected more easily by the probes repetitive telescopic pump action due to its smaller particle size. The wear debris is being continuously subjected to abrasive action from other wear particles, whilst the probes telescopic structure makes a reasonably low contact resistance through the probes internal components due to scraping and grinding actions. The effects which may be seen from some of the electron micrographs, show wear debris particles attached to the probe telescopic structure (Fig.6.1). The electron micrographs also show a relatively large particle size when compared with the probe components, there is also an absence of small particles present on the probe plunger. Other electron micrographs show wear debris taken from probes subjected to extended testing, the probes were shaken around, compressed and relaxed releasing the debris from the internal structure (Fig.6.2).

#### 6.2.1 Probe Spring Pressure

In the mechanical tests, probe spring pressure was measured before and after simulated machine testing, revealing little significant difference (See Fig.5.43), but in order to measure spring force the probes had to be removed from the test machine receptacles before being tested in the JJ Tensile Testing Machine. In all cases probes were stored in numbered bags prior to testing, and during removal for testing, wear debris was visible which was caused by changes in orientation of the probes during removal and storage. Once a probe is removed after testing, examined and further tested in other machines for spring pressure, some or all of the debris within the probe structure will escape during the process. The mechanical tests conducted on the JJ Tensile Testing Machine before and after simulated machine testing shows very little variation in spring pressure, yet during the simulated testing variations occurred due to the accumulation and movement of wear debris, worn probe components or a combination of both. In test 101, Probe 4 jammed due to the accumulation of wear debris trapped inside the probes structure but became free after removal from the test machine. This was also noticed in subsequent tests where probes became jammed and afterwards became free after further testing. Six probe springs failed, three in test 101 and three in test



FIG 6.1 : WEAR DEBRIS ATTACHED TO THE PROBE PLUNGER: MAG 100



FIG 6.2 : WEAR DEBRIS EXPELLED FROM THE PROBE ASSEMBLY: MAG 500

108 both tested to 2 million cycles (See Fig.5.59). During PCB testing in a fixture and in the evaluation testing machine, it is evident that variations will occur in the spring force delivered to the probe plunger as wear debris is produced and it circulates within the structure causing variation in spring force. In other cases probes may become jammed (See Fig.5.40). The fact that probes become jammed during circuit board testing operations proves that they must exhibit variable contact force which are apparent in the resistance graphs. Considerable variations in contact force may occur and may be responsible for variations in contact resistance. The life evaluation testing machine has no facility for logging spring probe contact force which, if possible, would permit the continuous monitoring of probe contact force in relation to contact resistance. Contact resistance is always measured by making connections on non-contact wearing surfaces below the probe head, thus avoiding any worn or contaminated area of the probe plunger head.

#### 6.2.2 Side Play

Side play becomes a problem when probes increasingly slide off or short to adjacent circuit board targets. This is often caused by tooling and fixture tolerances, component placement variation and side play movement in the test probe resulting from the wear or flexibility within the assembly. Side play measurements taken before and after testing show some variation between experiments and targets accessed, often non linear where the probes are targeted to angled contact points with the probe components wearing in only one plane. In test 107 (See Fig.5.52) side movement was measured at 1mm with a value of 0.51mm measured at 90 degrees to the original value, however, wear debris tends to escape during probe transfer and testing for side play, causing larger variation in measured values. The average side play for most new probes was 0.2mm whilst worn probes measured values were sometimes in excess of 1mm. The side movement measurements ranged from 0.25mm in test 101 at 2 million cycles, and 0.45mm in test 107 at 0.5 million cycles (See Fig.5.42). There were marked differences in the wear rate between probes supplied by several manufacturers, for the probes were supplied over a period of 12 months with newer models being introduced over that period.

# 6.3 INCREASING RESISTANCE RANGE AS TESTING PROGRESSES

As probe testing progresses, resistance values in general increase whilst at the same time the range or spread of recorded values widens. This phenomena may be seen in some of the graphs produced from the test results (See Fig.5.19).

It is evident from the test results that as insulating layers form on contact surfaces they form the major resistive component of ATE/UUT interconnecting circuitry, and can be of a variable nature for a number of reasons. Most electrical contacts are degraded by contamination. Contact surfaces are irregular on a microscopic scale, for plane surfaces have a waviness on which a rough surface is superimposed with peak and valley profile surface, and when brought together they touch at only a few of the surface asperities. As the load is increased due to the effect of spring pressure, more peaks and valleys make contact reducing overall contact resistance as the contact surfaces move closer together, increasing the contact surface area which depends on the spring load and the hardness of the two contact metals.

As the probe surfaces become covered by insulating layers which may be oxide film, production line contamination or atmospheric contamination, the metallic contact area will be zero if the insulating layer is unbroken by the contact spring load. Should the voltage across the contact area be large then the insulating film may be electrically punctured, therefore the probe performance will be dependent on the voltages present during testing. Generally the softer and more conductive the metal used for the test targets the lower the contact resistance will be at a given probe force.

Contact contamination is caused by a foreign substance on a contact surface, preventing or reducing metallic contact and thereby degrading contact resistance. Some apparently innocent substances e.g. fluxes may corrode or degrade contact surfaces which eventually result in contact failure. Thin films developing on contact surfaces may prevent contact being made if the spring contact force is low, but may have no effect in conditions where the spring probe contact force is higher. The interaction of organic vapours evolving from connector housings, PCBs and wire insulations etc.. with the connector contact materials, may cause the formation of surface films and an increasing contact resistance. Various investigators (56-57-58) have examined these interactions previously, and have concluded that organic vapours may leave a carbonaceous film on the contact surface. Frictional polymer formation on Pd based materials has also been investigated in detail by several investigators (59-60-61-62). It is believed (57) that the absorption of organic vapours on these materials is the first step in the process of frictional polymer formation. The interest in using Pd and R 156 (60Pd, 40Ag) based contacts necessitates an understanding of the actions of various organic vapours on these materials. An additional concern has been that some of the material employed in connector housings, printed wiring boards and discrete interconnect wiring etc..., may emit chlorine containing compounds (63). The interaction of these compounds with Pd based materials may leave a surface film of Pd Ci which is resistive (64-65-66). The materials containing silver may form a silver chloride film (67). These interactions usually are of little consequence at room temperature with low RH (68), but the interactions may become significant at higher temperatures employed in manufacture and testing (69).

In most cases test results show interfacial contact resistance between probe heads and targets as the predominant factor in ATE - UUT interconnection resistance. Test results have shown that in the worst case, test 104, the average interfacial contact resistance was 26.8 times the relatively low average internal value measured after 2.5 million cycles (See Fig.5.35). Relative contact movement indicates significant variation in contact resistance, but it should be noted that contaminated contact resistance can be affected by the number of asperities coming into contact by contact pressure, and the amount of contact contamination of various forms which are:

#### A). Oxidation and Corrosion:

Base metals develop insulating coatings of oxide and corrosion products due to exposure to the atmosphere. In most cases these layers will thicken with time accelerated by air pollution.

# B). Particulates:

In contact applications particles are of two main types: airborne, and those generated by

contact wear debris which are produced by closure or opening contact activation. Cooling fans in electronic equipment or vacuum activation of test fixtures, may concentrate airborne particles onto PCB test pads or the probes within the test fixture.

#### C). Thermal Diffusion:

As probes and test pads use mainly thin layers of noble metal or fingers in the case of PCB test contacts, thermal diffusion of substrate metal through the contact material can occur on its surface (70). The base metal is transformed into oxides at the surface sufficient to degrade contact resistance.

#### D). Contact Fretting:

Contact fretting may occur to the target, the probe tip or both, due to the repetitive frictional action of the testing machine. Contact wear occurs and the debris formed oxidises or corrodes the base metals, the resultant insulating layers build up increasing contact resistance. Further contact wear may remove insulating layers causing cyclic variation in contact resistance (See Fig.5.26).

# E). Friction Polymer:

Friction polymers are also responsible for increased contact resistance. When probes are contaminated with organic chemicals or gases, repetitive contact friction action causes the organic materials to polymerise creating an insulating layer over the effected contact surface. Organic chemicals may be present in PCB substrate materials, component encapsulations or may be caused by cleaning fluids used in manufacture.

# F). Manufacturing processes:

Probe or PCB pad contacts are subjected to various manufacturing processes which may cause contamination on the probe contact or pad area. Amongst the most common are: Contact plating salts which are not completely removed during the manufacturing process; the incomplete removal of flux residues during cleaning procedures and fingerprint contamination during manufacture caused by handling (this may cause serious problems with mated contacts using low contact force).

#### 6.3.1 Probe Performance During Testing

A problem that exists when testing probes is that the repetitive contact of a probe with a contaminated surface, may cause materials to transfer from one contact surface to another. If a probe tip becomes contaminated, it can usually be cleaned by wiping with lens tissue moistened with trichloroethylene or other volatile solvents. However stubborn forms of contamination may only be removed by immersing the probe tips in an ultra sonic cleaning bath. It is desirable to make many contact resistance measurements on a given test sample because of variability in the distribution and the properties of surface contaminants. In a production assembly line environment, a single contaminated test pad would transfer material to its test probe tips which in turn would be transferred to subsequent test pads. The effects of contamination may take time to develop (depending on the type of contamination), before it has any detrimental affect upon the test results.

Test results show in the majority of cases (where contact resistance is measured on a repetitive basis with respect to the performance of PCB test probes) that the probes performance over a period of testing is unpredictable. In some cases they will develop repetitive or sporadic high resistance performance characteristics after a short period, whilst in other cases within the same test batch, they will give acceptable performance throughout their life expectancy of 1 million cycles. This may be explained where micro movement or further contact movement during probe deflection causes varying parts of the contact surface, with its asperities and contaminated areas, to repeatedly access the same area of contact which may or may not be contaminated on both or one contact surface. Contamination on some areas of contact surfaces could exist from the start due to manufacturing or storage problems. If the area or areas of contamination are small and there is some contact movement, various parts of the contact surface may be aligned to each other on a microscopic scale resulting in a contact resistance performance of a random nature. In other cases if there is little or no relative movement between the two surfaces, resistance measurements will be of a more constant nature and may persist throughout the testing exercise.

As both interfacial contact surfaces align to various multi contact asperity areas with their potentially random contact resistance values, there may also be occurring at the same time, the slow degradation of contact surfaces due to contact wear or fretting where probes may have varying thickness of plated noble layers on their surfaces. This may explain the varying levels of performance between the same batch of ten probes in some of the tests, where high values would or would not develop within a test.

Where noble layers are thin or non existent, contact fretting will eventually occur, whilst at the same time on other probes interfacial resistive layers may be at their development stage with progressively increasing resistance values. Particulate or environmental contamination is responsible for some of the increasing interfacial test values. Airborne dust particles were observed in the electron micrographs and appeared to have been caused by the machine motor's cooling fan, but would normally be caused by the test vacuum actuation system of the test fixture (Fig.6.3).

#### 6.3.2 Contact Resistance Concerning High and Low Energy

Probes within a test fixture will be subjected to different conditions whilst performing their task of making contact with the UUT. Some of the probes will be loaded to near their full current carrying capacity, with voltages sometimes approaching and even up to 240V mains voltages; or even above in a minority of test applications. Other probes, perhaps in the same fixture, will be used to make minute measurements of current voltage and resistance, and so contact resistance will have a much more significant role in measurement. In situations where voltage and energy levels are high a different contact phenomena may exist, e.g. in a switching circuit where energy levels and voltages are high any resistance may be broken down and the subsequent flow of current will cause a physical change in the contacts micro geometry, thus producing a cold low resistance weld as in the case of mains voltage power switches. This type of contact is often referred to as a wet circuit, as the contact molecules move around the contact interface. In circuits where the voltage and/or current in a circuit are too low to cause any physical change in a contact, the circuit is said to be a dry circuit.



FIG 6.3a : PARTICULATE AIRBORNE CONTAMINATION: MAG 70



FIG 6.3b : PARTICULATE AIRBORNE CONTAMINATION: MAG 70

The development of various forms of insulating layers on contact surfaces will have an effect similar to a zener diode, behaving like a voltage triggered switch depending on the type of contamination present. This has been illustrated by J.H. Whitley's work of the AMP Corporation in the USA which has shown the various breakdown voltages of contaminant films (71), (Fig.6.4).

It is evident where voltages and/or currents fall into this category and where probe tips may have extremely thin insulating layers on their surfaces, that the applied voltage may be too low to electrically puncture the film, regardless of how thin and electrically weak the film may be. Contacts tested under dry circuit conditions and shown to be conductive would also be conductive at any arbitrarily lower value of voltage or current. Probes within the test fixture would either be subjected to voltages or currents high enough to puncture or vaporise insulating films which may be already present or have formed over a period upon the contact surface, or in other cases subjected to lower voltages or currents unable to penetrate insulating layers present on the contact surfaces. Probes in the lower voltage/current category would be responsible for most of the problems encountered during normal testing activity.

Wherever an attempt is made to bring two contact surfaces together, but the voltage energy levels are too low to produce a wet contact, there is never certainty of a reproducible low resistance connection between both of the contact surfaces. Looking at the micro geometry level, the surfaces will consist of a hill & valley profile where there may be micro movement between each contact operation, causing different asperities to connect on each closure. Contacts that are contaminated with oxide, friction polymers, fretted, or any other contaminate coatings are likely to be of a non linear nature, with peaks of the contact microstructure appearing through the insulating layer, and therefore repetitive contact resistance due to micro movement is likely to be of a more random nature as various parts of the contact surface either fail or make contact with each other. In cases of wear debris present on contact surfaces, contact operation or movement may cause the debris to move around the surface sometimes causing variable or open resistance effects (See Fig.5.58).

# SOME CHARACTERISTICS OF FILMS GROWN ON COPPER SUBSTRATES AND GOLD PLATED NICKEL SUBSTRATES

| BASE<br>METAL | FILM                      | VOLTAGE AT<br>BREAKDOWN<br>(VOLTS) | BREAKDOWN<br>FIELD (VOLT/CM) |
|---------------|---------------------------|------------------------------------|------------------------------|
| GOLD          | IRON OXIDE                | 0.95                               | 8.0 x 10 <sup>s</sup>        |
| GOLD          | * *                       | 1.4                                | 1.1 x 10 <sup>6</sup>        |
| GOLD          | IRON OXIDE & COBALT OXIDE | 2.6                                | 1.0 x 10 <sup>6</sup>        |
| GOLD          | IRON OXIDE**              | 1.2                                | 9.2 x 10 <sup>s</sup>        |
| GOLD          | IRON OXIDE**              | 2.6                                | 1.2 x 10 <sup>6</sup>        |
| COPPER        | COPPER OXIDE              | 1.4                                | 3.9 x 10 <sup>5</sup>        |
| COPPER        | COPPER OXIDE              | 1.0                                | 5.5 x 10 <sup>5</sup>        |
| COPPER        | COPPER OXIDE.             | 1.6                                | 5.7 x 10°                    |
| COPPER        | COPPER OXIDE              | 1.1                                | 3.4 x 10 <sup>s</sup>        |
| COPPER        | COPPER OXIDE              | 1.5                                | 5.1 x 10 <sup>5</sup>        |
| COPPER        | COPPER OXIDE              | 2.6                                | 6.9 x 10 <sup>s</sup>        |
| COPPER        | COPPER OXIDE              | 4.0                                | 5.3 x 10 <sup>s</sup>        |
| COPPER        | COPPER OXIDE              | 3.5                                | 5.1 x 10 <sup>s</sup>        |
| GOLD          | COBALT OXIDE              | 5.7                                | 1.0 x 10⁵                    |
| GOLD          | COBALT OXIDE              | 10.0                               | 1.4 x 10°                    |

\*\*MAY CONTAIN NICKEL OXIDE

FIG. 6.4 (71)

#### 6.3.3 Performance Variations for Test Probes

Electronic circuits can often tolerate resistance increases of hundreds of milliohms and still function, particularly since typical insulating films present on surfaces can be destroyed by signal strengths of a few volts. Contacts exhibiting random infrequent events or discontinuities may only exhibit very small contact resistance increases. These apparent anomalous observations can be considered consistent with modern contact theory, where relative motion at microscopic levels causes surface films surrounding metallic asperities to produce resistance changes for very short durations.

Other explanations, involving two metal surfaces separated by a thin non homogenous film (comprising oxide, contaminates and particular matter) and through which the electrical signal is conducted, have been verified and are considered to fit the experimental observations better (72). The link between static contact resistance increases and the tendency to increased contact intermittency has been reproduced experimentally by mating tin on tin surfaces (73). Low amplitude relative motion, up to 0.2mm, degraded the tin surface by fretting (a mechanism whereby metal freshly exposed is then oxidised and the cycle repeated regularly; Tin-on-tin or tin on gold contact systems are particularly prone to fretting. The extent of metal weight loss this causes depends on chemical parameters (such as absorption rates) as well as mechanical factors, contact pressure, number of cycles and degree of relative motion (74). In preference to individual contacts, a series of tin contacts were monitored to produce a regular predictable trend towards increasing contact intermittency. On individual contact after a particular elapsed test time, mating asperities may either be clean or oxidised (providing the random, temporary poor or rogue contact), but the general trend over a group of contacts is one of increasing variable behaviour. This is matched by increasing, albeit small, contact resistance measurement and once the degradation mechanism is initiated, both relatively long and short duration events begin to occur. The tendency is towards a burst or string of short resistance variations. A few very short events rapidly increase in number, giving the appearance of long pulses of resistance variation. As a result true long pulses develops.

The use of base metal contacts is more likely to cause variable resistance problems examined in experimental work, and can be employed for test work in a more predictable and controlled manner, by employing high contact forces and restricting micro movement between mating surfaces. These experimental studies have tended to produce contact failures more rapidly than they occur in practice. The aim remains, however, to establish predictable real life acceleration factors.

Whilst discussion has been confined to base metal contacts, gold plated contacts can also degrade and produce intermittent problems. Under vibrations, gold plating can be worn through to the nickel or copper substrate-particularly in certain localised regions, and fretting causes the wear debris to build up and produce surface contamination associated with variation in resistance values (75).

# 6.4 MECHANICAL FAILURE

In nearly all the tests conducted the mechanical failure rate was low when compared to defects due to high resistance. The main failure reasons during the testing period to 1.2 million (N.B. probes guaranteed performance is up to 1 million) was a broken plunger to an angled target and three jammed probes (See Fig.5.23). In the situation where probes became jammed variable contact resistance preceded the event, because the probe plunger force varied due to jamming during testing deflection. Before a probe becomes completely jammed in one fixed position it goes through a number of cycles delivering variable contact force to its target, with the increased likelihood of variation in contact resistance to the target (See Fig.5.40).

Probe testing evaluation indicates that mechanically the majority of probes perform well, up to and often well beyond their recommended life cycles. Excessively worn probes can give satisfactory results (if side play is ignored) where they are directed to large targets, as long as noble plated layers stay intact. Mechanical effects due to wear on the probe points often cause contact resistance problems. Where wear occurs to the probes telescopic structure the trend is for contact resistance to remain low even though noble plated layers may have worn
through. However this does cause dramatic increases in contact resistance when it happens to probe tip contact points, for it is less likely for contact action to remove insulating layers which may have formed on contact tip surfaces due to the absence of any form of wiping action, this also seems to keep coaxial interfacial surfaces of the probe structure free of insulating oxide layers. The repetitive action of the probe with possible wear debris trapped within the structure may help to keep sliding surfaces clean, due to contact wiping action over the probes coaxial surfaces. When probes are not used for a period of time oxidation within the probe structure including wear debris may cause internal resistance values to rise. This effect was detected after probe testing and storage for a period of time. As the probes become worn the probe plunger becomes less rigid within the coaxial structure allowing a greater range of side movement. This side movement may be restricted to some degree if the probe structure becomes clogged with metallic wear particles.

### 6.4.1 Contact Cleaning

Cleaning contact surfaces in most cases leads to a considerable reduction in contact resistance when probes have been in prolonged service or tested towards their full life expectancy (See Fig.5.38). However in cases where noble plated layers have worn away or tip points have broken down to base metal, contact resistances will rise back to their values over variable periods of time. In the cases where noble plated layers remain in tact and there is no further contact contamination, resistance values may remain low for considerable periods of contact operation. There is therefore no long term purpose in cleaning contact points with damage to noble plated contact surfaces as the only solution is probe replacement.

Items selected to clean probe head points must therefore not be capable of scratches or scraping away gold plated surfaces, tools such as wire brushes made from hard materials may do more harm than good. It is also possible for wear debris from probe contact tips or cleaning tools to be left behind on contact surfaces leading to the development of insulating layers in later use. Cleaning liquids used must not leave surface residues after evaporation for the same reason. Ultrasonic cleaning may be one solution for the removal of probe tip insulating layers present, but would require the probes removal from their test fixture. In some cases it may not be possible to remove all contact contamination without the use of some form of abrasive tool, which could lead to damage or removal of the noble plated layers. In some circumstances therefore, wholesale probe replacement may be the only answer proving to be the cheapest solution in the long term.

# 6.5 TEST PROBES THE POTENTIAL WEAK LINK IN MOST ATE SYSTEMS

The test probe is considered by most people involved in PCB testing as the weak link, or perhaps one of a number of weak links in a test system. It is the only part of the interconnecting system between the ATE computer and the UUT which may be responsible in adverse circumstances for variable or open interconnecting resistance. The spring loaded test probe may be considered as perhaps the most important component in the ATE system since without it contact is impossible (76-77), (Figs.6.5 to 6.7).

During the test phase, if the probes should measure a point and obtain an incorrect reading, the system is often programmed to tap the point again to be sure that the probe has not made a bad connection (78). Test fixtures are available with built in ultrasonic vibrators as another way to ensure the probe tips make contact through any form of contamination which may be present on the test targets or probe tips. Ultrasonic vibration guarantees contact reliability and keeps probes clean. (US PAT NO 3996516 DBP No 2344239).

Increasing miniaturisation is gradually making the manufacture of probes, test fixtures, PCBs, components more difficult and testing an even harder task. Closer spacing of components means smaller diameter probes with less spring pressure available to achieve a lower contact resistance through any insulating layers which may be present on the probe tip or target. As long as designers compete to increase packaging density up to and often beyond practical limits, test probes and the fixtures that support them will have to shrink to meet the space available. Probe manufacturers have been working to reduce diameters without making unacceptable sacrifices in rated life, stiffness conductivity, spring force at the tip and uniform lifetime performance (79).



FIG. 6.5 NEW TIP STYLE TO DEAL WITH DIRTY PADS

)



FIG. 6.6 ATE - UUT INTERFACE CONNECTING WIRING



Fig. 6.7 PROBE COMPONENT CONTACT JUNCTIONS.

One way to eliminate the unpredictable contact performance of spring probes is to eliminate them from the test system and replace them with an alternative; unfortunately at present there seems to be no reliable proven alternative method to make hundreds or thousands of reliable repetitive connections to PCB pins and pads. However there are some potential alternatives that may be developed. One method presently used but still needing a test fixture and probes, is to look at a PCBs electronic signature, making comparisons with a known perfect PCB, however this cannot solve the problem of eliminating test probes and fixtures. Another alternative which has been looked at by Bartlett and Merrill in the USA in 1975 is to look at the infrared emission from a PCB under test. They claim there are two types of response that can be obtained when a printed circuit board is electrically energised. There is the expected electronic response and there is also a thermal response, but conventional ATE methods have been concerned with evaluating only the electronic response. The thermal response can be determined by measurement of the emitted infrared radiation, and can supply additional information about the electrical performance of a PCB, which is based on the fact that the infrared radiation is proportional to the electrical power dissipated as heat by the board. An infrared scanner can measure the temperature of components and thermal nodes on a board without the need to physically contact the board. All circuitry and components that could cause functional failure can be measured with one infrared scan, thus all the data necessary to perform fault isolation can be obtained in one test, instead of conventional electronic test methods. There are three general classes of printed circuit boards, which ATE systems must test. Fault isolation of the different classes is necessarily done in different ways. IR test techniques are more effective for fault isolation of analog and hybrid boards than for digital boards (80).

6.6.1 Contactless Probing

Using electron beams and lasers to measure internal signals in ICs and boards, may offer an alternative to probing in the fixture. Using contactless probing, either e-beams or lasers may be used in much the same way as traditional mechanical probes to measure the logic

scales of specific locations on a IC or PCB. Where mechanical probing is limited to bond pads or large geometries, however, contactless probing can measure the scale of virtually any node within an IC or PCB; even through a passivation layer and with no capacitive loading. In addition to detecting logic scales, extremely accurate information can be obtained regarding the voltages and timing of internal IC signals, including rise and fall times, amplitudes and propergation delays. This allows failure analysis and design debuggers, who have traditionally been limited to analyzing data obtained at the devices outputs, to actually go "inside" the device and take measurements, in much the same way as oscilloscopes and logic analyzers are used to probe printed circuit boards. "E-beam testing offers a unique opportunity for designers and product engineers to look at the ICs internal signals" according to John Large, director of Motorolx's Advanced Product Analysis Centre in Austin Tex.

#### **E-beam Probing:**

There are, of course, significant differences in the fundamental mechanisms behind e-beam and laser probing techniques, resulting in some major differences in the cost of instrumentation, the ease of operation and most important, the type and quality of information generated. A total of five companies at present produce commercial e-beam probing systems: Applied Beam Technology (a subsidiary of International Scientific Instruments) Fremont, Calif; Cambridge Instruments, Cambridge England; Integrate Circuit Testing (ICT) Munich, West Germany; Lintech Instruments, Cambridge England; and the most recent Sentry /Schlumbergers VHSIC Test Systems Div. San Jose, Calif. In comparison, there are only two commercial suppliers of laser probing systems: Dataprobe Corp., Santa Clara, Calif., (marketed by Mitsui Comtech Corps Calif); and ICT. Although laser probing systems have not enjoyed the commercial success of e-beam probes to date, recent developments in electro- optic and other advanced laser probing techniques show incredible potential.

The well known scanning electron microscope (SEM) serves as a foundation for all e-beam probing systems, where the electron beam of the microscope acts as the probing beam. In fact one reason for the popularity of e-beam probing is that it is possible to convert a standard SEM into a e-beam prober, adding a secondary electron analyzer and appropriate beam control/image analysis electronics. The secondary electron analyzer is critical, because it traps these electrons that are collected and analyzed to determine the voltage and logic state of the target area (81).

Information can be generated by an e-beam prober in several ways, the most useful of which are waveform measurements, dynamic voltage contrast and logic state mapping. Waveform measurements which provide the most quantitative information are taken by focusing the beam on a specific node in the IC, and measuring the voltage over a time using a stroboscopic technique.

# Laser Probing:

The two commercially available laser probing systems from Mitsui/Dataprobe and ICT are dramatically different in operation. The Dataprobe model produces logic state maps by focusing the laser beam on the drawn region of a transistor, inducing photocurrents (indicative of the logic state) which can be detected on the power pin of the device. The laser is moved to the point of interest by positioning the XY stage. In comparison the ICT laser probe system uses a scanning laser beam to image the device. The system is capable of optical beam induced current (OBIC) imaging, which is especially useful for detecting hot spots or batch ups, and can also be used for detecting logic states (82).

The scanning electron microscope has evolved from being an inspection tool into a testing method for quantitative measurement of voltage within one integrated circuit. Sophisticated interfaces to CAD and ATE systems have also been developed.

The e-beam probe is a SEM (Scanning Electron Microscope) which is able to display differences in voltage within a chip in real time. The SEM image has areas of high or low contrast, dependent on the surface electrical potential present on conducting paths. Quantitative information can also be extracted by the electron beam acting as a non-contacting oscilloscope probe.

The voltage contrast phenomenon was first observed in the mid 1950s about 20 years after

the SEM was developed, and important research work was carried out through the 1960s. The primary electron source sends electrons towards the surface with an energy around 1 KeV, which will neither load nor damage the circuit under test. Secondary electrons with an energy distribution between O and 15 eV are emitted from the surface, but their net energy is affected by the electric field surrounding the conductor. If it has a positive potential it will obviously tend to retard secondary electrons, and this loss in energy, forms the basis for the measurements using the e-beam probe because there is a simple relationship between the secondary electron energy and the surface potential. One of the keys to the usefulness of the technique is that circuits can be run at their appropriate clock speed, and yet observed at a slowed down rate by stroboscopic techniques i.e. scanning the device at a rate with a specific relationship to its clock speed. Picture quality is unfortunately not as good with strobe techniques due to the reduced signal to noise ratio, although a frame store will improve the quality of the voltage contrast picture greatly.

Another big advantage of the e-beam is that it can measure the surface potential of conductors buried in dielectric or passivation. The conductor is capacitively coupled to the dielectric surface, and the capacitance is generally greater than the substrate and the surface. Thus a change in potential on the conductor is approximately equal to the change in the dielectric surface potential, and secondary electron emission from the dielectric can be used as a measure for this charge. The familiar problem of inaccessibility is still apparent with multilayer devices, where some points of interest might be situated beneath a metal connection path and so additional vias have to be created. The beam testers have a potential to operate up to the G HZ region, using a 10 to 20 PS pulse on the beam (83).

#### 6.6.2 The 3D XRay PCB Inspection System

The 3-D X-Ray PCB inspection system announced at Nepcon West (Ansheim California in March 89), is another potential alternative to the use of probes for fault identification in the future. The x-ray inspection system is said to be capable of reconstructing the structure of a solder joint from the boards surface to the top of the joint. The product is based on a technique dubbed "Scanned Beam Laminography" by the company which developed it - (Four Pi Systems). The company was set up in 1986 with the aim of solving solder inspection and providing critical process control for PCB production. The company developed a technique called "Automated digital radiography" for PCBs. The scanned beam laminography technique is a further development of this X-ray inspection technology, enabling users to 'slice' through a PCB and successively build up a three dimensional picture of the boards solder joints. It uses a scanned beam X-ray source above the board, and a rotating X-ray detector below it. Images in the centre of the focal plane will be clearly detected by the detector system, while images not in focal plane will appear around the fringe of the detector as it rotates. Images processing will subtract these "fringe" images, leaving a strong image of the facial plane. Claims of the technique enables it to see under blind connectors, plccs, ceramic chips, heat sinks and overhanging material. The system can find defects like lifted leads, solder voids and bridges, and solder balls (84).

### 6.6.3 Automatic Visual Testing

Visual methods of testing PCBs are now well established where a stored video image of a perfect circuit board is systematically compared with each circuit board delivered by the production line. Human inspection of to days densely packed PCBs is not feasible or economical. This is because product rejects (as many as 40%) can be traced to PCB loading errors and so machine vision systems have been developed to meet the challenge. Early systems using TV - camera signals converted to binary values, were affected by ambient light variations and could not distinguish between touching or overlapping objects. Grey scale image processing which converts each camera image pixel into a six or eight bit format, can differentiate between 256 shades of grey, greatly improving object edge definition and clear separation of overlapping objects with minimal influence from ambient lighting. Finding PCB errors early in the assembly process has traditionally been handled by human visual testing, followed by in circuit testers. Advances in computerised pattern recognition have given muscle to automatic visual testing (AVT) techniques, which use machine vision technology to capture images of the board under test and generate electrical signals representative of the visual area. This data is then applied to a computer using pattern recognition software, which compares the boards visible elements with the position, sizes and

orientation of components on a known good PCB. Defects such as components that are incorrect, missing, miss orientated, or damaged can quickly be detected. However, AVT will not flag electrical shorts, faulty components, or improper functional performance.

According to engineers at Cognel Corps, Needham, Mass. USA., equipment can detect more than 99% of the loaded PCB defects, with false rejects below 3%. Up to two minutes are required to test a loaded PCB with all covered faults detected in only one pass. Programming an AVT system involves showing it the board to be inspected and new or revised board test plans can be implemented by down loading computer aided design and manufacturing co-ordinated information to its component lay out. According to Cogned engineers an AVT system takes about a day to learn a typical board lay out, whilst the retraining for board revisions takes about half this time. Automatic data logging and detailed statistical reports provide immediate inputs on the production operation, and so process - control correction steps can be rapidly implemented to improve the yield of boards coming off the production line.

Since AVT does not involve board contact, fixturing costs and delays are nonexistent and the possibility of board damage is low. AVT manufacturers claim that combining AVT with incoming parts inspection eliminates the need for an in-circuit tester. It is claimed that AVT will locate assembly errors (which account for most faults on PCBs), shorts testing will detect shorts errors, and incoming inspection will screen out defective components. The tester system accepts a loaded PCB from an automated materials handling system and uses a scanning system to locate any board positioned within 12mm of expected location, eliminating the need for precise fixturing or probes. The boards identification code is then used and the appropriate test routine is called up (85).

#### 6.7 PROBLEMS OF PROBE TESTING

Although the trend must be towards the use of more sophisticated techniques in the future, there is still a long way to go before practical problems relating to the mass testing of circuits within a manufacturing environment may be over come. While it is still possible to go on testing ICs and boards using the existing mechanical spring probes, the incentive will not be great enough for manufacturers to look at other possible alternatives, for a solution to the slowly increasing problems due to increasing miniaturisation and circuit density. Using electron beam techniques every circuit would have to be tested in a vacuum chamber with the air removed before testing could commence. There may be problems associated with testing in a vacuum environment for certain types of components, but with time as in most situations the problems are eventually resolved. In the future with progressive decreases in terminal and track spacings, there will come a time when it is no longer possible to continue using spring probes to gain access to nodes within the circuit. This is already the case with multi layer boards unless special provision is made using extra vias.

It is generally accepted today that most problems associated with the reliability and performance of electronic circuits are caused by mechanical devices rather than electrical problems. The comparative unreliability of electrical connectors and contacts being one of them. While contacts are exposed to atmospheric corrosion and the effects of the various production processes, with the mechanical contact action causing possible fretting corrosion, the spring probe will always be the weak link in the test chain.

Most of the problems encountered will be with probes used in test circuits where voltage/energy levels are not great enough to break down any insulating layers that may exist on contact surfaces. These are likely to be fet inputs to instrument amplifiers or devices with high input impedances and low voltage levels. In the majority of other cases voltage energy levels will be more than adequate to break down and destroy any contact contamination (71). One analogy that serves to demonstrate this effect is the action required to initiate a welding arc. It is necessary to keep tapping or stroking the welding electrode onto the target requiring welding. Only when a part of the surface to be welded has been cleared of contamination by the tapping or stroking action is a low resistance circuit initiated, resulting in the striking of the arc which once initiated vaporises any form of contamination. If however voltage/energy levels were low it would be impossible to initiate a low impedance circuit through the oxide or contamination coated surface.

It is not possible to guarantee how a set of probes engaged in PCB testing will perform due to the number of variable factors that adversely effect the probes ability to achieve repetitive low impedance contacts over a period of time. Whitley states that as much as we hate to admit it, and as much as many of us have worked to improve the situation, there is still no generally applicable and technical accepted relationship between contact resistance, its magnitude and variation, and the practical performance, life and reliability of the associated contact. Neither theoretically nor empirically have we been able to demonstrate such a generally valid relationship (86). The most important general factor has to be cleanliness associated with everything from the manufacturing processes, through the various stages of testing, to the environment and storage conditions for the various components used for manufacturing and testing. Some of these will obviously be more important than others e.g. components or areas of the product which are involved in the ATE – PCB interface.

The main problem area has to be the probe tip/target interface as confirmed by the test results, showing the probes internal resistance values to be relatively insignificant compared with the values of interfacial resistance that may develop during testing. Another problem with cause for concern, is contact contamination attributable to airborne particles deposited and concentrated into the probe field by the vacuum actuation used in most test fixtures. Air pollutant gases released during manufacturing into a building or industrial suburb of a city, may be the cause of insulating layers developing on so called clean contact surfaces with the loaded PCBs themselves. Once interfacial contact resistance develops it may be sporadic or cyclic in nature (See Fig.5.9), and in applications where high numbers of probes are required in fixturing an unacceptable failure rate may occur.

# CHAPTER 7

•

,

.

.

.

,

# 7 CONCLUSIONS AND FURTHER WORK

# 7.1 GENERAL

The study has shown that during the repetitive testing of spring contact probes to a fixed target, the major problem encountered has been the development of interfacial contact resistance layers between the probe contact points and the PCB or copper target. Some of the insulating layers are caused by mechanical or chemical contact phenomena established over a period of time, and related to mechanical or chemical contact degradation. The interfacial insulating layers developed on the two contact surfaces were the major factor responsible for the relatively high and variable contact resistance values monitored over the testing period. This considerable variation in contact performance over ten identical samples corroborates Whitley's work on contact resistance (86) that there is no generally accepted relationship between contact resistance, its variation and contact performance. Some of the test batch samples show excellent performance well beyond life expectancy displaying consistent low value readings, whilst other samples become sporadic or cyclic. The possible cause being the absence of contamination, or better quality or thicker noble plated layers on some of the probe tips thus preventing the development of contact fretting. Sporadic performance may be due to relative movement of the two interfacial contact surfaces contacting on various asperities, and contamination due to relative movement.

### 7.1.1 Mechanical Performance

Probe mechanical performance to just beyond the guaranteed life is effective with 6.6% of mechanical failures observed. Variations in spring pressure at the plunger tip have their effects on contact resistance if surfaces become contaminated, thus requiring greater contact pressure to produce a low resistive connection. In the few cases where probes became jammed (with the possible associated effect on contact resistance), the probes would go through stages of variation in contact force before becoming jammed. During the early testing within the guarantee period, side play would not give any cause for concern for most of the probe types tested, although the smaller centre spacing probes with greater flexibility

would be more prone to the effects of side play. It is only after 2 to 4 million cycles during testing to some angled targets that the effect of side play becomes more significant. Mechanical factors such as the wearing through of noble plated layers with its subsequent effect on contact resistance is not initially detectable as a mechanical failure, but will lead to rapid deterioration in contact resistance over a period of time.

The probes internal components unlike contact performance relies on a number of contact faces which are connected in a series parallel configuration with a number of parallel paths available for the current to take. These internal resistance values through the probe components stay very low when compared with interfacial values, mainly due to alternative parallel paths and the contact wiping action. Base metal surfaces exposed after plate layers have worn through are kept relatively free of oxides or other insulants, by contact wiping action and wear abrasion due to debris particles within the probes telescopic structure. The predominance of low internal resistance measured during testing of probes in a relaxed or deflected position, demonstrates that the probe internal resistance values are of little relevance in comparison with possible probe head interfacial resistance. The overall spring performance is satisfactory even up to 3-4 million cycles with only 6% of failures during testing.

# 7.2 THE PROBE AND MANUFACTURING

The progressive miniaturisation of components with reducing termination spacing, creates the necessity for greater accuracy of test fixtures, probes and circuit boards. The reduction of probe size and target pads relates to a comparable reduction in spring pressure with increasing contact resistance, because of the probes in-ability to penetrate oxide films or other contamination that may be present. It is probable that probe performance will be reduced if other measures such as contamination free products, test probes and a cleaner overall environment are not given more precedence. Smaller diameter probes mean a more flexible structure (stiffness normally decreases in proportion to the cube of the diameter, with less current carrying capacity), thus increasing the likelihood of probes missing or slipping off their designated targets. Higher thermal emissions mean more board movement and stacking up tolerance margins making a miss or slide off on angled target more likely. The increasingly popular surface mount chip components which may be automatically placed using epoxy resin as an adhesive, may be liable to movement during curing and could adversely effect the probes ability to hit a target accurately.

Reduced probe and pad target area with reducing spring pressure will increase contact resistance during testing with its limitation on testing in some circumstances. Smaller probes with their smaller contact area and spring pressure will mean higher ATE – UUT interface ohmic resistance, even before contact degradation can develop after routine testing. It will often be possible to compensate for this effect, but not if it is of a variable nature as is often the case with contact contamination of most types.

Probe wear will compound the effects of tolerance build up by causing progressively increasing side play with a greater chance of a probe missing or slipping off its target, resulting in a poor contact, no contact or a short circuit to the next node. In addition, the performance and life of probes are reduced if they receive significant lateral pressure in operation.

#### 7.2.1 Poor Contact Resistance Development

The selection of an ideal probe will serve to reduce the number of times a probe produces a less than desirable contact with the UUT, but will not completely eliminate the problem often defined as false errors. At times, probe performance may appear to be good, but if multiplied by the number of probes used in large fixtures, there are situations where the total number of false errors may exceed actual errors on the units under test. Some of the problems are due to mechanical factors, where due to side play and tolerance build up in PCBs and UUTs probes may miss or slide off their target. However the problem is more likely to be the development of insulating layers on the UUT and test probe contact area, due to contamination in manufacturing or during testing activity, with greater incidence in dry contact situations where voltage and energy levels are low. Contamination may be in the form of a finger print, gaseous, particulate, chemical, or could be due to mechanical effects of contact action, taking variable periods of time before becoming active. Contact resistance

is caused by either the effects of the contacts mechanical action or the chemical/environmental induced insulation upon the contact surfaces. Absolute cleanliness during manufacture, storage and testing may reduce contact resistance problems, but will not alleviate the effects of mechanical action where contact fretting corrosion causes the development of oxide insulating layers over the contact surface. There is also the mechanical/chemical combination effect, where combined chemical contamination with mechanical contact action causes insulating friction polymers to develop over contact surface areas. A contact action in the form of a wiping motion (as in the case of the probes internal assembly), would help to keep the conducting surfaces reasonably free from insulating layers, but the normal make and break probe action at present is not capable of preventing insulating layers from developing on probe points or tips.

# 7.3 SUGGESTIONS FOR FUTURE WORK

There are three methods all with possibilities for future work:-

# Spring Performance Monitoring Test Machine:

Further information may be derived during testing, if a test machine could be developed that was capable of monitoring spring performance, thus showing the relationship between contact pressure and contact resistance effected by spring performance, wear and wear debris. Variations in contact force caused by the accumulation of wear debris within the structure or probe components becoming jammed or deformed, could be identified in real time rather than visual inspection, and testing at a later stage. It would require the use of measurement transducers fitted underneath the probe target interfaces, with appropriate electronics for recording in a digital or analog format. This would involve logging 10 values of resistances and ten values of spring contact force at every cyclic increment chosen for data logging or recording.

#### Testing to a Guaranteed Clean Target Area:

Useful data could be acquired on contact resistance if the probes were tested to a guaranteed clean target area, which in the present testing circumstances is gradually being degraded by

the growth of insulating layers during testing over extended periods of time. A system might be developed using a moving self cleaning target which would ensure target cleanliness over the variable duration of tests. An abrasive or buffing device could be used to ensure target cleanliness over the testing period, allowing continual assessment of probe head only, thus trying to eliminate interfacial contact resistance and target interfacial values. Continuous or automated cleaning of the target area could be achieved using a rotating disk or a moving strip target, which as an alternative could be made in the form of a continuously cleaned loop or band which may be cleaned mechanically or chemically.

#### Using an Inert Gas Environment Around the Probe Area:

The use of an oxygen/contamination free environment could possibly produce some useful data in respect to contact fretting and the growth of oxide upon contact surfaces. By allowing comparisons between probes tested in a contaminated atmosphere of various forms and an inert gas, would enable the exact causes of the development of insulating layers to be more accurately identified. Environmental testing, however, would require a considerable investment in apparatus/equipment making the test machine complex and expensive, thus requiring the use of gas cylinders and/or filtration devices to control the test environment over long periods of time. The probe batch tested would be completely enclosed by a gas tight housing with a gas sealed mechanical drive system. Using the enclosed test environment it would be possible to test probe batches over a range of temperature and humidity, with the addition of an appropriate heater/humidifier unit delivering filtered/unfiltered air of the desired quality for life simulation testing.

# REFERENCES

#### REFERENCES

- 1 DRAPER.C, "Printed Circuits & Electronic Assemblies". p.V11.
- 2 DUKES, "Printed Circuits". Macdonald. pp.V-4.
- 3 LEONIDA.G, "Handbook of Printed Circuit Design & Manufacture". Electrochem Pub. Ltd, 1981. p.123.
- 4 EISLER.P, "The Technology of Printed Circuits". Heywood & Co. p.5.
- 5 WOLFENDALE.E, "The Junction Transistor & Its Applications". Heywood & Co. p.5.
- 6 SIMPSON.J, "Physical Principles & Applications of Junction Transistors". Oxford. p.1.
- 7 BARDEEN.J. & BRATTAIN, (1948). "Physical Review 74230".
- 8 SHOCKLEY.W, "Bell System Technical Journal 28".
- 9 BUCK.T.J, "4-Mil Wiring Technology: a Necessity not an Option". CK Div. Kollmorgen Corp USA. pp.1-11.
- 10 DRAPER.C, "Printed Circuits & Electronic Assemblies". p.7.
- 11 DUKES. "Printed Circuits". Macdonald. pp.33-42
- 12 LUND.P, "The Generation of Precision Artwork for PCBs". Wiley. pp.18-22.
- 13 EISLER.P, "The Technology of Printed Circuits". Heywood & Co. p.34.
- 14 DRAPER.C, "Printed Circuits and Electronic Assemblies". p.40.
- 15 SMITH. "Photo Engraving in Relief". Pitman & Co. 3rd edition.
- 16 TILL.W.C. & LUXON.J.T, "Integrated Circuits". Prentice Hall. pp.356-365.
- 17 WARNER.R.N, "Integrated Circuits Design Principles & Fabrication". McCraw Hill. p.127.
- 18 TILL.W.C, "Integrated Circuits Materials Devices and Fabrication". Prentice Hall. p.11.
- 19 PYNN.C, "Low Cost Board Test Handbook". Zehntel. p.3.
- 20 DWYER.P, "Performance Testing Options". Electronic Manufacture & Test Journal. pp.19-20.
- 21 BATESON. "In-Circuit Testing". Van Nostrand Reinhald. p.24.
- 22 BROWN. "Lifting the Defect Detection Burden". Electronic Manufacture and Test Journal, April 85. pp.41-43.
- 23 BEAUCHESNE. R, "Continuity Testing of PCBs". ATE East Conference Brighton MA USA, 1983. p.111-10.
- 24 BSS 5750. British Standard Institute.

. .

25 SCHADWILL, "The Impact of Future Factory Manufacturing". Conference Paper Electronic Production Show & Con Electronic Production Efficiency Conference EXP84, USA. Everett & Charles. p.21

- 26 PAGE-WALTON. J, "Inspecting Bare Boards Automatically". Electronic Production Journal, March 87. p.11.
- 27 ELLIOTT. D, "Troubleshooting Solder Defects". Electronic Manufacturing & Test Journal, November 86. p.15.
- 28 BATESON. "In-Circuit Testing". Van Nostrand Reinhald, P.XI.
- 29 JOSELYN. L, Test Journal, March 87. p.11.
- 30 BSS 6001. British Standards Institute.
- 31 RUGGERO. M.B, "Weston Metal Tools Conference". USA, 1970.
- 32 NICHOLSON. B, "Quality Starts with Bare Board Test". Electronics Manufacture & Test Journal, Jan 87.
- 33 BATESON, "In-Circuit Testing". Van Nostrand Reinhald. p.155.
- 34 BENNETTS. B, "Designing & Manufacturing for Test". Electronics Manufacture & Test Journal, April 88. pp.23-26.
- 35 DAVIS. C, "Probing for the Perfect Contact". Electronic Manufacture & Test Journal, April 84.
- 36 Electrical Engineers Ref Book (1961). Newnes. pp.7/2-7/4.
- 37 KEMPSTER. M.H.A, "Materials for Engineers". pp.146-147.
- 38 BELL. D.A, "Electronic Instrumentation & Measurements". Reston, USA. p.139.
- 39 Standard Practice for construction & use of a Probe for Measuring Electrical Contact Resistance. American Society for Testing & Materials. B667-80. Philidelphia PA.
- 40 BUCKLEY. P, "Developing a way to beat the Pack". Electronic Manufacture & Test Journal, Feb 86. P.61.
- 41 BURNS. J.E, "Bed of Nails Testing Part 11". Electri Onics Journal, USA, Nov 84. p.43.
- 42 Measuring Contact Resistance of Electrical Connections (Static Contacts). B539-80 American Society for Testing Materials, Philadelphia PA.
- 43 ROBINSON. R, "The Importance of the Spring Contact Probe in ATE". Test & Measurement World, June 84. p.158.
- 44 GORRDANI. J.A, "Test Fixturing for PCB". Electronic Packaging & Production Journal. USA. Dec80. P.74.
- 45 MORTON ANTLER, "Effects of Surface Contamination on Electric Contact Performance". IEEE Circuits & Devices Journal, 1987. pp.8-19.
- 46 MORTON ANTLER, "Fretting of Electrical Contacts Materials Evaluation under Fretting Conditions". Special Technical Publication STP780 American Society for Testing & Materials, Philadelphia PA, 1982. pp.68-85.
- 47 TOMPSET. D.E, "Development of a Contact Resistance Probe for Detecting Contamination on Connector Contacts". IEEE CH 1457. 1979.
- 48 EAGAN. T.F, "Contamination During Manufacture of Low Energy Elect. Contacts". Proc. Holm Conf. on Elect. Contacts, 1968. p.267.

- 49 WHITLEY. J.H, "Reflection on Contact and Connector Engineering". 33rd IEEE Holm Conference, Chicago, IL, USA.
- 50 BOCK. E.M, & WHITLEY J.H, "Fretting Corrosion of Electrical Contacts". 20th Holm Seminar on Electrical Contacts, 1974.
- 51 WHITLEY. J.H, "Investigations of Fretting Corrosion Phenomena in Electric Contacts". Proc. Eighth International Conference on Electric Contact Phenomena, 1976. P.659.
- 52 ABBOTT. W.H, & WHITLEY J.H, "The Lubrication and Environmental Protection of Alternatives to Gold for Electronic Connectors". IEEE Transactions on Parts, Hybrids & Packaging, March76. P.51.
- 53 IRELAND.T.P, STENNETT. N.A, & CAMPBELL.D.S, "Fretting Corrosion in Tin contacts". Inst. of Metal Finishing, E.M.Branch, Coventry. UK. (LUT), March 89.
- 54 HOLM.R, "Electric Contacts Handbook 4th Ed". New York, Springer-Verlag, 1967.
- 55 ANTLER. M, "Contact Resistance of Oxidised Metals Dependence on Mating Material". IEEE. Trans. on Components, Hybrids & Manufacturing Technology. Vol CHMT-10. No.3. Sept87.
- 56 HORN.G.L, "The influence of Organic Vapours from Insulating Materials on Contact Resistance". Proc. 20th Holm Seminar on Electrical Contacts, Chicago, 1974. 275.
- 57 SHARMA S.P, "Contact Contamination Formation of Carbonaceous Deposits on Electrical Contacts". Proc. of 17th Holm Seminar on Electrical Contacts, Chicago, 1971. 178.
- 58 HORN.G.L, and MERL.W.A, "The Influence of Vapours of Organic Insulants on Contact Resistance of Gold & Silver Alloys". Proc. 7th International Conference on Elect. Contact Phenomena, Paris, 1974.
- 59 HERMANCE.H.W, and EGAN.T.F, "Organic Deposits on Precious Metal Contacts". Bell System Technical Journal 37, 739, 1958.
- 60 SPROLES.JR.E.S, "The Effect of Frictional Polymer on Performance of PD Connector Contacts". Proc. 30th Electronic Comp. Conf. IEEE 317, 1980.
- 61 CROSSLAND.W.A. and MURPHY.P.M.K., "The Formation of Insulating Organic Films on PD - AG Contact Alloys". IEEE Trans PHPIO, 64, 1974.
- 62 ABBOT.W.H, "Frictional Polymer Formation on Precious Metal Alloys". Proc. 25th Holm Seminar on Elect. Contacts, IIT, Chicago, 11, 1979.
- 63 SCHUBERT.R, Bell Telephone Laboratories, Columbus; Ohio, Private Communications.
- 64 SHARMA.S.P, "Atmospheric Corrosion of Pd and Pd-AG Alloys, Part 11 Film Chemistry". 27 Holm Seminar on Electrical Contacts, Chicago, Sept 21-23, 1981.
- 65 HAGUE.C.A, and ANTLER M, "Atmospheric Corrosion of Pd-AG Alloys, Part 1 Film Growth and Contamination Effects". 27th Holm Seminar on Electrical Contacts, Chicago, Sept 21-23, 1981.
- 66 ANTLER.M, DROZDOWICZ.M.H, and HAGUE.C.A, "Connector Contact Materials:Effect of Environment on Clad Palladium, Pd-AG Alloys and Gold Electrodeposits". Proc 31st Elect Comp. Conf. Atlanta, 1981.
- 67 SHARMA.S.P, "Atmospheric Corrosion of Cu, Ni and AG". J.Elect. Chem. Soc., 125, 2005, 1978.
- 68 SHARMA.S.P, and SPROULES.E.S, "Reaction of Palladium with Chlorine and Hydrogen Chloride". 27 Holm Seminar on Electrical Contacts, Chicago, Sept 21.23, 1981.

- 69 SHARMA.S.P, and DASGUPTA S, "Reaction of Contact Materials & Vapours Emanating from Connector Products". IEEE CHMT Soc. 1983.
- 70 ANTLER.M, "Gold Plated Contacts Effect of Heating on Reliability". Plating Vol 57. 1970. 615-618.
- 71 WHITLEY.J.H, "Table of Breakdown Voltage". Amp. Corp. USA.
- 72 CURENCE.R, & RHOADES.W, "Predicting & Modelling & Measuring Transient Resistance Changes of Degraded Electrical Contacts". Xerox.
- 73 ABBOTT.W.H, "Time Distribution of Intermittencies Versus Contact Resistance for Tin-Tin Connector Interfaces During Low Amplitude Motion". Battelle Columbus Laboratories.
- 74 UHLIG.H.M, "Corrosion & Corrosion Control Chapter 7: Effects of Stress". Wiley.
- 75 HODDER F, & SOLLARS P, "Testing Connectors". Electronic Manufacture & Test, September 1988. P.41-44.
- 76 UDALL.G.F, "How to Select Probes". Electri Onic, April 83. P.30.
- 77 BREWER.J, "A Better Spring Probe Tip". Circuits Manufacturing, Dec84. P62-64.
- 78 ADRIEV.N, "Bare Board Testing". Electronic Packaging & Production, June 85. p.94.
- 79 QUINN.G.C, "SMT Puts the Squeeze on". Circuits Manufacturing, June 85. p.40-44.
- 80 MERRILL.R.D, & BARTLETT D.R, "Infra Red Testing ATE System". RCA Engineer, May 75. P.49-50
- 81 ISCOFF.R, "E-Beam Probing Systems: Filling the Sub Micron Gap". Semi Conductor International, Sept 1985. p.62.
- 82 SINGER.P.H, "Contactless Probing". Semi Conductor International, May 87. p.188.
- 83 HICKLENTON.A, "E-Beam Testing". Test Journal, May 88. p.26.
- 84 3 D XRay Inspection Systems. Electronic Manufacture & Test, April 89.
- 85 BIERMAN.H, "CAE Data Bases Can Streamline Chip & Board Test Systems". Electronics Week, Nov 1984.
- 86 WHITLEY.J, "Ragnor Holm Scientific Achievement Award Paper". Chicago, I.L. USA.

# **APPENDICES**

.~

.

Test 101 - FLAT TARGET; 2/3 COMPRESSION; I.D.I.

| Probe compressed rela<br>No mΩ m | axed compressed<br>Ω mΩ | relaxed<br>mΩ | compressed<br>mQ | relaxed<br>mQ |
|----------------------------------|-------------------------|---------------|------------------|---------------|
| 0 cycles                         | 12000 c                 | ycles         | 24000 су         | cles          |
| 1 014 02                         | 5 009                   | 021           | 012              | 027           |
| 2 010 02                         | 1 033                   | 033           | 013              | 1400          |
| 3 007 010                        | 0 009                   | 097           | 011              | 032           |
| 4 014 03                         | 0 023                   | 046           | 175              | 051           |
| 5 021 033                        | 1 063                   | 129           | 105              | 198           |
| 6 011 01e                        | 6 013                   | 033           | 058              | 120           |
| 7 011 033                        | 2 009                   | 022           | 010              | 026           |
| 8 012 02                         | 7 009                   | 033           | 010              | 018           |
| 9 012 03                         | 7 013                   | 024           | 014              | 022           |
| 10 016 030                       | 014                     | 044           | 030              | 066           |
| av. 012 02                       | 5 019                   | 048           | 043              | 196           |
| max 021 03                       | 7 063                   | 129           | 1/5              | 1400          |
| min 007 010                      | 5 009                   | 021           | 010              | 018           |
| 36000 cycles                     | 48000 c                 | ycles         | 60000 су         | cles          |
| 1 043 089                        | 0 019                   | 069           | 016              | 041           |
| 2 036 06                         | 2 031                   | 046           | 022              | 099           |
| 3 007 02                         | 7 010                   | 021           | 013              | 020           |
| 4 1196 08                        | 5 0/C                   | 123           | 893              | 212           |
| 5 038 060                        | 032                     | 051           | 040              | 084           |
| 6 051 22                         | 7 036                   | 105           | 041              | 105           |
| 7 011 050                        | 009                     | 058           | 012              | 041           |
| 8 011 046                        | 5 012                   | 043           | 013              | 027           |
| 9 016 02                         | 7 018                   | 041           | 019              | 050           |
| 10 061 194                       | 4 682                   | 048           | 092              | 056           |
| av. 147 08                       | 5 094                   | 060           | 116              | 073           |
| max 1196 22                      | 7 682                   | 123           | 893              | 212           |
| min 007 02                       | 7 009                   | 021           | 012              | 020           |
| 72000 cycles                     | 84000 c                 | ycles         | 96000 су         | cles          |
| 1 025 04                         | 8 025                   | 072           | 086              | 073           |
| 2 016 198                        | 1 033                   | 576           | 018              | 263           |
| 3 016 02                         | 1 013                   | 023           | 014              | 024           |
| 4 463 065                        | B 1090                  | 1462          | 1528             | 143           |
| 5 056 143                        | 3 082                   | 397           | 214              | 866           |
| 6 029 10                         | 9 031                   | 372           | 079              | 310           |
| 7 015 19                         | 5 020                   | 041           | 014              | 043           |
| 8 029 07                         | 7 026                   | 093           | 026              | 063           |
| 9 020 05                         | 9 040                   | 064           | 028              | 059           |
| 10 141 263                       | 2 451                   | 1380          | 020              | 681           |
| av. 081 290                      | 6 181                   | 448           | 202              | 252           |
| max 463 198                      | 1 1090                  | 1462          | 1528             | 866           |
| min 015 02                       | 1 013                   | 023           | 014              | 024           |

|               | Probe Def        | lection       | Probe Def        | lection       | Probe Def        | lection       |
|---------------|------------------|---------------|------------------|---------------|------------------|---------------|
| Probe<br>No   | compressed<br>mQ | relaxed<br>mQ | compressed<br>mQ | relaxed<br>mQ | compressed<br>mQ | relaxed<br>mΩ |
|               | 108000 c         | ycles         | 120000 c         | ycles         | 132000 c         | ycles         |
| 1             | 1023             | 138           | 330              | 042           | 917              | 244           |
| 2             | 017              | 147           | 016              | 136           | 026              | 614           |
| 3             | 013              | 018           | 014              | 015           | 012              | 015           |
| 4             | 971              | 388           | 338              | 814           | 058              | 1552          |
| 5             | 352              | 616           | 343              | 1117          | 216              | 1333          |
| 6             | 064              | 229           | 074              | 196           | 051              | 165           |
| 7             | 020              | 1789          | 013              | 068           | 027              | 078           |
| 8             | 020              | 128           | 020              | 135           | 043              | 244           |
| 9             | 041              | 072           | 032              | 098           | 114              | 320           |
| 10            | 031              | 1649          | 045              | 664           | 056              | 074           |
| av.           | 255              | 517           | 122              | 328           | 152              | 463           |
| max           | 1023             | 1789          | 343              | 1117          | 917              | 1552          |
| min           | 013              | 018           | 013              | 015           | 012              | 015           |
|               | 144000 c         | ycles         | 156000 c         | ycles         | 168000 c         | ycles         |
| 1             | 1037             | 1016          | 1429             | 685           | 573              | 1440          |
| 2             | 021              | 1808          | 013              | 083           | 012              | 060           |
| 3             | 011              | 133           | 023              | 032           | 014              | 020           |
| 4             | 0/C              | 612           | 395              | 196           | 181              | 461           |
| 5             | 289              | 322           | 229              | 1991          | 152              | 963           |
| 6             | 071              | 101           | 066              | 209           | 072              | 101           |
| 7             | 033              | 684           | 037              | 024           | 013              | 045           |
| 8             | 030              | 1790          | 016              | 083           | 022              | 813           |
| 9             | 157              | 916           | 188              | 329           | 246              | 182           |
| 10            | 034              | 1105          | 019              | 218           | 027              | 243           |
| av.           | 187              | 848           | 241              | 385           | 131              | 432           |
| max           | 1037             | 1808          | 1429             | 1991          | 573              | 1440          |
| min           | 011              | 101           | 013              | 024           | 012              | 020           |
|               | 180000 c         | ycles         | 192000 c         | ycles         | 204000 c         | ycles         |
| 1             | 1266             | 540           | 531              | 730           | 715              | 836           |
| $\frac{1}{2}$ | 013              | 204           | 014              | 520           | 015              | 140           |
| วิ            | 023              | 019           | 027              | 026           | 025              | 026           |
| ŭ             | 470              | 1285          | 335              | 121           | 840              | 856           |
| 5             | 142              | 835           | 196              | 874           | 184              | 341           |
| 6             | 101              | 124           | 061              | 041           | 118              | 048           |
| 7             | 018              | 069           | 025              | 151           | 052              | 121           |
| . 8           | 016              | 112           | 018              | 150           | 026              | 125           |
| 9             | 206              | 218           | 531              | 296           | 226              | 296           |
| 10            | 096              | 308           | 024              | 196           | 028              | 1380          |
| av.           | 235              | 371           | 176              | 310           | 222              | 416           |
| max           | 1266             | 1285          | 531              | 874           | 840              | 1380          |
| min           | 013              | 019           | 014              | 026           | 015              | 026           |

|             | Probe Def        | lection       | Probe Def        | lection       | Probe De:        | Election      |
|-------------|------------------|---------------|------------------|---------------|------------------|---------------|
| Probe<br>No | compressed<br>mQ | relaxed<br>mΩ | compressed<br>mQ | relaxed<br>mQ | compressed<br>mΩ | relaxed<br>mΩ |
|             | 216000 c         | ycles         | 228000 c         | ycles         | 240000           | cycles        |
| 1           | 0/C              | 1016          | 1726             | 1393          | 0/C              | 1818          |
| 2           | 025              | 251           | 016              | 281           | 017              | 471           |
| 3           | 036              | 032           | 059              | 025           | 032              | 044           |
| 4           | 299              | 843           | 0/C              | 427           | 529              | 0/C           |
| 5           | 346              | 1650          | 1079             | 1699          | 264              | 951           |
| 6           | 082              | 044           | 070              | 038           | 084              | 196           |
| 7           | 033              | 038           | 090              | 027           | 018              | 101           |
| 8           | 021              | 106           | 019              | 284           | 018              | 999           |
| 9           | 388              | 140           | 189              | 423           | 119              | 206           |
| 10          | 035              | 063           | 075              | 580           | 040              | 0/C           |
| av.         | 140              | 418           | 369              | 517           | 124              | 598           |
| max         | 388              | 1650          | 1726             | 1699          | 529              | 1818          |
| min         | 021              | 032           | 016              | 025           | 017              | 044           |
|             | 252000 c         | ycles         | 264000 c         | ycles         | 276000           | cycles        |
| 1           | 1096             | 1409          | 1674             | 1141          | 1665             | 0/C           |
| 2           | 019              | 287           | 021              | 290           | 040              | 610           |
| 3           | 012              | 099           | 018              | 025           | 018              | 069           |
| 4           | 618              | 0/C           | 313              | 0/C           | 221              | 392           |
| 5           | 1972             | 1960          | 0/C              | 1622          | 1278             | 1495          |
| 6           | 082              | 249           | 073              | 034           | 085              | 224           |
| 7           | 017              | 216           | 058              | 036           | 056              | 133           |
| 8           | 016              | 251           | 079              | 490           | 039              | 1498          |
| 9           | 322              | 213           | 178              | 170           | 115              | 211           |
| 10          | 121              | 401           | 028              | 092           | 024              | 068           |
| av.         | 427              | 565           | 271              | 433           | 354              | 522           |
| max         | 1972             | 1960          | 1674             | 1622          | 1665             | 1498          |
| min         | 012              | 099           | 018              | 025           | 018              | 068           |
|             | 288000 c         | ycles         | 300000 c         | ycles         | 312000           | cycles        |
| 1           | 588              | 815           | 1190             | 0/C           | 1067             | 0/C           |
| 2           | 036              | 317           | 020              | 129           | 020              | 1163          |
| 3           | 050              | 050           | 011              | 021           | 022              | 028           |
| 4           | 691              | 214           | 268              | 0/C           | 278              | 397           |
| 5           | 646              | 969           | 017              | 016           | 015              | 026           |
| 6           | 074              | 106           | 008              | 013           | 016              | 015           |
| 7           | 126              | 058           | 031              | 029           | 010              | 0/C           |
| 8           | 184              | 1270          | 036              | 073           | 024              | 488           |
| 9           | 163              | 343           | 308              | 495           | 092              | 143           |
| 10          | 043              | 090           | 014              | 092           | 010              | 071           |
| av.         | 260              | 423           | 190              | 108           | 155              | 291           |
| max         | 691              | 1270          | 1190             | 495           | 1067             | 1163          |
| min         | 036              | 050           | 008              | 013           | 010              | 015           |

|                  | Probe Def           | lection       | Probe Def        | lection       | Probe Def        | lection       |
|------------------|---------------------|---------------|------------------|---------------|------------------|---------------|
| Probe<br>No      | compressed<br>mQ    | relaxed<br>mQ | compressed<br>mQ | relaxed<br>mQ | compressed<br>mQ | relaxed<br>mΩ |
|                  | 324000 c            | ycles         | 336000 c         | ycles         | 348000 c         | ycles         |
| 1                | 117                 | 1102          | 021              | 518           | 023              | 1527          |
| 2                | 014                 | 154           | 012              | 071           | 014              | 109           |
| 3                | 020                 | 023           | 020              | 044           | 018              | 045           |
| 4                | 649                 | 0/C           | 286              | 643           | 101              | 840           |
| 5                | 062                 | 076           | 076              | 186           | 129              | 254           |
| 6                | 023                 | 017           | 036              | 021           | 070              | 041           |
| 0                | 014                 | 014<br>795    | 022              | 175           | 018              | 000<br>252    |
| 0<br>0           | 163                 | 400           | 193              | 104           | 028<br>410       | 504           |
| 9<br>10          | 012                 | 015           | 012              | 226           | 011              | 070           |
| av.              | 109                 | 235           | 070              | 199           | 082              | 370           |
| max              | 649                 | 1102          | 286              | 643           | 410              | 1527          |
| min              | 012                 | 014           | 012              | 021           | 011              | 041           |
|                  | 360000 c            | ycles         | 372000 c         | ycles         | 384000 c         | ycles         |
| 1                | 035                 | 1480          | 016              | 1141          | 018              | 963           |
| 2                | 015                 | 071           | 015              | 214           | 019              | 242           |
| 3                | <b>3</b> 28         | 056           | 030              | 1490          | 329              | 115           |
| 4                | 1769                | 0/C           | 197              | 1030          | 354              | 525           |
| 5                | 058                 | 078           | 059              | 126           | 071              | 103           |
| 6                | 025                 | 024           | 048              | 020           | 046              | 026           |
| 7                | 021                 | 028           | 039              | 091           | 041              | 061           |
| 8                | 037                 | 1774          | 022              | 0/C           | 025              | 075           |
| 9                | 475                 | 451           | 293              | 1560          | 728              | 086           |
| 10               | 016                 | 019           | 014              | 030           | 020              | 035           |
| av.              | 247                 | 442           | 073              | 033           | 100              | 223           |
| max              | 015                 | 1774          | 293              | 1200          | /28              | 903           |
| W111             | 015                 | 019           | 014              | 020           | 010              | 020           |
|                  | 396000 c            | ycles         | 408000 c         | ycles         | 420000 c         | ycles         |
| 1                | 020                 | 1670          | 058              | 699           | 036              | 1855          |
| 2                | 030                 | 312           | 027              | 173           | 055              | 400           |
| 3                | <del>3</del> 28     | 116           | 011              | 065           | 008              | 046           |
| 4                | 475                 | 0/C           | 1209             | 1566          | 0/C              | 1146          |
| 5                | 123                 | 106           | 109              | 099           | 087              | 133           |
| 6                | 040                 | 063           | 130              | 043           | 074              | 056           |
| 1                | 046                 | 072           | 022              | 254           | 043              | 041           |
| 8                | 022                 | 2/7           | 018              | 104           | 037              | 691           |
| 9                | 388                 | 913           | 322              | 368           | 303              | 497           |
| 10               | UI/<br>1/0          | 026           | U16<br>100       | 018           | 014              | 022           |
| av.              | 1 <b>4</b> 0<br>/75 | 373           | 192              | 338<br>1566   | U/3<br>202       | 400           |
| max              | 4/J<br>017          | 1070          | 1209<br>011      | 010           | 202              | 000<br>7000   |
| 111 <b>T</b> T T | 017                 | 020           | 011              | 010           |                  | 022           |

|             | Probe Def        | lection       | Probe Def        | lection       | Probe Def        | Election      |
|-------------|------------------|---------------|------------------|---------------|------------------|---------------|
| Probe<br>No | compressed<br>mΩ | relaxed<br>mQ | compressed<br>mQ | relaxed<br>mQ | compressed<br>mQ | relaxed<br>mΩ |
|             | 432000 c         | ycles         | 444000 c         | ycles         | 456000 c         | cycles        |
| 1           | 065              | 695           | 121              | 1535          | 477              | 1438          |
| 2           | 054              | 1191          | 099              | 553           | 025              | 130           |
| 3           | 008              | 046           | 008              | 045           | 006              | 044           |
| 4           | 1090             | 153           | 1928             | 575           | 850              | 0/C           |
| 5           | 094              | 083           | 331              | 193           | 120              | 180           |
| 6           | 061              | 040           | 076              | 071           | 064              | 103           |
| 7           | 063              | 031           | 083              | 039           | 014              | 051           |
| 8           | 051              | 143           | 054              | 242           | 019              | 236           |
| 9           | 469              | 621           | 372              | 1020          | 110              | 1190          |
| 10          | 012              | 015           | 016              | 024           | 015              | 039           |
| av.         | 196              | 301           | 308              | 429           | 170              | 379           |
| max         | 1090             | 1191          | 1928             | 1535          | 850              | 1438          |
| min         | 008              | 015           | 008              | 024           | 006              | 039           |
|             | 468000 c         | ycles         | 480000 c         | ycles         | 492000 d         | ycles         |
| 1           | 071              | 1516          | 069              | 1485          | 049              | 960           |
| 2           | 037              | 272           | 112              | 352           | 073              | 513           |
| 2           | 007              | 079           | 008              | 419           | 009              | 079           |
| 4           | 869              | 1682          | 400              | 624           | 261              | 1849          |
| 5           | 148              | 142           | 233              | 336           | 196              | 171           |
| 6           | 066              | 111           | 026              | 085           | 079              | 087           |
| 7           | 027              | 048           | 020              | 081           | 072              | 190           |
| ,<br>8      | 080              | 253           | 029              | 654           | 040              | 636           |
| å           | 068              | 265           | 119              | 368           | 291              | 780           |
| 10          | 016              | 028           | 026              | 034           | 015              | 032           |
| av.         | 138              | 439           | 105              | 443           | 108              | 529           |
| max         | 869              | 1682          | 400              | 1485          | 291              | 1849          |
| min         | 007              | 028           | 008              | 034           | 009              | 032           |
|             | 504000 c         | ycles         | 516000 c         | ycles         | 528000 d         | cycles        |
| 1           | 097              | 11/6          | 3/3              | 5/0           | 114              | 1960          |
| 1<br>7      | 052              | 704           | 343<br>064       | J40<br>025    | 370              | 165           |
| 2           | 002              | 750           | 004              | 0.7           | 008              | 029           |
| د<br>د      | 1570             | 1303          | 000              | 1292          | 1162             | 1542          |
| 4           | 1/1              | 116           | 220              | 086           | 177              | 172           |
| 5           | 070              | 110           | 074              | 036           | 061              | 030           |
| 7           | 075              | 049           | 017              | 078           | 044              | 069           |
| 0           | 100              | 1394          | 032              | 716           | 044              | /Q1           |
| 0           | 200              | 1300          | 107              | 643           | 157              | 401<br>320    |
| 7<br>10     | 200              | 025           | 107              | 043           | 1.27<br>()22     | 115           |
| 10          | 017              | 422<br>422    | 109              | 020<br>444    | 022              | 470           |
| dV.         | 237<br>1570      | 1201          | 130              | 444<br>1929   | 1162             | 4/2           |
| max<br>min  | 1008             | 025           | 010              | 026           | 008              | 029           |
| *****       | 000              | 020           | 010              | 020           | ~~~              |               |

|              | Probe Defl       | ection        | Probe Defl       | ection        | Probe Defl       | lection       |
|--------------|------------------|---------------|------------------|---------------|------------------|---------------|
| Probe<br>No. | compressed<br>m2 | relaxed<br>mΩ | compressed<br>mQ | relaxed<br>mQ | compressed<br>mΩ | relaxed<br>mΩ |
|              | 540000 c         | ycles         | 552000 d         | ycles         | 564000 0         | cycles        |
| 1            | 077              | 955           | 217              | 1070          | 290              | 1990          |
| 2            | 021              | 116           | 019              | 433           | 019              | 1260          |
| 3            | 008              | 050           | 009              | 209           | 008              | 092           |
| 4            | 960              | 1347          | 1025             | 0/C           | 932              | 0/C           |
| 5            | 134              | 102           | 142              | 235           | 136              | 220           |
| 6            | 088              | 045           | 062              | 040           | 053              | 034           |
| 7            | 047              | 078           | 045              | 113           | 044              | 145           |
| 8            | 025              | 178           | 187              | 1145          | 329              | 1760          |
| 9            | 199              | 1082          | 021              | 171           | 029              | 200           |
| 10           | 014              | 042           | 014              | 030           | 014              | 028           |
| av.          | 157              | 399           | 174              | 382           | 185              | 636           |
| max          | 960              | 134/          | 1025             | 1145          | 932              | 1990          |
| min          | 008              | 042           | 009              | 030           | 008              | 028           |
|              | 576000 c         | ycles         | 588000 c         | ycles         | 600000 0         | cycles        |
| 1            | 096              | 1072          | 050              | 1651          | 046              | 457           |
| $\tilde{2}$  | 023              | 1125          | 027              | 1305          | 307              | 1964          |
| 3            | 010              | 050           | 013              | 1461          | 017              | 175           |
| 4            | 1782             | 835           | 688              | 0/C           | 0/C              | 458           |
| 5            | 193              | 053           | 1123             | 1856          | 317              | 210           |
| 6            | 083              | 040           | 095              | 057           | 088              | 029           |
| 7            | 137              | 082           | 095              | 1280          | 097              | 054           |
| 8            | 878              | 1783          | 1023             | 324           | 1336             | 1074          |
| 9            | 035              | 083           | 148              | 110           | 666              | 1033          |
| 10           | 016              | 023           | 015              | 016           | 019              | 017           |
| av.          | 325              | 514           | 327              | 895           | 321              | 547           |
| max          | 1782             | 1783          | 1123             | 1856          | 1336             | 1964          |
| min          | 010              | 023           | 013              | 016           | 017              | 017           |
|              | 612000 c         | ycles         | 624000 d         | ycles         | 636000           | cycles        |
| 1            | 015              | 1432          | 018              | 1739          | 071              | 1088          |
| 2            | 017              | 1226          | 072              | 812           | 050              | 1687          |
| 3            | 009              | 054           | 012              | 357           | 014              | 150           |
| 4            | 0/C              | 0/C           | 1248             | 108           | 482              | 1380          |
| 5            | 145              | 284           | 387              | 133           | 451              | 338           |
| 6            | 051              | 043           | 092              | 043           | 058              | 060           |
| 7            | 052              | 073           | 089              | 175           | 066              | 082           |
| 8            | 126              | 204           | 741              | 401           | 044              | 665           |
| 9            | 050              | 255           | 301              | 701           | 210              | 1043          |
| 10           | 019              | 044           | 043              | 025           | 019              | 041           |
| av.          | 053              | 401           | 300              | 449           | 146              | 653           |
| max          | 145              | 1432          | 1248             | 1739          | 482              | 1687          |
| min          | 009              | 043           | 012              | 025           | 014              | 041           |

|              | Probe Defl       | ection        | Probe Defl       | ection        | Probe Defl       | ection        |
|--------------|------------------|---------------|------------------|---------------|------------------|---------------|
| Probe<br>No. | compressed<br>mΩ | relaxed<br>mΩ | compressed<br>mQ | relaxed<br>mQ | compressed<br>mΩ | relaxed<br>mΩ |
|              | 648000 c         | ycles         | 660000 c         | ycles         | 672000 c         | ycles         |
| 1            | 067              | 1050          | 114              | 1493          | 211              | 541           |
| 2            | 035              | 1871          | 035              | 0/C           | 051              | 1275          |
| 3            | 011              | 543           | 012              | 183           | 008              | 052           |
| 4            | 0/C              | 0/C           | 0/C              | 0/C           | 1812             | 1760          |
| 5            | 672              | 813           | 580              | 374           | 063              | 074           |
| 6            | 073              | 039           | 053              | 049           | 062              | 033           |
| 7            | 157              | 026           | 130              | 138           | 020              | 117           |
| 8            | 047              | 113           | 067              | 472           | 191              | 147           |
| 9            | 1303             | 1620          | 1863             | 1451          | 777              | 1645          |
| 10           | 020              | 021           | 020              | 050           | 018              | 122           |
| av.          | 265              | 677           | 319              | 526           | 321              | 576           |
| max          | 1303             | 1871          | 1863             | 1493          | 1812             | 1760          |
| min          | 011              | 021           | 012              | 049           | 008              | 033           |
|              | 684000 c         | ycles         | 696000 c         | ycles         | 708000 c         | ycles         |
| 1            | 040              | 697           | 056              | 1058          | 068              | 274           |
| 2            | 031              | 1445          | 104              | 731           | 028              | 0/C           |
| 3            | 010              | 060           | 017              | 178           | 010              | 157           |
| 4            | 0/C              | 961           | 534              | 961           | 0/C              | 0/C           |
| 5            | 060              | 110           | 126              | 225           | 217              | 184           |
| 6            | 054              | 086           | 051              | 073           | 068              | 075           |
| 7            | 027              | 296           | 037              | 137           | 045              | 099           |
| 8            | 592              | 426           | 064              | 533           | 393              | 374           |
| 9            | 1712             | 0/C           | 1322             | 0/C           | 1062             | 1438          |
| 10           | 014              | 096           | 015              | 063           | 014              | 014           |
| av.          | 282              | 464           | 232              | 439           | 211              | 326           |
| max          | 1712             | 1445          | 1322             | 1058          | 1062             | 1438          |
| min          | 010              | 060           | 015              | 063           | 010              | 014           |
|              | 720000 c         | ycles         | 732000 c         | ycles         | 744000 c         | ycles         |
| 1            | 096              | 1994          | 022              | 077           | 060              | 182           |
| 2            | 139              | 969           | 041              | 583           | 022              | 862           |
| 2            | 013              | 038           | 010              | 030           | 009              | 035           |
| 4            | 074              | 042           | 1274             | 0/0           | 178              | 260           |
| 5            | 515              | 1419          | 073              | 086           | 155              | 140           |
| 6            | 044              | 070           | 085              | 042           | 103              | 054           |
| 7            | 028              | 164           | 031              | 068           | 053              | 075           |
| 8            | 048              | 1678          | 618              | 250           | 1754             | 706           |
| 9            | 775              | 973           | 136              | 407           | 1070             | 0/C           |
| 10           | 032              | 068           | 016              | 028           | 015              | 028           |
| 1V<br>9V     | 176              | 741           | 230              | 174           | 341              | 260           |
| av.<br>mav   | 775              | 1994          | 1974             | 583           | 1754             | 862           |
| min          | 013              | 038           | 010              | 028           | 009              | 028           |
|              | ~ ~ ~ ~          | ~ ~ ~         | ~ ~ ~            | * - *         |                  |               |

|              | Probe Defl       | ection        | Probe Defl       | ection        | Probe Def        | lection       |
|--------------|------------------|---------------|------------------|---------------|------------------|---------------|
| Probe<br>No. | compressed<br>mΩ | relaxed<br>mQ | compressed<br>mΩ | relaxed<br>mΩ | compressed<br>mQ | relaxed<br>mΩ |
|              | 756000 c         | ycles         | 768000 c         | ycles         | 780000           | cycles        |
| 1            | 096              | 223           | 045              | 106           | 129              | 316           |
| 2            | 031              | 1695          | 032              | 1560          | 060              | 093           |
| 3            | 009              | 043           | 010              | 035           | 010              | 070           |
| 4            | 131              | 708           | 976              | 565           | 484              | 615           |
| 5            | 500              | 295           | ·** 342          | 174           | 446              | 254           |
| 6            | 064              | 041           | 072              | 064           | 092              | 038           |
| 7            | 058              | 084           | 066              | 091           | 037              | 132           |
| 8            | 1850             | 1890          | 1574             | 0/C           | 397              | 702           |
| 9            | 254              | 452           | 172              | 1420          | 025              | 177           |
| 10           | 016              | 021           | 018              | 025           | 019              | 045           |
| av.          | 300              | 545           | 330              | 448           | 169              | 244           |
| max          | 1850             | 1890          | 1574             | 1560          | 484              | 702           |
| min          | 009              | 021           | 010              | 025           | 010              | 038           |
|              | 792000 c         | ycles         | 804000           | cycles        | 816000           | cycles        |
| 1            | 131              | 295           | 082              | 161           | 447              | 515           |
| 2            | 026              | 073           | 034              | 156           | 039              | 450           |
| 3            | 011              | 047           | 019              | 091           | 008              | 072           |
| 4            | 1183             | 1290          | 0/C              | 0/C           | 1416             | 0/C           |
| 5            | 167              | 791           | 163              | 140           | 130              | 097           |
| 6            | 088              | 029           | 275              | 038           | 132              | 036           |
| 7            | 075              | 071           | 1485             | 070           | 096              | 077           |
| 8            | 112              | 344           | 214              | 176           | 172              | 173           |
| 9            | 176              | 1760          | 430              | 0/C           | 475              | 1541          |
| 10           | 017              | 079           | 030              | 030           | 019              | 027           |
| av.          | 198              | 477           | 303              | 107           | 293              | 332           |
| max          | 1183             | 1760          | 1485             | 176           | 1416             | 1541          |
| min          | 011              | 029           | 019              | 030           | 008              | 027           |
|              | 828000 c         | ycles         | 840000 c         | ycles         | 852000           | cycles        |
| 1            | 305              | 1620          | 168              | 207           | 508              | 331           |
| 2            | 057              | 158           | 024              | 168           | 028              | 043           |
| 3            | 011              | 080           | 011              | 084           | 028              | 118           |
| 4            | 1070             | 143           | 0/C              | 1736          | 0/C              | 685           |
| 5            | 136              | 102           | 118              | 086           | 124              | 074           |
| 6            | 157              | 036           | 272              | 076           | 438              | 079           |
| 7            | 072              | 092           | 058              | 069           | 310              | 070           |
| 8            | 033              | 209           | 116              | 145           | 211              | 081           |
| 9            | 654              | 0/C           | 717              | 0/C           | 0/C              | 0/C           |
| 10           | 015              | 036           | 018              | 038           | 042              | 038           |
| av.          | 251              | 275           | 166              | 289           | 211              | 168           |
| max          | 1070             | 1620          | 717              | 1736          | 508              | 685           |
| min          | 011              | 036           | 011              | 038           | 028              | 038           |

-

.

.

|              | Probe Defl       | ection        | Probe Defl       | ection        | Probe Defl       | ection        |
|--------------|------------------|---------------|------------------|---------------|------------------|---------------|
| Probe<br>No. | compressed<br>mQ | relaxed<br>mΩ | compressed<br>mQ | relaxed<br>mQ | compressed<br>mΩ | relaxed<br>mQ |
|              | 864000 c         | ycles         | 876000 c         | ycles         | 888000 c         | ycles         |
| 1            | 263              | 757           | 414              | 999           | 124              | 1320          |
| 2            | 022              | 082           | 032              | 050           | 040              | 405           |
| 3            | 010              | 217           | 013              | 124           | 011              | 128           |
| 4            | 1999             | 0/C           | 1390             | 0/C           | 0/C              | 0/C           |
| 5            | 116              | 091           | 117              | 081           | 067              | 054           |
| 6            | 195              | 077           | 171              | 064           | 118              | 174           |
| 7            | 160              | 141           | 1035             | 170           | 358              | 077           |
| 8            | 174              | 1233          | 354              | 1135          | 354              | 1546          |
| 9            | 1803             | 1972          | 911              | 0/C           | 753              | 0/C           |
| 10           | 025              | 154           | 022              | 063           | 013              | 029           |
| av.          | 476              | 524           | 445              | 335           | 204              | 466           |
| max          | 1999             | 1972          | 1390             | 1135          | 753              | 1546          |
| min          | 010              | 077           | 013              | 050           | 011              | 029           |
|              | 900000 c         | ycles         | 912000 c         | ycles         | 924000 c         | ycles         |
| 1            | 072              | 228           | 114              | 378           | 092              | 079           |
| 2            | 040              | 075           | 029              | 101           | 037              | 063           |
| 3            | 011              | 155           | 010              | 799           | 010              | 125           |
| 4            | 0/C              | 668           | 1225             | 0/C           | 0/C              | 0/C           |
| 5            | 057              | 062           | 074              | 116           | 221              | 461           |
| 6            | 089              | 061           | 105              | 197           | 071              | 105           |
| 7            | 420              | 073           | 128              | 170           | 352              | 142           |
| 8            | 1401             | 0/C           | 1533             | 936           | 0/C              | 1521          |
| 9            | 518              | 273           | 480              | 400           | 367              | 1572          |
| 10           | 014              | 027           | 018              | 053           | 022              | 042           |
| av.          | 291              | 180           | 371              | 350           | 146              | 456           |
| max          | 1401             | 668           | 1533             | 936           | 367              | 1572          |
| min          | 011              | 027           | 010              | 053           | 010              | 042           |
|              | 936000 c         | ycles         | 948000 c         | ycles         | 960000 c         | ycles         |
| 1            | 124              | 116           | 032              | 083           | 065              | 105           |
| 2            | 034              | 055           | 021              | 082           | 030              | 044           |
| 3            | 009              | 128           | 023              | 067           | 013              | 079           |
| 4            | 0/C              | 773           | 0/C              | 808           | 0/C              | 452           |
| 5            | 235              | 303           | 052              | 045           | 053              | 061           |
| 6            | 037              | 123           | 035              | jammed        | 099              | 0/C           |
| 7            | 371              | 089           | 317              | 130           | 144              | 059           |
| 8            | 0/C              | 780           | 164              | 272           | 138              | 193           |
| 9            | 311              | 1091          | 451              | 1608          | 504              | 841           |
| 10           | 020              | 037           | 026              | 029           | 031              | 050           |
| av.          | 142              | 349           | 124              | 347           | 119              | 209           |
| max          | 371 .            | 1091          | 451              | 1608          | 504              | 841           |
| min          | 009              | 037           | 021              | 029           | 013              | 044           |

|                   | Probe Defl       | ection        | Probe Defl       | ection        | Probe Deflection |               |
|-------------------|------------------|---------------|------------------|---------------|------------------|---------------|
| Probe<br>No.      | compressed<br>mΩ | relaxed<br>mQ | compressed<br>mQ | relaxed<br>mQ | compressed<br>mΩ | relaxed<br>mQ |
|                   | 972000 c         | ycles         | 984000 c         | ycles         | 996000           | cycles        |
| 1                 | 166              | 235           | 125              | 153           | 107              | 082           |
| 2                 | 029              | 103           | 025              | 195           | 041              | 050           |
| 3                 | 013              | 381           | 010              | 1165          | 013              | 083           |
| 4                 | 1165             | 133           | 563              | 945           | 0/C              | 542           |
| 5                 | 059              | 148           | 063              | 147           | 092              | 093           |
| 6                 | 013              | 0/C           | 032              | 0/C           | 158              | 0/C           |
| 7                 | 034              | 662           | 086              | 081           | 616              | 087           |
| 8                 | 087              | 136           | 154              | 254           | 276              | 093           |
| 9                 | 1290             | 1956          | 895              | 1003          | 664              | 1246          |
| 10                | 015              | 040           | 018              | 040           | 012              | 020           |
| av.               | 287              | 421           | 197              | 442           | 219              | 255           |
| max               | 1290             | 1956          | 895              | 1165          | 664              | 1246          |
| min               | 013              | 040           | 010              | 040           | 012              | 020           |
|                   | 1008000 c        | ycles         | 1020000 c        | ycles         | 1032000          | cycles        |
| 1                 | 109              | 126           | 113              | 166           | 098              | 086           |
| 2                 | 028              | 070           | 023              | 065           | 031              | 086           |
| ž                 | 011              | 150           | 011              | 665           | 009              | 219           |
| 4                 | 1552             | 0/0           | 1740             | 1077          | 0/0              | 0/C           |
| 5                 | 067              | 141           | 070              | 1241          | 235              | 1386          |
| 6                 | 182              | 0/0           | 191              | 0/0           | 613              | 0/C           |
| 7                 | 493              | 082           | 121              | 105           | 047              | 057           |
| 8                 | 155              | 080           | 159              | 415           | 142              | 202           |
| ğ                 | 261              | 1783          | 384              | 0/0           | 670              | 559           |
| 10                | 011              | 018           | 012              | 022           | 012              | 026           |
| av.               | 286              | 306           | 282              | 469           | 206              | 327           |
| may               | 1552             | 1783          | 1740             | 1241          | 670              | 1386          |
| min               | 011              | 018           | 011              | 022           | 009              | 026           |
|                   | 1044000 c        | ycles         | 1056000 c        | ycles         | 1068000 (        | cycles        |
| 1                 | 105              | 195           | 036              | 190           | 024              | 045           |
| 2                 | 032              | 538           | 030              | 116           | 024              | 875           |
| 2                 | 002              | 138           | 024              | 103           | 027              | 063           |
| 5<br>1.           | 1220             | 130           | 0/0              | 103 ·         | 0.00             | 0/0           |
| <del>ነ</del><br>ፍ | 210              | 424           | 202              | 164           | 170              | 1332          |
| 5                 | 0/C              | 424<br>0/C    | 202              | 0/0           | 170              | 1332          |
| ט<br>ד            | 170              | 105           | 0/0              | 101           | 1002             | 152           |
| /                 | 1/2              | 190           | 307              | 102           | 1903             | 122           |
| б<br>О            | 179              | 1200<br>1200  | 1200             | /04           | 0/0              | 0/0           |
| y<br>10           | 010<br>010       | 1320          | 1308             | 1032          | 876              | 070           |
| 10                | 013              | 020           | 014              | 021           | 018              | UZ4           |
| av.               | 307              | 382           | 276              | 386           | 376              | 262           |
| max               | 1329             | 1390          | 1308             | 1632          | 1803             | 1332          |
| min               | 009              | 020           | 011              | 021           | 018              | 024           |

•

|              | Probe Defl       | ection        | Probe Defl       | ection        | Probe Defl       | lection       |
|--------------|------------------|---------------|------------------|---------------|------------------|---------------|
| Probe<br>No. | compressed<br>mQ | relaxed<br>mQ | compressed<br>mQ | relaxed<br>mQ | compressed<br>mΩ | relaxed<br>mQ |
|              | 1080000 c        | ycles         | 1092000 c        | ycles         | 1104000 c        | ycles         |
| 1            | 019              | 036           | 033              | 038           | 046              | 035           |
| 2            | 026              | 110           | 032              | 104           | 030              | 382           |
| 3            | 010              | 152           | 012              | 926           | 048              | 062           |
| 4            | 0/C              | 0/C           | 0/C              | 0/C           | 1312             | 1220          |
| 5            | 1048             | 673           | 409              | 307           | 231              | 182           |
| 6            | 1226             | 0/C           | 1140             | 0/C           | 098              | 0/C           |
| 7            | 417              | 192           | 1703             | 432           | 192              | 064           |
| 8            | 587              | 0/C           | 1562             | 0/C           | 176              | 943           |
| 9            | 963              | 172           | 1024             | 1038          | 1562             | 1469          |
| 10           | 017              | 022           | 018              | 116           | 014              | 023           |
| av.          | 479              | 193           | 659              | 423           | 370              | 486           |
| max          | 1226             | 673           | 1703             | 1038          | 1562             | 1469          |
| min          | 010              | 022           | 012              | 038           | 014              | 023           |
|              | 1116000 c        | ycles         | 1128000 c        | ycles         | 1140000 c        | ycles         |
| 1            | 022              | 034           | 061              | 039           | 022              | 035           |
| 2            | 021              | 123           | 020              | 785           | 025              | 090           |
| 3            | 053              | 076           | 065              | 923           | 014              | 169           |
| 4            | 0/C              | 1906          | 402              | 0/C           | 1486             | 0/C           |
| 5            | 215              | 176           | 308              | 442           | 732              | 160           |
| 6            | 0/C              | 0/C           | 387              | 0/C           | 278              | 0/C           |
| 7            | 1465             | 275           | 520              | 080           | 786              | 057           |
| 8            | 986              | 1883          | 0/C              | 0/C           | 0/C              | 1486          |
| 9            | 782              | 1981          | 1482             | 1530          | 1373             | 0/C           |
| 10           | 015              | 023           | 017              | 026           | 016              | 024           |
| av.          | 444              | 719           | 362              | 546           | 525              | 288           |
| max          | 1465             | 1981          | 1482             | 1530          | 1486             | 1486          |
| min          | 015              | 023           | 017              | 026           | 014              | 024           |
|              | 1152000 c        | ycles         | 1164000 c        | ycles         | 1176000 c        | ycles         |
| 1            | 044              | 037           | 032              | 037           | 059              | 070           |
| 2            | 028              | 060           | 028              | 085           | 026              | 336           |
| 3            | 038              | 114           | 019              | 109           | 012              | 826           |
| 4            | 0/C              | 1207          | 0/C              | 1254          | 0/C              | 0/C           |
| 5            | 354              | 334           | 403              | 204           | 376              | 903           |
| 6            | 042              | 0/C           | 235              | 0/C           | 194              | 0/C           |
| 7            | 750              | 041           | 373              | 270           | 846              | 065           |
| 8            | 494              | 224           | 232              | 142           | 221              | 334           |
| 9            | 1860             | 0/C           | 696              | 0/C           | 1403             | 1526          |
| 10           | 023              | 025           | 017              | 023           | 022              | 028           |
| av.          | 403              | 255           | 226              | 265           | 351              | 511           |
| max          | 1860             | 1207          | 696              | 1254          | 1403             | 1526          |
| min          | 023              | 025           | 017              | 023           | 012              | 028           |

...
- FLAT TARGET; 2/3 COMPRESSION; I.D.I. **TEST 104** 

Probe Deflection - Compressed

Probe

•••

10 readings.  $(m\Omega)$ 

No.

## 0 cycles

| 1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>av.<br>max<br>min | 009<br>010<br>009<br>013<br>010<br>011<br>010<br>016<br>011<br>013<br>011<br>016<br>009 | 009<br>012<br>010<br>013<br>011<br>012<br>012<br>012<br>012<br>011<br>014<br>012<br>022<br>009 | 009<br>011<br>011<br>014<br>010<br>012<br>013<br>033<br>011<br>014<br>013<br>033<br>009 | 009<br>012<br>010<br>014<br>012<br>011<br>013<br>035<br>011<br>015<br>014<br>035<br>009 | 009<br>013<br>010<br>014<br>011<br>012<br>012<br>016<br>012<br>016<br>012<br>016<br>009 | 009<br>012<br>010<br>016<br>011<br>013<br>015<br>019<br>011<br>015<br>013<br>019<br>009 | 009<br>012<br>010<br>015<br>010<br>013<br>015<br>019<br>012<br>012<br>012<br>019<br>009 | 009<br>011<br>015<br>011<br>013<br>014<br>030<br>012<br>013<br>013<br>030<br>009 | 009<br>012<br>011<br>016<br>012<br>012<br>015<br>027<br>012<br>013<br>013<br>027<br>009 | 009<br>011<br>015<br>011<br>012<br>014<br>026<br>012<br>013<br>013<br>026<br>009        |
|----------------------------------------------------------------------|-----------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|
|                                                                      |                                                                                         |                                                                                                |                                                                                         | 10                                                                                      | 0000 cy                                                                                 | ycles                                                                                   |                                                                                         |                                                                                  |                                                                                         |                                                                                         |
| 1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>av.<br>max<br>min | 010<br>022<br>010<br>018<br>055<br>088<br>011<br>010<br>110<br>012<br>034<br>110<br>010 | 010<br>018<br>011<br>018<br>044<br>131<br>011<br>148<br>013<br>041<br>148<br>010               | 010<br>020<br>011<br>018<br>045<br>139<br>010<br>010<br>347<br>013<br>062<br>347<br>010 | 011<br>022<br>011<br>018<br>044<br>193<br>010<br>011<br>153<br>013<br>048<br>193<br>010 | 010<br>021<br>019<br>039<br>197<br>010<br>011<br>221<br>013<br>055<br>221<br>010        | 010<br>021<br>010<br>019<br>040<br>202<br>010<br>011<br>226<br>012<br>056<br>226<br>010 | 010<br>020<br>010<br>018<br>046<br>417<br>010<br>011<br>221<br>013<br>077<br>417<br>010 | 010<br>021<br>010<br>053<br>293<br>010<br>012<br>299<br>012<br>073<br>299<br>010 | 011<br>023<br>011<br>019<br>042<br>338<br>011<br>012<br>114<br>013<br>059<br>338<br>011 | 011<br>023<br>011<br>019<br>042<br>394<br>010<br>012<br>159<br>013<br>069<br>394<br>010 |
|                                                                      |                                                                                         |                                                                                                |                                                                                         | 20                                                                                      | 0000 cy                                                                                 | ycles                                                                                   |                                                                                         |                                                                                  |                                                                                         |                                                                                         |
| 1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>av.<br>max<br>min | 011<br>016<br>013<br>012<br>011<br>023<br>010<br>017<br>040<br>051<br>020<br>051<br>010 | 011<br>021<br>014<br>011<br>024<br>009<br>017<br>089<br>053<br>026<br>089<br>009               | 011<br>041<br>013<br>013<br>025<br>011<br>020<br>080<br>082<br>030<br>082<br>030        | 011<br>020<br>015<br>012<br>013<br>025<br>011<br>018<br>106<br>067<br>029<br>106<br>011 | 011<br>044<br>012<br>012<br>025<br>011<br>017<br>073<br>068<br>028<br>073<br>011        | 011<br>044<br>017<br>012<br>025<br>010<br>017<br>078<br>069<br>029<br>078<br>010        | 011<br>041<br>015<br>012<br>026<br>011<br>016<br>143<br>070<br>035<br>143<br>011        | 012<br>051<br>017<br>013<br>026<br>010<br>018<br>052<br>097<br>030<br>097<br>010 | 012<br>040<br>017<br>013<br>022<br>027<br>011<br>020<br>026<br>112<br>029<br>112<br>011 | 012<br>027<br>016<br>012<br>040<br>010<br>016<br>208<br>068<br>042<br>208<br>010        |

ï

|                                                                      |                                                                                         |                                                                                           | P                                                                                         | robe D                                                                                  | eflect                                                                                    | ion –                                                                                   | Comp                                                                                      | ressed                                                                                    |                                                                                         |                                                                                           |
|----------------------------------------------------------------------|-----------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|
| Probe<br>No.                                                         |                                                                                         |                                                                                           |                                                                                           | 10                                                                                      | reading                                                                                   | gs. (m                                                                                  | Ω)                                                                                        |                                                                                           |                                                                                         |                                                                                           |
|                                                                      |                                                                                         |                                                                                           |                                                                                           | 3                                                                                       | 0000 c                                                                                    | ycles                                                                                   |                                                                                           |                                                                                           |                                                                                         |                                                                                           |
| 1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>av.<br>max<br>min | 012<br>019<br>018<br>021<br>012<br>054<br>012<br>017<br>0/C<br>083<br>027<br>083<br>012 | 012<br>020<br>023<br>012<br>056<br>013<br>018<br>0/C<br>094<br>029<br>094<br>012          | 011<br>031<br>022<br>023<br>013<br>057<br>012<br>018<br>1673<br>074<br>193<br>1673<br>011 | 013<br>031<br>025<br>022<br>065<br>013<br>025<br>0/C<br>081<br>031<br>081<br>012        | 012<br>032<br>021<br>024<br>013<br>079<br>013<br>020<br>0/C<br>093<br>034<br>093<br>012   | 012<br>026<br>024<br>023<br>012<br>075<br>013<br>020<br>0/C<br>107<br>034<br>107<br>012 | 012<br>026<br>024<br>023<br>013<br>071<br>013<br>026<br>0/C<br>108<br>035<br>108<br>012   | 012<br>031<br>022<br>024<br>012<br>087<br>013<br>018<br>0/C<br>098<br>035<br>098<br>012   | 012<br>023<br>024<br>013<br>092<br>013<br>019<br>0/C<br>086<br>033<br>092<br>012        | 012<br>023<br>025<br>020<br>013<br>101<br>012<br>020<br>0/C<br>084<br>034<br>101<br>012   |
|                                                                      |                                                                                         |                                                                                           |                                                                                           | 4                                                                                       | .0000 cy                                                                                  | cles                                                                                    |                                                                                           |                                                                                           |                                                                                         |                                                                                           |
| 1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>av.<br>max<br>min | 012<br>021<br>026<br>017<br>011<br>036<br>012<br>023<br>292<br>063<br>051<br>292<br>011 | 013<br>024<br>025<br>018<br>012<br>039<br>013<br>020<br>1822<br>078<br>206<br>1822<br>012 | 014<br>064<br>033<br>019<br>013<br>038<br>013<br>028<br>0/C<br>066<br>032<br>066<br>013   | 012<br>030<br>026<br>018<br>012<br>038<br>014<br>025<br>0/C<br>072<br>027<br>072<br>012 | 012<br>066<br>031<br>019<br>013<br>035<br>015<br>031<br>617<br>060<br>089<br>617<br>012   | 013<br>059<br>037<br>020<br>013<br>039<br>015<br>026<br>0/C<br>050<br>030<br>059<br>013 | 012<br>044<br>028<br>020<br>013<br>036<br>013<br>025<br>0/C<br>065<br>028<br>065<br>012   | 013<br>042<br>040<br>019<br>012<br>038<br>015<br>026<br>1262<br>069<br>153<br>1262<br>012 | 014<br>032<br>034<br>020<br>013<br>040<br>017<br>031<br>0/C<br>109<br>034<br>109<br>013 | 014<br>026<br>031<br>020<br>013<br>051<br>016<br>029<br>0/C<br>060<br>028<br>060<br>013   |
|                                                                      |                                                                                         |                                                                                           |                                                                                           | 5                                                                                       | 0000 cy                                                                                   | ycles                                                                                   |                                                                                           |                                                                                           |                                                                                         |                                                                                           |
| 1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>av.<br>max<br>min | 012<br>020<br>026<br>017<br>012<br>056<br>011<br>018<br>402<br>048<br>062<br>402<br>011 | 012<br>020<br>031<br>017<br>012<br>062<br>011<br>017<br>162<br>040<br>038<br>162<br>011   | 012<br>021<br>033<br>019<br>013<br>063<br>011<br>021<br>1236<br>053<br>148<br>1236<br>011 | 012<br>026<br>028<br>019<br>013<br>081<br>012<br>019<br>653<br>042<br>090<br>653<br>012 | 012<br>048<br>036<br>019<br>014<br>077<br>012<br>023<br>1003<br>062<br>130<br>1003<br>012 | 013<br>067<br>034<br>021<br>014<br>124<br>012<br>030<br>084<br>076<br>047<br>124<br>012 | 013<br>039<br>038<br>019<br>012<br>082<br>012<br>028<br>1042<br>062<br>134<br>1042<br>012 | 012<br>042<br>035<br>020<br>014<br>090<br>012<br>023<br>862<br>046<br>115<br>862<br>012   | 013<br>037<br>036<br>020<br>013<br>099<br>014<br>025<br>112<br>058<br>042<br>112<br>013 | 012<br>041<br>035<br>021<br>015<br>160<br>012<br>022<br>1392<br>053<br>176<br>1392<br>012 |

A13

•

| Probe Deflection | - | Compressed |
|------------------|---|------------|
|------------------|---|------------|

| Probe<br>No.                                                         |                                                                                           |                                                                                         |                                                                                         | 10                                                                                        | reading                                                                                   | gs. (m                                                                                  | Ω)                                                                                        |                                                                                           |                                                                                         |                                                                                         |
|----------------------------------------------------------------------|-------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|
|                                                                      |                                                                                           |                                                                                         |                                                                                         | 6                                                                                         | 0000 c;                                                                                   | ycles                                                                                   |                                                                                           |                                                                                           |                                                                                         |                                                                                         |
| 1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>av.<br>max<br>min | 012<br>019<br>018<br>021<br>022<br>069<br>013<br>015<br>1935<br>126<br>225<br>1935<br>012 | 012<br>026<br>020<br>021<br>063<br>013<br>017<br>0/C<br>214<br>045<br>214<br>012        | 012<br>023<br>021<br>020<br>023<br>072<br>014<br>017<br>0/C<br>258<br>051<br>258<br>012 | 013<br>026<br>023<br>021<br>022<br>081<br>014<br>022<br>1552<br>213<br>198<br>1552<br>013 | 014<br>033<br>023<br>021<br>022<br>096<br>017<br>022<br>1845<br>251<br>234<br>1845<br>014 | 013<br>034<br>025<br>023<br>025<br>091<br>013<br>029<br>0/C<br>176<br>047<br>176<br>013 | 013<br>036<br>028<br>021<br>022<br>088<br>014<br>027<br>1722<br>120<br>209<br>1722<br>013 | 014<br>035<br>030<br>023<br>024<br>095<br>014<br>030<br>1643<br>238<br>214<br>1643<br>014 | 014<br>041<br>035<br>022<br>024<br>093<br>017<br>034<br>0/C<br>248<br>058<br>248<br>014 | 014<br>035<br>059<br>025<br>024<br>087<br>017<br>022<br>0/C<br>153<br>048<br>153<br>014 |
|                                                                      |                                                                                           |                                                                                         |                                                                                         | 7                                                                                         | 0000 cy                                                                                   | vcles                                                                                   |                                                                                           |                                                                                           |                                                                                         |                                                                                         |
| 1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>av.<br>max<br>min | 015<br>032<br>016<br>041<br>016<br>037<br>014<br>018<br>0/C<br>147<br>037<br>147<br>014   | 012<br>031<br>013<br>043<br>012<br>036<br>013<br>018<br>0/C<br>139<br>035<br>139<br>012 | 013<br>033<br>014<br>046<br>013<br>054<br>014<br>022<br>0/C<br>180<br>043<br>180<br>013 | 014<br>028<br>014<br>062<br>013<br>041<br>013<br>025<br>0/C<br>445<br>072<br>445<br>013   | 015<br>031<br>018<br>047<br>013<br>048<br>014<br>029<br>0/C<br>391<br>067<br>391<br>013   | 013<br>034<br>014<br>061<br>013<br>043<br>013<br>023<br>0/C<br>374<br>065<br>374<br>013 | 015<br>035<br>016<br>054<br>012<br>054<br>013<br>029<br>0/C<br>320<br>060<br>320<br>012   | 014<br>048<br>016<br>058<br>013<br>050<br>013<br>028<br>0/C<br>254<br>054<br>254<br>013   | 015<br>054<br>017<br>052<br>013<br>068<br>015<br>031<br>0/C<br>249<br>057<br>249<br>013 | 013<br>050<br>016<br>053<br>013<br>059<br>014<br>030<br>0/C<br>428<br>075<br>428<br>013 |
|                                                                      |                                                                                           |                                                                                         |                                                                                         | 8                                                                                         | 0000 cy                                                                                   | cles                                                                                    |                                                                                           |                                                                                           |                                                                                         |                                                                                         |
| 1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>av.<br>max<br>min | 014<br>017<br>012<br>033<br>013<br>119<br>013<br>017<br>0/C<br>158<br>044<br>158<br>012   | 018<br>025<br>015<br>033<br>015<br>086<br>023<br>023<br>0/C<br>281<br>057<br>281<br>015 | 013<br>020<br>012<br>036<br>013<br>132<br>013<br>025<br>0/C<br>439<br>078<br>439<br>012 | 015<br>024<br>013<br>037<br>012<br>133<br>013<br>029<br>0/C<br>472<br>083<br>472<br>012   | 010<br>029<br>018<br>043<br>013<br>169<br>018<br>028<br>0/C<br>508<br>092<br>508<br>010   | 014<br>027<br>016<br>041<br>013<br>123<br>016<br>033<br>0/C<br>752<br>115<br>752<br>013 | 015<br>030<br>017<br>044<br>016<br>188<br>015<br>038<br>0/C<br>486<br>094<br>486<br>015   | 015<br>030<br>017<br>041<br>013<br>192<br>014<br>027<br>0/C<br>227<br>064<br>227<br>013   | 015<br>030<br>014<br>044<br>014<br>185<br>015<br>028<br>0/C<br>277<br>069<br>277<br>014 | 015<br>031<br>017<br>042<br>013<br>163<br>025<br>043<br>0/C<br>307<br>072<br>307<br>013 |

.

.

•

| Probe | Deflection | <br>Compressed |
|-------|------------|----------------|

| Probe |  |
|-------|--|
|       |  |

•

# 10 readings. (m $\Omega$ )

No.

| 1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>av.<br>max<br>min | 012<br>018<br>034<br>013<br>018<br>064<br>015<br>019<br>1549<br>533<br>227<br>1549<br>012 | 012<br>031<br>041<br>013<br>017<br>063<br>015<br>023<br>0/C<br>998<br>134<br>998<br>012 | 013<br>023<br>077<br>013<br>018<br>066<br>016<br>037<br>0/C<br>1536<br>199<br>1536<br>013 | 013<br>024<br>062<br>013<br>018<br>074<br>016<br>036<br>0/C<br>1686<br>215<br>1686<br>013 | 013<br>023<br>061<br>013<br>018<br>086<br>016<br>040<br>0/C<br>0/C<br>033<br>086<br>013 | 013<br>026<br>068<br>013<br>018<br>069<br>016<br>045<br>0/C<br>380<br>072<br>380<br>013   | 013<br>046<br>065<br>014<br>020<br>070<br>017<br>029<br>0/C<br>1582<br>206<br>1582<br>013 | 014<br>052<br>059<br>013<br>020<br>067<br>016<br>029<br>0/C<br>942<br>134<br>942<br>013 | 016<br>052<br>043<br>014<br>020<br>081<br>051<br>045<br>0/C<br>1362<br>187<br>1362<br>014 | 013<br>040<br>063<br>013<br>019<br>093<br>016<br>041<br>0/C<br>0/C<br>037<br>093<br>013   |
|----------------------------------------------------------------------|-------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|
| ·                                                                    |                                                                                           |                                                                                         |                                                                                           | 10                                                                                        | 00000                                                                                   | cycles                                                                                    |                                                                                           |                                                                                         |                                                                                           |                                                                                           |
| 1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>av.<br>max<br>min | 012<br>031<br>027<br>018<br>013<br>280<br>014<br>020<br>1568<br>188<br>217<br>1568<br>012 | 013<br>039<br>030<br>019<br>014<br>294<br>014<br>024<br>0/C<br>173<br>068<br>294<br>013 | 014<br>027<br>054<br>019<br>013<br>334<br>016<br>024<br>0/C<br>278<br>086<br>334<br>013   | 014<br>024<br>056<br>018<br>013<br>248<br>014<br>026<br>0/C<br>196<br>067<br>248<br>013   | 014<br>030<br>052<br>020<br>013<br>336<br>014<br>029<br>0/C<br>908<br>157<br>908<br>013 | 013<br>022<br>055<br>020<br>013<br>257<br>013<br>037<br>0/C<br>1113<br>171<br>1113<br>013 | 014<br>035<br>060<br>019<br>013<br>222<br>015<br>033<br>0/C<br>903<br>146<br>903<br>013   | 012<br>031<br>072<br>019<br>014<br>248<br>013<br>022<br>0/C<br>771<br>133<br>771<br>012 | 013<br>032<br>049<br>019<br>014<br>235<br>013<br>029<br>0/C<br>892<br>144<br>892<br>013   | 014<br>038<br>067<br>019<br>015<br>245<br>013<br>025<br>0/C<br>1628<br>229<br>1628<br>013 |
|                                                                      |                                                                                           |                                                                                         |                                                                                           | 11                                                                                        | 10000                                                                                   | cycles                                                                                    |                                                                                           |                                                                                         |                                                                                           |                                                                                           |
| 1<br>2<br>3<br>4<br>5<br>6<br>7                                      | 012<br>033<br>021<br>053<br>037<br>079<br>016                                             | 013<br>063<br>036<br>079<br>046<br>090<br>018                                           | 014<br>074<br>027<br>106<br>047<br>107<br>015                                             | 013<br>055<br>040<br>118<br>050<br>099<br>016<br>022                                      | 012<br>042<br>032<br>045<br>053<br>102<br>016<br>021                                    | 012<br>054<br>036<br>050<br>056<br>068<br>017                                             | 012<br>118<br>041<br>062<br>063<br>101<br>020                                             | 012<br>105<br>033<br>057<br>073<br>137<br>018                                           | 012<br>086<br>030<br>046<br>062<br>167<br>020<br>024                                      | 011<br>075<br>035<br>050<br>069<br>174<br>019                                             |
| 9<br>10<br>av.<br>max                                                | 0/C<br>964<br>136<br>964<br>012                                                           | 0/C<br>1253<br>179<br>1253<br>013                                                       | 0/C<br>1758<br>241<br>1758<br>014                                                         | 0/C<br>032<br>049<br>118<br>013                                                           | 0/C<br>034<br>039<br>102<br>012                                                         | 0/C<br>033<br>038<br>068<br>012                                                           | 0/C<br>047<br>053<br>118<br>012                                                           | 1955<br>041<br>245<br>1955<br>012                                                       | 0/C<br>052<br>055<br>167<br>012                                                           | 0/C<br>062<br>057<br>174<br>011                                                           |

| Probe | Deflection | on – | Compressed |
|-------|------------|------|------------|
|-------|------------|------|------------|

|              |                   |            | -          |              |            |             | •••••        |            |             |            |  |  |
|--------------|-------------------|------------|------------|--------------|------------|-------------|--------------|------------|-------------|------------|--|--|
| Probe<br>No. | 10 readings. (mΩ) |            |            |              |            |             |              |            |             |            |  |  |
|              |                   |            |            | 1            | 20000      | cycles      |              |            |             |            |  |  |
| 1<br>2       | 012<br>026        | 014<br>039 | 012<br>030 | 013<br>037   | 014<br>046 | 012<br>043  | 013<br>045   | 013<br>081 | 014<br>085  | 013<br>088 |  |  |
| 3            | 025               | 052        | 029        | 030          | 046        | 035         | 025          | 035        | 036         | 026        |  |  |
| 4            | 061               | 058        | 042        | 081          | 064        | 082         | 043          | 063        | 089         | 042        |  |  |
| 5            | 816               | 576        | 703        | 1030         | 795        | 946         | 668<br>071   | 605        | 1068        | //1<br>067 |  |  |
| 0<br>7       | 017               | 019        | 047        | 019          | 019        | 018         | 018          | 016        | 020         | 020        |  |  |
| 8            | 016               | 018        | 022        | 019          | 032        | 024         | 021          | 028        | 037         | 023        |  |  |
| 9            | 0/C               | 0/C        | 0/C        | 0/C          | 0/C        | 0/C         | 1948         | 0/C        | 0/C         | 0/C        |  |  |
| 10           | 541               | 277        | 105        | 193          | 823        | 1009        | 682          | 072        | 080         | 135        |  |  |
| av.          | 174               | 123        | 111        | 165          | 211        | 249         | 353          | 107        | 166         | 131        |  |  |
| max          | 816               | 576<br>01% | 703        | 1030         | 823        | 1009        | 1948         | 005        | 1068        | 013        |  |  |
| 111 1 1 1    | 012               | 014        | 012        | 015          | 014        | 012         | 015          | 015        | 014         | 015        |  |  |
|              | 130000 cycles     |            |            |              |            |             |              |            |             |            |  |  |
| 1            | 012               | 012        | 013        | 012          | 013        | 031         | 012          | 016        | 012         | 013        |  |  |
| 2            | 012               | 012        | 035        | 039          | 013        | 090         | 055          | 047        | 034         | 055        |  |  |
| 3            | 020               | 022        | 029        | 024          | 031        | 047         | 027          | 037        | 029         | 036        |  |  |
| 4            | 054               | 046        | 060        | 045          | 087        | 048         | 037          | 091        | 074         | 075        |  |  |
| 5            | 110               | 112        | 095        | 098          | 101        | 119         | 101          | 097        | 098         | 102        |  |  |
| 6            | 046               | 046        | 041        | 095          | 050        | 036         | 056          | 044        | 050         | 059        |  |  |
| /            | 021               | 020        | 021        | 022          | 023        | 062         | 027          | 037        | 028         | 024        |  |  |
| 0<br>9       | 0/0               | 0/C        | 0/0        | 0/C          | 0/0        | 000         | 0/0          | 0/0        | 0/C         | 047<br>0/C |  |  |
| 10           | 1900              | 1979       | 0/C        | 1823         | 0/C        | 0/C         | 0/C          | 1991       | 663         | 576        |  |  |
| av.          | 246               | 255        | 041        | 242          | 047        | 062         | 044          | 268        | 116         | 109        |  |  |
| max          | 1900              | 1979       | 095        | 1823         | 101        | 119         | 101          | 1991       | 663         | 576        |  |  |
| min          | 012               | 012        | 013        | 012          | 013        | 031         | 012          | 016        | 012         | 013        |  |  |
|              |                   |            |            | 14           | 40000      | cvcles      |              |            |             |            |  |  |
|              |                   |            |            |              |            |             |              |            |             |            |  |  |
| 1            | 016               | 016        | 014        | 013          | 015        | 015         | 013          | 013        | 016         | 019        |  |  |
| 2            | 022               | 029        | 031        | 037          | 043        | 042         | 055          | 057        | 098         | 065        |  |  |
| 3            | 073               | 010        | 021        | 045          | 029        | 020         | 018          | 019        | 122         | 121        |  |  |
| 4            | 073               | 020        | 020        | 040          | 020        | 042         | 042          | 020        | -022        | 023        |  |  |
| 6            | 078               | 049        | 091        | 081          | 070        | 137         | 099          | 086        | 133         | 070        |  |  |
| 7            | 029               | 032        | 029        | 036          | 031        | 036         | 036          | 031        | 027         | 152        |  |  |
| 8            | 016               | 051        | 038        | 043          | 071        | 043         | 035          | 049        | 057         | 076        |  |  |
| 9            | 0/C               | 0/0        | 1315       | 1986         | 0/C        | 1402        | 1894         | 1952       | 1847        | 0/C        |  |  |
| 10           | 1971              | 1852       | 0/C        | 0/C          | 0/0        | 0/0         | 0/0          | 0/0        | 0/0         | 0/0        |  |  |
| av.          | 249               | 235        | 121E       | 205          | 040        | 1401        | 240          | 1052       | 200         | 101        |  |  |
| max          | 19/1              | 1822       | 1313       | U1 3<br>1980 | 090        | 140Z<br>015 | 1094         | 1922       | 104/<br>016 | 019        |  |  |
| 111-4-1-1    | ~~~               | 0 T U      | ~ ~ ~      | ~10          | ~          | ~           | <b>U 1 U</b> |            | ~ ~ ~       | ~ ~ /      |  |  |

1

. .

| Probe | 10 re | eadings. | (mQ)                                  |
|-------|-------|----------|---------------------------------------|
| 11000 |       |          | · · · · · · · · · · · · · · · · · · · |

No.

1

## 150000 cycles

| 1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>av.<br>max<br>min | 028<br>044<br>026<br>067<br>034<br>775<br>077<br>035<br>934<br>1426<br>344<br>1426<br>026 | 022<br>034<br>020<br>035<br>025<br>352<br>040<br>021<br>0/C<br>0/C<br>068<br>352<br>020 | 032<br>030<br>027<br>034<br>027<br>414<br>069<br>032<br>0/C<br>1030<br>188<br>1030'<br>027 | 034<br>035<br>025<br>034<br>025<br>434<br>076<br>076<br>077<br>0/C<br>1871<br>284<br>1871<br>025 | 040<br>031<br>027<br>031<br>026<br>392<br>047<br>035<br>0/C<br>078<br>392<br>026               | 047<br>030<br>040<br>032<br>024<br>190<br>086<br>055<br>0/C<br>0/C<br>063<br>190<br>024 | 031<br>029<br>025<br>030<br>025<br>373<br>068<br>040<br>0/C<br>0/C<br>0/C<br>077<br>373<br>025 | 044<br>028<br>028<br>030<br>024<br>271<br>068<br>062<br>0/C<br>0/C<br>069<br>271<br>024 | 048<br>027<br>028<br>029<br>024<br>276<br>038<br>045<br>0/C<br>0/C<br>069<br>276<br>024 | 047<br>029<br>030<br>025<br>234<br>069<br>077<br>0/C<br>0/C<br>0/C<br>067<br>234<br>025        |
|----------------------------------------------------------------------|-------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|
|                                                                      |                                                                                           |                                                                                         |                                                                                            | 16                                                                                               | 50000 a                                                                                        | cycles                                                                                  |                                                                                                |                                                                                         |                                                                                         |                                                                                                |
| 1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>av.<br>max<br>min | 106<br>116<br>041<br>022<br>053<br>017<br>018<br>1740<br>0/C<br>237<br>1740<br>017        | 030<br>087<br>031<br>022<br>102<br>015<br>022<br>0/C<br>0/C<br>0/C<br>041<br>102<br>015 | 028<br>119<br>039<br>022<br>023<br>094<br>016<br>022<br>0/C<br>0/C<br>045<br>119<br>016    | 029<br>111<br>032<br>028<br>022<br>076<br>016<br>019<br>0/C<br>0/C<br>041<br>111<br>016          | 060<br>131<br>063<br>042<br>023<br>123<br>016<br>054<br>0/C<br>0/C<br>0/C<br>064<br>131<br>016 | 028<br>173<br>047<br>022<br>074<br>016<br>034<br>0/C<br>0/C<br>052<br>173<br>016        | 029<br>144<br>051<br>023<br>024<br>077<br>016<br>044<br>0/C<br>0/C<br>051<br>144<br>016        | 033<br>355<br>022<br>022<br>081<br>016<br>013<br>317<br>1852<br>274<br>1852<br>013      | 030<br>258<br>040<br>022<br>023<br>080<br>017<br>028<br>942<br>0/C<br>160<br>942<br>017 | 030<br>417<br>039<br>026<br>028<br>099<br>015<br>026<br>0/C<br>0/C<br>0/C<br>085<br>417<br>015 |
|                                                                      |                                                                                           |                                                                                         |                                                                                            | 17                                                                                               | 70000 d                                                                                        | cycles                                                                                  |                                                                                                |                                                                                         |                                                                                         |                                                                                                |
| 1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>av.               | 034<br>117<br>028<br>032<br>024<br>147<br>017<br>013<br>0/C<br>1206<br>179                | 030<br>186<br>027<br>026<br>024<br>104<br>017<br>016<br>0/C<br>1326<br>195              | 031<br>240<br>033<br>037<br>024<br>188<br>017<br>018<br>0/C<br>0/C<br>0/C                  | 033<br>216<br>031<br>035<br>025<br>223<br>017<br>018<br>0/C<br>1375<br>219                       | 030<br>410<br>028<br>032<br>024<br>150<br>018<br>022<br>0/C<br>0/C<br>0/C                      | 046<br>272<br>038<br>038<br>024<br>183<br>016<br>029<br>0/C<br>0/C<br>080               | 051<br>333<br>040<br>039<br>024<br>164<br>017<br>040<br>0/C<br>0/C<br>088                      | 049<br>280<br>046<br>039<br>025<br>186<br>018<br>028<br>0/C<br>0/C<br>0/C               | 033<br>313<br>034<br>032<br>024<br>184<br>017<br>019<br>0/C<br>1781<br>270              | 042<br>379<br>032<br>025<br>197<br>018<br>022<br>0/C<br>0/C<br>0/C                             |
| max<br>min                                                           | 1206<br>013                                                                               | 1326<br>016                                                                             | 240<br>0 <b>1</b> 7                                                                        | 13/5<br>017                                                                                      | 410<br>018                                                                                     | 272<br>016                                                                              | 333<br>017                                                                                     | 280<br>018                                                                              | 1781<br>017                                                                             | 379<br>018                                                                                     |

| Probe | Deflection | - | Compressed |
|-------|------------|---|------------|
|       |            |   |            |

| Probe<br>No.                                                         |                                                                                             |                                                                                           |                                                                                            | 10                                                                                        | readin                                                                                    | ngs. (m                                                                                    | lΩ)                                                                                       |                                                                                         |                                                                                             |                                                                                            |
|----------------------------------------------------------------------|---------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|
|                                                                      |                                                                                             |                                                                                           |                                                                                            | 1                                                                                         | .80000                                                                                    | cycles                                                                                     |                                                                                           |                                                                                         |                                                                                             |                                                                                            |
| 1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>av.<br>max<br>min | 049<br>256<br>036<br>028<br>024<br>015<br>015<br>0/C<br>0/C<br>063<br>256<br>015            | 058<br>220<br>041<br>030<br>025<br>104<br>016<br>027<br>0/C<br>1931<br>272<br>1931<br>016 | 053<br>254<br>044<br>045<br>024<br>188<br>016<br>026<br>1379<br>1918<br>394<br>1918<br>016 | 030<br>305<br>045<br>037<br>026<br>155<br>019<br>020<br>0/C<br>1569<br>245<br>1569<br>019 | 019<br>345<br>060<br>032<br>028<br>080<br>027<br>032<br>1664<br>0/C<br>254<br>1664<br>019 | 051<br>360<br>056<br>039<br>025<br>140<br>017<br>046<br>1212<br>1769<br>371<br>1769<br>017 | 054<br>486<br>058<br>026<br>153<br>018<br>046<br>1621<br>0/C<br>277<br>1621<br>018        | 047<br>255<br>063<br>026<br>193<br>019<br>028<br>0/C<br>0/C<br>083<br>255<br>019        | 035<br>426<br>062<br>034<br>025<br>153<br>018<br>023<br>0/C<br>0/C<br>097<br>426<br>018     | 048<br>028<br>054<br>025<br>139<br>020<br>025<br>0/C<br>1812<br>242<br>1812<br>020         |
|                                                                      |                                                                                             |                                                                                           |                                                                                            | 1                                                                                         | 90000                                                                                     | cycles                                                                                     |                                                                                           |                                                                                         |                                                                                             |                                                                                            |
| 1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>av.<br>max<br>min | 107<br>1462<br>026<br>173<br>229<br>085<br>026<br>018<br>1673<br>1023<br>482<br>1673<br>018 | 108<br>982<br>029<br>186<br>261<br>118<br>017<br>025<br>0/C<br>1663<br>376<br>1663<br>017 | 080<br>746<br>029<br>187<br>268<br>145<br>023<br>037<br>0/C<br>0/C<br>189<br>746<br>023    | 171<br>1162<br>031<br>223<br>292<br>136<br>027<br>032<br>0/C<br>0/C<br>259<br>1162<br>027 | 167<br>1137<br>029<br>208<br>278<br>114<br>022<br>036<br>0/C<br>0/C<br>248<br>1137<br>022 | 182<br>1202<br>031<br>223<br>313<br>103<br>028<br>034<br>0/C<br>1982<br>455<br>1982<br>028 | 126<br>1302<br>030<br>222<br>262<br>135<br>026<br>024<br>0/C<br>0/C<br>265<br>1302<br>024 | 084<br>0/C<br>032<br>139<br>350<br>177<br>025<br>035<br>0/C<br>0/C<br>120<br>350<br>025 | 193<br>1723<br>033<br>205<br>319<br>131<br>029<br>045<br>1762<br>1671<br>611<br>1762<br>033 | 108<br>1037<br>029<br>204<br>299<br>125<br>027<br>042<br>0/C<br>1971<br>426<br>1971<br>027 |
|                                                                      |                                                                                             |                                                                                           |                                                                                            | 2                                                                                         | 00000                                                                                     | cycles                                                                                     |                                                                                           |                                                                                         |                                                                                             |                                                                                            |
| 1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>av.<br>max<br>min | 115<br>535<br>033<br>132<br>540<br>065<br>024<br>017<br>0/C<br>0/C<br>182<br>540<br>017     | 040<br>745<br>033<br>112<br>445<br>080<br>026<br>016<br>0/C<br>1191<br>298<br>1191<br>016 | 092<br>777<br>038<br>110<br>417<br>067<br>024<br>026<br>0/C<br>1791<br>371<br>1791<br>024  | 286<br>803<br>048<br>156<br>325<br>077<br>027<br>073<br>0/C<br>1958<br>417<br>1958<br>027 | 230<br>892<br>042<br>143<br>423<br>094<br>025<br>032<br>0/C<br>1291<br>352<br>1291<br>025 | 083<br>1151<br>043<br>157<br>444<br>097<br>018<br>041<br>0/C<br>1771<br>422<br>1771<br>018 | 233<br>1161<br>051<br>172<br>522<br>072<br>017<br>062<br>0/C<br>0/C<br>286<br>1161<br>017 | 062<br>0/C<br>044<br>151<br>487<br>120<br>026<br>028<br>0/C<br>0/C<br>131<br>487<br>026 | 121<br>0/C<br>059<br>171<br>518<br>110<br>022<br>032<br>1047<br>0/C<br>260<br>1047<br>022   | 248<br>1056<br>059<br>191<br>430<br>085<br>022<br>083<br>0/C<br>0/C<br>271<br>1056<br>022  |

A18

| Probe | Deflectio | n – | Compressed |
|-------|-----------|-----|------------|
|-------|-----------|-----|------------|

| Probe |  |
|-------|--|
| NI    |  |

## 10 readings. (m $\Omega$ )

.

No.

.

•.•

# 210000 cycles

| 094<br>256<br>036<br>147<br>035<br>044<br>020<br>021<br>0/C<br>0/C<br>081<br>256<br>020   | 192<br>304<br>041<br>153<br>032<br>052<br>021<br>085<br>0/C<br>0/C<br>110<br>304<br>021                                                                                                                                                                                                               | 185<br>432<br>043<br>162<br>036<br>090<br>034<br>101<br>0/C<br>1921<br>333<br>1921<br>034                                                                                                                                                                                                                                           | 173<br>317<br>057<br>160<br>034<br>068<br>027<br>105<br>0/C<br>0/C<br>117<br>317<br>027   | 089<br>604<br>050<br>150<br>035<br>079<br>021<br>038<br>1543<br>0/C<br>289<br>1543<br>021  | 045<br>1161<br>047<br>107<br>037<br>081<br>021<br>035<br>0/C<br>0/C<br>191<br>1161<br>021                                                                                                                                                                                                                                                                                    | 051<br>637<br>050<br>158<br>038<br>075<br>020<br>039<br>0/C<br>133<br>637<br>020                                                                                                                                                                                                                                                                                                  | 046<br>1082<br>049<br>143<br>038<br>133<br>020<br>033<br>0/C<br>1451<br>332<br>1451<br>020                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 278<br>1436<br>078<br>201<br>036<br>076<br>030<br>048<br>0/C<br>0/C<br>272<br>1436<br>030                                                                                                                                                                                                                                                                                             | 047<br>1591<br>048<br>122<br>034<br>073<br>019<br>025<br>0/C<br>1321<br>364<br>1591<br>019                                                                                                                                                                                                                                                                                                 |
|-------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                           |                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                     | 2                                                                                         | 20000                                                                                      | cycles                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                            |
| 068<br>675<br>352<br>037<br>119<br>035<br>015<br>023<br>0/C<br>1502<br>314<br>1502<br>015 | 039<br>513<br>376<br>034<br>141<br>057<br>028<br>036<br>0/C<br>1591<br>312<br>1591<br>028                                                                                                                                                                                                             | 105<br>678<br>992<br>037<br>138<br>045<br>032<br>069<br>0/C<br>0/C<br>262<br>992<br>032                                                                                                                                                                                                                                             | 041<br>802<br>805<br>030<br>125<br>060<br>049<br>042<br>0/C<br>1092<br>338<br>1092<br>030 | 058<br>1062<br>1508<br>041<br>139<br>067<br>037<br>056<br>0/C<br>0/C<br>371<br>1508<br>037 | 055<br>1123<br>1921<br>035<br>133<br>055<br>023<br>046<br>0/C<br>1221<br>512<br>1921<br>023                                                                                                                                                                                                                                                                                  | 108<br>834<br>0/C<br>036<br>128<br>052<br>055<br>172<br>1831<br>0/C<br>402<br>1831<br>036                                                                                                                                                                                                                                                                                         | 058<br>0/C<br>1860<br>035<br>139<br>073<br>024<br>051<br>1562<br>0/C<br>475<br>1860<br>024                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 078<br>1672<br>1682<br>037<br>133<br>054<br>032<br>057<br>0/C<br>0/C<br>468<br>1682<br>032                                                                                                                                                                                                                                                                                            | 107<br>1582<br>1774<br>036<br>169<br>055<br>033<br>047<br>0/C<br>0/C<br>475<br>1774<br>033                                                                                                                                                                                                                                                                                                 |
| -                                                                                         |                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                     | 2                                                                                         | 30000                                                                                      | cycles                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                            |
| 060<br>150<br>394<br>026<br>057<br>063<br>020<br>019<br>1723<br>0/C<br>279<br>1723        | 051<br>272<br>594<br>029<br>055<br>062<br>022<br>029<br>1042<br>0/C<br>239<br>1042                                                                                                                                                                                                                    | 053<br>161<br>656<br>033<br>058<br>055<br>022<br>033<br>0/C<br>0/C<br>133<br>656                                                                                                                                                                                                                                                    | 077<br>190<br>1282<br>030<br>047<br>086<br>023<br>035<br>1723<br>1431<br>492<br>1723      | 089<br>171<br>1363<br>047<br>049<br>085<br>019<br>031<br>0/C<br>1676<br>392<br>1676        | 085<br>212<br>0/C<br>044<br>050<br>089<br>024<br>026<br>1992<br>1381<br>433<br>1992                                                                                                                                                                                                                                                                                          | 076<br>295<br>0/C<br>034<br>050<br>070<br>025<br>036<br>0/C<br>1682<br>283<br>1682                                                                                                                                                                                                                                                                                                | 079<br>171<br>0/C<br>043<br>056<br>099<br>022<br>038<br>0/C<br>0/C<br>0/C<br>072<br>171                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 148<br>292<br>0/C<br>101<br>057<br>075<br>018<br>083<br>0/C<br>1499<br>284<br>1499                                                                                                                                                                                                                                                                                                    | 080<br>360<br>0/C<br>057<br>061<br>092<br>023<br>027<br>0/C<br>1052<br>219<br>1052                                                                                                                                                                                                                                                                                                         |
|                                                                                           | 094<br>256<br>036<br>147<br>035<br>044<br>020<br>021<br>0/C<br>0/C<br>081<br>256<br>020<br>068<br>675<br>352<br>037<br>119<br>035<br>015<br>023<br>0/C<br>1502<br>314<br>1502<br>015<br>015<br>015<br>015<br>015<br>023<br>0/C<br>060<br>150<br>394<br>026<br>057<br>063<br>020<br>019<br>1723<br>0/C | 094 192   256 304   036 041   147 153   035 032   044 052   020 021   021 085   0/C 0/C   0/C 0/C   0/C 0/C   068 039   675 513   352 376   037 034   119 141   035 057   015 028   023 036   0/C 0/C   1502 1591   314 312   1502 1591   015 028   026 029   057 055   063 062   020 022   019 029   1723 1042   0/C 0/C   029 022 | $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                      | $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                       | 094 192 185 173 089   256 304 432 317 604   036 041 043 057 050   147 153 162 160 150   035 032 036 034 035   044 052 090 068 079   020 021 034 027 021   021 085 101 105 038   0/C 0/C 1921 0/C 0/C   081 110 333 117 289   256 304 1921 317 1543   0/C 0/C 1034 027 021   035 057 045 060 067   352 376 992 805 1508   037 034 037 030 041   119 141 138 125 139   035 057 | 094 192 185 173 089 045   256 304 432 317 604 1161   036 041 043 057 050 047   147 153 162 160 150 107   035 032 036 034 035 037   044 052 090 068 079 081   020 021 034 027 021 021   021 085 101 105 038 035   0/C 0/C 0/C 0/C 0/C 0/C   041 033 117 289 191   256 304 1921 317 1543 1161   020 021 034 027 021 021   037 034 037 030 041 035   352 376 992 805 1508 1921   037 | 094 192 185 173 089 045 051   256 304 432 317 604 1161 637   036 041 043 057 050 047 050   147 153 162 160 150 107 158   035 032 036 034 035 037 038   044 052 090 068 079 081 075   020 021 034 027 021 021 020   0/C 0/C 0/C 153 0/C 0/C 0/C   0/C 0/C 107 1543 0/C 0/C 0/C   0/C 0/C 0/C 1921 0/C 0/C 0/C 0/C   0/C 0/C 0/C 0/C 0/C 0/C 0/C 0/C   0/C 0/C 0/C 0/C 0/C 0/C 0/C 0/C </td <td>094 192 185 173 089 045 051 046   256 304 432 317 604 1161 637 1082   036 041 043 057 050 047 050 049   147 153 162 160 150 107 158 143   035 032 036 034 035 037 038 038   044 052 090 068 079 081 075 133   020 021 034 027 021 020 020 020   021 045 046 047 046 047 046 047 046   020 021 046 027 021 020 020 020 020 020 020 020 020 020 020 020 020 020 020 020 020 020 020 020</td> <td>094 192 185 173 089 045 051 046 278   256 304 432 317 604 1161 637 1082 1436   036 041 043 057 050 047 050 049 078   147 153 162 160 150 107 158 143 201   035 032 036 034 035 037 038 038 036   044 052 090 068 079 081 075 133 076   020 021 085 101 105 038 035 039 033 048   0/C &lt;</td> | 094 192 185 173 089 045 051 046   256 304 432 317 604 1161 637 1082   036 041 043 057 050 047 050 049   147 153 162 160 150 107 158 143   035 032 036 034 035 037 038 038   044 052 090 068 079 081 075 133   020 021 034 027 021 020 020 020   021 045 046 047 046 047 046 047 046   020 021 046 027 021 020 020 020 020 020 020 020 020 020 020 020 020 020 020 020 020 020 020 020 | 094 192 185 173 089 045 051 046 278   256 304 432 317 604 1161 637 1082 1436   036 041 043 057 050 047 050 049 078   147 153 162 160 150 107 158 143 201   035 032 036 034 035 037 038 038 036   044 052 090 068 079 081 075 133 076   020 021 085 101 105 038 035 039 033 048   0/C < |

•

| Probe D | eflection | - | Compressed |
|---------|-----------|---|------------|
|---------|-----------|---|------------|

| Probe | 10 readings. | (mΩ) |
|-------|--------------|------|
| No    | -            | • •  |

No.

-w

| 1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>av.<br>max<br>min | 048<br>047<br>401<br>040<br>096<br>040<br>021<br>018<br>1262<br>0/C<br>219<br>1262<br>018 | 039<br>037<br>772<br>028<br>097<br>051<br>018<br>019<br>1382<br>1612<br>405<br>1612<br>018 | 113<br>035<br>942<br>034<br>092<br>083<br>020<br>028<br>0/C<br>1162<br>278<br>1162<br>020 | 078<br>050<br>1861<br>040<br>089<br>070<br>018<br>024<br>1981<br>0/C<br>467<br>1981<br>018 | 075<br>034<br>1821<br>040<br>101<br>082<br>020<br>030<br>1091<br>0/C<br>366<br>1821<br>020 | 064<br>037<br>1861<br>032<br>100<br>079<br>019<br>025<br>0/C<br>277<br>1861<br>019        | 102<br>048<br>1964<br>078<br>095<br>061<br>024<br>026<br>0/C<br>299<br>1964<br>024      | 067<br>037<br>0/C<br>048<br>100<br>079<br>020<br>019<br>0/C<br>1421<br>223<br>1421<br>019 | 089<br>038<br>0/C<br>065<br>110<br>081<br>020<br>019<br>0/C<br>1491<br>239<br>1491<br>019  | 087<br>050<br>1861<br>059<br>115<br>075<br>018<br>075<br>018<br>0/C<br>285<br>1861<br>018 |
|----------------------------------------------------------------------|-------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|
|                                                                      |                                                                                           |                                                                                            |                                                                                           | 2                                                                                          | 50000                                                                                      | cycles                                                                                    |                                                                                         |                                                                                           |                                                                                            |                                                                                           |
| 1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>av.<br>max<br>min | 062<br>301<br>297<br>029<br>351<br>127<br>020<br>018<br>0/C<br>1663<br>318<br>1663<br>018 | 150<br>317<br>489<br>048<br>283<br>140<br>030<br>030<br>1719<br>1842<br>504<br>1842<br>030 | 079<br>344<br>652<br>037<br>294<br>118<br>024<br>029<br>1882<br>0/C<br>384<br>1882<br>024 | 128<br>393<br>1346<br>049<br>272<br>120<br>027<br>026<br>0/C<br>1882<br>471<br>1882<br>026 | 109<br>299<br>979<br>034<br>226<br>105<br>031<br>031<br>0/C<br>0/C<br>226<br>979<br>031    | 125<br>514<br>1562<br>063<br>303<br>132<br>031<br>032<br>0/C<br>0/C<br>345<br>1562<br>031 | 264<br>436<br>0/C<br>221<br>306<br>146<br>032<br>104<br>0/C<br>0/C<br>215<br>436<br>032 | 309<br>368<br>1903<br>188<br>287<br>216<br>030<br>091<br>0/C<br>0/C<br>424<br>1903<br>030 | 097<br>471<br>1468<br>029<br>314<br>117<br>021<br>025<br>0/C<br>1805<br>483<br>1805<br>021 | 315<br>481<br>1523<br>361<br>384<br>180<br>026<br>030<br>0/C<br>0/C<br>412<br>1523<br>026 |
|                                                                      |                                                                                           |                                                                                            |                                                                                           | 2                                                                                          | 60000                                                                                      | cycles                                                                                    |                                                                                         |                                                                                           |                                                                                            |                                                                                           |
| 1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>av.               | 079<br>454<br>336<br>033<br>391<br>097<br>025<br>017<br>0/C<br>1991<br>380                | 387<br>418<br>339<br>132<br>505<br>117<br>019<br>018<br>1598<br>0/C<br>392                 | 141<br>724<br>272<br>058<br>443<br>126<br>026<br>020<br>0/C<br>0/C<br>226<br>724          | 256<br>691<br>582<br>159<br>612<br>217<br>023<br>027<br>0/C<br>0/C<br>320                  | 124<br>392<br>465<br>036<br>579<br>223<br>029<br>024<br>0/C<br>0/C<br>234                  | 220<br>627<br>026<br>087<br>633<br>174<br>033<br>049<br>843<br>0/C<br>299                 | 405<br>963<br>016<br>246<br>503<br>120<br>032<br>048<br>1025<br>0/C<br>373              | 239<br>1053<br>864<br>077<br>686<br>228<br>021<br>028<br>1882<br>0/C<br>564               | 106<br>457<br>765<br>027<br>563<br>161<br>022<br>035<br>1546<br>0/C<br>409                 | 325<br>706<br>785<br>153<br>504<br>201<br>024<br>050<br>1802<br>0/C<br>505                |
| max<br>min                                                           | 017                                                                                       | 018                                                                                        | 020                                                                                       | 023                                                                                        | 024                                                                                        | 045                                                                                       | 016                                                                                     | 021                                                                                       | 022                                                                                        | 024                                                                                       |

Probe Deflection - Compressed

| Probe<br>No.                                                         | 10 readings. (mΩ)                                                                         |                                                                                           |                                                                                            |                                                                                           |                                                                                    |                                                                                           |                                                                                           |                                                                                           |                                                                                           |                                                                                            |
|----------------------------------------------------------------------|-------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|
|                                                                      |                                                                                           |                                                                                           |                                                                                            | 2                                                                                         | 70000                                                                              | cycles                                                                                    |                                                                                           |                                                                                           |                                                                                           |                                                                                            |
| 1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>av.<br>max<br>min | 160<br>313<br>109<br>045<br>243<br>131<br>036<br>020<br>0/C<br>0/C<br>132<br>313<br>020   | 157<br>502<br>178<br>051<br>332<br>131<br>037<br>023<br>0/C<br>0/C<br>176<br>502<br>023   | 093<br>332<br>250<br>033<br>338<br>124<br>038<br>028<br>1635<br>0/C<br>319<br>1635<br>028  | 177<br>487<br>307<br>056<br>463<br>134<br>037<br>026<br>1787<br>0/C<br>386<br>1787<br>026 | 105<br>828<br>418<br>034<br>460<br>116<br>044<br>0/C<br>0/C<br>253<br>828<br>024   | 087<br>367<br>428<br>048<br>418<br>139<br>043<br>035<br>0/C<br>0/C<br>195<br>428<br>035   | 233<br>448<br>604<br>262<br>502<br>224<br>049<br>052<br>1682<br>0/C<br>450<br>1682<br>049 | 164<br>512<br>258<br>068<br>764<br>245<br>030<br>031<br>1881<br>0/C<br>439<br>1881<br>030 | 095<br>520<br>606<br>052<br>585<br>113<br>043<br>021<br>0/C<br>0/C<br>254<br>606<br>021   | 152<br>567<br>511<br>065<br>517<br>177<br>040<br>020<br>0/C<br>256<br>567<br>020           |
|                                                                      |                                                                                           |                                                                                           |                                                                                            | 2                                                                                         | 80000                                                                              | cycles                                                                                    |                                                                                           |                                                                                           |                                                                                           |                                                                                            |
| 1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>av.<br>max<br>min | 594<br>059<br>053<br>176<br>0/C<br>043<br>046<br>081<br>1582<br>0/C<br>329<br>1582<br>043 | 381<br>087<br>118<br>098<br>0/C<br>040<br>029<br>108<br>1695<br>0/C<br>319<br>1695<br>029 | 357<br>111<br>162<br>082<br>1788<br>037<br>043<br>071<br>0/C<br>1836<br>498<br>1836<br>037 | 636<br>081<br>180<br>144<br>1492<br>032<br>112<br>204<br>0/C<br>0/C<br>360<br>1492<br>032 | 566<br>084<br>102<br>084<br>1454<br>030<br>027<br>080<br>0/C<br>303<br>1454<br>027 | 352<br>124<br>144<br>080<br>1708<br>039<br>044<br>115<br>0/C<br>0/C<br>325<br>1708<br>039 | 435<br>099<br>165<br>136<br>0/C<br>040<br>042<br>129<br>0/C<br>149<br>435<br>040          | 368<br>100<br>330<br>117<br>1872<br>036<br>052<br>106<br>0/C<br>0/C<br>372<br>1872<br>036 | 751<br>116<br>310<br>130<br>1564<br>035<br>037<br>199<br>0/C<br>0/C<br>392<br>1564<br>035 | 296<br>110<br>301<br>069<br>1791<br>049<br>038<br>132<br>1226<br>0/C<br>445<br>1791<br>038 |
|                                                                      |                                                                                           |                                                                                           |                                                                                            | 2                                                                                         | 90000                                                                              | cycles                                                                                    |                                                                                           |                                                                                           |                                                                                           |                                                                                            |
| 1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>av.<br>max        | 223<br>137<br>026<br>056<br>1421<br>046<br>029<br>046<br>0/C<br>0/C<br>248<br>1421        | 232<br>250<br>036<br>055<br>1890<br>053<br>059<br>054<br>0/C<br>1681<br>478<br>1890       | 204<br>327<br>043<br>037<br>1645<br>053<br>030<br>052<br>0/C<br>1571<br>440<br>1645        | 257<br>512<br>061<br>069<br>0/C<br>056<br>019<br>091<br>0/C<br>1819<br>360<br>1819        | 332<br>476<br>055<br>098<br>1903<br>054<br>023<br>095<br>0/C<br>379<br>1903        | 298<br>505<br>044<br>103<br>1791<br>054<br>050<br>076<br>0/C<br>0/C<br>365<br>1791        | 253<br>458<br>047<br>138<br>1232<br>062<br>054<br>077<br>1743<br>0/C<br>451<br>1743       | 360<br>448<br>056<br>120<br>0/C<br>066<br>036<br>083<br>1282<br>0/C<br>306<br>1282        | 432<br>548<br>047<br>096<br>1214<br>050<br>044<br>083<br>0/C<br>0/C<br>314<br>1214        | 205<br>478<br>059<br>074<br>1652<br>086<br>026<br>077<br>0/C<br>332<br>1652                |
| min                                                                  | 026                                                                                       | 036                                                                                       | 030                                                                                        | 019                                                                                       | 023                                                                                | 044                                                                                       | 047                                                                                       | 036                                                                                       | 044                                                                                       | 026                                                                                        |

| Probe  |            |      |            | 10   | readin | gs. (m | Ω <b>)</b> |      |      |      |
|--------|------------|------|------------|------|--------|--------|------------|------|------|------|
| 101    |            |      |            | -    |        | -      |            |      |      |      |
|        |            |      |            | 3    | 00000  | cycles |            |      |      |      |
| 1      | 160        | 397  | 237        | 287  | 343    | 365    | 375        | 340  | 276  | 352  |
| 2      | 264        | 408  | 476        | 482  | 664    | 498    | 487        | 415  | 010  | 432  |
| 3      | 024        | 049  | 042        | 037  | 038    | 051    | 051        | 052  | 057  | 052  |
| 4      | 082        | 091  | 120        | 092  | 084    | 142    | 087        | 247  | 22/  | 235  |
| 5      | 0/C        | 0/C  | 0/C        | 0/C  | 1262   | 0/C    | 1521       | 0/0  | 1020 | 0/C  |
| 0<br>7 | 140        | 305  | 198        | 213  | 061    | 154    | 1/2        | 232  | 10/  | 243  |
| 2<br>2 | 0.52       | 145  | 027        | 052  | 111    | 034    | 123        | 122  | 108  | 117  |
| 9      | 0/C        | 1302 | 0/C        | 0/0  | 0/C    | 0/C    | 1982       | 0/C  | 0/C  | 1972 |
| 10     | 1643       | 0/C  | 0/C        | 1261 | 0/C    | 1732   | 0/C        | 1964 | 0/C  | 0/C  |
| av.    | 301        | 344  | 164        | 313  | 344    | 380    | 537        | 427  | 243  | 431  |
| max    | 1643       | 1302 | 476        | 1261 | 1262   | 1732   | 1982       | 1964 | 1020 | 1972 |
| min    | 024        | 049  | 027        | 037  | 038    | 034    | 036        | 049  | 010  | 047  |
|        |            |      |            | 3    | 10000  | cycles |            |      |      |      |
| 1      | 267        | 219  | 308        | 443  | 425    | 696    | 275        | 247  | 505  | 246  |
| 2      | 1858       | 0/C  | 1692       | 0/C  | 1113   | 0/C    | 0/C        | 1991 | 0/C  | 1882 |
| 3      | 039        | 051  | 063        | 079  | 116    | 127    | 142        | 105  | 100  | 116  |
| 4      | 016        | 017  | 017        | 019  | 022    | 022    | 021        | 017  | 020  | 019  |
| 5      | 0/C        | 0/C  | 0/C        | 0/C  | 0/C    | 0/C    | 1838       | 1982 | 1860 | 1832 |
| 5      | 038        | 046  | 033        | 0/4  | 055    | 043    | 050        | 029  | 036  | 036  |
| 0      | 030        | 121  | 260        | 062  | 2/6    | 029    | 1/2        | 360  | 175  | 155  |
| 9      | 0/0        | 0/0  | 1843       | 0/C  | 1494   | 0/0    | 1962       | 0/0  | 0/0  | 1862 |
| 10     | 1900       | 0/0  | 0/C        | 0/0  | 0/C    | 0/0    | 0/C        | 0/0  | 0/C  | 0/C  |
| av.    | 526        | 083  | 529        | 281  | 438    | 239    | 556        | 598  | 389  | 686  |
| max    | 1900       | 219  | 1843       | 962  | 1494   | 696    | 1962       | 1991 | 1860 | 1882 |
| min    | 016        | 017  | 017        | 019  | 022    | 022    | 021        | 017  | 020  | 019  |
|        |            |      |            | 3    | 20000  | cycles |            |      |      |      |
| 1      | 705        | 371  | 375        | 320  | 645    | 317    | 341        | 516  | 537  | 906  |
| 2      | 0/C        | 1609 | 1332       | 1413 | 0/C    | 0/C    | 0/C        | 0/C  | 1304 | 0/C  |
| 3      | 052        | 054  | 063        | 071  | 088    | 104    | 113        | 093  | 125  | 110  |
| 4      | 019        | 020  | 018        | 020  | 028    | 024    | 025        | 028  | 021  | 018  |
| )<br>( | 1//4       | 1421 | 1451       | 1918 | 1885   | 1/36   | 1//1       | 1/32 | 1928 | T2A3 |
| 0<br>7 | 101        | 065  | 04/<br>020 | 008  | 0/0    | 069    | 045        | 0/0  | 027  | 069  |
| י<br>ג | 1UZ<br>271 | 044  | 1/0        | 122  | 101    | 102    | 140        | 120  | 177  | 634  |
| 0<br>Q | 2/1<br>0/C | 0/0  | 0/0        | 0/0  | 101    | 010    | 149        | 0/0  | 0/0  | 0.24 |
| 10     | 0/C        | 1591 | 0/C        | 0/C  | 0/C    | 1882   | 0/0        | 1591 | 1790 | 1272 |
| av.    | 425        | 585  | 434        | 504  | 419    | 546    | 354        | 526  | 664  | 587  |
| max    | 1774       | 1609 | 1451       | 1918 | 1882   | 1882   | 1771       | 1732 | 1928 | 1593 |
| min    | 019        | 020  | 018        | 020  | 028    | 024    | 025        | 028  | 021  | 018  |

•

| Probe | Deflection | - | Compressed |  |
|-------|------------|---|------------|--|
|-------|------------|---|------------|--|

| Probe<br>No. |  | 10 | readings. | (mΩ) |
|--------------|--|----|-----------|------|
|              |  |    |           |      |

## 330000 cycles

| 1   | 581  | 1092 | 586  | 587  | 284   | 632    | 507  | 324  | 612  | 320  |
|-----|------|------|------|------|-------|--------|------|------|------|------|
| 2   | 0/C  | 0/C  | 0/C  | 0/C  | 1749  | 0/C    | 1698 | 0/C  | 1831 | 1331 |
| 3   | 031  | 037  | 034  | 036  | 043   | 048    | 038  | 048  | 047  | 046  |
| 4   | 023  | 019  | 025  | 030  | 020   | 032    | 022  | 024  | 019  | 023  |
| 5   | 893  | 1527 | 1526 | 1656 | 1397  | 1601   | 1975 | 0/C  | 1957 | 1684 |
| 6   | 030  | 045  | 038  | 036  | 032   | 038    | 049  | 045  | 063  | 044  |
| 7   | 042  | 134  | 048  | 047  | 051   | 082    | 089  | 089  | 038  | 049  |
| 8   | 096  | 925  | 312  | 298  | 316   | 428    | 328  | 287  | 557  | 256  |
| 9   | 0/C  | 0/C  | 0/C  | 0/C  | 0/C   | 0/C    | 0/C  | 0/C  | 0/C  | 0/C  |
| 10  | 0/C  | 0/C  | 0/C  | 1862 | 0/C   | 1841   | 1381 | 1431 | 0/C  | 1482 |
| av. | 242  | 539  | 367  | 569  | 486   | 587    | 676  | 321  | 640  | 581  |
| max | 893  | 1527 | 1526 | 1862 | 1749  | 1841   | 1975 | 1431 | 1957 | 1684 |
| min | 023  | 019  | 025  | 030  | 020   | 032    | 022  | 024  | 019  | 023  |
|     |      |      |      |      |       |        |      |      |      |      |
|     |      |      |      |      |       |        |      |      |      |      |
|     |      |      |      | 3    | 40000 | cycles |      |      |      |      |
| 1   | 523  | 762  | 1033 | 952  | 1065  | 996    | 1061 | 492  | 696  | 721  |
| 2   | 1437 | 0/C  | 0/C  | 0/C  | 0/C   | 1270   | 1578 | 0/C  | 0/C  | 1199 |
| 3   | 034  | 041  | 053  | 056  | 066   | 064    | 071  | 087  | 084  | 065  |
| 4   | 019  | 023  | 018  | 020  | 025   | 025    | 022  | 024  | 026  | 029  |
| 5   | 0/C  | 1818 | 1785 | 0/C  | 0/C   | 1975   | 0/C  | 1371 | 0/C  | 0/C  |
| 6   | 037  | 039  | 054  | 045  | 062   | 066    | 045  | 064  | 048  | 065  |
| 7   | 053  | 042  | 182  | 062  | 039   | 087    | 160  | 047  | 072  | 039  |
| 8   | 074  | 109  | 1482 | 349  | 427   | 1769   | 1437 | 137  | 231  | 330  |
| 9   | 0/C  | 0/C  | 0/C  | 0/C  | 0/C   | 0/C    | 0/C  | 0/C  | 0/C  | 0/C  |
| 10  | 1301 | 0/C  | 0/C  | 0/C  | 0/C   | 0/C    | 0/C  | 0/C  | 0/C  | 0/C  |
| av. | 434  | 404  | 658  | 247  | 280   | 781    | 624  | 317  | 192  | 349  |
| max | 1437 | 1818 | 1785 | 952  | 1065  | 1975   | 1578 | 1371 | 696  | 1199 |
| min | 019  | 023  | 018  | 020  | 025   | 025    | 022  | 024  | 026  | 029  |
|     |      |      |      |      |       |        |      |      |      |      |

| 1   | 718  | 941  | 953  | 386  | 993  | 1205 | 1333 | 606  | 823  | 800  |
|-----|------|------|------|------|------|------|------|------|------|------|
| 2   | 463  | 486  | 903  | 923  | 754  | 867  | 872  | 527  | 520  | 505  |
| 3   | 646  | 964  | 1035 | 1123 | 1136 | 1352 | 1484 | 1091 | 1187 | 950  |
| 4   | 018  | 019  | 020  | 020  | 023  | 020  | 022  | 019  | 025  | 020  |
| 5   | 645  | 575  | 1223 | 1392 | 1035 | 035  | 1783 | 1196 | 0/C  | 1010 |
| 6   | 022  | 026  | 020  | 024  | 029  | 023  | 035  | 024  | 039  | 020  |
| 7   | 024  | 056  | 025  | 023  | 020  | 056  | 024  | 046  | 027  | 020  |
| 8   | 154  | 1138 | 573  | 488  | 754  | 805  | 1462 | 776  | 1764 | 804  |
| 9   | 0/C  |
| 10  | 1120 | 0/C  | 1471 | 0/C  |
| av. | 424  | 525  | 691  | 547  | 593  | 545  | 876  | 535  | 626  | 516  |
| max | 1120 | 1138 | 1471 | 1392 | 1136 | 1352 | 1783 | 1196 | 1764 | 1010 |
| min | 018  | 019  | 020  | 020  | 020  | 020  | 022  | 019  | 025  | 020  |

| Probe | Deflecti | ion – | Compressed |
|-------|----------|-------|------------|
|-------|----------|-------|------------|

| Probe |
|-------|
| No.   |

## 10 readings. (m $\Omega$ )

## 360000 cycles

| 1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>av.<br>max<br>min | 488<br>521<br>986<br>017<br>845<br>026<br>018<br>169<br>1694<br>0/C<br>529<br>1694<br>017 | 1136<br>635<br>1174<br>020<br>462<br>031<br>030<br>523<br>0/C<br>0/C<br>501<br>1174<br>020  | 951<br>747<br>1303<br>018<br>478<br>028<br>051<br>428<br>0/C<br>0/C<br>500<br>1303<br>018    | 1036<br>723<br>1341<br>017<br>382<br>024<br>023<br>1591<br>0/C<br>642<br>1591<br>017       | 1017<br>626<br>1681<br>020<br>867<br>033<br>030<br>658<br>0/C<br>616<br>1681<br>020       | 883<br>692<br>1591<br>017<br>1502<br>029<br>023<br>266<br>0/C<br>0/C<br>625<br>1591<br>017   | 1093<br>607<br>1703<br>023<br>1583<br>036<br>025<br>687<br>0/C<br>0/C<br>719<br>1703<br>023 | 516<br>694<br>1823<br>021<br>1191<br>035<br>027<br>571<br>0/C<br>0/C<br>609<br>1823<br>021 | 523<br>902<br>1541<br>018<br>992<br>031<br>022<br>053<br>0/C<br>0/C<br>510<br>1541<br>018   | 1184<br>894<br>1928<br>020<br>1872<br>034<br>032<br>1425<br>1163<br>0/C<br>950<br>1928<br>020 |
|----------------------------------------------------------------------|-------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|
|                                                                      |                                                                                           |                                                                                             |                                                                                              | 3                                                                                          | 70000                                                                                     | cycles                                                                                       |                                                                                             |                                                                                            |                                                                                             |                                                                                               |
| 1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>av.<br>max<br>min | 991<br>568<br>1609<br>018<br>726<br>026<br>048<br>475<br>0/C<br>0/C<br>557<br>1609<br>018 | 992<br>707<br>1562<br>020<br>1386<br>030<br>026<br>1920<br>0/C<br>0/C<br>830<br>1920<br>020 | 991<br>684<br>1662<br>023<br>1815<br>037<br>029<br>1502<br>1624<br>0/C<br>929<br>1815<br>023 | 972<br>605<br>1286<br>017<br>1204<br>032<br>032<br>891<br>0/C<br>0/C<br>629<br>1286<br>017 | 854<br>606<br>1602<br>020<br>0/C<br>032<br>025<br>814<br>0/C<br>0/C<br>564<br>1602<br>020 | 1212<br>742<br>1467<br>018<br>1973<br>034<br>020<br>1082<br>0/C<br>0/C<br>818<br>1973<br>018 | 1224<br>664<br>1723<br>818<br>1464<br>033<br>026<br>437<br>0/C<br>0/C<br>798<br>1723<br>026 | 1321<br>545<br>1502<br>018<br>0/C<br>038<br>027<br>1662<br>0/C<br>730<br>1662<br>018       | 1058<br>604<br>1502<br>022<br>1946<br>038<br>021<br>782<br>0/C<br>0/C<br>746<br>1946<br>021 | 983<br>516<br>0/C<br>020<br>1875<br>037<br>081<br>1732<br>0/C<br>0/C<br>749<br>1875<br>020    |
|                                                                      |                                                                                           |                                                                                             |                                                                                              | 3                                                                                          | 80000                                                                                     | cycles                                                                                       |                                                                                             |                                                                                            |                                                                                             |                                                                                               |
| 1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>av.<br>max        | 1153<br>386<br>1382<br>010<br>1273<br>036<br>111<br>367<br>0/C<br>0/C<br>589<br>1382      | 728<br>402<br>1543<br>018<br>1736<br>034<br>023<br>1082<br>1643<br>0/C<br>801<br>1736       | 1123<br>270<br>0/C<br>018<br>1352<br>038<br>024<br>1762<br>0/C<br>0/C<br>655<br>1762         | 496<br>407<br>1663<br>018<br>1570<br>035<br>020<br>393<br>1623<br>0/C<br>691<br>1663       | 563<br>430<br>1896<br>016<br>954<br>028<br>020<br>803<br>1763<br>0/C<br>719<br>1896       | 984<br>383<br>0/C<br>017<br>1365<br>034<br>030<br>695<br>0/C<br>0/C<br>501<br>1365           | 1025<br>376<br>1661<br>017<br>818<br>033<br>019<br>1421<br>0/C<br>0/C<br>671<br>1661        | 787<br>280<br>0/C<br>017<br>1392<br>050<br>020<br>0/C<br>0/C<br>424<br>1392                | 1061<br>350<br>1871<br>017<br>0/C<br>048<br>018<br>1671<br>1736<br>0/C<br>846<br>1871       | 1032<br>395<br>1762<br>017<br>1395<br>027<br>162<br>1042<br>0/C<br>1011<br>760<br>1762        |
| min                                                                  | 010                                                                                       | 018                                                                                         | 018                                                                                          | 018                                                                                        | 016                                                                                       | 017                                                                                          | 017                                                                                         | 017                                                                                        | 017                                                                                         | 017                                                                                           |

•

•

Probe Deflection - Compressed

| Probe | 10 readings | . (mΩ) |
|-------|-------------|--------|
|-------|-------------|--------|

No.

#### 390000 cycles

| 1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>av.<br>max<br>min | 663<br>404<br>626<br>015<br>1692<br>032<br>021<br>323<br>907<br>0/C<br>520<br>1692<br>015 | 1035<br>563<br>1442<br>016<br>1782<br>031<br>022<br>1368<br>0/C<br>782<br>1782<br>016 | 1015<br>567<br>1333<br>017<br>1864<br>041<br>028<br>1703<br>0/C<br>0/C<br>821<br>1864<br>017 | 1082<br>510<br>1251<br>016<br>0/C<br>039<br>023<br>1658<br>0/C<br>0/C<br>654<br>1658<br>016 | 882<br>395<br>0/C<br>018<br>1623<br>030<br>021<br>1532<br>0/C<br>0/C<br>643<br>1623<br>018 | 1063<br>454<br>0/C<br>016<br>1682<br>027<br>208<br>528<br>0/C<br>1498<br>684<br>1682<br>016 | 972<br>537<br>1747<br>018<br>1482<br>044<br>079<br>1443<br>0/C<br>0/C<br>790<br>1747<br>018 | 978<br>467<br>1571<br>016<br>1693<br>044<br>018<br>925<br>0/C<br>0/C<br>714<br>1693<br>016 | 823<br>448<br>762<br>017<br>0/C<br>040<br>029<br>1861<br>0/C<br>1051<br>628<br>1861<br>017 | 1002<br>552<br>1382<br>016<br>1684<br>041<br>030<br>1673<br>0/C<br>1782<br>906<br>1684<br>016 |
|----------------------------------------------------------------------|-------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|
|                                                                      |                                                                                           |                                                                                       |                                                                                              | 4                                                                                           | 00000                                                                                      | cvcles                                                                                      |                                                                                             |                                                                                            |                                                                                            |                                                                                               |
| 1                                                                    | 002                                                                                       | 006                                                                                   | 017                                                                                          | ۳<br>م م                                                                                    | 769                                                                                        | 702                                                                                         | 1067                                                                                        | 1037                                                                                       | 1046                                                                                       | 86%                                                                                           |
| 2                                                                    | 440                                                                                       | 593                                                                                   | 389                                                                                          | 024<br>545                                                                                  | 528                                                                                        | 654                                                                                         | 786                                                                                         | 727                                                                                        | 716                                                                                        | 793                                                                                           |
| 3                                                                    | 626                                                                                       | 1478                                                                                  | 1092                                                                                         | 1571                                                                                        | 1348                                                                                       | 1242                                                                                        | 1372                                                                                        | 0/C                                                                                        | 0/C                                                                                        | 1703                                                                                          |
| 4                                                                    | 015                                                                                       | 017                                                                                   | 016                                                                                          | 016                                                                                         | 016                                                                                        | 016                                                                                         | 015                                                                                         | 017                                                                                        | 017                                                                                        | 016                                                                                           |
| 5                                                                    | 1597                                                                                      | 0/C                                                                                   | 0/C                                                                                          | 0/C                                                                                         | 0/C                                                                                        | 0/C                                                                                         | 0/C                                                                                         | 0/C                                                                                        | 0/C                                                                                        | 0/C                                                                                           |
| 6                                                                    | 040                                                                                       | 030                                                                                   | 040                                                                                          | 040                                                                                         | 043                                                                                        | 037                                                                                         | 039                                                                                         | 036                                                                                        | 041                                                                                        | 040                                                                                           |
| 7                                                                    | 020                                                                                       | 019                                                                                   | 025                                                                                          | 019                                                                                         | 026                                                                                        | 024                                                                                         | 025                                                                                         | 026                                                                                        | 019                                                                                        | 021                                                                                           |
| 8                                                                    | 305                                                                                       | 481                                                                                   | 991                                                                                          | 600                                                                                         | 1292                                                                                       | 1125                                                                                        | 1242                                                                                        | 805                                                                                        | 764                                                                                        | 1372                                                                                          |
| 9                                                                    | 634                                                                                       | 0/C                                                                                   | 0/C                                                                                          | 0/C                                                                                         | 0/C                                                                                        | 0/C                                                                                         | 0/C                                                                                         | 0/C                                                                                        | 0/C                                                                                        | 0/C                                                                                           |
| 10                                                                   | 0/C                                                                                       | 0/C                                                                                   | 0/C                                                                                          | 0/C                                                                                         | 1171                                                                                       | 0/C                                                                                         | 0/C                                                                                         | 0/C                                                                                        | 0/C                                                                                        | 0/C                                                                                           |
| av.                                                                  | 508                                                                                       | 503                                                                                   | 482                                                                                          | 516                                                                                         | 649                                                                                        | 555                                                                                         | 649                                                                                         | 441                                                                                        | 433                                                                                        | 1702                                                                                          |
| max                                                                  | 1397                                                                                      | 14/8                                                                                  | 1092                                                                                         | 016                                                                                         | 1348                                                                                       | 1242                                                                                        | 1372                                                                                        | 1037                                                                                       | 1046                                                                                       | 016                                                                                           |
| 111711                                                               | 015                                                                                       | 017                                                                                   | 010                                                                                          | 010                                                                                         | 010                                                                                        | 010                                                                                         | 015                                                                                         | 017                                                                                        | 017                                                                                        | 010                                                                                           |
|                                                                      |                                                                                           |                                                                                       |                                                                                              | 4                                                                                           | 10000                                                                                      | cycles                                                                                      |                                                                                             |                                                                                            |                                                                                            |                                                                                               |
| 1                                                                    | 748                                                                                       | 1225                                                                                  | 593                                                                                          | 1027                                                                                        | 593                                                                                        | 1206                                                                                        | 664                                                                                         | 1003                                                                                       | 1227                                                                                       | 1295                                                                                          |
| 2                                                                    | 270                                                                                       | 427                                                                                   | 563                                                                                          | 411                                                                                         | 534                                                                                        | 447                                                                                         | 482                                                                                         | 378                                                                                        | 536                                                                                        | 595                                                                                           |
| 3                                                                    | 156                                                                                       | 305                                                                                   | 218                                                                                          | 388                                                                                         | 371                                                                                        | 607                                                                                         | 342                                                                                         | 487                                                                                        | 621                                                                                        | 574                                                                                           |
| 4                                                                    | 016                                                                                       | 019                                                                                   | 018                                                                                          | 019                                                                                         | 021                                                                                        | 019                                                                                         | 020                                                                                         | 020                                                                                        | 023                                                                                        | 021                                                                                           |
| 5                                                                    | 478                                                                                       | 953                                                                                   | 936                                                                                          | 1110                                                                                        | 1905                                                                                       | 1844                                                                                        | 1842                                                                                        | 0/C                                                                                        | 0/C                                                                                        | 0/C                                                                                           |
| 6                                                                    | 022                                                                                       | 026                                                                                   | 030                                                                                          | 030                                                                                         | 044                                                                                        | 026                                                                                         | 026                                                                                         | 033                                                                                        | 036                                                                                        | 032                                                                                           |
| 7                                                                    | 029                                                                                       | 088                                                                                   | 024                                                                                          | 025                                                                                         | 028                                                                                        | 530                                                                                         | 023                                                                                         | 025                                                                                        | 028                                                                                        | 026                                                                                           |
| 8                                                                    | 114                                                                                       | 430                                                                                   | 562                                                                                          | 904                                                                                         | 863                                                                                        | 1441                                                                                        | 310                                                                                         | 284                                                                                        | 856                                                                                        | 992                                                                                           |
| 9                                                                    | 189                                                                                       | 0/C                                                                                   | 0/C                                                                                          | 0/C                                                                                         | 0/C                                                                                        | 0/C                                                                                         | 1968                                                                                        | 1662                                                                                       | 0/C                                                                                        | 1621                                                                                          |
| 10                                                                   | 0/C                                                                                       | 992                                                                                   | 1363                                                                                         | 1238                                                                                        | 0/C                                                                                        | 0/C                                                                                         | 0/0                                                                                         | 0/0                                                                                        | 0/0                                                                                        | 0/0                                                                                           |
| av.                                                                  | 224                                                                                       | 496                                                                                   | 4/8                                                                                          | 572                                                                                         | 544                                                                                        | 765                                                                                         | 630                                                                                         | 486                                                                                        | 4/5                                                                                        | 644                                                                                           |

max

min

| Probe<br>No.                                                         | 10 readings. (mΩ)                                                                          |                                                                                           |                                                                                              |                                                                                            |                                                                                            |                                                                                            |                                                                                             |                                                                                            |                                                                                                |                                                                                            |
|----------------------------------------------------------------------|--------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|
|                                                                      |                                                                                            |                                                                                           |                                                                                              | 4                                                                                          |                                                                                            |                                                                                            |                                                                                             |                                                                                            |                                                                                                |                                                                                            |
| 1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>av.<br>max<br>min | 778<br>368<br>169<br>017<br>1781<br>023<br>030<br>136<br>1461<br>0/C<br>529<br>1781<br>017 | 563<br>336<br>307<br>018<br>0/C<br>020<br>042<br>592<br>0/C<br>1868<br>468<br>1868<br>018 | 1361<br>345<br>422<br>018<br>1909<br>029<br>071<br>1032<br>0/C<br>1321<br>723<br>1909<br>018 | 1381<br>443<br>426<br>017<br>0/C<br>026<br>164<br>815<br>1851<br>0/C<br>640<br>1851<br>017 | 1519<br>374<br>484<br>020<br>0/C<br>028<br>059<br>1354<br>0/C<br>0/C<br>548<br>1519<br>020 | 723<br>362<br>436<br>018<br>0/C<br>033<br>040<br>1183<br>1864<br>0/C<br>582<br>1864<br>018 | 925<br>328<br>778<br>015<br>1561<br>020<br>237<br>1121<br>1398<br>0/C<br>709<br>1561<br>015 | 1763<br>314<br>473<br>020<br>0/C<br>030<br>059<br>651<br>0/C<br>1983<br>661<br>1983<br>020 | 815<br>311<br>615<br>021<br>1761<br>036<br>057<br>1381<br>0/C<br>1531<br>725<br>1761<br>021    | 1065<br>352<br>726<br>020<br>0/C<br>036<br>050<br>1328<br>0/C<br>511<br>1328<br>020        |
|                                                                      |                                                                                            |                                                                                           |                                                                                              | 4                                                                                          | 30000                                                                                      | cycles                                                                                     |                                                                                             |                                                                                            |                                                                                                |                                                                                            |
| 1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>av.<br>max<br>min | 1123<br>179<br>413<br>016<br>1518<br>025<br>030<br>142<br>753<br>0/C<br>466<br>1518<br>016 | 754<br>180<br>651<br>0/C<br>025<br>029<br>225<br>584<br>0/C<br>308<br>754<br>016          | 1317<br>212<br>547<br>016<br>0/C<br>025<br>090<br>207<br>1763<br>0/C<br>522<br>1763<br>016   | 1442<br>233<br>604<br>017<br>0/C<br>029<br>050<br>184<br>0/C<br>0/C<br>365<br>1442<br>017  | 1134<br>223<br>962<br>016<br>0/C<br>030<br>046<br>256<br>0/C<br>1726<br>549<br>1726<br>016 | 993<br>246<br>653<br>016<br>0/C<br>024<br>039<br>165<br>987<br>0/C<br>390<br>993<br>016    | 726<br>192<br>963<br>016<br>0/C<br>029<br>036<br>189<br>0/C<br>1019<br>396<br>1019<br>016   | 832<br>257<br>1172<br>017<br>0/C<br>033<br>050<br>1017<br>0/C<br>0/C<br>482<br>1172<br>017 | 1002<br>192<br>461<br>015<br>1860<br>026<br>028<br>160<br>247<br>1493<br>548<br>1860<br>015    | 1272<br>190<br>575<br>016<br>0/C<br>024<br>101<br>308<br>1863<br>0/C<br>543<br>1863<br>016 |
|                                                                      |                                                                                            |                                                                                           |                                                                                              | 4                                                                                          | 40000                                                                                      | cycles                                                                                     |                                                                                             |                                                                                            |                                                                                                |                                                                                            |
| 1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>av.<br>max        | 685<br>164<br>336<br>015<br>0/C<br>022<br>025<br>176<br>1854<br>0/C<br>409<br>1854<br>015  | 975<br>204<br>764<br>017<br>0/C<br>021<br>320<br>556<br>0/C<br>0/C<br>408<br>975<br>017   | 854<br>209<br>775<br>016<br>0/C<br>025<br>352<br>0/C<br>1930<br>523<br>1930<br>016           | 982<br>251<br>518<br>017<br>0/C<br>037<br>043<br>363<br>0/C<br>1982<br>524<br>1982<br>017  | 1371<br>220<br>982<br>017<br>0/C<br>030<br>124<br>687<br>0/C<br>0/C<br>490<br>1371<br>017  | 1102<br>195<br>970<br>016<br>0/C<br>035<br>043<br>361<br>0/C<br>1451<br>521<br>1451<br>016 | 521<br>182<br>1021<br>015<br>0/C<br>030<br>035<br>1242<br>0/C<br>0/C<br>435<br>1242<br>015  | 1226<br>188<br>727<br>017<br>0/C<br>828<br>035<br>374<br>0/C<br>0/C<br>485<br>1226<br>017  | 847<br>203<br>562<br>016<br>0/C<br>023<br>044<br>604<br>604<br>0/C<br>0/C<br>328<br>847<br>016 | 1207<br>173<br>923<br>017<br>0/C<br>036<br>037<br>456<br>0/C<br>1958<br>600<br>1958<br>017 |

| Probe | Deflecti | on – | Compressed |
|-------|----------|------|------------|
|-------|----------|------|------------|

,

| Probe |  |  |
|-------|--|--|
| No.   |  |  |

av.

max

min

•

10 readings.  $(m\Omega)$ 

|     |      |      |      | 4    | 50000 | cycles |      |      |      |      |
|-----|------|------|------|------|-------|--------|------|------|------|------|
| 1   | 327  | 396  | 1091 | 1485 | 1023  | 1022   | 1225 | 1184 | 1061 | 1075 |
| 2   | 177  | 161  | 213  | 176  | 206   | 212    | 209  | 201  | 189  | 146  |
| 3   | 283  | 297  | 537  | 561  | 714   | 640    | 745  | 630  | 030  | 614  |
| 4   | 015  | 015  | 016  | 016  | 017   | 017    | 016  | 016  | 016  | 017  |
| 5   | 0/C  | 0/C  | 0/C  | 0/C  | 0/C   | 0/C    | 0/C  | 0/C  | 0/C  | 0/C  |
| 6   | 025  | 024  | 025  | 025  | 026   | 034    | 027  | 036  | 032  | 044  |
| 7   | 033  | 035  | 027  | 102  | 031   | 058    | 035  | 186  | 041  | 043  |
| 8   | 112  | 318  | 1078 | 1083 | 841   | 605    | 1682 | 1447 | 894  | 0/C  |
| 9   | 1068 | 0/C  | 1901 | 0/C  | 0/C   | 1876   | 1282 | 1571 | 1541 | 0/C  |
| 10  | 0/C  | 1331 | 0/C  | 0/C  | 1211  | 0/C    | 0/C  | 0/C  | 0/C  | 1831 |
| av. | 255  | 322  | 611  | 492  | 508   | 558    | 652  | 658  | 475  | 538  |
| max | 1068 | 1331 | 1901 | 1485 | 1211  | 1876   | 1682 | 1571 | 1541 | 1831 |
| min | 015  | 015  | 016  | 016  | 017   | 017    | 016  | 016  | 016  | 017  |
|     |      |      |      | 4    | 60000 | cvcles |      |      |      |      |
|     |      |      |      |      |       | -,     |      |      |      |      |
| 1   | 983  | 798  | 1203 | 0/C  | 1351  | 706    | 1642 | 1681 | 1498 | 1091 |
| 2   | 165  | 142  | 165  | 189  | 185   | 165    | 157  | 144  | 131  | 139  |
| 3   | 504  | 474  | 517  | 641  | 0/C   | 982    | 1014 | 998  | 1163 | 994  |
| 4   | 016  | 016  | 017  | 016  | 016   | 016    | 017  | 019  | 018  | 018  |
| 5   | 1993 | 0/C  | 0/C  | 0/C  | 0/C   | 0/C    | 0/C  | 0/C  | 0/C  | 0/C  |
| 6   | 031  | 027  | 033  | 029  | 023   | 029    | 027  | 033  | 031  | 031  |
| 7   | 031  | 036  | 029  | 079  | 415   | 022    | 028  | 029  | 036  | 035  |
| 8   | 142  | 316  | 1241 | 272  | 523   | 350    | 238  | 1082 | 1441 | 648  |
| 9   | 1184 | 1534 | 1261 | 0/C  | 0/C   | 0/C    | 0/C  | 0/C  | 0/C  | 0/C  |
| 10  | 1965 | 0/C  | 0/C  | 0/C  | 0/C   | 0/C    | 0/C  | 0/C  | 0/C  | 0/C  |

## 470000 cycles

| 1   | 357  | 1081 | 1376 | 1341 | 1297 | 1887 | 1092 | 993  | 1002 | 1253 |
|-----|------|------|------|------|------|------|------|------|------|------|
| 2   | 138  | 161  | 137  | 168  | 148  | 148  | 176  | 146  | 169  | 181  |
| 3   | 470  | 830  | 963  | 1142 | 1621 | 1375 | 815  | 1203 | 1313 | 1028 |
| 4   | 015  | 016  | 017  | 017  | 016  | 018  | 016  | 017  | 016  | 017  |
| 5   | 1572 | 1763 | 1702 | 1621 | 1927 | 1592 | 0/C  | 1832 | 1691 | 0/C  |
| 6   | 021  | 022  | 041  | 032  | 036  | 028  | 030  | 032  | 029  | 028  |
| 7   | 027  | 023  | 047  | 055  | 030  | 055  | 043  | 036  | 030  | 034  |
| 8   | 084  | 113  | 128  | 683  | 753  | 338  | 321  | 1582 | 438  | 776  |
| 9   | 028  | 1141 | 0/C  | 0/C  | 0/C  | 0/C  | 0/C  | 0/C  | 1563 | 1061 |
| 10  | 0/C  | 0/C  | 0/C  | 0/C  | 1771 | 0/C  | 0/C  | 0/C  | 0/C  | 0/C  |
| av. | 301  | 572  | 551  | 632  | 844  | 680  | 356  | 730  | 694  | 547  |
| max | 1572 | 1763 | 1702 | 1621 | 1927 | 1887 | 1092 | 1832 | 1691 | 1253 |
| min | 015  | 016  | 017  | 017  | 016  | 018  | 016  | 017  | 016  | 017  |
|     |      |      |      |      |      |      |      |      |      |      |

|                                                                      |                                                                                           |                                                                                           | P                                                                                         | robe D                                                                                      | ertect                                                                                     | - 10n –                                                                                    | Comp                                                                                      | ressea                                                                                    |                                                                                             |                                                                                         |  |  |  |  |  |  |  |
|----------------------------------------------------------------------|-------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|--|--|--|--|--|--|--|
| Probe<br>No.                                                         |                                                                                           |                                                                                           |                                                                                           | 10                                                                                          | readin                                                                                     | ıgs. (m                                                                                    | Ω)                                                                                        |                                                                                           |                                                                                             |                                                                                         |  |  |  |  |  |  |  |
|                                                                      |                                                                                           |                                                                                           |                                                                                           | 4                                                                                           | 80000                                                                                      | cycles                                                                                     |                                                                                           |                                                                                           |                                                                                             |                                                                                         |  |  |  |  |  |  |  |
| 1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>av.<br>max<br>min | 505<br>132<br>647<br>015<br>1034<br>021<br>030<br>130<br>527<br>0/C<br>337<br>1034<br>015 | 462<br>222<br>1685<br>015<br>0/C<br>024<br>821<br>665<br>681<br>0/C<br>571<br>1685<br>015 | 441<br>246<br>1814<br>016<br>0/C<br>030<br>182<br>266<br>0/C<br>427<br>1814<br>016        | 370<br>205<br>1618<br>015<br>0/C<br>029<br>062<br>1206<br>1674<br>0/C<br>647<br>1674<br>015 | 568<br>237<br>1843<br>016<br>0/C<br>030<br>215<br>932<br>0/C<br>1421<br>657<br>1843<br>016 | 402<br>216<br>1782<br>016<br>0/C<br>029<br>054<br>380<br>0/C<br>0/C<br>411<br>1782<br>016  | 1086<br>196<br>0/C<br>016<br>0/C<br>026<br>431<br>671<br>0/C<br>0/C<br>404<br>1086<br>016 | 637<br>216<br>0/C<br>016<br>0/C<br>031<br>119<br>1467<br>0/C<br>0/C<br>414<br>1467<br>016 | 472<br>188<br>1742<br>016<br>0/C<br>029<br>053<br>1287<br>0/C<br>1782<br>696<br>1782<br>016 | 530<br>150<br>1668<br>0/C<br>031<br>051<br>1062<br>0/C<br>501<br>1668<br>016            |  |  |  |  |  |  |  |
|                                                                      |                                                                                           |                                                                                           |                                                                                           | 4                                                                                           | 90000                                                                                      | cycles                                                                                     |                                                                                           | 357 385 402 348<br>176 151 134 137                                                        |                                                                                             |                                                                                         |  |  |  |  |  |  |  |
| 1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>av.<br>max<br>min | 187<br>164<br>478<br>018<br>0/C<br>022<br>103<br>173<br>1531<br>0/C<br>334<br>1531<br>018 | 268<br>183<br>530<br>016<br>0/C<br>022<br>138<br>386<br>0/C<br>0/C<br>220<br>530<br>016   | 497<br>186<br>623<br>015<br>0/C<br>027<br>112<br>353<br>0/C<br>1981<br>474<br>1981<br>015 | 348<br>155<br>045<br>0/C<br>027<br>092<br>1074<br>0/C<br>251<br>1074<br>017                 | 325<br>168<br>574<br>016<br>0/C<br>023<br>085<br>735<br>0/C<br>275<br>735<br>016           | 387<br>166<br>664<br>018<br>0/C<br>038<br>134<br>1376<br>0/C<br>1944<br>590<br>1944<br>018 | 357<br>176<br>802<br>019<br>0/C<br>028<br>169<br>715<br>0/C<br>1260<br>440<br>1260<br>019 | 385<br>151<br>898<br>019<br>0/C<br>035<br>275<br>432<br>0/C<br>0/C<br>313<br>898<br>019   | 402<br>134<br>1083<br>020<br>0/C<br>032<br>290<br>921<br>0/C<br>0/C<br>411<br>1083<br>020   | 348<br>137<br>995<br>018<br>0/C<br>036<br>183<br>874<br>0/C<br>0/C<br>370<br>995<br>018 |  |  |  |  |  |  |  |
|                                                                      |                                                                                           |                                                                                           |                                                                                           | 5                                                                                           | 00000                                                                                      | cycles                                                                                     |                                                                                           |                                                                                           |                                                                                             |                                                                                         |  |  |  |  |  |  |  |
| 1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>av.<br>max        | 192<br>114<br>0/C<br>016<br>0/C<br>020<br>120<br>138<br>568<br>0/C<br>166<br>568          | 231<br>124<br>0/C<br>017<br>0/C<br>027<br>087<br>552<br>0/C<br>0/C<br>173<br>552          | 632<br>126<br>0/C<br>017<br>0/C<br>027<br>046<br>192<br>0/C<br>0/C<br>173<br>632          | 438<br>118<br>0/C<br>019<br>0/C<br>024<br>051<br>678<br>0/C<br>0/C<br>221<br>678            | 288<br>115<br>1712<br>020<br>0/C<br>030<br>056<br>587<br>0/C<br>0/C<br>401<br>1712         | 337<br>102<br>0/C<br>023<br>0/C<br>035<br>102<br>363<br>0/C<br>1662<br>374<br>1662         | 535<br>111<br>0/C<br>021<br>0/C<br>036<br>093<br>244<br>0/C<br>0/C<br>173<br>535          | 783<br>120<br>0/C<br>019<br>0/C<br>031<br>836<br>536<br>0/C<br>0/C<br>387<br>836          | 389<br>115<br>0/C<br>024<br>0/C<br>039<br>075<br>873<br>0/C<br>1379<br>413<br>1379          | 227<br>110<br>0/C<br>021<br>0/C<br>039<br>090<br>723<br>0/C<br>0/C<br>201<br>723        |  |  |  |  |  |  |  |

٠

A28

| Probe Def. | lection | - | Compressed |
|------------|---------|---|------------|
|------------|---------|---|------------|

| Probe<br>No. | 10 | readings. | (mQ) |
|--------------|----|-----------|------|
|              |    |           |      |

| 1   | 981  | 1157 | 0/C  | 0/C  | 0/C   | 1243   | 0/C  | 0/C  | 0/C  | 1905 |
|-----|------|------|------|------|-------|--------|------|------|------|------|
| 2   | 162  | 171  | 194  | 179  | 163   | 146    | 146  | 162  | 158  | 143  |
| 3   | 129  | 443  | 636  | 755  | 1545  | 775    | 1022 | 428  | 572  | 951  |
| 4   | 014  | 016  | 021  | 017  | 021   | 019    | 018  | 018  | 020  | 019  |
| 5   | 245  | 300  | 317  | 299  | 293   | 435    | 463  | 413  | 653  | 557  |
| 6   | 026  | 031  | 037  | 039  | 042   | 045    | 041  | 042  | 048  | 040  |
| 7   | 784  | 184  | 155  | 1057 | 233   | 174    | 180  | 442  | 215  | 246  |
| 8   | 089  | 144  | 230  | 142  | 405   | 445    | 516  | 305  | 429  | 270  |
| 9   | 1195 | 0/C  | 0/C  | 0/C  | 0/C   | 0/C    | 0/C  | 0/C  | 0/C  | 0/C  |
| 10  | 0/C  | 0/C  | 0/C  | 0/C  | 0/C   | 1188   | 0/C  | 0/C  | 0/C  | 0/C  |
| av. | 402  | 305  | 227  | 355  | 386   | 496    | 340  | 258  | 299  | 516  |
| max | 1195 | 1157 | 636  | 1057 | 1545  | 1243   | 1022 | 442  | 653  | 1905 |
| min | 014  | 016  | 021  | 017  | 021   | 019    | 018  | 018  | 020  | 019  |
|     |      |      |      |      |       |        |      |      |      |      |
|     |      |      |      | 6    | 10000 | cycles |      |      |      |      |
| 1   | 398  | 468  | 343  | 408  | 189   | 326    | 437  | 234  | 343  | 457  |
| 2   | 029  | 028  | 025  | 030  | 026   | 032    | 032  | 028  | 033  | 031  |
| 3   | 0/C  | 1171 | 1127 | 1629 | 1691  | 1651   | 1704 | 1621 | 1973 | 0/C  |
| 4   | 014  | 016  | 018  | 020  | 020   | 020    | 019  | 021  | 022  | 019  |
| 5   | 070  | 077  | 093  | 099  | 096   | 115    | 094  | 105  | 137  | 120  |
| 6   | 017  | 019  | 020  | 020  | 019   | 020    | 018  | 020  | 020  | 017  |
| 7   | 164  | 185  | 056  | 038  | 053   | 066    | 163  | 086  | 079  | 070  |
| 8   | 1123 | 0/C  | 1424 | 1629 | 1491  | 1664   | 1571 | 512  | 0/C  | 308  |
| 9   | 1449 | 0/C  | 0/C  | 0/C  | 0/C   | 1483   | 1952 | 1428 | 1416 | 662  |
| 10  | 1413 | 1328 | 0/C  | 0/C  | 0/C   | 0/C    | 0/C  | 0/C  | 0/C  | 0/C  |
| av. | 519  | 411  | 388  | 484  | 448   | 597    | 665  | 450  | 502  | 210  |
| max | 1449 | 1328 | 1424 | 1629 | 1691  | 1664   | 1952 | 1621 | 1973 | 662  |
| min | 014  | 016  | 018  | 020  | 019   | 020    | 018  | 020  | 020  | 017  |

|                                                                      | Probe Deflection - Compressed                                                               |                                                                                            |                                                                                             |                                                                                            |                                                                                             |                                                                                              |                                                                                            |                                                                                                    |                                                                                              |                                                                                            |  |  |
|----------------------------------------------------------------------|---------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|--|--|
| Probe<br>No.                                                         | 10 readings. (mΩ)                                                                           |                                                                                            |                                                                                             |                                                                                            |                                                                                             |                                                                                              |                                                                                            |                                                                                                    |                                                                                              |                                                                                            |  |  |
|                                                                      | 710000 cycles                                                                               |                                                                                            |                                                                                             |                                                                                            |                                                                                             |                                                                                              |                                                                                            |                                                                                                    |                                                                                              |                                                                                            |  |  |
| 1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>av.<br>max<br>min | 137<br>037<br>0/C<br>017<br>031<br>016<br>036<br>1862<br>1137<br>1778<br>561<br>1862<br>016 | 146<br>046<br>0/C<br>019<br>033<br>020<br>047<br>1867<br>1212<br>992<br>486<br>1867<br>019 | 146<br>045<br>1703<br>019<br>033<br>019<br>040<br>0/C<br>1768<br>1862<br>626<br>1862<br>019 | 053<br>052<br>0/C<br>018<br>033<br>020<br>048<br>0/C<br>1176<br>0/C<br>200<br>1176<br>018  | 062<br>048<br>0/C<br>021<br>036<br>020<br>051<br>1366<br>0/C<br>229<br>1366<br>020          | 212<br>048<br>0/C<br>021<br>034<br>019<br>066<br>1948<br>0/C<br>0/C<br>335<br>1948<br>019    | 268<br>050<br>0/C<br>017<br>031<br>017<br>1619<br>0/C<br>1491<br>0/C<br>499<br>1619<br>017 | 303<br>053<br>0/C<br>021<br>036<br>020<br>324<br>0/C<br>1121<br>0/C<br>268<br>1121<br>020          | 265<br>052<br>0/C<br>019<br>035<br>018<br>1491<br>0/C<br>1725<br>0/C<br>515<br>1725<br>018   | 080<br>043<br>0/C<br>019<br>034<br>017<br>045<br>0/C<br>1622<br>0/C<br>265<br>1622<br>017  |  |  |
|                                                                      | 810000 cycles                                                                               |                                                                                            |                                                                                             |                                                                                            |                                                                                             |                                                                                              |                                                                                            |                                                                                                    |                                                                                              |                                                                                            |  |  |
| 1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>av.<br>max<br>min | 1041<br>036<br>0/C<br>018<br>087<br>020<br>043<br>831<br>1342<br>0/C<br>427<br>1342<br>018  | 663<br>040<br>0/C<br>017<br>090<br>026<br>093<br>0/C<br>1338<br>0/C<br>323<br>1338<br>017  | 691<br>040<br>0/C<br>022<br>087<br>025<br>066<br>1575<br>1962<br>0/C<br>558<br>1962<br>022  | 1092<br>040<br>1892<br>026<br>086<br>030<br>033<br>0/C<br>0/C<br>0/C<br>457<br>1892<br>026 | 1173<br>036<br>0/C<br>022<br>097<br>026<br>048<br>1762<br>1701<br>0/C<br>608<br>1762<br>022 | 1033<br>036<br>1779<br>025<br>092<br>031<br>089<br>1810<br>1886<br>0/C<br>753<br>1886<br>025 | 1221<br>038<br>1223<br>025<br>096<br>027<br>058<br>0/C<br>0/C<br>0/C<br>384<br>1223<br>025 | 1106<br>034<br>1833<br>024<br>093<br>026<br>045<br>0/C<br>1245<br>0/C<br>550<br>1833<br>024        | 1112<br>035<br>1632<br>022<br>101<br>025<br>064<br>1435<br>1438<br>0/C<br>651<br>1632<br>022 | 1092<br>035<br>0/C<br>022<br>105<br>027<br>093<br>0/C<br>1227<br>0/C<br>371<br>1227<br>022 |  |  |
|                                                                      |                                                                                             |                                                                                            |                                                                                             | 9                                                                                          | 10000                                                                                       | cycles                                                                                       |                                                                                            |                                                                                                    |                                                                                              |                                                                                            |  |  |
| 1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>av.<br>max        | 978<br>043<br>1972<br>027<br>091<br>048<br>080<br>1919<br>1582<br>1474<br>821<br>1972       | 1132<br>040<br>0/C<br>037<br>096<br>054<br>098<br>624<br>977<br>0/C<br>382<br>1132         | 1287<br>037<br>1819<br>030<br>125<br>043<br>036<br>1761<br>434<br>1801<br>737<br>1819       | 1472<br>044<br>1291<br>030<br>116<br>058<br>045<br>0/C<br>680<br>0/C<br>467<br>1472        | 1652<br>042<br>1321<br>034<br>119<br>057<br>034<br>0/C<br>1231<br>0/C<br>561<br>1652        | 0/C<br>036<br>0/C<br>034<br>120<br>044<br>033<br>0/C<br>1761<br>0/C<br>338<br>1761           | 1962<br>037<br>1383<br>033<br>139<br>068<br>124<br>0/C<br>1291<br>0/C<br>629<br>1962       | 0/C<br>036<br>1874<br>036<br>122<br>042<br>122<br>0/C<br>1282<br>0/C<br>1282<br>0/C<br>502<br>1874 | 1826<br>034<br>0/C<br>033<br>123<br>046<br>048<br>0/C<br>1628<br>0/C<br>534<br>1826          | 586<br>032<br>0/C<br>030<br>108<br>039<br>054<br>1923<br>1482<br>0/C<br>531<br>1923        |  |  |

<u>A</u>30

Probe Deflection - Compressed

Probe No.

## 1010000 cycles

10 readings. (m $\Omega$ )

| 1   | 1163 | 0/C  | 0/C  | 1194 | 1177   | 1196  | 1154 | 0/C | 1795 | 1716 |
|-----|------|------|------|------|--------|-------|------|-----|------|------|
| 2   | 026  | 030  | 029  | 023  | 028    | 027   | 030  | 042 | 026  | 036  |
| 3   | 0/C  | 0/C  | 0/C  | 1899 | 1888   | 1783  | 0/C  | 0/C | 1905 | 0/C  |
| 4   | 015  | 015  | 017  | 017  | 018    | 020   | 021  | 019 | 016  | 022  |
| 5   | 295  | 339  | 553  | 466  | 527    | 715   | 688  | 601 | 703  | 473  |
| 6   | 051  | 060  | 057  | 050  | 050    | 065   | 073  | 087 | 053  | 063  |
| 7   | 089  | 140  | 116  | 146  | 135    | 222   | 387  | 457 | 231  | 287  |
| 8   | 503  | 0/C  | 0/C  | 0/C  | 0/C    | 0/C   | 0/C  | 0/C | 0/C  | 1271 |
| 9   | 1476 | 0/C  | 1683 | 1691 | 1961   | 0/C   | 1572 | 0/C | 0/C  | 1843 |
| 10  | 0/C  | 0/C  | 0/C  | 0/C  | 0/C    | 0/C   | 0/C  | 0/C | 1990 | 1906 |
| av. | 452  | 116  | 409  | 685  | 723    | 575   | 560  | 241 | 839  | 846  |
| max | 1476 | 339  | 1683 | 1899 | 1961   | 1783  | 1572 | 601 | 1990 | 1906 |
| min | 015  | 015  | 017  | 017  | 018    | 020   | 021  | 019 | 016  | 022  |
|     |      |      |      |      |        |       |      |     |      |      |
|     |      |      |      | 1    | 110000 | cycle | S    |     |      |      |
|     | 0.40 | 1/05 | 1071 | 0/0  | 0.10   | 0/0   | 0/0  | 0/0 | 0/0  | 1/50 |

| <b>T</b> | 0/0  | 1400 | 1011 | 0/0  | 0/0  | 0/0  | 0/0  | 0/0  | 0/0  | 1470 |
|----------|------|------|------|------|------|------|------|------|------|------|
| 2        | 037  | 037  | 044  | 040  | 043  | 056  | 051  | 052  | 048  | 042  |
| 3        | 0/C  | 1821 | 0/C  | 0/C  | 0/C  | 0/C  | 1641 | 1886 | 0/C  | 0/C  |
| 4        | 020  | 018  | 024  | 024  | 022  | 023  | 021  | 023  | 023  | 024  |
| 5        | 1063 | 913  | 1783 | 1723 | 1363 | 1537 | 1973 | 0/C  | 1687 | 1921 |
| 6        | 030  | 031  | 046  | 044  | 048  | 055  | 059  | 037  | 065  | 062  |
| 7        | 066  | 064  | 108  | 113  | 092  | 080  | 085  | 056  | 097  | 079  |
| 8        | 0/C  | 0/C  | 0/C  | 0/C  | 0/C  | 1551 | 0/C  | 1296 | 1535 | 0/C  |
| 9        | 221  | 198  | 1071 | 556  | 1445 | 1682 | 1258 | 1809 | 1689 | 1671 |
| 10       | 0/C  |
| av.      | 239  | 570  | 706  | 416  | 502  | 712  | 726  | 737  | 734  | 749  |
| max      | 1063 | 1821 | 1871 | 1723 | 1445 | 1682 | 1973 | 1886 | 1687 | 1921 |
| min      | 020  | 018  | 024  | 024  | 022  | 023  | 021  | 023  | 023  | 024  |

| 1   | 355  | 968  | 592  | 465  | 735  | 647  | 350  | 296  | 453  | 685  |
|-----|------|------|------|------|------|------|------|------|------|------|
| 2   | 030  | 040  | 054  | 048  | 046  | 058  | 040  | 048  | 046  | 045  |
| 3   | 0/C  | 0/C  | 862  | 0/C  | 0/C  | 1383 | 1925 | 1932 | 1695 | 0/C  |
| 4   | 015  | 018  | 018  | 018  | 020  | 020  | 020  | 018  | 019  | 019  |
| 5   | 443  | 1463 | 1248 | 1782 | 1832 | 1682 | 0/C  | 1532 | 1568 | 1592 |
| 6   | 040  | 075  | 072  | 057  | 070  | 064  | 061  | 062  | 090  | 057  |
| 7   | 027  | 030  | 030  | 036  | 031  | 032  | 016  | 026  | 029  | 026  |
| 8   | 1252 | 1501 | 1495 | 1271 | 438  | 0/C  | 1196 | 0/C  | 512  | 1572 |
| 9   | 320  | 1328 | 212  | 178  | 136  | 333  | 707  | 288  | 258  | 932  |
| 10  | 0/C  | 1884 | 1051 | 0/C  | 0/C  | 1869 | 1366 | 0/C  | 1229 | 0/C  |
| av. | 310  | 811  | 563  | 481  | 413  | 676  | 631  | 525  | 589  | 616  |
| max | 1252 | 1884 | 1495 | 1782 | 1832 | 1869 | 1925 | 1932 | 1695 | 1592 |
| min | 015  | 018  | 018  | 018  | 020  | 020  | 016  | 018  | 019  | 019  |
|     |      |      |      |      |      |      |      |      |      |      |

**、**、、、 . .