24 research outputs found

    A synchronous pi-calculus

    Get PDF
    The SL synchronous programming model is a relaxation of the Esterel synchronous model where the reaction to the absence of a signal within an instant can only happen at the next instant. In previous work, we have revisited the SL synchronous programming model. In particular, we have discussed an alternative design of the model including thread spawning and recursive definitions, introduced a CPS translation to a tail recursive form, and proposed a notion of bisimulation equivalence. In the present work, we extend the tail recursive model with first-order data types obtaining a non-deterministic synchronous model whose complexity is comparable to the one of the pi-calculus. We show that our approach to bisimulation equivalence can cope with this extension and in particular that labelled bisimulation can be characterised as a contextual bisimulation

    Feasible reactivity in a synchronous pi-calculus

    Get PDF
    Reactivity is an essential property of a synchronous program. Informally, it guarantees that at each instant the program fed with an input will `react' producing an output. In the present work, we consider a refined property that we call ` feasible reactivity'. Beyond reactivity, this property guarantees that at each instant both the size of the program and its reaction time are bounded by a polynomial in the size of the parameters at the beginning of the computation and the size of the largest input. We propose a method to annotate programs and we develop related static analysis techniques that guarantee feasible reactivity for programs expressed in the S-pi-calculus. The latter is a synchronous version of the pi-calculus based on the SL synchronous programming model

    Determinacy in a synchronous pi-calculus

    Get PDF
    To appear in the book `From semantics to computer science: essays in honor of Gilles Kahn', Cambridge University Press.The S-pi-calculus is a synchronous pi-calculus which is based on the SL model. The latter is a relaxation of the Esterel model where the reaction to the absence of a signal within an instant can only happen at the next instant. In the present work, we present and characterise a compositional semantics of the S-pi-calculus based on suitable notions of labelled transition system and bisimulation. Based on this semantic framework, we explore the notion of determinacy and the related one of (local) confluence

    On affine usages in signal-based communication

    Get PDF
    We describe a type system for a synchronous pi-calculus formalising the notion of affine usage in signal-based communication. In particular, we identify a limited number of usages that preserve affinity and that can be composed. As a main application of the resulting system, we show that typable programs are deterministic

    Complexity Information Flow in a Multi-threaded Imperative Language

    Get PDF
    We propose a type system to analyze the time consumed by multi-threaded imperative programs with a shared global memory, which delineates a class of safe multi-threaded programs. We demonstrate that a safe multi-threaded program runs in polynomial time if (i) it is strongly terminating wrt a non-deterministic scheduling policy or (ii) it terminates wrt a deterministic and quiet scheduling policy. As a consequence, we also characterize the set of polynomial time functions. The type system presented is based on the fundamental notion of data tiering, which is central in implicit computational complexity. It regulates the information flow in a computation. This aspect is interesting in that the type system bears a resemblance to typed based information flow analysis and notions of non-interference. As far as we know, this is the first characterization by a type system of polynomial time multi-threaded programs

    Safe Reactive Programming: The FunLoft Proposal

    Get PDF
    We propose a multicore-ready programming language based on a two-level shared memory model. Concurrency units are schedulers and threads which are dispatched on available cores in a preemptive way. Each scheduler is in charge of its own portion of the memory. At runtime, several threads may link to a common scheduler. In this case, they enter a cooperative mode, evolve in synchronous rounds, and are granted access to the scheduler memory. At the opposite, an autonomous thread runs at its own pace but has access only to a local memory. The language ensures that programs are free of memory leaks, that code between two cooperation points is atomic, and that rounds are fair and always terminate (no run-time error nor divergence)

    Dynamic Role Authorization in Multiparty Conversations

    Get PDF
    Protocol specifications often identify the roles involved in communications. In multiparty protocols that involve task delegation it is often useful to consider settings in which different sites may act on behalf of a single role. It is then crucial to control the roles that the different parties are authorized to represent, including the case in which role authorizations are determined only at runtime. Building on previous work on conversation types with flexible role assignment, here we report initial results on a typed framework for the analysis of multiparty communications with dynamic role authorization and delegation. In the underlying process model, communication prefixes are annotated with role authorizations and authorizations can be passed around. We extend the conversation type system so as to statically distinguish processes that never incur in authorization errors. The proposed static discipline guarantees that processes are always authorized to communicate on behalf of an intended role, also covering the case in which authorizations are dynamically passed around in messages.Comment: In Proceedings BEAT 2014, arXiv:1408.556

    Affine Sessions

    Full text link
    Session types describe the structure of communications implemented by channels. In particular, they prescribe the sequence of communications, whether they are input or output actions, and the type of value exchanged. Crucial to any language with session types is the notion of linearity, which is essential to ensure that channels exhibit the behaviour prescribed by their type without interference in the presence of concurrency. In this work we relax the condition of linearity to that of affinity, by which channels exhibit at most the behaviour prescribed by their types. This more liberal setting allows us to incorporate an elegant error handling mechanism which simplifies and improves related works on exceptions. Moreover, our treatment does not affect the progress properties of the language: sessions never get stuck

    Reversible Sessions Using Monitors

    Get PDF
    corecore