
On affine usages in signal-based communication

Roberto M. Amadio, Mehdi Dogguy

To cite this version:

Roberto M. Amadio, Mehdi Dogguy. On affine usages in signal-based communication. G.
Ramalingam. Programming Languages and Systems, 6th Asian Symposium, APLAS 2008,
Dec 2008, France. Springer-Verlag, pp.221-236, 2008, Springer Lecture Notes in Computer
Science 5356. <hal-00272023v3>

HAL Id: hal-00272023

https://hal.archives-ouvertes.fr/hal-00272023v3

Submitted on 3 Sep 2008

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Hal-Diderot

https://core.ac.uk/display/47115619?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.archives-ouvertes.fr
https://hal.archives-ouvertes.fr/hal-00272023v3

On affine usages in signal-based communication

Roberto M. Amadio Mehdi Dogguy
Université Paris Diderot (Paris 7), PPS, UMR-7126

3rd September 2008

Abstract

We describe a type system for a synchronous π-calculus formalising the notion of affine
usage in signal-based communication. In particular, we identify a limited number of usages
that preserve affinity and that can be composed. As a main application of the resulting
system, we show that typable programs are deterministic.

1 Introduction

We are interested in synchronous systems. In these systems, there is a notion of instant
(or phase, or pulse, or round) and at each instant each component of the system, a thread,
performs some actions and synchronizes with all the other threads. One may say that all
threads proceed at the same speed and it is in this specific sense that we shall refer to
synchrony in this work. Signal-based communication is often used as the basic interaction
mechanism in synchronous systems (see, e.g., [5, 6]). Signals play a role similar to channels
in asynchronous systems. Our goal in this paper is to study the notion of affine usage in this
context. In particular, we shall formalise our ideas in the context of a synchronous π-calculus
(Sπ-calculus) introduced in [2]. We assume that the reader is familiar with the π-calculus and
proceed to give a flavour of the language (the formal definition of the Sπ-calculus is recalled
in section 2).

The syntax of the Sπ-calculus is similar to the one of the π-calculus, however there
are some important semantic differences that we highlight in the following simple example.
Assume v1 6= v2 are two distinct values and consider the following program in Sπ:

P = ν s1, s2 (s1v1 | s1v2 | s1(x). (s1(y). (s2(z). A(x, y) , B(!s1)), 0) , 0)

If we forget about the underlined parts and we regard s1, s2 as channel names then P could also
be viewed as a π-calculus process. In this case, P would reduce to P1 = νs1, s2 (s2(z).A(θ(x), θ(y))
where θ is a substitution such that θ(x), θ(y) ∈ {v1, v2} and θ(x) 6= θ(y). In Sπ, signals persist
within the instant and P reduces to P2 = νs1, s2 (s1v1 | s1v2 | (s2(z).A(θ(x), θ(y)), B(!s1)))
where again θ(x), θ(y) ∈ {v1, v2} but possibly θ(x) = θ(y). What happens next? In the π-
calculus, P1 is deadlocked and no further computation is possible. In the Sπ-calculus, the fact
that no further computation is possible in P2 is detected and marks the end of the current

instant. Then an additional computation represented by the relation
N
−→ moves P2 to the

following instant: P2
N
−→ P ′

2 = νs1, s2 B(v) where v ∈ {[v1; v2], [v2; v1]}. Thus at the end
of the instant, a dereferenced signal such as !s1 becomes a list (possibly empty) of (distinct)
values emitted on s1 during the instant and then all signals are reset.

1

We continue our informal discussion with an example of a ‘server’ handling a list of requests
emitted in the previous instant on the signal s. For each request of the shape req(s′, x), it
provides an answer which is a function of x along the signal s′ (the notation x � p is used to
match a value x against a pattern p). The ‘client’ issues a request x on signal s and returns
the reply on signal t.

Server(s) = pause.Handle(s, !s)
Handle(s, ℓ) = [ℓ � cons(req(s′, x), ℓ′)](s′f(x) | Handle(s, ℓ′)),Server (s)
Client(x, s, t) = νs′ (sreq(s′, x) | pause.s′(x).tx, 0) .

Let us first notice that a request contains a ‘pointer’, namely the name of the signal on
which to answer the request. Then the ‘folklore solution’ of transforming a list of values
into one value via an associative and commutative function does not work here. Indeed
there seems to be no reasonable way to define an associative and commutative function on
pointers. Instead, we look at Handle as a function from (a signal and) a list of requests to
behaviours which is invariant under permutations of the list of requests. Note that to express
this invariance we need a notion of behavioural equivalence and that this equivalence must
satisfy the usual associativity and commutativity laws of parallel composition and must be
preserved by parallel composition.

These considerations are enough to argue that the Server is a ‘deterministic’ program.
No matter how many clients will issue requests at each instant, the Server will provide an
answer to each of them in the following instant in a way which is independent of the order
of the requests. Let us now look at the Client. After issuing a request, the Client waits for
a reply in the following instant. Clearly, if more than one reply comes, the outcome of the
computation is not deterministic. For instance, we could have several ‘Servers’ running in
parallel or a server could somehow duplicate the request. This means that the usage of the
signal s must be such that many ‘clients’ may issue a request but at most one ‘server’ may
handle them at the end of the instant in an ‘affine’ way. Further, on the client side, the return
signal s′ can only be used to read while on the server side it can only be used to emit.

This preliminary discussion suggests the need for a formal analysis of the principles that
allow to establish the determinacy of a synchronous program. This analysis will be obviously
inspired by previous work on the foundations of linear logic [7], on linear typing of functional
programs (e.g., [14]), and on linear usages of channels (e.g., [10]). Following this line of works,
the analysis presented in section 3 will take the form of a typing system. The previous section
2, will recall the formal definition of the Sπ-calculus. In the final section 4, first we shall
introduce the properties of the typing system leading to a subject reduction theorem, and
second we shall describe a suitable notion of typed bisimulation and show that with respect
to this notion, typable programs can be regarded as deterministic.

2 Definition of the Sπ-calculus

We recall the formal definition of the Sπ-calculus and its bisimulation based semantics while
referring the reader to [2, 4] for a deeper analysis. This section is rather technical but to
understand the type system described in the following section 3 there are really just two
points that the reader should keep in mind:

1. The semantics of the calculus is given by the labelled transition system presented in
table 2. A reader familiar with a π-calculus with asynchronous communication can

2

understand these rules rather quickly. The main differences are (a) the rule for emitting
a signal formalises the fact that a signal, unlike a channel, persists within an instant
and (b) the rules that describe the computation at the end of the instant.

2. The labelled transition system induces a rather standard notion of bisimulation equiv-
alence (definition 1) which is preserved by static contexts (fact 2).1 In section 4, we
shall introduce a ‘typed’ definition of the bisimulation and show that with respect to
this definition, typable programs are deterministic.

2.1 Programs

Programs P,Q, . . . in the Sπ-calculus are defined in table 1. We use the notation m for a
vector m1, . . . ,mn, n ≥ 0. The informal behaviour of programs follows. 0 is the terminated
thread. A(e) is a (tail) recursive call of a thread identifier A with a vector e of expressions
as argument; as usual the thread identifier A is defined by a unique equation A(x) = P such
that the free variables of P occur in x. se evaluates the expression e and emits its value on
the signal s. s(x).P,K is the present statement which is the fundamental operator of the
model [1]. If the values v1, . . . , vn have been emitted on the signal s then s(x).P,K evolves
non-deterministically into [vi/x]P for some vi ([/] is our notation for substitution). On the
other hand, if no value is emitted then the continuation K is evaluated at the end of the
instant. [s1 = s2]P1, P2 is the usual matching function of the π-calculus that runs P1 if s1

equals s2 and P2, otherwise. Here both s1 and s2 are free. [u � p]P1, P2, matches u against
the pattern p. We assume u is either a variable x or a value v and p has the shape c(x),
where c is a constructor and x is a vector of distinct variables. We also assume that if u is a
variable x then x does not occur free in P1. At run time, u is always a value and we run θP1

if θ = match(u, p) is the substitution matching u against p, and P2 if the substitution does
not exist (written match(u, p) ↑). Note that as usual the variables occurring in the pattern
p (including signal names) are bound in P1. νs P creates a new signal name s and runs
P . (P1 | P2) runs in parallel P1 and P2. A continuation K is simply a recursive call whose
arguments are either expressions or values associated with signals at the end of the instant in
a sense that we explain below. We shall also write pause.K for νs s(x).0,K with s not free
in K. This is the program that waits till the end of the instant and then evaluates K.

2.2 Expressions

Expressions are partitioned in several syntactic categories as specified in table 1. As in the
π-calculus, signal names stand both for signal constants as generated by the ν operator and
signal variables as in the formal parameter of the present operator. Variables Var include
signal names as well as variables of other types. Constructors Cnst include ∗, nil, and cons.
Values Val are terms built out of constructors and signal names. Patterns Pat are terms
built out of constructors and variables (including signal names). If P, p are a program and
a pattern then we denote with fn(P), fn(p) the set of free signal names occurring in them,
respectively. We also use FV (P),FV (p) to denote the set of free variables (including signal
names). We assume first-order function symbols f, g, . . . and an evaluation relation ⇓ such
that for every function symbol f and values v1, . . . , vn of suitable type there is a unique value

1As a matter of fact the labelled transition system is built so that the definition of bisimulation equivalence
looks standard [4].

3

P ::= 0 || A(e) || se || s(x).P,K || (programs)
[s1 = s2]P1, P2 || [u � p]P1, P2 || νs P || P1 | P2

K ::= A(r) (continuation next instant)
Sig ::= s || t || · · · (signal names)
Var ::= Sig || x || y || z || · · · (variables)
Cnst ::= ∗ || nil || cons || c || d || · · · (constructors)
Val ::= Sig || Cnst(Val , . . . ,Val) (values v, v′, . . .)
Pat ::= Cnst(Var , . . . ,Var) (patterns p, p′, . . .)
Fun ::= f || g || · · · (first-order function symbols)
Exp ::= Var || Cnst(Exp, . . . ,Exp) || Fun(Exp, . . . ,Exp) (expressions e, e′, . . .)
Rexp ::= !Sig || Var || Cnst(Rexp, . . . ,Rexp) ||

Fun(Rexp, . . . ,Rexp) (exp. with deref. r, r′, . . .)

Table 1: Syntax of programs and expressions

v such that f(v1, . . . , vn) ⇓ v and fn(v) ⊆
⋃

i=1,...,n fn(vi). Expressions Exp are terms built
out of variables, constructors, and function symbols. The evaluation relation ⇓ is extended in
a standard way to expressions whose only free variables are signal names. Finally, Rexp are
expressions that may include the value associated with a signal s at the end of the instant
(which is written !s, following the ML notation for dereferenciation). Intuitively, this value is
a list of values representing the set of values emitted on the signal during the instant.

The definition of a simple type system for the Sπ-calculus can be extracted from the more
elaborate type system presented in section 3 by confusing ‘set-types’ with ‘list-types’ and by
neglecting all considerations on usages.

2.3 Actions

The syntactic category act of actions described in table 2 comprises relevant, auxiliary, and
nested actions. The operations fn (free names), bn (bound names), and n (both free and
bound names) are defined as in the π-calculus [13].

The relevant actions are those that are actually considered in the bisimulation game. They
consist of: (i) an internal action τ , (ii) an emission action νt sv where it is assumed that the
signal names t are distinct, occur in v, and differ from s, (iii) an input action sv, and (iv) an
action N (for Next) that marks the move from the current to the next instant.

The auxiliary actions consist of an input action s?v which is coupled with an emission
action in order to compute a τ action and an action (E,V) which is just needed to compute
an action N . The latter is an action that can occur exactly when the program cannot perform
τ actions and it amounts to (i) collect in lists the set of values emitted on every signal, (ii)
to reset all signals, and (iii) to initialise the continuation K for each present statement of the
shape s(x).P,K.

In order to formalise these three steps we need to introduce some notation. Let E vary
over functions from signal names to finite sets of values. Denote with ∅ the function that
associates the empty set with every signal name, with [M/s] the function that associates the
set M with the signal name s and the empty set with all the other signal names, and with ∪
the union of functions defined point-wise.

We represent a set of values as a list of the values belonging to the set. More precisely,
we write v ‖−M and say that v represents M if M = {v1, . . . , vn} and v = [vπ(1); . . . ; vπ(n)]
for some permutation π over {1, . . . , n}. Suppose V is a function from signal names to lists

4

of values. We write V ‖−E if V (s) ‖−E(s) for every signal name s. We also write dom(V) for
{s | V (s) 6= []}. If K is a continuation, i.e., a recursive call A(r), then V (K) is obtained from
K by replacing each occurrence !s of a dereferenced signal with the associated value V (s).
We denote with V [ℓ/s] the function that behaves as V except on s where V [ℓ/s](s) = ℓ.

With these conventions, a transition P
(E,V)
−−−→ P ′ intuitively means that (1) P is suspended,

(2) P emits exactly the values specified by E, and (3) the behaviour of P in the following
instant is P ′ and depends on V . It is convenient to compute these transitions on programs
where all name generations are lifted at top level. We write P � Q if we can obtain Q from
P by repeatedly transforming, for instance, a subprogram νsP ′ | P ′′ into νs(P ′ | P ′′) where
s /∈ fn(P ′′).

Finally, the nested actions µ, µ′, . . . are certain actions (either relevant or auxiliary) that
can be produced by a sub-program and that we need to propagate to the top level.

2.4 Labelled transition system and bisimulation

The labelled transition system is defined in table 2 where rules apply to programs whose
only free variables are signal names and with standard conventions on the renaming of bound
names. As usual, one can rename bound variables, and symmetric rules are omitted. The first
12 rules from (out) to (νex) are quite close to those of a polyadic π-calculus with asynchronous
communication (see [8, 3]) with the following exception: rule (out) models the fact that the
emission of a value on a signal persists within the instant. The last 5 rules from (0) to (next)
are quite specific of the Sπ-calculus and determine how the computation is carried on at the
end of the instant (cf. discussion in 2.3).

We derive from the labelled transition system a notion of (weak) labelled bisimulation.

First define
α
⇒ as (

τ
−→)∗ if α = τ , (

τ
⇒) ◦ (

N
−→) if α = N , and (

τ
⇒) ◦ (

α
−→) ◦ (

τ
⇒) otherwise.

This is the standard definition except that we insist on not having internal reductions after
an N action. Intuitively, we assume that an observer can control the execution of programs
so as to be able to test them at the very beginning of each instant. We write P

α
−→ · for

∃P ′ (P
α
−→ P ′).

Definition 1 (labelled bisimulation) A symmetric relation R on programs is a labelled
bisimulation if P R Q, P

α
−→ P ′, bn(α) ∩ fn(Q) = ∅ implies ∃Q′ (Q

α
⇒ Q′, P ′ R Q′). We

denote with ≈ the largest labelled bisimulation.

Fact 2 ([4]) Labelled bisimulation is preserved by parallel composition and name generation.

3 An affine type system

An analysis of the notion of determinacy carried on in [4], along the lines of [12], suggests
that there are basically two situations that need to be analysed in order to guarantee the
determinacy of programs. (1) At least two distinct values compete to be received within an
instant, for instance, consider: sv1 | sv2 | s(x).P,K. (2) At the end of the instant, at least
two distinct values are available on a signal. For instance, consider: sv1 | sv2 | pause.A(!s). A
sensible approach is to avoid completely the first situation and to allow the second provided
the behaviour of the continuation A does not depend on the order in which the values are
collected. Technically, we consider a notion of affine signal usage to guarantee the first
condition and a notion of set type for the second one. While this is a good starting point,

5

act ::= α || aux (actions)
α ::= τ || νt sv || sv || N (relevant actions)
aux ::= s?v || (E, V) (auxiliary actions)
µ ::= τ || νt sv || s?v (nested actions)

(out)
e ⇓ v

se
sv
−→ se

(inaux)
s(x).P, K

s?v
−−→ [v/x]P

(in)
P

sv
−→ (P | sv)

(rec)
A(x) = P, e ⇓ v

A(e)
τ
−→ [v/x]P

(=sig
1)

[s = s]P1, P2
τ
−→ P1

(=sig
2)

s1 6= s2

[s1 = s2]P1, P2
τ
−→ P2

(=ind
1)

match(v, p) = θ

[v � p]P1, P2
τ
−→ θP1

(=ind
1)

match(v, p) =↑

[v � p]P1, P2
τ
−→ P2

(comp)
P1

µ
−→ P ′

1 bn(µ) ∩ fn(P2) = ∅

P1 | P2
µ
−→ P ′

1 | P2

(synch)
P1

νt sv
−−−→ P ′

1 P2
s?v
−−→ P ′

2

{t} ∩ fn(P2) = ∅

P1 | P2
τ
−→ νt (P ′

1 | P ′
2)

(ν)
P

µ
−→ P ′ t /∈ n(µ)

νt P
µ
−→ νt P ′

(νex)
P

νt sv
−−−→ P ′ t′ 6= s t′ ∈ n(v)\{t}

νt′ P
(νt′,t)sv
−−−−−→ P ′

(0)
0

∅,V
−−→ 0

(reset)
e ⇓ v v occurs in V (s)

se
[{v}/s],V
−−−−−−→ 0

(cont)
s /∈ dom(V)

s(x).P, K
∅,V
−−→ V (K)

(par)
Pi

Ei,V
−−−→ P ′

i i = 1, 2

(P1 | P2)
E1∪E2,V
−−−−−−→ (P ′

1 | P ′
2)

(next)
P � νs P ′ V ‖−E P ′ E,V

−−−→ P ′′

P
N
−→ νs P ′′

Table 2: Labelled transition system

6

it falls short of providing a completely satisfying answer because the type constructions do
not compose very well. Then our goal is to discover a collection of signal usages with better
compositionality properties. The outcome of our analysis are three new kinds of usages (kinds
3 − 5 in table 3).

3.1 Usages

In first approximation, we may regard a usage as an element of the set L = {0, 1,∞} with the
intuition that 0 corresponds to no usage at all, 1 to at most one usage, and ∞ to any usage.
We add usages with a partial operation ⊕ such that 0 ⊕ a = a ⊕ 0 = a and ∞ ⊕ ∞ = ∞,
and which is undefined otherwise (note in particular that 1 ⊕ 1 is undefined). The addition
induces an order by a ≤ b if ∃ c a ⊕ c = b. With respect to this order, 0 is the least element
while 1 and ∞ are incomparable. If a ≥ b then we define a subtraction operation a⊖ b as the
largest c such that a = b ⊕ c. Therefore: a ⊖ 0 = a, 1 ⊖ 1 = 0, and ∞⊖∞ = ∞.

This classification of usages is adequate when handling purely functional data where the
intuition is that data with usage 1 have at most one pointer to them [14]. However, when
handling more complex entities such as references, channels, or signals it is convenient to take
a more refined view. Specifically, a usage can be refined to include information about whether
a signal is used: (i) to emit, (ii) to receive during the instant, or (iii) to receive at the end
of the instant. Then a usage becomes an element of L3. Among the 27 possible usages of
the shape (a, b, c) for a, b, c ∈ L, we argue that there are 5 main ones as described in table 3
(left part). First of all, we must have a 6= 0 and (b 6= 0 ∨ c 6= 0) since a signal on which we
cannot send or receive has no interest. Now if a = ∞ then we are forced to take b = 0 since
we want to preserve the determinacy. Then for c = ∞ we have the usage e1 and for c = 1
we have the usage e3. Suppose now a = 1. One choice is to have b = c = ∞ and then we
have the usage e2. On the other hand if we want to preserve affinity then we should receive
the emitted value at most once. Hence we have b = 0, c = 1 or b = 1, c = 0 which correspond
to the usages e4 and e5, respectively. From these 5 main usages within an instant, we obtain
the derived ones (see again table 3) by simply turning one or more 1’s to 0’s. We only add,
subtract, compare usages in L3 that are derived from the same main usage.

In a synchronous framework, it makes sense to consider how usages vary over time. The
simplest solution would be to look at signal usages of the shape xω, x ∈ L3, which are invariant
under time. However, to reason effectively on programs, we are led to consider signal usages
of the shape xyω where x, y ∈ L3 are derived from the same main usage.

The reader may have noticed that in this discussion we have referred to increasingly
complex ‘usages’ varying over L, L3, and (L3)ω. Henceforth a signal usage belongs to (L3)ω.
Usages are classified in 5 kinds as showed in table 3. 2

We denote with U the set of all these usages and with U(i) the set of usages of kind i,
for i = 1, . . . , 5. We consider that the addition operation ⊕ is defined only if u, u′ ∈ U(i)
and u ⊕ u′ ∈ U(i) for some i ∈ {1, . . . , 5}. Similar conventions apply when comparing and
subtracting usages. If u ∈ U then ↑ u, the shift of u, is the infinite word in U obtained from u
by removing the first character. This operation is always defined. If u is a signal usage, then
u(i) for i ≥ 0 denotes its ith character and u(i)j for j ∈ {1, 2, 3} the jth component of u(i).

We classify the usages according to 3 properties: affinity, uniformity, and preservation of
affinity. We say that a usage is affine if it contains a ‘1′ and non-affine otherwise. We also

2The fact that, e.g., (1, 0, 0) occurs both in the usages of kind 4 and 5 is a slight source of ambiguity which
is resolved by assuming that the kind of the usage is made explicit.

7

main usages derived usages

e1 = (∞, 0,∞)
e2 = (1,∞,∞) (0,∞,∞)
e3 = (∞, 0, 1) (∞, 0, 0)
e4 = (1, 0, 1) (1, 0, 0), (0, 0, 1), (0, 0, 0)
e5 = (1, 1, 0) (1, 0, 0), (0, 1, 0), (0, 0, 0)

xyω ∈ U(i) is affine uniform aff. preserving

i = 1 no yes no
i = 2 yes/no yes/no no
i = 3 yes/no yes/no yes
i = 4 yes/no yes/no yes
i = 5 yes/no yes/no yes

Table 3: Usages and their classification

say that it is uniform if it is of the shape xω and that it is neutral if it is the neutral element
with respect to the addition ⊕ on the set of usages U(i) to which it belongs. It turns out that
the non-affine signal usages are always uniform and moreover they coincide with the neutral
ones. Finally, by definition, the usages in the sets U(i) for i = 3, 4, 5 are affine preserving
The classification is summarised in the table 3 (right part).

3.2 Types

In first approximation, types are either inductive types or signal types. As usual, an inductive
type such as the type List(σ) of lists of elements of type σ is defined by an equation List(σ) =
nil || cons of σ,List(σ) specifying the ways in which an element of this type can be built.

In our context, inductive types come with a usage x which belongs to the set {1,∞}
and which intuitively specifies whether the values of this type can be used at most once or
arbitrarily many times (once more we recall that 1 and ∞ are incomparable). To summarise,
if σ1, . . . , σk are types already defined then an inductive type Cx(σ1, . . . , σk) is defined by case
on constructors of the shape c of σ′

1
, . . . , σ′

m where the types σ′
j, j = 1, . . . ,m are either one

of the types σi, i = 1, . . . , n or the inductive type Cx(. . .) being defined. There is a further
constraint that has to be respected, namely that if one of the types σi is ‘affine’ then the
usage x must be affine preserving, i.e., x = 1. An affine type is simply a type which contains
an affine usage. The grammar in table 4 will provide a precise definition of the affine types.

When collecting the values at the end of the instant we shall also need to consider set types.
They are described by an equation Setx(σ) = nil || cons of σ,Setx(σ) which is quite similar to
the one for lists. Note that set types too come with a usage x ∈ {1,∞} and that if σ is an
affine type then the usage x must be affine preserving. The reader might have noticed that
we take the freedom of using the constructor nil both with the types Listu(σ) and Setu(σ),
u ∈ {1,∞}, and the constructor cons both with the types (σ,Listu(σ)) → Listu(σ) and
(σ,Setu(σ)) → Setu(σ). However, one should assume that a suitable label on the constructors
will allow to disambiguate the situation.

Finally, we denote with Sigu(σ) the type of signals carrying values of type σ according to
the signal usage u. As for inductive and set types, if σ is an affine type then the signal usage
u must be affine preserving. To formalise these distinctions, we are lead to use several names
for types as specified in table 4. We denote with κ non-affine (or classical) types, i.e., types
that carry no affine information. These types have a uniform usage. We denote with λ affine
and uniform types. The types σ, σ′, . . . stand for types with uniform usage (either non-affine
or affine). Finally, the types ρ, ρ′, . . . include all the previous ones plus types that have a
non-uniform usage. We notice that classical uniform types can be nested in an arbitrary way,
while affine uniform types can only be nested under type constructors that preserve affinity.

8

Moreover, types with non-uniform usages (either classical or affine) cannot be nested at all.3

The partial operation of addition ⊕ is extended to types so that: Opu1
(σ) ⊕ Opu2

(σ) =
Opu1⊕u2

(σ), where Op can be C, Set , or Sig , and provided that u1 ⊕ u2 is defined. For
instance, List1(λ) ⊕ List1(λ) is undefined because 1 ⊕ 1 is not defined.

A type context (or simply a context) Γ is a partial function with finite domain dom(Γ) from
variables to types. An addition operation Γ1 ⊕Γ2 on contexts is defined, written (Γ1 ⊕Γ2) ↓,
if and only if for all x such that Γ1(x) = ρ1 and Γ2(x) = ρ2, the type ρ1 ⊕ ρ2 is defined. The
shift operation is extended to contexts so that (↑ Γ)(x) = Sig(↑u)(σ) if Γ(x) = Sigu(σ) and
(↑ Γ)(x) = Γ(x) otherwise. We also denote with Γ, x : σ the context Γ extended with the pair
x : σ (so x /∈ dom(Γ)). We say that a context is neutral (uniform) if it assigns to variables
neutral (uniform) types.

3.3 Semantic instrumentation

As we have seen, each signal belongs to exactly one of 5 kinds of usages. Let us consider
in particular the kind 5 whose main usage is e5. The forthcoming type system is supposed
to guarantee that a value emitted on a signal of kind 5 is received at most once during an
instant. Now, consider the program st | s(x).x, 0 and attribute a usage eω

5 to the signals s
and t. According to this usage this program should be well typed. However, if we apply
the labelled transition system in table 2, this program reduces to (st | t) which fails to be
well-typed because the double occurrence of t is not compatible with an affine usage of t.
Intuitively, after the signal s has been read once no other synchronisation should arise during
the instant either within the program or with the environment. To express this fact we proceed
as follows. First, we instrument the semantics so that it marks (underlines) the emissions on
signals of kind 5 that have been used at least once during the instant. The emission has no
effect on the labelled transition system in the sense that se behaves exactly as se.

(out)
e ⇓ v

se
sv
−→ se

(out)
e ⇓ v

se
sv
−→ se

(reset)
e ⇓ v v occurs in V (s)

se
[{v}/s],V
−−−−−−→ 0

On the other hand, we introduce a special rule (out) to type se which requires at least a
usage (1, 1, 0) · (0, 0, 0)ω for the signal s while neglecting the expression e. By doing this, we
make sure that a second attempt to receive on s will produce a type error. In other terms, if
typing is preserved by ‘compatible’ transitions, then we can be sure that a value emitted on
a signal of kind 5 is received at most once within an instant.

3.4 Type system

The type system is built around few basic ideas. (1) Usages including both input and output
capabilities can be decomposed in simpler ones. For instance, (1, 1, 0)ω = (1, 0, 0)(0, 1, 0)ω ⊕
(0, 1, 0)(1, 0, 0)ω . (2) A rely-guarantee kind of reasoning: when we emit a value we guarantee
certain resources while when we receive a value we rely on certain resources. (3) Every affine
usage can be consumed at most once in the typing judgement (and in the computation).

3What’s the meaning of sending a data structure containing informations whose usage is time-dependent?
Is the time information relative to the instant where the data structure is sent or used? We leave open the
problem of developing a type theory with usages more complex than the ones of the shape xyω considered
here.

9

When formalising the typing judgements we need to distinguish the typing of an expression
e from the typing of an expression with dereferenciation r and the typing of a recursive call
A(e1, . . . , en) from the typing of a recursive call at the end of the instant A(r1, . . . , rn). To
do this we shall write [r] rather than r and [A(r1, . . . , rn)] rather than A(r1, . . . , rn).

We shall consider four typing judgements: Γ ⊢ e : ρ, Γ ⊢ [r] : ρ, Γ ⊢ P , and Γ ⊢
[A(r1, . . . , rn)], and we wish to refer to them with a uniform notation Γ ⊢ U : T . To this
end, we introduce a fictious type Pr of programs and regard the judgements Γ ⊢ P : Pr and
Γ ⊢ [A(r1, . . . , rn)] : Pr as an expansion of Γ ⊢ P and Γ ⊢ [A(r1, . . . , rn)], respectively. Then
we let U stand for one of e, [r], P , [A(r1, . . . , rn)], and T for one of ρ,Pr .

We assume that function symbols are given non-affine types of the shape (κ1, . . . , κn) → κ.
We denote with k either a constructor or a function symbol and we assume that its type is
explicitly given.

The typing rules are given in table 4. We comment first on the typing rules for the
expressions. We notice that the arguments and the result of a constructor or a function symbol
have always a uniform type. The rules (!Set) and (!List) describe the type of a dereferenced
signal following its usage. If the usage is of kind 1 then the list of values associated with the
signal at the end of the instant must be treated as a set, if the usage is of kind 2 then we
know that the list of values contains at most one element and therefore its processing will
certainly be ‘order-independent’, if the usage is of kind 3 then the list may contain several
values and it must be processed as an affine set, finally if the usage is of kind 4 (the usage of
kind 5 forbids reception at the end of the instant) then again the list of values will contain
at most one element so we can rely on an affine list type.

Notice the special form of the rule [var sig]. The point here is that in a recursive call
K = A(!s, s) at the end of instant, we need to distinguish the resources needed to type !s
which should relate to the current instant from the resources needed to type s which should
relate to the following instants. For instance, we want to type K in a context s : Sigu(σ)
where u = (0, 0, 1)ω . This is possible because we can decompose u in u1 ⊕ u2, where u1 =
(0, 0, 1)(0, 0, 0)ω and u2 = (0, 0, 0)(0, 0, 1)ω , and we can rely on u1 to type [!s] and on u2 to
type [s] (by [var sig]).

A set-type is a particular case of quotient type and therefore its definition goes through
the definition of an equivalence relation ∼ρ on values. This is defined as the least equivalence
relation such that s ∼Sigu(σ) s, c ∼C(σ) c, if c is a constant of type C(σ), and

c(v1, . . . , vn) ∼Cu(σ1,...,σn) c(u1, . . . , un) if vi ∼σi
ui for i = 1, . . . , n

[v1; . . . ; vn] ∼Setu(σ) [u1; . . . ; um] if {v1, . . . , vn} ∼Setu(σ) {u1, . . . , um},
where: {v1, . . . , vn} ∼Setu(σ) {u1, . . . , um} if for a permutation π, vi ∼σ uπ(i) .

Furthermore, we assume that each function symbol f , coming with a (classical) type
(κ1, . . . , κn) → κ, respects the typing in the following sense: (1) if vi ∼κi ui, i = 1, . . . , n,
f(v1, . . . , vn) ⇓ v and f(u1, . . . , un) ⇓ u then v ∼κ u. (2) If Γ ⊢ f(v1, . . . , vn) : κ and
f(v1, . . . , vn) ⇓ v then Γ ⊢ v : κ.

Finally, we turn to the typing of programs. We assume that each thread identifier A,
defined by an equation A(x1, . . . , xn) = P , comes with a type (σ1, . . . , σn). Hence we require
these types to be uniform. We also require that A has the property that: (i) if vi ∼σi ui for
i = 1, . . . , n then A(v1, . . . , vn) ≈ A(u1, . . . , un) and (ii) x1 : σ1, . . . , xn : σn ⊢ P is derivable.

We also suppose that generated signals names are explicitly labelled with their types as
in νs : ρ P . The labelled transition system in table 2 is adapted so that the output action
carries the information on the types of the extruded names. This type is lifted by the rule

10

κ ::= C∞(κ) || Set∞(κ) || Sigu(κ) (u neutral)
λ ::= C1(σ) || Set1(σ) || Sigu(κ) || Sigv(λ) (u affine and uniform, v aff.-pres.

and uniform)
σ ::= κ || λ (uniform types)
ρ ::= σ || Sigu(κ) || Sigv(λ) (v affine-preserving)

(var)
u ≥ u′ Op ∈ {Sig ,Set , C}
Γ, x : Opu(σ) ⊢ x : Opu′(σ)

(k)

Γi ⊢ ei : σi i = 1, . . . , n
k : (σ1, . . . , σn) → σ k = f or k = c

Γ0 ⊕ Γ1 ⊕ · · · ⊕ Γn ⊢ k(e1, . . . , en) : σ

[varC]
Op = C Op = Set

Γ, x : Opu(σ) ⊢ [x] : Opu(σ)
[var sig]

yω ≥ u

Γ, s : Sigxyω (σ) ⊢ [s] : Sigu(σ)

[k]

Γi ⊢ [ri] : σi i = 1, . . . , n
k : (σ1, . . . , σn) → σ k = f or k = c

Γ0 ⊕ Γ1 ⊕ · · · ⊕ Γn ⊢ [k(r1, . . . , rn)] : σ

[!Set]
(u(0) ≥ (∞, 0,∞) ∧ x = ∞) ∨

(u(0) ≥ (∞, 0, 1) ∧ x = 1)

Γ, s : Sigu(σ) ⊢ [!s] : Setx(σ)
[!List]

(u(0) ≥ (0,∞,∞) ∧ x = ∞) ∨
(u(0) ≥ (0, 0, 1) ∧ x = 1)

Γ, s : Sigu(σ) ⊢ [!s] : Listx(σ)

(0)
Γ ⊢ 0

(out)
Γ1 ⊢ s : Sigu(σ) u(0)1 6= 0

Γ2 ⊢ e : σ

Γ1 ⊕ Γ2 ⊢ se

(ν)
Γ, s : Sigu(σ) ⊢ P

Γ ⊢ νs : Sigu(σ) P
(in)

Γ1 ⊢ s : Sigu(σ) u(0)2 6= 0
Γ2, x : σ ⊢ P (Γ1 ⊕ Γ2) ⊢ [A(r)]

(Γ1 ⊕ Γ2) ⊢ s(x).P, A(r)

(ms)

s1, s2 ∈ dom(Γ)
Γ ⊢ Pi i = 1, 2

Γ ⊢ [s1 = s2]P1, P2

(mc)

c : (σ1, . . . , σn) → σ Γ1 ⊢ u : σ
Γ2, x1 : σ1, . . . , xn : σn ⊢ P1

(Γ1 ⊕ Γ2) ⊢ P2

Γ1 ⊕ Γ2 ⊢ [u � c(x1, . . . , xn)]P1, P2

(par)
Γi ⊢ Pi i = 1, 2

Γ1 ⊕ Γ2 ⊢ P1 | P2
(rec)

A : (σ1, . . . , σn),
Γi ⊢ ei : σi i = 1, . . . , n

Γ1 ⊕ · · · ⊕ Γn ⊢ A(e1, . . . , en)

(out)
Γ ⊢ s : Sigu(σ) u(0) = (1, 1, 0)

Γ ⊢ se
[rec]

A : (σ1, . . . , σn),
Γi ⊢ [ri] : σi i = 1, . . . , n

Γ1 ⊕ · · · ⊕ Γn ⊢ [A(r1, . . . , rn)]

Table 4: Affine type system

11

(next) so that, e.g., νs : ρ s.0, A(s)
N
−→ νs :↑ ρ A(s).

Example 3 With reference to the example of client-server in section 1, assume an induc-
tive (non-affine) type D of data. Let σ1 = Sigu1

(D) where u1 = (1, 0, 0)ω be the type
of the signals on which the server will eventually provide an answer. Let Req1(σ1,D) =
req of σr,D be the type of requests which are pairs composed of a signal and a datum.
Let σset = Set1(Req1(σ1,D)) be the type of the set of requests issued by the clients. Let
σ = Sigu(Req1(σ1,D)) with u = (∞, 0, 1)ω be the type of the signal on which the server gets
the requests and σ′ = Sigu′(Req1(σ1,D)), with u′ = (∞, 0, 0)ω , the related type of the signal
on which the clients send the requests. Finally, let σt = Sigu(D) be the type of the signal on
which the client sends the received answer (with a suitable usage u). Then we can type Server
and Client as follows: Server : (σ), Handle : (σ, σset), and Client : (D,σ′, σt).

Remark 4 In a practical implementation of the type system, one can expect the programmer
to assign a kind (1 − 5) to each signal and let the system infer a minimum usage which is
compatible with the operations performed by the program.

4 Results

We start by stating the expected weakening and substitution properties of the type system.

Lemma 5 (weakening) If Γ ⊢ U : T and (Γ ⊕ Γ′) ↓ then (Γ ⊕ Γ′) ⊢ U : T .

Lemma 6 (substitution) If Γ, x : ρ ⊢ U : T , Γ′ ⊢ v : ρ, and (Γ ⊕ Γ′) ↓ then (Γ ⊕ Γ′) ⊢
[v/x]U : T .

Next we specify when a context Γ is compatible with an action act , written (Γ, act) ↓.
Recall that V and E denote a function from signals to finite lists of distinct values and finite
sets of values, respectively. If V (s) = [v1; . . . ; vn] then let (V \E)(s) = {v1, . . . , vn}\E(s).
Then define a program P(V \E) as the parallel composition of emissions sv such that v ∈
(V \E)(s). Intuitively, this is the emission on an appropriate signal of all the values which are
in V but not in E. We also let PV stand for P(V \∅) where ∅(s) = ∅ for every signal s.

Definition 7 With each action act, we associate a minimal program Pact that allows the
action to take place:

Pact =

0 if act = τ or act = N
sv if act = sv or act = s?v
s(x).0, 0 if act = sv
PV \E if act = (E,V)

Definition 8 (compatibility context and action) A context Γ is compatible with an ac-
tion act, written (Γ, act) ↓, if ∃Γ′ (Γ ⊕ Γ′) ↓ and Γ′ ⊢ Pact.

We can now introduce the concept of typed transition which is a transition labelled with
an action act of a program typable in a context Γ such that Γ and act are compatible.

Definition 9 (typed transition) We write P
act

−−−→
Γ

Q (P
act
⇒
Γ

Q) if: (1) Γ ⊢ P , (2)

(Γ, act) ↓, and (3) P
act
−−→ Q (P

act
⇒ Q, respectively).

12

Next, we introduce the notion of residual context which is intuitively the context left after
a typed transition. (the definition for the auxiliary actions is available in appendix B.5). First,
we notice that given a (uniform) type σ and a value v we can define the minimum context
∆(v, σ) such that ∆(v, σ) ⊢ v : σ. Namely, we set ∆(s, σ) = s : σ and ∆(c(v1, . . . , vn)) =
∆(v1, σ1) ⊕ · · · ⊕ ∆(vn, σn) if c : (σ1, . . . , σn) → σ. Notice that ∆(v, σ) is the empty context
if fn(v) = ∅ and it is a neutral context if σ is non-affine.

Definition 10 (residual context) Given a context Γ and a compatible and relevant action
α, the residual context Γ(α) is defined as follows:

Γ(α) =

Γ if α = τ
↑ Γ if α = N
(Γ, t : σ′) ⊖ ∆(v : σ′) ⊕ {s : Sigu5

(σ′)} if Γ(s) = Sigu(σ′), α = νt : σ′sv, (1)
Γ ⊕ ∆(v, σ′) ⊕ {s : Siguout

(σ′)} if Γ(s) = Sigu(σ′), α = sv, (2)

(1) u5 =
(

0, 1, 0
)

·
(

0, 0, 0
)ω

if u ∈ U(5) and it is neutral otherwise (i.e., u ∈ U(2)). (2) uout

is the least usage of the same kind as u which allows to perform an output within the instant
(always defined).

The notion of residual context is instrumental to a precise statement of the way transitions
affect the typing. First we notice that the type of expressions is preserved by the evaluation
relation.

Lemma 11 (expression evaluation) If Γ ⊢ e : ρ and e ⇓ v then Γ ⊢ v : ρ.

The following lemma records the effect of the substitution at the end of the instant.

Lemma 12 (substitution, end of instant) (1) If Γ ⊢ [A(r)], Γ′ ⊢ PV , and (Γ ⊕ Γ′) ↓
then ↑ (Γ ⊕ Γ′) ⊢ V (A(r)).

(2) If moreover there are V ′, E such that V, V ′ ‖−E then V (A(r)) ≈ V ′(A(r)).

Finally, the subject reduction theorem states that the residual of a typed transition is
typable in the residual context (again, the residual context on auxiliary actions is defined in
appendix B.5).

Theorem 13 (subject reduction) If P
act

−−−→
Γ

Q then Γ(act) ⊢ Q.

Next we introduce a notion of typed bisimulation which refines the one given in definition
1 by focusing on typed processes and typed transitions. Let Cxt be the set of contexts and if
Γ ∈ Cxt let Pr(Γ) be the set of programs typable in the context Γ.

Definition 14 (typed bisimulation) A typed bisimulation is a function R indexed on
Cxt such that for every context Γ, RΓ is a symmetric relation on Pr(Γ) such that: P RΓ Q,
P

α
−−→

Γ
P ′, bn(α) ∩ fn(Q) = ∅ implies ∃Q′ (Q

α
⇒
Γ

Q′, P ′ RΓ(α) Q′). We denote with ≈t

the largest typed labelled bisimulation.

An expected property of typed bisimulation is that it is a weaker property than untyped
bisimulation: if we cannot distinguish two processes by doing arbitrary actions we cannot
distinguish them when doing actions which are compatible with the typing.

13

Proposition 15 If P,Q ∈ Pr(Γ) and P ≈ Q then P ≈t
Γ Q.

We write P
τ
;
Γ

Q if P
τ

−−→
Γ

Q or P = Q. The following lemma states a strong commutation

property of typed τ actions and it entails that typed bisimulation is invariant under τ -actions.

Lemma 16 (1) If P
τ

−−→
Γ

Pi for i = 1, 2 then there is a Q such Pi
τ
;
Γ

Q for i = 1, 2.

(2) If P
τ
⇒
Γ

Q then P ≈t
Γ Q.

The second key property is that the computation at the end of the instant is deterministic
and combining the two lemmas, we derive that typable programs are deterministic.

Lemma 17 If P
N

−−→
Γ

Pi for i = 1, 2 then P1 ≈t
↑(Γ) P2.

Theorem 18 (determinacy) If P
N
⇒
Γ

·
N
⇒
Γ′

· · ·
N
⇒
Γ′

Pi, i = 1, 2,Γ′ =↑ Γ then P1 ≈t
Γ′ P2.

5 Conclusion

The main contribution of this work is the identification of 5 kinds of usages in signal-based
communication and of the rules that allow their composition while preserving determinacy.
This goes well-beyond previous analyses for Esterel-like languages we are aware of that are
essentially ‘first-order’ in the sense that signals are not treated as first-class values. Techni-
cally, we have shown that a typable process P is deterministic. This result builds on previous
work by the authors [2, 4] on a mathematical framework to reason about the equivalence of
programs which is comparable to the one available for the π-calculus.

References

[1] R. Amadio. The SL synchronous language, revisited. Journal of Logic and Algebraic Programming,
70:121-150, 2007.

[2] R. Amadio. A synchronous π-calculus. Information and Computation, 205(9):1470–1490, 2007.

[3] R. Amadio, I. Castellani and D. Sangiorgi. On bisimulations for the asynchronous π-calculus. In Theo-
retical Computer Science, 195:291-324, 1998.

[4] R. Amadio, M. Dogguy. Determinacy in a synchronous π-calculus. Technical Report, Université Paris 7,
Laboratoire PPS, July 2007. To appear in From semantics to computer science: essays in honor of Gilles
Kahn, Y. Bertot et al (eds.), CUP.

[5] G. Berry and G. Gonthier. The Esterel synchronous programming language. Science of computer pro-
gramming, 19(2):87–152, 1992.

[6] F. Boussinot and R. De Simone. The SL synchronous language. IEEE Trans. on Software Engineering,
22(4):256–266, 1996.

[7] J.-Y. Girard. Linear Logic. Theoretical Computer Science,50(1):1-102, 1987.

[8] K. Honda and N. Yoshida. On reduction-based process semantics. Theoretical Computer Science,
151(2):437-486, 1995.

[9] N. Kobayashi. Type systems for concurrent programs. In Proc. 10th Anniversary Colloquium of
UNU/IIST, Springer LNCS 2757, 2003.

[10] N. Kobayashi, B. Pierce, and D. Turner. Linearity and the pi-calculus. ACM Transactions on Programming
Languages and Systems (TOPLAS), 21(5), 1999.

14

[11] L. Mandel and M. Pouzet. ReactiveML, a reactive extension to ML. In Proc. ACM Principles and Practice
of Declarative Programming, pages 82–93, 2005.

[12] R. Milner. Communication and concurrency. Prentice-Hall, 1989.

[13] R. Milner, J. Parrow, and D. Walker. A calculus of mobile processes, parts 1-2. Information and Compu-
tation, 100(1):1–77, 1992.

[14] Ph. Wadler. A Taste of Linear Logic. In Proc. Mathematical Foundations of Computer Science, SLNCS
711, pages 185-210, 1993.

A Typing examples

We consider two examples that are part of the folklore on synchronous programming (see,
e.g., [11]) and a third one that suggests that a certain form of single-assignment reference can
be modelled in our framework.

Example 19 (cell) We describe the behaviour of a generic cell that might be used in the
simulation of a dynamic system. Each cell relies on three parameters: its state q, its own
activation signal s, and the list ℓ of activation signals of its neighbours. The cell performs
the following operations in a cyclic fashion: (i) it emits its current state along the activation
signals of its neighbours, (ii) it waits till the end of the current instant (pause), and (iii) it
collects the values emitted by its neighbours and computes its new state.

Cell(q, s, ℓ) = Send(q, s, ℓ, ℓ)
Send(q, s, ℓ, ℓ′) = [ℓ′ � cons(s′, ℓ′′)] (s′q | Send(q, s, ℓ, ℓ′′)),

pause.Cell(next(q, !s), s, ℓ)

where next is a function that computes the following state of the cell according to its
current state and the state of its neighbours. Assuming that the function next is invariant
under permutations of the list of states, we would like to show that the evolution of the
simulation is deterministic. To express this invariance, a natural idea is to treat the ‘list’ of
distinct states as a ‘set’, i.e., as a list quotiented by a relation that identifies a list with any
of its permutations.

We now turn to the typing. Assume an inductive (non-affine) type State to represent
the state of a cell and let σ = Sigu(State) where u = (∞, 0,∞)ω and σ′ = List∞(σ). Then
we can require: Cell : (State , σ, σ′) and Send : (State , σ, σ′, σ′). Because, the usage of the
signals under consideration is (∞, 0,∞)ω, the type of their dereferenciation is Set∞(State)
and therefore we must require next : (State ,Set∞(State)) → State, which means that the result
of the function next must be invariant under permutations of the list of (distinct) states.

Example 20 (synchronous data flow) We provide an example of synchronous data-flow
computation. The network is described by the program

νs2, s3, s4, s5(A(s1, s2, s3, s4) | B(s2, s3, s5, s6) | C(s4, s5))

where:

A(s1, s2, s3, s4) = s1(x).(s2f(x) | s3(y).(s4g(y) | pause.A(s1, s2, s3, s4)), 0), 0
B(s2, s3, s5, s6) = s2(x).(s3i(x) | s5(y).(s6l(y)) | pause.B(s2, s3, s5, s6)), 0), 0
C(s4, s5) = s4(x).(s5h(x) | pause.C(s4, s5)), 0

Assuming that at each instant at most one value is emitted on the input signal s1, we would
like to show that at each instant at most one value will be emitted on every other signal. This
example suggests that we should introduce a notion of affine usage in signals.

15

We now turn to the typing. We assume an inductive type D of data and let σ = Sigu(D),
σI = SiguI

(D), and σO = SiguO
(D), where: u = (1, 1, 0)ω , uI = (0, 1, 0)ω , and uO =

(1, 0, 0)ω . Then we can require: A : (σI , σO, σI , σO), B : (σI , σO, σI , σO), and C : (σI , σO).
The restricted signals s2, . . . , s5 take the type σ and the overall system is well-typed with respect
to the context s1 : σI , s6 : σO.

Remark 21 (affinity vs. linearity) With reference to the data flow example 20, one may
notice that the type system guarantees determinacy by making sure that at every instant at
most one value is emitted on every signal. One could consider a more refined type system that
guarantees that exactly one value is emitted on a signal at every instant.4 However, to obtain
this system it is not enough to require that all linear hypotheses in the context are used in the
typing. For instance, consider: νs, s′ : σ(A(s, s′) | A(s′, s)) where: σ = Sig(1,1,0)ω , A : (σ, σ),

and A(s, s′) = s().(s′ | pause.A(s, s′)), A(s, s′). This program could be linearly typed but it
is stuck at every instant. Following previous work (see, e.g., [9]), one way to address this
problem is to partition signals in a finite set of regions and to order them. Then one designs
typing rules that require that a reception on a signal belonging to a given region only guards
(prefixes) emissions on signals belonging to higher regions.

Example 22 (single-assignment references) We introduce a kind of single-assignment
references that allow for a shared memory among different threads while preserving determi-
nacy. For simplicity, we look at references on some basic inductive type κ. The three basic
operations are: (1) newref(s, e) P creates a reference s whose scope is P and assigns it the
value resulting from the evaluation of e; (2) read(s, x).P reads the value v contained in the
reference s and runs [v/x]P ; and (3) write(s, e).P evaluates e and writes its value in the ref-
erence s. The written value will be available in the following instant. Reading and writing are
non-blocking operations, moreover a value written at a given instant persists unless a follow-
ing write operation occurs. To ensure determinacy, we have to guarantee that at any instant
at most one value is written in a reference.

We model this situation by associating with each reference s a pair of signals (s, s′). The
first signal s has a usage of kind 2 (one write and arbitrarily many reads) while the signal s′

has a usage of kind 5 (one write and one read during the instant). A reference s containing
the value x is simulated by the following recursive program:

Ref (s, s′, x) = sx | s′(y).pause.Ref (s, s′, y),Ref (s, s′, x)

where the type of Ref is (Sigu(κ),Sigu′(κ), κ) with u = (1,∞,∞)ω and u′ = (0, 1, 0)ω . Thus
on the signal s, Ref emits the current value of the reference while on the signal s′ it waits
for the value for the next instant. The usages we assign to the signals s and s′ guarantee
that arbitrarily many threads can read the reference but at most one can write it at any given
instant. Formally, we can translate the three basic operations on references described above
as follows:

〈newref(s, e) P 〉 = νs, s′ (Ref (s, s′, e) | 〈P 〉),
〈read(s, x).P 〉 = s(x).〈P 〉, 0,
〈write(s, e).P 〉 = s′e | 〈P 〉 .

4In this system the ‘else’ branch of the input operator would become useless

16

Example 23 (clocks) We consider a kind of clock that still allows for a deterministic exe-
cution.5 The value of a clock is a natural number which is emitted on a signal, hence within
an instant all threads can read the same clock value. At each instant, one or more threads may
reset the clock value. The effect of this reset is visible in the following instant. To program a
clock, we declare the unit type and the type of natural numbers:

Unit∞() = ∗
Nat∞() = Z || S of Nat()

With each clock we associate a thread Clock whose behaviour and type is defined as follows:

Clock(s, r, n) = sn | pause.Clock ′(s, r, !r, n)
Clock : (Sigu(Nat),Sigu′(Unit),Nat), u = (1,∞,∞)ω, u′ = (∞, 0, 1)ω

Clock ′(s, r, ℓ, n) = [ℓ � nil]Clock(s, r, S(n)),Clock(s, r, Z)
Clock ′ : (Sigu(Nat),Sigu′(Unit),Set1(Unit),Nat)

Note that the typing guarantees that the thread Clock is the only one that can emit the
clock signal s and read the reset signal r. On the other hand, another thread using the clock
may read the clock value on the signal s and may reset it in the following instant by emitting
on the reset signal r.

B Proofs

B.1 Proof of lemma 5

By induction on the typing rules. One uses several times the fact that ⊕ is associative and
commutative both on types and contexts and the fact that the rules are formulated so that
the conclusion still holds when the usages in the context Γ are increased (see, e.g., the rule
(var)).

B.2 Proof of lemma 6

The following lemma collects some preliminary remarks.

Lemma 24 (1) If Γ ⊢ U : T , Γ′ ⊢ v : ρ, (Γ ⊕ Γ′) ↓, and x /∈ dom(Γ) then
(Γ ⊕ Γ′) ⊢ [v/x]U : T .

(2) If Γ ⊢ v : κ then there is a neutral context Γ′ such that Γ′ ⊢ v : κ and Γ = Γ′ ⊕ Γ′′.

(3) If Γ ⊢ v : ρ and ρ = ρ1 ⊕ · · · ⊕ ρn then there exist Γ1, . . . ,Γn such that Γ1 ⊕ · · · ⊕ Γn = Γ
and Γi ⊢ v : ρi for i = 1, . . . , n.

Proof (1) If x ∈ FV (U) then the only possibility is that x ∈ FV (e) where se is a sub-term
of U . But then one can type s[v/x]e exactly as one types se. So Γ ⊢ [v/x]U : T and we
conclude by weakening.

(2) We proceed by induction on v. For the inductive step, we use the fact that if c(v1, . . . , vn)
has a neutral type then the vi must have a neutral type too.

(3) If the type ρ is neutral then ρ = ρ1 = · · · = ρn. By (2), we can find a neutral context
Γ′ such Γ′ ⊢ v : ρ and Γ′ ⊕ Γ′′ = Γ. Then it suffices to take Γ1 = Γ′ ⊕ Γ′′ and Γi = Γ′

5Note that in the usual semantics of timed automata, the fact that two processes may atomically read and
reset the same clock may produce race conditions.

17

for i = 2, . . . , n. If the type ρ is affine and either an inductive type or a set type then we
must have n = 1 and the assertion follows immediately. Finally, if the type ρ is affine and
a signal type then the usages of the signal in the types ρ1, . . . , ρn allow to construct directly
the contexts Γ1, . . . ,Γn. 2

Next, to prove the substitution lemma we proceed by induction on the typing of U .

(var) Suppose Γ, y : Opu(σ) ⊢ y : Opu′(σ) with u ≥ u′.

• If Γ = Γ′′, x : ρ and x 6= y then ((Γ′′, y : Opu(σ)) ⊕ Γ′)(y) = Opu′′(σ) with u′′ ≥ u. Hence,
by (var), (Γ′′, y : Opu) ⊕ Γ′ ⊢ y : Opu′ .

• If x = y then [v/x]y = v. If Op is not Sig then u = u′. By hypothesis, Γ′ ⊢ v : Opu(σ)
and by weakening Γ′′ ⊕ Γ′ ⊢ v : Opu(σ). On the other hand, if Op is Sig then, by (var),
(Γ′′ ⊕ Γ′) ⊢ v : Opu(σ).

(k) If k is a constant then apply weakening. Otherwise, suppose Γ, x : ρ = Γ0 ⊕Γ1 ⊕ · · ·⊕Γn

with Γi ⊢ ei : σi, i = 1, . . . , n. Let I = {i ∈ {1, . . . , n} | x ∈ dom(Γi)}. If i ∈ I then assume
Γi = Γ′′

i , x : ρi. We have ρ = ⊕i∈Iρi. By lemma 24(3), we can find Γ′
i such that Γ′

i ⊢ v : ρi

for i ∈ I and Γ′ = ⊕i∈IΓ
′
i. If i /∈ I then Γi ⊢ [v/x]ei : σi, (cf. lemma 24(1)), and if i ∈ I then

(Γi ⊕ Γ′
i) ⊢ [v/x]ei : σi, by inductive hypothesis.

This kind of argument is repeated several times for the remaining rules. As already pointed out
in the proof of the weakening lemma 5, another important point is that the rules are built so
that adding extra capabilities to the hypotheses in the context does not affect the conclusion.
We just look in some detail at the rule [var sig] in the case where Γ, s : Sigxyω(σ) ⊢ [s] : Sigu(σ),
yω ≥ u, Γ′ ⊢ s′ : Sigxyω(σ) and (Γ ⊕ Γ′) ↓. Then Γ′(s) = s′ : Sigu′(σ) with u′ ≥ xyω. Hence
↑ (u′) ≥ yω ≥ u. 2

B.3 Proof of lemma 11

By induction on the evaluation e ⇓ v. If e is a signal s or a constant c then e = v and
the conclusion is immediate. So suppose: e = k(e1, . . . , en), k : (σ1, . . . , σn) → σ, Γ =
Γ0 ⊕ Γ1 ⊕ · · · ⊕ Γn, Γi ⊢ ei : σi, and ei ⇓ vi, for i = 1, . . . , n. By inductive hypothesis,
Γi ⊢ vi : σi, for i = 1, . . . , n. If k is a constructor c then v = c(v1, . . . , vn) and Γ ⊢ v : σ by
the rule (k). If k is a function f then again by the rule (k), Γ ⊢ f(v1, . . . , vn) : σ and, by
hypothesis on f , we have that f(v1, . . . , vn) ⇓ v and Γ ⊢ v : σ. 2

B.4 Proof of lemma 12

(1) The effect of V (A(r)) is to replace each of occurrence of !s in r with V (s). First notice
that if !s occurs in r then its usage cannot be of kind 5. Moreover, if it is of kind 1 or 2 then
we can have several occurrences of !s in r and the type of the values emitted on the signal
must be non-affine. Notice that to type a non-affine value, we just need a non-affine context
and since non-affine types are (exactly the) neutral types, we can use this context as many
times as needed. On the other hand, if the signal is of kind 3 or 4 then the values emitted on
the signal can be affine but there can be no more than one occurrence of !s in r.

Following these preliminary considerations, we proceed by case analysis on the rules [!Set]
and [!List]. In each case, one has a judgement of the shape:

Γ, s : Sigu(σ) ⊢ [!s] : Opx(σ)

18

knowing that Γ′ ⊢ V (s) = [v1; . . . ; vn] : Opx(σ),

(2) By definition, V (A(r1, . . . , rn)) = A(V (r1), . . . , V (rn)). Suppose A : (σ1, . . . , σn). We
know that vi ∼σi ui entails that A(v1, . . . , vn) ≈ A(u1, . . . , un). Hence, it is enough to show
that that V (ri) ∼σi V ′(ri) for i = 1, . . . , n. We proceed by induction on the structure of r. If
r is a signal or a constant then by definition r ∼σi r. If r is of the shape !s then we analyse
the kind of usage of s. If it is of kind 2 or 4 then V (s) = V ′(s) (there is at most one value in
the lists). If it is of kind 1 or 3 then V (s) and V ′(s) are equal up to permutation, and we rely
on the definition of ∼ on set types. Finally, if r = k(r) we apply the inductive hypothesis plus
the definition of ∼ on constructors if k is a constructor and the hypothesis on the functions
if k is a function.

B.5 Residual context on auxiliary actions

We specify the notion of residual context on auxiliary actions. The definition for the actions
s?v is similar to the one for the actions sv. On the other hand, for the actions (E,V), we
have to analyse how a program exports and imports usages at the end of the instant. For

instance, consider P = s1t1 | s2t2 | A(!s1), and suppose P
(E,V)

−−−−−→
Γ

A(V (s1)) where:

E = [{t1}/s1, {t2}/s2] V = [[t1; t3]/s1, [t4; t2]/s2] .

The function E represents what P emits, the function V represents what P assumes to be
emitted, moreover looking at the context Γ, we may determine what the process P may
receive at the end of the instant (note that P may receive what it emits and that a value
with an affine typing can be received at most once). In computing the residual context, we
have to subtract what is exported to the environment while adding what is imported from it.
Going back to our example, clearly the context Γ must specify that P may receive on s1 at
the end of the instant. Suppose moreover that it specifies that P may not receive on s2. Then
in computing the residual context, we have to subtract the usage for t2 which is exported
to the environment while adding the usage for t3 which is received from it. Following these
considerations, we define:

∆(E, Γ) = ⊕{∆(v, λ) | Γ(s) = Sigu(λ), v ∈ E(s), u(0)3 6= 1} (export)

∆(V, Γ) = ⊕{∆(v, σ) | Γ(s) = Sigu(σ), v ∈ V (s), u(0)3 6= 0} (import)

Note that in the ‘exported context’ ∆(E,Γ) we only care about usages of values of affine
type, as otherwise ∆(v, κ) is neutral. On the other hand, in the ‘imported context’ we look
at all the values regardless of their type. Indeed, v might have a neutral type but contain a
fresh signal name and then we need to import a neutral context to type it. Also note that in
the following definition 25, we actually focus only on the values that are not emitted (in E).

Definition 25 (residual context on auxiliary actions) Given a context Γ and an auxil-
iary action aux the residual context Γ(aux) is defined as follows where u5 is as in definition
10:

Γ(aux) =

{

(Γ ⊖ {s : Sigu5
(σ′)}) ⊕ ∆(v, σ′) if Γ(s) = Sigu(σ′), aux = s?v, and (1)

(↑ Γ ⊖ ∆(E, Γ)) ⊕ ∆(V ′, Γ) if aux = (E, V) and V \E = V ′

19

B.6 Proof of theorem 13

We proceed by induction on the proof of the transition and by case analysis on the action act
which is performed.

(sv) There is just 1 rule to consider: (in). Suppose Γ(s) = Sigu(σ′). The definition of the
residual context provides an additional context ∆(v, σ′)⊕{s : Siguout

(σ′)} which is just what
is needed to type sv.

(s?v) There are 3 rules to consider: (inaux), (comp), and (ν). We just look at the first one.
Suppose (Γ1 ⊕Γ2) ⊢ s(x).P,K, Γ1 ⊢ s : Sigu(σ′), u(0)2 6= 0, Γ2, x : σ′ ⊢ P , and Γ1 ⊕Γ2 ⊢ [K].
Note that necessarily u ≥ uin . By construction, ∆(v, σ′) ⊢ v : σ′. By the substitution lemma
6, Γ2⊕∆(v, σ′) ⊢ [v/x]P and then it is enough to apply weakening to get the residual context.

(νt : σ sv) There are 5 rules to consider: (out), with a special treatment for kind 5, (out),
(νex), (comp), and (ν).

(τ) There are 8 rules to consider: (synch), (rec), (=sig
i), (=ind

i), (comp), and (ν) for i = 1, 2
We just look at the first two.

(synch) Suppose: P1
νt:ρsv
−−−−→ P ′

1, P2
s?v
−−→ P ′

2, Γi ⊢ Pi, for i = 1, 2, and (Γ1 ⊕Γ2)(s) = Sigu(σ′).
By inductive hypothesis, we have:

(Γ1, t : ρ) ⊖ ∆(v, σ′) ⊕ {s : Sigu5
(σ′)} ⊢ P ′

1 and
(Γ2 ⊕ ∆(v, σ′) ⊖ {s : Sigu5

(σ′)} ⊢ P ′
2

Recall that here u may be of kind 2 or 5 and that in the first case u5 is neutral. In both cases,
we get (Γ1 ⊕ Γ2), t : ρ ⊢ (P ′

1 | P ′
2), and we conclude applying the typing rule (ν).

(rec) Suppose A : (σ1, . . . , σn), Γi ⊢ ei : σi, ei ⇓ vi, for i = 1, . . . , n. By lemma 11, Γi ⊢ vi : σi.
By hypothesis, we know that if A(x1, . . . , xn) = P then x1 : σ1, . . . , xn : σn ⊢ P . Thus, by
iterating the substitution lemma 6, we get, as required, Γ1 ⊕ · · · ⊕ Γn ⊢ [v1/x1, . . . , vn/xn]P .

(E,V) There are 5 rules to consider: (0), (reset), (reset), (cont), and (par). We focus on the
last two.

(cont) Suppose s(x).P,K
(∅,V)
−−−→ V (K) and Γ ⊢ s(x).P,K. Then Γ ⊢ [K]. We rely on lemma

12(1). We build the context Γ′ in the lemma by taking Γ′ = ∆(V,Γ) which is uniform added
to a context Γ′′ which just provides the usages to emit in the first instant the values in V on
the signals in dom(V).

(par) Suppose: Γ = (Γ1 ⊕ Γ2), Γ ⊢ (P1 | P2), (P1 | P2)
(E1∪E2),V
−−−−−−−→ (P ′

1 | P ′
2), Γi ⊢ Pi,

Pi
(Ei,V)
−−−−→ P ′

i , for i = 1, 2. Following the definition of residual context, define for i = 1, 2:

Expi = ∆(Ei, Γi) Exp
1,2 = ∆(E1 ∪ E2, Γ1 ⊕ Γ2)

Impi = ∆(V \Ei, Γi) Imp
1,2 = ∆(V \(E1 ∪ E2), Γ1 ⊕ Γ2)

Γ′

i =↑ Γi ⊖ Expi ⊕ Impi Γ′ =↑ (Γ1 ⊕ Γ2) ⊖ Exp
1,2 ⊕ Imp

1,2

We want to show Γ′ = Γ′
1 ⊕ Γ′

2. We proceed, by analysing the contribution of each value
v ∈ V (s) such that Γ(s) = Sigu(σ) to the computation of Impi, Imp1,2, Expi, and Exp1,2. We
use the notation, e.g., Imp1(v) to denote the contribution of the value v to the computation
of the context Imp1.

20

• If σ is non-affine then, for i = 1, 2, Impi, and Imp1,2 are neutral contexts while Expi and
Exp1,2 are empty contexts. Up to symmetries, v can be received either by (i) Γi, i = 1, 2 or
(ii) Γ1 and Γ2 and emitted either by (i) E1 ∩E2, or (ii) E1\E2, or (iii) E2\E1, or by (iv) the
environment. One proceeds by case analysis (8 situations).

• If σ is affine then the usage u must be of kind 3 or 4 and at the end of the instant the
signal s may be read, exclusively, either by (i) Γi, i = 1, 2 or by (ii) the environment. On the
other hand, v may be emitted either by (i) (E1 ∩ E2), or by (ii) (E1\E2), or by (iii) (E2\E1)
or by (iv) (V \(E1 ∪E2)). If v ∈ (E1 ∩ E2)(s) then ∆(v, σ) must be neutral for otherwise the
addition is not defined. One then proceeds by case analysis (8 situations). Note that if the
environment receives v then the import contexts Impi, Imp1,2 are empty while if Γi receives
v then Expi is empty.

(N) There is just 1 rule to consider: (next). Suppose Γ ⊢ P and P � νs : ρ P ′′. Clearly, a
typing of, say, (νs : ρ Q1) | Q2 can be transformed into a typing of νs : ρ (Q1 | Q2). Thus

Γ ⊢ νs : ρ P ′′ and Γ, s : ρ ⊢ P ′′. By definition of the rule (next), P ′′ (E,V)
−−−→ P ′ with V ‖−E.

By inductive hypothesis and weakening, ↑ (Γ, s : ρ) ⊢ P ′. Thus ↑ (Γ) ⊢ νs :↑ ρ ⊢ P ′. 2

B.7 Proof of proposition 15

We show that the following indexed relation is a typed bisimulation:

P RΓ Q if P,Q ∈ Pr(Γ) and P ≈ Q .

Suppose P RΓ Q, P
α

−−→
Γ

Q, and bn(α) ∩ fn(Q) = ∅. Then:

P
α
−→ P ′ (by definition of typed transition)

Γ(α) ⊢ P ′ (by subject reduction)

Q
α
⇒ Q′, P ′ ≈ Q′ (by untyped bisimulation)

Γ(α) ⊢ Q′ (by subject reduction)

Hence we can conclude that P ′ RΓ(α) Q′. 2

B.8 Proof of lemma 16

(1) An inspection of the labelled transition system in table 2 reveals that two τ reductions
may superpose only if they are produced by two synchronisations on the same signal name, say
s. In this case, s must have a usage of kind 2 or 5. In a usage of kind 2, the typing guarantees
that there is at most one value emitted on s so that we are roughly in the following situation:

P = C[s(x).P1, Q1 | s(x).P2, Q2 | se]

Because a signal emission persists within an instant, it is possible to close the diagram in one
step. On the other hand, in a usage of kind 5 there can be at most one receiver and therefore
no superposition may arise.

(2) We show that
τ
;
Γ

is a typed bisimulation. If P = Q nothing needs to be proved.

So suppose P
τ

−−→
Γ

Q. Clearly, P can weakly simulate all actions Q may perform just by

performing initially an extra τ step. So suppose P
α

−−→
Γ

P ′. Note that α 6= N since P may

perform a τ action.

21

α = τ In this case, we apply (1) noticing that
τ
;
Γ
⊆

τ
⇒
Γ

.

α = sv In this case, P ′ = (P | sv) and we can close the diagram by performing Q
sv
−→ (Q | sv).

α = νtsv Again, because a value emitted on a signal persists, it is equivalent to use it in an
internal synchronisation and then again to extrude the value to the environment or the other
way around. 2

B.9 Proof of lemma 17

By subject reduction we know that ↑ (Γ) ⊢ Pi. If we can show that P1 ≈ P2 then by
proposition 15 we can conclude. According to the rule (next) of the labelled transition system,
we must have for i = 1, 2:

P � νsi P ′, s1 permutation of s2, P ′ E,Vi−−−→ P ′′
i , Vi ‖−E, Pi = νsiP

′′
i .

Then lemma 12(2) and fact 2 guarantee that P ′′
1 ≈ P ′′

2 and P1 ≈ P2. 2

B.10 Proof of theorem 18

The proof is a direct diagram chasing relying on lemma 16(2), 17, and the definition of typed
bisimulation. 2

22

