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Abstract

The Sπ-calculus is a synchronous π-calculus which is based on the SL model. The
latter is a relaxation of the Esterel model where the reaction to the absence of a signal
within an instant can only happen at the next instant. In the present work, we present
and characterise a compositional semantics of the Sπ-calculus based on suitable notions
of labelled transition system and bisimulation. Based on this semantic framework, we
explore the notion of determinacy and the related one of (local) confluence.

1 Introduction

Let P be a program that can repeatedly interact with its environment. A derivative of P
is a program to which P reduces after a finite number of interactions with the environment.
A program terminates if all its internal computations terminate and it is reactive if all its
derivatives are guaranteed to terminate. A program is determinate if after any finite num-
ber of interactions with the environment the resulting derivative is unique up to semantic
equivalence.

Most conditions found in the literature that entail determinacy are rather intuitive, how-
ever the formal statement of these conditions and the proof that they indeed guarantee de-
terminacy can be rather intricate in particular in the presence of name mobility, as available
in a paradigmatic form in the π-calculus.

Our purpose here is to provide a streamlined theory of determinacy for the synchronous π-
calculus introduced in [2]. It seems appropriate to address these issues in a volume dedicated
to the memory of Gilles Kahn. First, Kahn networks [14] are a classic example of concurrent
and deterministic systems. Second, Kahn networks have largely inspired the research on
synchronous languages such as Lustre [9] and, to a lesser extent, Esterel [6]. An intended
side-effect of this work is to illustrate how ideas introduced in concurrency theory well after
Kahn networks can be exploited to enlighten the study of determinacy in concurrent systems.

Our technical approach will follow a process calculus tradition, namely:

1. We describe the interactions of a program with its environment through a labelled tran-
sition system to which we associate a compositional notion of labelled bisimulation.

2. We rely on this semantic framework, to introduce a notion of determinacy and a related
notion of confluence.

∗Work partially supported by ANR-06-SETI-010-02.
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3. We provide local confluence conditions that are easier to check and that combined with
reactivity turn out to be equivalent to determinacy.

We briefly trace the path that has lead to this approach. A systematic study of determi-
nacy and confluence for CCS is available in [17] where, roughly, the usual theory of rewriting
is generalised in two directions: first rewriting is labelled and second diagrams commute up
to semantic equivalence. In this context, a suitable formulation of Newman’s lemma [19], has
been given in [11]. The theory has been gradually extended from CCS, to CCS with values,
and finally to the π-calculus [20].

Calculi such as CCS and the π-calculus are designed to represent asynchronous systems.
On the other hand, the Sπ-calculus is designed to represent synchronous systems. In these
systems, there is a notion of instant (or phase, or pulse, or round) and at each instant each
thread performs some actions and synchronizes with all other threads. One may say that
all threads proceed at the same speed and it is in this specific sense that we will refer to
synchrony in this work.

In order to guarantee determinacy in the context of CCS rendez-vous communication, it
seems quite natural to restrict the calculus so that interaction is point-to-point, i.e., it involves
exactly one sender and one receiver.1 In a synchronous framework, the introduction of signal
based communication offers an opportunity to move from point-to-point to a more general
multi-way interaction mechanism with multiple senders and/or receivers, while preserving
determinacy. In particular, this is the approach taken in the Esterel and SL [8] models.
The SL model can be regarded as a relaxation of the Esterel model where the reaction to the
absence of a signal within an instant can only happen at the next instant. This design choice
avoids some paradoxical situations and simplifies the implementation of the model. The SL
model has gradually evolved into a general purpose programming language for concurrent
applications and has been embedded in various programming environments such as C, Java,
Scheme, and Caml (see [7, 22, 16]). For instance, the Reactive ML language [16] includes a
large fragment of the Caml language plus primitives to generate signals and synchronise on
them. We should also mention that related ideas have been developed by Saraswat et al. [21]
in the area of constraint programming.

The Sπ-calculus can be regarded as an extension of the SL model where signals can carry
values. In this extended framework, it is more problematic to have both concurrency and
determinacy. Nowadays, this question is frequently considered when designing various kind
of synchronous programming languages (see, e.g., [16, 10]). As we already mentioned, our
purpose here is to address the question with the tool-box of process calculi following the work
for CCS and the π-calculus quoted above. In this respect, it is worth stressing a few interesting
variations that arise when moving from the ‘asynchronous’ π-calculus to the ‘synchronous’ Sπ-
calculus. First, we have already pointed-out that there is an opportunity to move from a point-
to-point to a multi-way interaction mechanism while preserving determinacy. Second, the
notion of confluence and determinacy happen to coincide while in the asynchronous context
confluence is a strengthening of determinacy which has better compositionality properties.
Third, reactivity appears to be a reasonable property to require of a synchronous system, the
goal being just to avoid instantaneous loops, i.e., loops that take no time.2

1Incidentally, this is also the approach taken in Kahn networks but with an interaction mechanism based
on unbounded, ordered buffers. It is not difficult to represent unbounded, ordered buffers in a CCS with value
passing and show that, modulo this encoding, the determinacy of Kahn networks can be obtained as a corollary
of the theory of confluence developed in [17].

2The situation is different in asynchronous systems where reactivity is a more demanding property. For
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The rest of the paper is structured as follows. In section 2, we introduce the Sπ-calculus,
in section 3, we define its semantics based on a standard notion of labelled bisimulation on a
(non-standard) labelled transition system and we show that the bisimulation is preserved by
static contexts, in section 4 we provide alternative characterisations of the notion of labelled
bisimulation we have introduced, in section 5, we develop the concepts of determinacy and
(local) confluence. Familiarity with the π-calculus [18, 23], the notions of determinacy and
confluence presented in [17], and synchronous languages of the Esterel family [6, 8] is
assumed.

2 Introduction to the Sπ-calculus

We introduce the syntax of the Sπ-calculus along with an informal comparison with the
π-calculus and a programming example.

2.1 Programs

Programs P,Q, . . . in the Sπ-calculus are defined as follows:

P ::= 0 || A(e) || se || s(x).P,K || [s1 = s2]P1, P2 || [u � p]P1, P2 || νs P || P1 | P2

K ::= A(r)

We use the notation m for a vector m1, . . . ,mn, n ≥ 0. The informal behaviour of programs
follows. 0 is the terminated thread. A(e) is a (tail) recursive call of a thread identifier A
with a vector e of expressions as argument; as usual the thread identifier A is defined by a
unique equation A(x) = P such that the free variables of P occur in x. se evaluates the
expression e and emits its value on the signal s. s(x).P,K is the present statement which
is the fundamental operator of the SL model. If the values v1, . . . , vn have been emitted on
the signal s then s(x).P,K evolves non-deterministically into [vi/x]P for some vi ([ / ] is our
notation for substitution). On the other hand, if no value is emitted then the continuation
K is evaluated at the end of the instant. [s1 = s2]P1, P2 is the usual matching function of
the π-calculus that runs P1 if s1 equals s2 and P2, otherwise. Here both s1 and s2 are free.
[u � p]P1, P2, matches u against the pattern p. We assume u is either a variable x or a value
v and p has the shape c(x), where c is a constructor and x is a vector of distinct variables.
We also assume that if u is a variable x then x does not occur free in P1. At run time, u
is always a value and we run θP1 if θ = match(u, p) is the substitution matching u against
p, and P2 if such substitution does not exist (written match(u, p) ↑). Note that as usual the
variables occurring in the pattern p (including signal names) are bound in P1. νs P creates
a new signal name s and runs P . (P1 | P2) runs in parallel P1 and P2. A continuation K
is simply a recursive call whose arguments are either expressions or values associated with
signals at the end of the instant in a sense that we explain below. We will also write pause.K
for νs s(x).0,K with s not free in K. This is the program that waits till the end of the instant
and then evaluates K.

instance, [11] notes: “As soon as a protocol internally consists in some kind of correction mechanism (e.g.,
retransmission in a data link protocol) the specification of that protocol will contain a τ -loop”.

3



2.2 Expressions

The definition of programs relies on the following syntactic categories:

Sig ::= s || t || · · · (signal names)
Var ::= Sig || x || y || z || · · · (variables)
Cnst ::= ∗ || nil || cons || c || d || · · · (constructors)
Val ::= Sig || Cnst(Val , . . . ,Val) (values v, v′, . . .)
Pat ::= Cnst(Var , . . . ,Var) (patterns p, p′, . . .)
Fun ::= f || g || · · · (first-order function symbols)
Exp ::= Var || Cnst(Exp, . . . ,Exp) || Fun(Exp, . . . ,Exp) (expressions e, e′, . . .)
Rexp ::= !Sig || Var || Cnst(Rexp, . . . ,Rexp) ||

Fun(Rexp, . . . ,Rexp) (exp. with deref. r, r′, . . .)

As in the π-calculus, signal names stand both for signal constants as generated by the ν
operator and signal variables as in the formal parameter of the present operator. Variables
Var include signal names as well as variables of other types. Constructors Cnst include ∗, nil,
and cons. Values Val are terms built out of constructors and signal names. Patterns Pat are
terms built out of constructors and variables (including signal names). If P, p are a program
and a pattern then we denote with fn(P ), fn(p) the set of free signal names occurring in them,
respectively. We also use FV (P ),FV (p) to denote the set of free variables (including signal
names). We assume first-order function symbols f, g, . . . and an evaluation relation ⇓ such
that for every function symbol f and values v1, . . . , vn of suitable type there is a unique value
v such that f(v1, . . . , vn) ⇓ v and fn(v) ⊆

⋃

i=1,...,n fn(vi). Expressions Exp are terms built
out of variables, constructors, and function symbols. The evaluation relation ⇓ is extended in
a standard way to expressions whose only free variables are signal names. Finally, Rexp are
expressions that may include the value associated with a signal s at the end of the instant
(which is written !s, following the ML notation for dereferenciation). Intuitively, this value is
a list of values representing the set of values emitted on the signal during the instant.

2.3 Typing

Types include the basic type 1 inhabited by the constant ∗ and, assuming σ is a type, the
type Sig(σ) of signals carrying values of type σ, and the type List(σ) of lists of values of
type σ with constructors nil and cons. In the examples, it will be convenient to abbrevi-
ate cons(v1, . . . , cons(vn, nil) . . .) with [v1; . . . ; vn]. 1 and List(σ) are examples of inductive
types. More inductive types (booleans, numbers, trees,. . .) can be added along with more
constructors. We assume that variables (including signals), constructor symbols, and thread
identifiers come with their (first-order) types. For instance, a function symbols f may have
a type (σ1, σ2) → σ meaning that it waits two arguments of type σ1 and σ2 respectively and
returns a value of type σ. It is straightforward to define when a program is well-typed. We
just point-out that if a signal name s has type Sig(σ) then its dereferenced value !s has type
List(σ). In the following, we will tacitly assume that we are handling well typed programs,
expressions, substitutions,. . .

2.4 Comparison with the π-calculus

The syntax of the Sπ-calculus is similar to the one of the π-calculus, however there are some
important semantic differences that we highlight in the following simple example. Assume
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v1 6= v2 are two distinct values and consider the following program in Sπ:

P = ν s1, s2 ( s1v1 | s1v2 | s1(x). (s1(y). (s2(z). A(x, y) , B(!s1)) , 0) , 0 )

If we forget about the underlined parts and we regard s1, s2 as channel names then P could
also be viewed as a π-calculus process. In this case, P would reduce to

P1 = νs1, s2 (s2(z).A(θ(x), θ(y))

where θ is a substitution such that θ(x), θ(y) ∈ {v1, v2} and θ(x) 6= θ(y). In Sπ, signals
persist within the instant and P reduces to

P2 = νs1, s2 (s1v1 | s1v2 | (s2(z).A(θ(x), θ(y)), B(!s1)))

where θ(x), θ(y) ∈ {v1, v2}. What happens next? In the π-calculus, P1 is deadlocked and no
further computation is possible. In the Sπ-calculus, the fact that no further computation
is possible in P2 is detected and marks the end of the current instant. Then an additional

computation represented by the relation
N
−→ moves P2 to the following instant:

P2
N
−→ P ′

2 = νs1, s2 B(v)

where v ∈ {[v1; v2], [v2; v1]}. Thus at the end of the instant, a dereferenced signal such as !s1

becomes a list of (distinct) values emitted on s1 during the instant and then all signals are
reset.

2.5 A programming example

We introduce a programming example to illustrate the kind of synchronous programming that
can be represented in the Sπ-calculus. We describe first a ‘server’ handling a list of requests
emitted in the previous instant on the signal s. For each request of the shape req(s′, x), it
provides an answer which is a function of x along the signal s′.

Server(s) = pause.Handle(s, !s)

Handle(s, ℓ) = [ℓ � req(s′, x) :: ℓ′](s′f(x) | Handle(s, ℓ′)),Server (s) .

The programming of a client that issues a request x on signal s and returns the reply on
signal t could be the following:

Client(x, s, t) = νs′ (sreq(s′, x) | pause.s′(x).tx, 0) .

3 Semantics of the Sπ-calculus

In this section, we define the semantics of the Sπ-calculus by a ‘standard’ notion of labelled
bisimulation on a ‘non-standard’ labelled transition system and we show that labelled bisim-
ulation is preserved by ‘static’ contexts. A distinct notion of labelled bisimulation for the
Sπ-calculus has already been studied in [2] and the following section 4 will show that the two
notions are (almost) the same. A significant advantage of the presentation of labelled bisim-
ulation we discuss here is that in the ‘bisimulation game’ all actions are treated in the same
way. This allows allows for a considerable simplification of the diagram chasing arguments
that are needed in the study of determinacy and confluence in section 5.
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3.1 Actions

The actions of the forthcoming labelled transition system are classified in the following cate-
gories:

act ::= α || aux (actions)
α ::= τ || νt sv || sv || N (relevant actions)
aux ::= s?v || (E,V ) (auxiliary actions)
µ ::= τ || νt sv || s?v (nested actions)

The category act is partitioned into relevant actions and auxiliary actions.
The relevant actions are those that are actually considered in the bisimulation game. They

consist of: (i) an internal action τ , (ii) an emission action νt sv where it is assumed that the
signal names t are distinct, occur in v, and differ from s, (iii) an input action sv, and (iv) an
action N (for Next) that marks the move from the current to the next instant.

The auxiliary actions consist of an input action s?v which is coupled with an emission
action in order to compute a τ action and an action (E,V ) which is just needed to compute
an action N . The latter is an action that can occur exactly when the program cannot perform
τ actions and it amounts (i) to collect in lists the set of values emitted on every signal, (ii)
to reset all signals, and (iii) to initialise the continuation K for each present statement of the
shape s(x).P,K.

In order to formalise these three steps we need to introduce some notation. Let E vary
over functions from signal names to finite sets of values. Denote with ∅ the function that
associates the empty set with every signal name, with [M/s] the function that associates the
set M with the signal name s and the empty set with all the other signal names, and with ∪
the union of functions defined point-wise.

We represent a set of values as a list of the values contained in the set. More precisely,
we write v ‖−M and say that v represents M if M = {v1, . . . , vn} and v = [vπ(1); . . . ; vπ(n)]
for some permutation π over {1, . . . , n}. Suppose V is a function from signal names to lists
of values. We write V ‖−E if V (s) ‖−E(s) for every signal name s. We also write dom(V ) for
{s | V (s) 6= []}. If K is a continuation, i.e., a recursive call A(r), then V (K) is obtained from
K by replacing each occurrence !s of a dereferenced signal with the associated value V (s).
We denote with V [ℓ/s] the function that behaves as V except on s where V [ℓ/s](s) = ℓ.

With these conventions, a transition P
(E,V )
−−−→ P ′ intuitively means that (1) P is suspended,

(2) P emits exactly the values specified by E, and (3) the behaviour of P in the following
instant is P ′ and depends on V . It is convenient to compute these transitions on programs
where all name generations are lifted at top level. We write P � Q if we can obtain Q from
P by repeatedly transforming, for instance, a subprogram νsP ′ | P ′′ into νs(P ′ | P ′′) where
s /∈ fn(P ′′).

Finally, the nested actions µ, µ′, . . . are certain actions (either relevant or auxiliary) that
can be produced by a sub-program and that we need to propagate to the top level.

3.2 Labelled transition system

The labelled transition system is defined in table 1 where rules apply to programs whose
only free variables are signal names and with standard conventions on the renaming of bound
names. As usual, one can rename bound variables, and the symmetric rules for (par ) and
(synch) are omitted. The first 12 rules from (out) to (νex ) are quite close to those of a polyadic
π-calculus with asynchronous communication (see [12, 13, 4]) with the following exception:
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(out)
e ⇓ v

se
sv
−→ se

(inaux )
s(x).P, K

s?v
−−→ [v/x]P

(in)
P

sv
−→ (P | sv)

(rec)
A(x) = P, e ⇓ v

A(e)
τ
−→ [v/x]P

(=sig
1 )

[s = s]P1, P2
τ
−→ P1

(=sig
2 )

s1 6= s2

[s1 = s2]P1, P2
τ
−→ P2

(=ind
1 )

match(v, p) = θ

[v � p]P1, P2
τ
−→ θP1

(=ind
1 )

match(v, p) =↑

[v � p]P1, P2
τ
−→ P2

(comp)
P1

µ
−→ P ′

1 bn(µ) ∩ fn(P2) = ∅

P1 | P2
µ
−→ P ′

1 | P2

(synch)
P1

νt sv
−−−→ P ′

1 P2
s?v
−−→ P ′

2

{t} ∩ fn(P2) = ∅

P1 | P2
τ
−→ νt (P ′

1 | P ′
2)

(ν)
P

µ
−→ P ′ t /∈ n(µ)

νt P
µ
−→ νt P ′

(νex )
P

νt sv
−−−→ P ′ t′ 6= s t′ ∈ n(v)\{t}

νt′ P
(νt′,t)sv
−−−−−→ P ′

(0)
0

∅,V
−−→ 0

(reset)
e ⇓ v v occurs in V (s)

se
[{v}/s],V
−−−−−−→ 0

(cont)
s /∈ dom(V )

s(x).P, K
∅,V
−−→ V (K)

(par)
Pi

Ei,V
−−−→ P ′

i i = 1, 2

(P1 | P2)
E1∪E2,V
−−−−−−→ (P ′

1 | P ′
2)

(next)
P � νs P ′ P ′ E,V

−−−→ P ′′ V ‖−E

P
N
−→ νs P ′′

Table 1: Labelled transition system

rule (out) models the fact that the emission of a value on a signal persists within the instant.
The last 5 rules from (0) to (next) are quite specific of the Sπ-calculus and determine how
the computation is carried on at the end of the instant (cf. discussion in 3.1).

The relevant actions different from τ , model the possible interactions of a program with
its environment. Then the notion of reactivity can be formalised as follows.

Definition 1 (derivative) A derivative of a program P is a program Q such that

P
α1−→ · · ·

αn−−→ Q, where: n ≥ 0 .

Definition 2 (reactivity) We say that a program P is reactive, if for every derivative Q
every τ -reduction sequence terminates.
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3.3 A compositional labelled bisimulation

We introduce first a rather standard notion of (weak) labelled bisimulation. We define
α
⇒ as:

α
⇒=











(
τ
−→)∗ if α = τ

(
τ
⇒) ◦ (

N
−→) if α = N

(
τ
⇒) ◦ (

α
−→) ◦ (

τ
⇒) otherwise

This is the standard definition except that we insist on not having internal reductions after
an N action. Intuitively, we assume that an observer can control the execution of programs
so as to be able to test them at the very beginning of each instant.3 We write P

α
−→ · for

∃P ′ (P
α
−→ P ′).

Definition 3 (labelled bisimulation) A symmetric relation R on programs is a labelled
bisimulation if

P R Q, P
α
−→ P ′, bn(α) ∩ fn(Q) = ∅

∃Q′ ( Q
α
⇒ Q′, P ′ R Q′ )

We denote with ≈ the largest labelled bisimulation.

The standard variation where one considers weak reduction in the hypothesis (P
α
⇒ P ′

rather than P
α
−→ P ′) leads to the same relation. Also, relying on this variation, one can

show that the concept of bisimulation up to bisimulation makes sense, i.e., a bisimulation
up to bisimulation is indeed contained in the largest bisimulation. An important property of
labelled bisimulation is that it is preserved by static contexts. The proof of this fact follows
[2] and it is presented in appendix B.

Definition 4 A static context C is defined as follows:

C ::= [ ] || C | P || νs C (1)

Theorem 5 (compositionality of labelled bisimulation) If P ≈ Q and C is a static
context then C[P ] ≈ C[Q].

4 Characterisations of labelled bisimulation

The labelled transition system presented in table 1 embodies a number of technical choices
which might not appear so natural at first sight. To justify these choices, it is therefore
interesting to look for alternative characterisations of the induced bisimulation equivalence.
To this end we recall the notion of contextual bisimulation introduced in [2].

Definition 6 We write:

P ↓ if ¬( P
τ
−→ · ) (suspension)

P ⇓ if ∃P ′ ( P
τ
⇒ P ′ and P ′ ↓ ) (weak suspension)

P ⇓L if ∃P ′ ( P | P ′ ) ⇓ (L-suspension)

3This decision entails that, e.g., we distinguish the programs P and Q defined as follows: P = pause.(s1⊕s2),
Q = νs (pause.A(!s) | s0 | s1), where A(x) = [x � [0; 1]](s1 ⊕ s2), s1, and ⊕, 0, and 1 are abbreviations for
an internal choice and for two distinct constants, respectively (these concepts can be easily coded in the

Sπ-calculus). On the other hand, P and Q would be equivalent if we defined
N
⇒ as

τ
⇒ ◦

N
−→ ◦

τ
⇒.
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Obviously, P ↓ implies P ⇓ which in turn implies P ⇓L and none of these implications
can be reversed (see [2]). Also note that all the derivatives of a reactive program enjoy the
weak suspension property.

Definition 7 (commitment) We write P ց s if P
νt sv
−−−→ · and say that P commits to emit

on s.

Definition 8 (barbed bisimulation) A symmetric relation R on programs is a barbed
bisimulation if whenever P R Q the following holds:

(B1) If P
τ
−→ P ′ then ∃Q′ (Q

τ
⇒ Q′ and P ′ R Q′).

(B2) If P ց s and P ⇓L then ∃Q′ (Q
τ
⇒ Q′, Q′ ց s, and P R Q′).

(B3) If P ↓ and P
N
−→ P ′′ then ∃Q′, Q′′ (Q

τ
⇒ Q′, Q′ ↓, P R Q′, Q′ N

−→ Q′′, and P ′′ R Q′′).

We denote with ≈B the largest barbed bisimulation.

Definition 9 (contextual bisimulation) A symmetric relation R on programs is a con-
textual bisimulation if it is a barbed bisimulation (conditions (B1−3)) and moreover whenever
P R Q then

(C1) C[P ] R C[Q], for any static context C.

We denote with ≈C the largest contextual barbed bisimulation.

We arrive at the announced characterisation of the labelled bisimulation.

Theorem 10 (characterisation of labelled bisimulation) If P,Q are reactive programs
then P ≈ Q if and only if P ≈C Q.

The proof of this result takes several steps summarised in Table 2 which provides 3 equiv-
alent formulations of the labelled bisimulation ≈. In [2], the contextual bisimulation in
definition 9 is characterised as a variant of the bisimulation ≈3 where the condition for the
output is formulated as follows:

P R Q, P ⇓L, P
νt sv
−−−→2 P ′, {t} ∩ fn(Q) = ∅

Q
νt sv
⇒2 Q′, P ′ R Q′

Clearly, if P is a reactive program then P ⇓L. Also note that the definition 2 of reactive
program refers to the labelled transition system 1 for which it holds that P

sv
−→ (P | sv).

Therefore, if P is reactive then (P | sv) is reactive too and if we start comparing two reactive
programs then all programs that have to be considered in the bisimulation game will be
reactive too. This means that on reactive programs the condition P ⇓L is always satisfied
and therefore that the bisimulation ≈3 coincides with the labelled bisimulation considered in
[2].4

Remark 11 (on determinacy and divergence) One may notice that the notions of la-
belled bisimulation and contextual bisimulation we have adopted are only partially sensitive
to divergence. Let Ω = τ.Ω be a looping program. Then Ω 6≈C 0 since 0 may suspend while Ω

4On non-reactive programs, labelled bisimulation makes more distinctions than contextual bisimulation.
For instance, the latter identifies all the programs that do not L-suspend.
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Labelled transition systems Bisimulation game

(
α
−→1)

Rule (inaux) replaced by

(in1
aux )

s(x).P, K
s?v
−−→ [v/x]P | sv

(≈1) As in definition 3

(
α
−→2)

Rule (in) removed and
action s?v replaced by sv

(≈2)

As above if α 6= sv. Require:

(Inp)
P R Q

(P | sv) R (Q | sv)

As above (≈3)

As above if α 6= sv. Replace (Inp) with :

P R Q, P
sv
−→2 P ′

∃Q′ ( Q
sv
⇒2 Q′ ∧ P ′ R Q′)∨

(Q
τ

⇒2 Q′ ∧ P ′ R (Q′ | sv) )

and for α = N require:

P R Q, (P | S)
N
−→ P ′,

S = s1v1 | · · · | snvn

∃Q′, Q′′ ( (Q | S)
τ

⇒2 Q′′, (P | S) R Q′′,

Q′′ N
−→2 Q′, P ′ R Q′ )

Table 2: Equivalent formulations of labelled bisimulation

may not. On the other hand, consider a program such as A = τ.A ⊕ τ.0. Then A ≈ 0 and
therefore A ≈C 0 and we are lead to conclude that A is a determinate program. However,
one may also argue that A is not determinate since it may either suspend or loop. In other
words, determinacy depends on the notion of semantic equivalence we adopt. If the latter is
not sensitive enough to divergence then the resulting notion of determinacy should be regarded
as a partial property of programs, i.e., it holds provided programs terminate. In practice, these
distinctions do not seem very important because, as we have already argued, reactivity is a
property one should always require of synchronous programs and once reactivity is in place
the distinctions disappear.

5 Determinacy and (local) confluence

In this section, we develop the notions of determinacy and confluence for the Sπ-calculus
which turn out to coincide. Moreover, we note that for reactive programs a simple property
of local confluence suffices to ensure determinacy.

We denote with ǫ the empty sequence and with s = α1 · · ·αn a finite sequence (possibly
empty) of actions different from τ . We define:

s
⇒=

{

τ
⇒ if s = ǫ
α1⇒ · · ·

αn⇒ if s = α1 · · ·αn

Thus s denotes a finite (possibly empty) sequence of interactions with the environment.
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Following [17], a program is considered determinate if performing twice the same sequence of
interactions leads to the same program up to semantic equivalence.

Definition 12 (determinacy) We say that a program P is determinate if for every sequence
s, if P

s
⇒ Pi for i = 1, 2 then P1 ≈ P2.

Determinacy implies τ -inertness which is defined as follows.

Definition 13 (τ-inertness) A program is τ -inert if for all its derivatives Q, Q
τ
−→ Q′

implies Q ≈ Q′.

Next, we turn to the notion of confluence. To this end, we introduce first the notions of
action compatibility and action residual.

Definition 14 (action compatibility) The compatibility predicate ↓ is defined as the least
reflexive and symmetric binary relation on actions such that α ↓ β implies that either α, β 6= N
or α = β = N .

In other words, the action N is only compatible with itself while any action different from
N is compatible with any other action different from N .5 Intuitively, confluence is about the
possibility of commuting actions that happen in the same instant. To make this precise we
also need to introduce a notion of action residual α\β which specifies what remains of the
action α once the action β is performed.

Definition 15 (action residual) The residual operation α\β on actions is only defined if
α ↓ β and in this case it satisfies:

α\β =







τ if α = β

νt\t′sv if α = νt sv and β = νt′s′v′

α otherwise

Confluence is then about closing diagrams of compatible actions up to residuals and
semantic equivalence.

Definition 16 (confluence) We say that a program P is confluent, if for all its derivatives
Q:

Q
α
⇒ Q1, Q

β
⇒ Q2, α ↓ β

∃Q3, Q4 ( Q1
β\α
⇒ Q3, Q2

α\β
⇒ Q4, Q3 ≈ Q4 )

It often turns out that the following weaker notion of local confluence is much easier to
establish.

5The reader familiar with [20] will notice that, unlike in the π-calculus with rendez-vous communication, we
do not restrict the compatibility relation on input actions. This is because of the particular form of the input
action in the labelled transition system in table 1 where the input action does not actually force a program
to perform an input. We expect that a similar situation would arise in the π-calculus with asynchronous
communication.
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Definition 17 (local confluence) We say that a program is locally confluent, if for all its
derivatives Q:

Q
α
−→ Q1 Q

β
−→ Q2 α ↓ β

∃Q3, Q4 ( Q1
β\α
⇒ Q3, Q2

α\β
⇒ Q4, Q3 ≈ Q4 )

It is easy to produce programs which are locally confluent but not confluent. For instance,
A = s1 ⊕ B where B = s2 ⊕ A. However, one may notice that this program is not reactive.
Indeed, for reactive programs local confluence is equivalent to confluence.

Theorem 18 (1) A program is determinate if and only if it is confluent.

(2) A reactive program is determinate if and only if for all its derivatives Q:

Q
α
−→ Q1, Q

α
−→ Q2, α ∈ {τ,N}

∃Q3, Q4 (Q1
τ
⇒ Q3, Q2

τ
⇒ Q4, Q3 ≈ Q4)

The fact that confluent programs are determinate is standard and it essentially follows
from the observation that confluent programs are τ -inert. The observation that determinate
programs are confluent is specific of the Sπ-calculus and it depends on the remark that input
and output actions automatically commute with the other compatible actions.6

The part (2) of the theorem is proved as follows. First one notices that the stated condi-
tions are equivalent to local confluence (again relying on the fact that commutation of input
and output actions is automatic) and then following [11] one observes that local confluence
plus reactivity entails confluence.

We conclude this section by noticing a strong commutation property of τ actions that
suffices to entail τ -inertness and determinacy. Let

α
; be

α
−→ ∪Id where Id is the identity

relation.

Proposition 19 A program is determinate if for all its derivatives Q:

Q
τ
−→ Q1, Q

τ
−→ Q2

∃Q′ (Q1
τ
; Q′, Q2

τ
; Q′)

Q
N
−→ Q1, Q

N
−→ Q2

Q1 ≈ Q2

This is proven by showing that the strong commutation of the τ -actions entails τ -inertness.

6 Conclusion

We have developed a framework to analyse the determinacy of programs in a synchronous
π-calculus. First, we have introduced a compositional notion of labelled bisimulation. Second,
we have characterised a relevant contextual bisimulation as a standard bisimulation over a
modified labelled transition system. Third, we have studied the notion of confluence which
turns out to be equivalent to determinacy, and we have shown that under reactivity, confluence
reduces to a simple form of local confluence.

6We note that the commutation of the inputs arises in the π-calculus with asynchronous communication
too, while the commutation of the outputs is due to the fact that messages on signals unlike messages on

channels persist within an instant (for instance, in CCS, if P = a | a.b then P
a
−→ a.b, P

τ
−→ b, and there is no

way to close the diagram).

12



According to theorem 18(2), there are basically two situations that need to be analysed
in order to guarantee the determinacy of (reactive) programs. (1) At least two distinct values
compete to be received within an instant, for instance, consider: sv1 | sv2 | s(x).P,K. (2)
At the end of the instant, at least two distinct values are available on a signal. For instance,
consider: sv1 | sv2 | pause.A(!s). Based on this analysis, we are currently studying an affine
type system in the style of [15] that avoids completely the first situation and allows the second
provided the behaviour of the continuation A does not depend on the order in which the values
are collected.
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A Basic properties of labelled bisimulation

We collect some basic properties of the notion of labelled bisimulation. First, we consider a
standard variation of the definition 3 of bisimulation where transitions are weak on both sides
of the bisimulation game.

Definition 20 (w-bisimulation) A symmetric relation R on programs is a w-bisimulation
if

P R Q, P
α
⇒ P ′, bn(α) ∩ fn(Q) = ∅

∃Q′ ( Q
α
⇒ Q′, P ′ R Q′ )

We denote with ≈w the largest w-bisimulation.

With respect to this modified definition we introduce the usual notion of bisimulation up
to bisimulation.7

Definition 21 (w-bisimulation up to w-bisimulation) A symmetric relation R on pro-
grams is a w-bisimulation up to w-bisimulation if

P R Q, P
α
⇒ P ′, bn(α) ∩ fn(Q) = ∅

∃Q′ ( Q
α
⇒ Q′, P ′ ≈w ◦ R ◦ ≈w Q′ )

We denote with ≈w the largest w-bisimulation.

Proposition 22 (1) The relation ≈ is an equivalence relation.

(2) The relations ≈ and ≈w coincide.

(3) If R is a w-bisimulation up to w-bisimulation then R ⊆≈w.

Proof. (1) The identity relation is a labelled bisimulation and the union of symmetric
relations is symmetric. To check transitivity, we prove that ≈ ◦ ≈ is a labelled bisimulation
by standard diagram chasing.

(2) By definition a w-bisimulation is a labelled bisimulation, therefore ≈w⊆≈. To show the
other inclusion, prove that ≈ is a w-bisimulation again by a standard diagram chasing.

(3) First note that by (1) and (2), it follows that the relation ≈w is transitive. Then one
shows that if R is a w-bisimulation up to w-bisimulation then the relation ≈w ◦ R ◦ ≈w is a
w-bisimulation. 2

7We recall that it is important that this notion is defined with respect to w-bisimulation. Indeed, proposition
22(3) below fails if w-bisimulation is replaced by bisimulation.
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A.1 Structural equivalence

In the diagram chasing arguments, it will be convenient to consider programs up to a notion of
‘structural equivalence’. This is the least equivalence relation ≡ such that (1) ≡ is preserved
by static contexts, (2) parallel composition is associative and commutative, (3) νs (P | Q) ≡
νs P | Q if s /∈ fn(Q), (4) sv | sv ≡ sv, and (5) se ≡ sv if e ⇓ v. One can check for the
different labelled transition systems we consider that equivalent programs generate exactly
the same transitions and that the programs to which they reduce are again equivalent.

B Proof of theorem 5

The theorem follows directly from the following lemma 23(4).

Lemma 23 (1) If P1 ≈ P2 and σ is an injective renaming then σP1 ≈ σP2.

(2) The relation ≈ is reflexive and transitive.

(3) If P1 ≈ P2 then (P1 | sv) ≈ (P2 | sv).

(4) If P1 ≈ P2 then νs P1 ≈ νs P2 and (P1 | Q) ≈ (P2 | Q).

Proof. (1), (2) Standard arguments.

(3) Let R′ = {((P | sv), (Q | sv)) | P ≈ Q} and R = R′∪ ≈. We show that R is a
bisimulation. Suppose (P | sv)

α
−→ · and P ≈ Q. There are two interesting cases to consider.

(α = τ) Suppose (P | sv)
τ
−→ (P ′ | sv) because P

s?v
−−→ P ′. By definition of the lts, we have

that P
sv
−→ (P | sv)

τ
−→ (P ′ | sv). By definition of bisimulation, Q

sv
⇒ (Q′′ | sv)

τ
⇒ (Q′ | sv)

and (P ′ | sv) ≈ (Q′ | sv). We conclude, by noticing that then (Q | sv)
τ
⇒ (Q′ | sv).

(α = N) Suppose (P | sv)
N
−→ P ′. Notice that P

sv
−→ (P | sv). Hence:

Q
sv
⇒ (Q′′ | sv)

τ
⇒ (Q′′′ | sv)

N
−→ Q′, (P | sv) ≈ (Q′′ | sv) ≈ (Q′′′ | sv), and P ′ ≈ Q′ .

Then (Q | sv)
N
⇒ Q′.

(4) We show that R = {(νt (P1 | Q), νt (P2 | Q)) | P1 ≈ P2}∪ ≈ is a labelled bisimulation
up to the structural equivalence ≡.

(τ) Suppose νt (P1 | Q)
τ
−→ ·. This may happen because either P1 or Q perform a τ action

or because P1 and Q synchronise. We analyse the various situations.

(τ)[1] Suppose Q
τ
−→ Q′. Then νt (P2 | Q)

τ
−→ νt (P2 | Q′) and we can conclude.

(τ)[2] Suppose P1
τ
−→ P ′

1. Then P2
τ
⇒ P ′

2 and P ′
1 ≈ P ′

2. So νt (P2 | Q)
τ
⇒ νt (P ′

2 | Q) and we
can conclude.

(τ)[3] Suppose P1
s?v
−−→ P ′

1 and Q
νt′ sv
−−−−→ Q′. This means Q ≡ νt′ (sv | Q′′) and Q′ ≡ (sv | Q′′).

By (3), (P1 | sv) ≈ (P2 | sv). Moreover, (P1 | sv)
τ
−→ (P ′

1 | sv). Therefore, (P2 | sv)
τ
⇒ (P ′

2 |

sv) and (P ′
1 | sv) ≈ (P ′

2 | sv). Then we notice that the transition νt (P1 | Q)
τ
−→ · ≡

νt, t′ ((P ′
1 | sv) | Q′′) is matched by the transition νt (P2 | Q)

τ
−→ · ≡ νt, t′ ((P ′

2 | sv) | Q′′).

(τ)[4] Suppose P1
νt′ sv
−−−−→ P ′

1 and Q
s?v
−−→ Q′. Then P2

νt′ sv
⇒ P ′

2 and P ′
1 ≈ P ′

2. And we conclude

noticing that νt (P2 | Q)
τ
⇒ νt, t′ (P ′

2 | Q′).
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(out) Suppose νt (P1 | Q)
νt′ sv
−−−−→ ·. Also assume t = t1, t2 and t′ = t1, t3 up to reordering so

that the emission extrudes exactly the names t1 among the names in t. We have two subcases
depending which component performs the action.

(out)[1] Suppose Q
νt3 sv
−−−−→ Q′. Then νt (P2 | Q)

νt′ sv
−−−−→ νt2 (P2 | Q′) and we can conclude.

(out)[2] Suppose P1
νt3 sv
−−−−→ P ′

1. Then P2
νt3 sv
⇒ P ′

2 and P ′
1 ≈ P ′

2. Hence νt (P2 | Q)
νt′ sv
⇒

νt2 (P ′
2 | Q) and we can conclude.

(in) It is enough to notice that, modulo renaming, νt (Pi | Q) | sv ≡ νt ((Pi | sv) | Q) and
recall that by (3), (P1 | sv) ≈ (P2 | sv).

(N) Suppose νt (P1 | Q) ↓. Up to structural equivalence, we can express Q as νtQ (SQ |
IQ) where SQ is the parallel composition of emissions and IQ is the parallel composition of
receptions. Thus we have: νt (P1 | Q) ≡ νt, tQ (P1 | SQ | IQ), and νt (P2 | Q) ≡ νt, tQ (P2 |
SQ | IQ) assuming {tQ} ∩ fn(Pi) = ∅ for i = 1, 2.

If νt (P1 | Q)
N
−→ P then P ≡ νt, tQ (P ′′

1 | Q′) where in particular, we have that (P1 | SQ) ↓

and (P1 | SQ)
N
−→ (P ′

1 | 0).
By the hypothesis P1 ≈ P2, and by definition of bisimulation we derive that: (i) (P2 |

SQ)
τ
⇒ (P ′′

2 | SQ), (ii) (P ′′
2 | SQ) ↓, (iii) (P ′′

2 | SQ)
N
−→ (P ′

2 | 0), (iv) (P1 | SQ) ≈ (P ′′
2 | SQ), and

(v) (P ′
1 | 0) ≈ (P ′

2 | 0).
Because (P1 | SQ) and (P ′′

2 | SQ) are suspended and bisimilar, the two programs must
commit (cf. definition 7) on the same signal names and moreover on each signal name they
must emit the same set of values up to renaming of bound names. It follows that the program
νt, tQ (P ′′

2 | SQ | IQ) is suspended. The only possibility for an internal transition is that an
emission in P ′′

2 enables a reception in IQ but this contradicts the hypothesis that νt, tQ (P1 |

SQ | IQ) is suspended. Moreover, (P ′′
2 | SQ | IQ)

N
−→ (P ′

2 | 0 | Q′).
Therefore, we have that

νt (P2 | Q) ≡ νt, tQ (P2 | SQ | IQ)
τ
⇒ νt, tQ (P ′′

2 | SQ | IQ),

νt, tQ (P ′′
2 | SQ | IQ) ↓, and νt, tQ (P ′′

2 | SQ | IQ)
N
−→ νt, tQ (P ′

2 | 0 | Q′). Now νt, tQ (P1 | SQ |
IQ) R νt, tQ (P ′′

2 | SQ | IQ) because (P1 | SQ) ≈ (P ′′
2 | SQ) and νt, tQ (P ′

1 | Q′) R νt, tQ (P ′
2 |

Q′) because P ′
1 ≈ P ′

2. 2

C Proof of theorem 10

We start with the labelled transition system defined in table 1 and the notion of bisimulation
in definition 3. In table 2, we incrementally modify the labelled transition system and/or the
conditions in the bisimulation game. This leads to three equivalent characterisations of the
notion of bisimulation. We prove this fact step by step.

Lemma 24 The bisimulation ≈ coincides with the bisimulation ≈1.

Proof. The only difference here is in the rule (inaux ), the bisimulation conditions being
the same. Now this rule produces an action s?v and the latter is an auxiliary action that is
used to produce the relevant action τ thanks to the rule (synch). A simple instance of the
difference follows. Suppose P = se | s(x).Q,K and e ⇓ v. Then:

P
τ
−→ se | [v/x]Q = P ′ and P

τ
−→1 se | ([v/x]Q | sv) = P ′′ .
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In the Sπ-calculus, we do not distinguish the situations where the same value is emitted once
or more times within the same instant. In particular, P ′ and P ′′ are structurally equivalent
(cf. section A.1). 2

Next, we focus on the relationships between the labelled transitions systems
act
−−→1 and

act
−−→2.

In
act
−−→2, the rule (in) is removed and in the rule (inaux ), the label s?v is replaced by the label

sv (hence the auxiliary action s?v is not used in this labelled transition system).

Lemma 25 (1) If P
act
−−→1 P ′ and act 6= sv then P

act
′

−−→2 P ′ where act ′ = sv if act = s?v,
and act ′ = act otherwise.

(2) If P
act
−−→2 P ′ then P

act
′

−−→1 P ′ where act ′ = s?v if act = sv, and act ′ = act otherwise.

We also notice that 1-bisimulation is preserved by parallel composition with an emission;
the proof is similar to the one of lemma 23(3).

Lemma 26 If P ≈1 Q then (P | sv) ≈1 (Q | sv).

Lemma 27 The bisimulation ≈1 coincides with the bisimulation ≈2.

Proof. (≈1⊆≈2) We check that ≈1 is a 2-bisimulation. If α = sv then we apply lemma 26.
Otherwise, suppose α 6= sv, P ≈1 Q, and P

α
−→2 P ′. By lemma 25(2), P

α
−→1 P ′. By definition

of 1-bisimulation, ∃Q′ Q
α
⇒1 Q′, P ′ ≈1 Q′. By lemma 25(1), Q

α
⇒2 Q′.

(≈2⊆≈1) We check that ≈2 is a 1-bisimulation. If α = sv and P
sv
−→1 (P | sv) then by defini-

tion of the lts, Q
sv
−→1 (Q | sv). Moreover, by definition of 2-bisimulation, (P | sv) ≈2 (Q | sv).

Otherwise, suppose α 6= sv, P ≈2 Q, and P
α
−→1 P ′. By lemma 25(1), P

α
−→2 P ′. By definition

of 2-bisimulation, ∃Q′ Q
α
⇒2 Q′, P ′ ≈2 Q′. By lemma 25(2), Q

α
⇒1 Q′. 2

Next we move to a comparison of 2 and 3 bisimulations. Note that both definitions share
the same lts denoted with

α
−→2. First we remark the following.

Lemma 28 (1) If P ≈2 Q and P
N
−→ P ′ then ∃Q′, Q′′ ( Q

τ
⇒2 Q′′, Q′′ N

−→ Q′, P ≈2 Q′′, P ′ ≈2

Q′ ).

(2) If P ≈3 Q then (P | sv) ≈3 (Q | sv).

Proof. (1) If P
N
−→ P ′ then P cannot perform τ moves. Thus if P ≈2 Q and Q

τ
⇒2 Q′′ then

necessarily P ≈2 Q′′.

(2) Again we follow the proof of lemma 23(3). Let R′ = {((P | sv), (Q | sv)) | P ≈3 Q}
and R = R′∪ ≈3. We show that R is a 3-bisimulation. Suppose (P | sv)

α
−→1 · and P ≈3 Q.

There are two interesting cases to consider.

(α = τ) Suppose (P | sv)
τ
−→2 (P ′ | sv) because P

sv
−→2 P ′. By definition of 3-bisimulation,

either (i) Q
sv
⇒2 Q′ and P ′ ≈3 Q′ or (ii) Q

τ
⇒2 Q′ and P ′ ≈3 (Q′ | sv). In case (i), (Q | sv)

τ
⇒

(Q′ | sv) and we notice that ((P ′ | sv), (Q′ | sv)) ∈ R. In case (ii), (Q | sv)
τ
⇒ (Q′ | sv) and

we notice that (P ′ | sv, (Q′ | sv) | sv) ∈ R and (Q′ | sv) | sv ≡ (Q′ | sv).

(α = N) Suppose ((P | sv) | S)
N
−→ P ′. By definition of 3-bisimulation, taking S′ = (sv | S)

(Q | S′)
τ
⇒ Q′′ N

−→ Q′, (P | S′) ≈3 Q′′, and P ′ ≈3 Q′. 2
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Lemma 29 The bisimulation ≈2 coincides with the bisimulation ≈3.

Proof. (≈2⊆≈3) We show that ≈2 is a 3-bisimulation. We look first at the condition for the
input. Suppose P ≈2 Q and P

sv
−→2 P ′. By definition of 2-bisimulation, (P | sv) ≈2 (Q | sv).

Also (P | sv)
τ
−→2 (P ′ | sv) ≡ P ′. By definition of 2-bisimulation, (Q | sv)

τ
⇒ (Q′ | sv) and

P ′ ≡ (P ′ | sv) ≈2 (Q′ | sv). Two cases may arise.

(1) If Q
sv
⇒ Q′ then Q′ | sv ≡ Q′ and we satisfy the first case of the input condition for

3-bisimulation.

(2) If Q
τ
⇒ Q′ then, up to structural equivalence, we satisfy the second case of the input

condition for 3-bisimulation.

Next we consider the condition for the end of the instant. Suppose P ≈2 Q, S = s1v1 | · · · |

snvn, and (P | S)
N
−→2 P ′. By condition (Inp), (P | S) ≈2 (Q | S). Then, by lemma 28(1),

the condition of 3-bisimulation is entailed by the corresponding condition for 2-bisimulation
applied to (P | S) and (Q | S).

(≈3⊆≈2) We show that ≈3 is a 2-bisimulation. The condition (Inp) holds because of lemma
28(2). The condition of 2-bisimulation for the end of the instant is a special case of the
condition for 3-bisimulation where we take S empty. 2

D Proof of theorem 18 and proposition 19

First, relying on proposition 22(3), one can repeat the proof in [17] that confluence implies
τ -inertness and determinacy.

Proposition 30 If a program is confluent then it is τ -inert and determinate.

Proof. Let S = {(P,P ′) | P confluent and P
τ
⇒ P ′} and define R = S ∪S−1. We show that

R is a w-bisimulation up to w-bisimulation (cf. lemma 22(3)). Clearly R is symmetric. Then
suppose P confluent and P

τ
⇒ Q (the case where Q reduces to P is symmetric). If Q

α
⇒ Q1

then P
α
⇒ Q1 and Q1 R Q1. On the other hand, if P

α
⇒ P1 then by confluence there are

P2, Q1 such that P1
τ
⇒ P2, Q

α
⇒ Q1, and P2 ≈ Q1. Thus P1 R ◦ ≈ Q1.

Therefore if P is confluent and P
τ
⇒ P ′ then P ≈ P ′. Also recall that if Q is a derivative

of P then Q is confluent. Thus we can conclude that if P is confluent then it is τ -inert.
Next, we show that:

P1 ≈ P2, P1
α
⇒ P3, P2

α
⇒ P4

P3 ≈ P4
.

By definition of bisimulation, ∃P5 ( P2
α
⇒ P5, P3 ≈ P5 ). By confluence, ∃P6, P7 ( P5

τ
⇒

P6, P4
τ
⇒ P7, P6 ≈ P7 ). By τ -inertness and transitivity, P3 ≈ P4.

Finally, we can iterate this observation to conclude that if P
α1⇒ · · ·

αn⇒ P1 and P
α1⇒ · · ·

αn⇒
P2 then P1 ≈ P2. 2

We pause to point-out the particular properties of the input and output actions in the

labelled transition system in table 1. It is easily verified that if P
νtsv
−−−→ P ′ then P ≡ νt(sv |

P ′′) and P ′ ≡ (sv | P ′′). This entails that in the following lemma the cases that involve an
output action are actually general up to structural equivalence.
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Lemma 31 (input-output commutations)

(in − τ)
P

sv
−→ (P | sv), P

τ
−→ P ′

(P | sv)
τ
−→ (P ′ | sv), P ′ sv

−→ (P ′ | sv)

(in − in)

P
sv
−→ (P | sv), P

s′v′

−−→ (P | s′v′)

(P | sv)
s′v′

−−→ (P | sv) | s′v′, (P | s′v′)
sv
−→ (P | s′v′) | sv,

(P | sv) | s′v′ ≡ (P | s′v′) | sv

(out − τ)
νt(sv | P )

νt sv
−−−→ (sv | P ), νt(sv | P )

τ
−→ νt(sv | P ′)

(sv | P )
τ
−→ (sv | P ′), νt(sv | P ′)

νt sv
−−−→ (sv | P ′)

(out − in)
νt(sv | P )

νt sv
−−−→ (sv | P ), νt(sv | P )

s′v′

−−→ νt(sv | P ) | s′v′

(sv | P )
s′v′

−−→ (sv | P ) | s′v′, νt(sv | P ) | s′v′
νt sv
−−−→ (sv | P ) | s′v′

(out − out)

νt(s1v1 | s2v2 | P )
νt1 s1v1−−−−−−→ νt\t1 (s1v1 | s2v2 | P ),

νt(s1v1 | s2v2 | P )
νt2 s2v2−−−−−−→ νt\t2 (s1v1 | s2v2 | P )

νt\t1 (s1v1 | s2v2 | P )
νt2\t1 s2v2

−−−−−−−−→ (s1v1 | s2v2 | P ),

νt\t2 (s1v1 | s2v2 | P )
νt1\t2 s2v2

−−−−−−−−→ (s1v1 | s2v2 | P )

Note that, up to symmetry (and structural equivalence), the previous lemma covers all
possible commutations of two compatible actions α, β but the 2 remaining cases where α = β
and α ∈ {τ,N}.

Proposition 32 If a program is deterministic then it is confluent.

Proof. We recall that if P is deterministic then it is τ -inert. Suppose Q is a derivative of

P , α ↓ β, Q
α
⇒ Q1 and Q

β
⇒ Q2.

If α = β then the definition of determinacy implies that Q1 ≈ Q2. Also note that
α\β = β\α = τ and Qi

τ
⇒ Qi for i = 1, 2. So the conditions for confluence are fulfilled.

So we may assume α 6= β and, up to symmetry, we are left with 5 cases corresponding to
the 5 situations considered in lemma 31.

In the 2 cases where β = τ we have that Q ≈ Q2 by τ -inertness. Thus, by bisimulation
Q2

α
⇒ Q3 and Q1 ≈ Q3. Now α\τ = α, τ\α = τ , and Q1

τ
⇒ Q1. Hence the conditions for

confluence are fulfilled.
We are left with 3 cases where α and β are distinct input or output actions. By using

τ -inertness, we can focus on the case where Q
α
⇒ Q1 and Q

β
−→ Q′

2
τ
⇒ Q2. Now, by iterating

the lemma 31, we can prove that:

Q (
τ
−→)n Q′

1, n ≥ 1, Q
β
−→ Q′

2

∃Q′′
2 ( Q′

1
β
−→ Q′′

2, Q′
2 (

τ
−→)n Q′′

2 )
.

So we are actually reduced to consider the situation where Q
α
−→ Q′

1
τ
⇒ Q1 and Q

β
−→ Q′

2
τ
⇒ Q2.

But then by lemma 31, we have: Q′
1

β\α
−−→ Q3, Q′

2

α\β
−−→ Q4, and Q3 ≡ Q4. Then using τ -

inertness and bisimulation, it is easy to close the diagram. 2
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This concludes the proof of the first part of the theorem (18(1)). To derive the second
part, we rely on the following fact due to [11].

Fact 33 ([11]) If a program is reactive and locally confluent then it is confluent.

Thus to derive the second part of the theorem (18(2)) it is enough to prove.

Proposition 34 A program is locally confluent if (and only if) for all its derivatives Q:

Q
α
−→ Q1, Q

α
−→ Q2, α ∈ {τ,N}

Q1
τ
⇒ Q3 Q2

τ
⇒ Q4 Q3 ≈ Q4

Proof. The stated condition is a special case of local confluence thus it is a necessary
condition. To show that it is sufficient to entail local confluence, it is enough to appeal again
to lemma 31 (same argument given at the end of the proof of proposition 32). 2

Proof of proposition 19 Say that P is strong confluent if it satisfies the hypotheses
of proposition 19. Let S = {(P,Q) | P strong confluent and (P ≡ Q or P

τ
−→ Q)}. Let

R = S ∪S−1. We show that R is a bisimulation. Hence strong confluence entails τ -inertness.
Note that if P

α
−→ Pi, for i = 1, 2, and α is either an input or an output action then P1 ≡ P2.

By lemma 31 and diagram chasing, we show that if P is strong confluent and P
α
⇒ Pi, for

i = 1, 2, then P1 ≈ P2. This suffices to show that P is determinate (and confluent). 2
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