260,642 research outputs found

    A survey on domain adaptation theory: learning bounds and theoretical guarantees

    Full text link
    All famous machine learning algorithms that comprise both supervised and semi-supervised learning work well only under a common assumption: the training and test data follow the same distribution. When the distribution changes, most statistical models must be reconstructed from newly collected data, which for some applications can be costly or impossible to obtain. Therefore, it has become necessary to develop approaches that reduce the need and the effort to obtain new labeled samples by exploiting data that are available in related areas, and using these further across similar fields. This has given rise to a new machine learning framework known as transfer learning: a learning setting inspired by the capability of a human being to extrapolate knowledge across tasks to learn more efficiently. Despite a large amount of different transfer learning scenarios, the main objective of this survey is to provide an overview of the state-of-the-art theoretical results in a specific, and arguably the most popular, sub-field of transfer learning, called domain adaptation. In this sub-field, the data distribution is assumed to change across the training and the test data, while the learning task remains the same. We provide a first up-to-date description of existing results related to domain adaptation problem that cover learning bounds based on different statistical learning frameworks

    Hand in hand: Public endorsement of climate change mitigation and adaptation

    Get PDF
    This research investigated how an individual's endorsements of mitigation and adaptation relate to each other, and how well each of these can be accounted for by relevant social psychological factors. Based on survey data from two European convenience samples (N = 616 / 309) we found that public endorsements of mitigation and adaptation are strongly associated: Someone who is willing to reduce greenhouse gas emissions (mitigation) is also willing to prepare for climate change impacts (adaptation). Moreover, people endorsed the two response strategies for similar reasons: People who believe that climate change is real and dangerous, who have positive attitudes about protecting the environment and the climate, and who perceive climate change as a risk, are willing to respond to climate change. Furthermore, distinguishing between (spatially) proximal and distant risk perceptions suggested that the idea of portraying climate change as a proximal (i.e., local) threat might indeed be effective in promoting personal actions. However, to gain endorsement of broader societal initiatives such as policy support, it seems advisable to turn to the distant risks of climate change. The notion that "localising" climate change might not be the panacea for engaging people in this domain is discussed in regard to previous theory and research

    PAC-Bayes and Domain Adaptation

    Get PDF
    We provide two main contributions in PAC-Bayesian theory for domain adaptation where the objective is to learn, from a source distribution, a well-performing majority vote on a different, but related, target distribution. Firstly, we propose an improvement of the previous approach we proposed in Germain et al. (2013), which relies on a novel distribution pseudodistance based on a disagreement averaging, allowing us to derive a new tighter domain adaptation bound for the target risk. While this bound stands in the spirit of common domain adaptation works, we derive a second bound (introduced in Germain et al., 2016) that brings a new perspective on domain adaptation by deriving an upper bound on the target risk where the distributions' divergence-expressed as a ratio-controls the trade-off between a source error measure and the target voters' disagreement. We discuss and compare both results, from which we obtain PAC-Bayesian generalization bounds. Furthermore, from the PAC-Bayesian specialization to linear classifiers, we infer two learning algorithms, and we evaluate them on real data.Comment: Neurocomputing, Elsevier, 2019. arXiv admin note: substantial text overlap with arXiv:1503.0694

    A review of domain adaptation without target labels

    Full text link
    Domain adaptation has become a prominent problem setting in machine learning and related fields. This review asks the question: how can a classifier learn from a source domain and generalize to a target domain? We present a categorization of approaches, divided into, what we refer to as, sample-based, feature-based and inference-based methods. Sample-based methods focus on weighting individual observations during training based on their importance to the target domain. Feature-based methods revolve around on mapping, projecting and representing features such that a source classifier performs well on the target domain and inference-based methods incorporate adaptation into the parameter estimation procedure, for instance through constraints on the optimization procedure. Additionally, we review a number of conditions that allow for formulating bounds on the cross-domain generalization error. Our categorization highlights recurring ideas and raises questions important to further research.Comment: 20 pages, 5 figure
    • …
    corecore