10 research outputs found

    Capability driven development: an approach to designing digital enterprises

    Get PDF
    The final publication is available at Springer via http://dx.doi.org/10.1007/s12599-014-0362-0[EN] The need for organizations to operate in changing environments is addressed by proposing an approach that integrates organizational development with information system (IS) development taking into account changes in the application context of the solution. This is referred to as Capability Driven Development (CDD). A meta-model representing business and IS designs consisting of goals, key performance indicators, capabilities, context and capability delivery patterns, is being proposed. The use of the meta-model is validated in three industrial case studies as part of an ongoing collaboration project, whereas one case is presented in the paper. Issues related to the use of the CDD approach, namely, CDD methodology and tool support are also discussed.This work has been partially supported by the EU-FP7 funded project no: 611351 CaaS - Capability as a Service in Digital Enterprises.Berzisa, S.; Bravos, G.; Cardona Gonzalez, T.; Czubayko, U.; España, S.; Grabis, J.; Henkel, M.... (2015). Capability driven development: an approach to designing digital enterprises. Business and Information Systems Engineering. 57(1):15-25. https://doi.org/10.1007/s12599-014-0362-0S1525571ArchiMate (2013) An enterprise modeling language from the Open Group. http://www.opengroup.org/archimate/ . Accessed 3 Dec 2014Asadi M, Ramsin R (2008) MDA-based methodologies: an analytical survey. In: Proceedings Model driven architecture – foundations and applications (ECMDA-FA 2008), LNCS 5095, pp 419–431Barney JB (1991) Firm resources and sustained competitive advantage. J Manag 17(1):99–120Bērziša S, Bravos G, Gonzalez Cardona T, Czubayko U, España S, Grabis J, Henke lM, Jokste L, Kampars J, Koc H, Kuhr J, Llorca C, Loucopoulos P, Juanes Pascua lR, Sandkuh lK, Simic H, Stirna J, Zdravkovic J (2014) Deliverable 1.4: Requirements specification for CDD, CaaS – capability as a service for digital enterprises. FP7 project no 611351, Riga Technical University, Latvia. Submitted for reviewBubenko JA Jr, Persson A, Stirna J (2001) User guide of the knowledge management approach using enterprise knowledge patterns. Deliverable D3, IST programme project hypermedia and pattern based knowledge management for smart organisations. project no. IST-2000-28401, Royal Institute of Technology, SwedenBriand LC, Yue T, Labiche Y (2011) A systematic review of transformation approaches between user requirements and analysis models. Requir Eng 16:75–99De Kinderen S, Gordijn J, Akkermans H (2009) Reasoning about customer needs in multi-supplier ICT service bundles using decision models. In: Proceedings 11th international conference on enterprise information systems (ICEIS 2009), pp 131–136Deloitte (2009) Cloud computing: forecasting change. Deloitte Consulting, New York. http://public.deloitte.no/dokumenter/2_Cloud_Computing%5B1%5D.pdf . Accessed 3 Dec 2014Dey A (2001) Understanding and using context. Pers Ubiquitous Comput 5(1):4–7Gamma E, Helm R, Johnson R, Vlissides J (1995) Design patterns: elements of reusable object-oriented software architecture. Addison-Wesley, BostonGomes D, Gonçalves JM, Santos R, Aguiar R (2010) XMPP based context management architecture. In: Proceedings GLOBECOM workshop, IEEE, pp 1372–1377González A, España S, Ruiz M, Pastor Ó (2011) Systematic derivation of class diagrams from communication-oriented business process models. In: 12th working conference on business process modeling, development, and support (BPMDS’11). Springer LNBIP 81, pp 246–260Henkel M, Stirna J (2010) Pondering on the key functionality of model driven development tools: the case of mendix. In: Forbrig P, Günther H (eds) Proceedings business informatics research (BIR 2010), Springer LNBIP 64, pp 146–160Hervas R, Bravo J, Fontecha J (2010) A context model based on ontological languages – a proposal for information visualisation. J Univers Comput Sci 16(12):1539–1555Jarke M, Loucopoulos P, Lyytinen K, Mylopoulos J, Robinson W (2011) The brave new world of design requirements. Information Syst 36(7):992–1008Kaplan RS, Norton DP (2004) Strategy maps: converting intangible assets into tangible outcomes. Harvard Business School Press, BostonKleppe A, Warmer J, Bast W (2013) MDA explained. Addison-Wesley, BostonLoniewski G, Insfran E, Abrahao L (2010) A systematic review of the use of requirements engineering techniques in model-driven development. In: Proceedings model driven engineering languages and systems (MODELS 2010), Part II, LNCS 6395, pp 213–227Mohagheghi P, Dehlen V (2008) Where is the proof? - a review of experiences from applying MDE in industry. In: Proceedings model driven architecture – foundations and applications (ECMDA-FA 2008). LNCS 5095. Springer, Heidelberg, pp 432–443Nilsson AG, Tolis C, Nellborn C (eds) (1999) Perspectives on business modelling: understanding and changing organisations. Springer, HeidelbergOASIS (2011) Reference architecture foundation for service oriented architecture version 1.0, committee specification draft 03/public review draft 02 06 July 2011. http://docs.oasis-open.org/soa-rm/soa-ra/v1.0/soa-ra.pdf . Accessed 3 Dec 2014OMG (2011a) UML superstructure. http://www.omg.org/spec/UML/2.4.1/ . Accessed 3 Dec 2014OMG (2011b) Business process model and notation. http://www.omg.org/spec/BPMN/2.0/ . Accessed 3 Dec 2014Osterwalder A, Pigneur Y (2003) Modeling value propositions in e-business. Proc 5th international conference on electronic commerce (ICEC 2003). ACM Conference Proceedings Series 50Papazoglou MP, Yang J (2002) Design methodology for web services and business processes. In: Proceedings 3rd international workshop on technologies for e-services (TES 03). LNCS 2444. Springer, Heidelberg, pp 54–64Pastor O, Giachetti G (2010) Linking goal-oriented requirements and model-driven development. In: Intentional perspectives on information systems engineering. Springer, Heidelberg, pp 257–276Porter ME (1985) Competitive advantage: creating and sustaining superior performance. Free Press, New YorkRuiz M, Costal D, España S, Franch X, Pastor Ó (2014) Integrating the goal and business process perspectives in information system analysis. In: 26th International Conference on Advanced Information Systems Engineering (CAiSE 2014). LNCS 8484. Springer, Heidelberg, pp 332–346Sheng Q, Yu J, Dustar S (eds) (2010) Enabling context-aware web services: methods, architectures, and technologies. Chapman & Hall/CRC, Boca RatonSmanchat S, Ling S, Indrawan M (2008) A survey on context-aware workflow adaptations. In: Proceedings 6th international conference on advances in mobile computing and multimedia (MoMM 2008), New York, pp 414–417Stirna J, Grabis J, Henkel M, Zdravkovic J (2012) Capability driven development – an approach to support evolving organizations. In: The practice of enterprise modeling (PoEM 2012). LNBIP 134. Springer, Heidelberg, pp 117–131Vale S, Hammoudi S (2009) COMODE: a framework for the development of context-aware applications in the context of MDE. In: Proceedings 4th international conference on internet and web applications and services (ICIW 2009). IEEE, Venice, pp 261–266Wesenberg H (2011) Enterprise modeling in an agile world. In: Johannesson P, Krogstie J, Opdahl AL (eds) The practice of enterprise modeling (PoEM 2011). LNBIP 92. Springer, Heidelberg, pp 126–130Zdravkovic J, Stirna J, Henkel M, Grabis J (2013) Modeling business capabilities and context dependent delivery by cloud services. In: Proceedings advanced information systems engineering (CAiSE 2013). LNCS 7908. Springer, Heidelberg, pp 369–38

    Modeling, Design, and Implementation of a Cloud Workflow Engine Based on Aneka

    Get PDF
    This paper presents a Petri net-based model for cloud workflow which plays a key role in industry. Three kinds of parallelisms in cloud workflow are characterized and modeled. Based on the analysis of the modeling, a cloud workflow engine is designed and implemented in Aneka cloud environment. The experimental results validate the effectiveness of our approach of modeling, design, and implementation of cloud workflow

    A survey on context awareness in big data analytics for business applications

    Get PDF
    The concept of context awareness has been in existence since the 1990s. Though initially applied exclusively in computer science, over time it has increasingly been adopted by many different application domains such as business, health and military. Contexts change continuously because of objective reasons, such as economic situation, political matter and social issues. The adoption of big data analytics by businesses is facilitating such change at an even faster rate in much complicated ways. The potential benefits of embedding contextual information into an application are already evidenced by the improved outcomes of the existing context-aware methods in those applications. Since big data is growing very rapidly, context awareness in big data analytics has become more important and timely because of its proven efficiency in big data understanding and preparation, contributing to extracting the more and accurate value of big data. Many surveys have been published on context-based methods such as context modelling and reasoning, workflow adaptations, computational intelligence techniques and mobile ubiquitous systems. However, to our knowledge, no survey of context-aware methods on big data analytics for business applications supported by enterprise level software has been published to date. To bridge this research gap, in this paper first, we present a definition of context, its modelling and evaluation techniques, and highlight the importance of contextual information for big data analytics. Second, the works in three key business application areas that are context-aware and/or exploit big data analytics have been thoroughly reviewed. Finally, the paper concludes by highlighting a number of contemporary research challenges, including issues concerning modelling, managing and applying business contexts to big data analytics. © 2020, Springer-Verlag London Ltd., part of Springer Nature

    Self-managed Workflows for Cyber-physical Systems

    Get PDF
    Workflows are a well-established concept for describing business logics and processes in web-based applications and enterprise application integration scenarios on an abstract implementation-agnostic level. Applying Business Process Management (BPM) technologies to increase autonomy and automate sequences of activities in Cyber-physical Systems (CPS) promises various advantages including a higher flexibility and simplified programming, a more efficient resource usage, and an easier integration and orchestration of CPS devices. However, traditional BPM notations and engines have not been designed to be used in the context of CPS, which raises new research questions occurring with the close coupling of the virtual and physical worlds. Among these challenges are the interaction with complex compounds of heterogeneous sensors, actuators, things and humans; the detection and handling of errors in the physical world; and the synchronization of the cyber-physical process execution models. Novel factors related to the interaction with the physical world including real world obstacles, inconsistencies and inaccuracies may jeopardize the successful execution of workflows in CPS and may lead to unanticipated situations. This thesis investigates properties and requirements of CPS relevant for the introduction of BPM technologies into cyber-physical domains. We discuss existing BPM systems and related work regarding the integration of sensors and actuators into workflows, the development of a Workflow Management System (WfMS) for CPS, and the synchronization of the virtual and physical process execution as part of self-* capabilities for WfMSes. Based on the identified research gap, we present concepts and prototypes regarding the development of a CPS WFMS w.r.t. all phases of the BPM lifecycle. First, we introduce a CPS workflow notation that supports the modelling of the interaction of complex sensors, actuators, humans, dynamic services and WfMSes on the business process level. In addition, the effects of the workflow execution can be specified in the form of goals defining success and error criteria for the execution of individual process steps. Along with that, we introduce the notion of Cyber-physical Consistency. Following, we present a system architecture for a corresponding WfMS (PROtEUS) to execute the modelled processes-also in distributed execution settings and with a focus on interactive process management. Subsequently, the integration of a cyber-physical feedback loop to increase resilience of the process execution at runtime is discussed. Within this MAPE-K loop, sensor and context data are related to the effects of the process execution, deviations from expected behaviour are detected, and compensations are planned and executed. The execution of this feedback loop can be scaled depending on the required level of precision and consistency. Our implementation of the MAPE-K loop proves to be a general framework for adding self-* capabilities to WfMSes. The evaluation of our concepts within a smart home case study shows expected behaviour, reasonable execution times, reduced error rates and high coverage of the identified requirements, which makes our CPS~WfMS a suitable system for introducing workflows on top of systems, devices, things and applications of CPS.:1. Introduction 15 1.1. Motivation 15 1.2. Research Issues 17 1.3. Scope & Contributions 19 1.4. Structure of the Thesis 20 2. Workflows and Cyber-physical Systems 21 2.1. Introduction 21 2.2. Two Motivating Examples 21 2.3. Business Process Management and Workflow Technologies 23 2.4. Cyber-physical Systems 31 2.5. Workflows in CPS 38 2.6. Requirements 42 3. Related Work 45 3.1. Introduction 45 3.2. Existing BPM Systems in Industry and Academia 45 3.3. Modelling of CPS Workflows 49 3.4. CPS Workflow Systems 53 3.5. Cyber-physical Synchronization 58 3.6. Self-* for BPM Systems 63 3.7. Retrofitting Frameworks for WfMSes 69 3.8. Conclusion & Deficits 71 4. Modelling of Cyber-physical Workflows with Consistency Style Sheets 75 4.1. Introduction 75 4.2. Workflow Metamodel 76 4.3. Knowledge Base 87 4.4. Dynamic Services 92 4.5. CPS-related Workflow Effects 94 4.6. Cyber-physical Consistency 100 4.7. Consistency Style Sheets 105 4.8. Tools for Modelling of CPS Workflows 106 4.9. Compatibility with Existing Business Process Notations 111 5. Architecture of a WfMS for Distributed CPS Workflows 115 5.1. Introduction 115 5.2. PROtEUS Process Execution System 116 5.3. Internet of Things Middleware 124 5.4. Dynamic Service Selection via Semantic Access Layer 125 5.5. Process Distribution 126 5.6. Ubiquitous Human Interaction 130 5.7. Towards a CPS WfMS Reference Architecture for Other Domains 137 6. Scalable Execution of Self-managed CPS Workflows 141 6.1. Introduction 141 6.2. MAPE-K Control Loops for Autonomous Workflows 141 6.3. Feedback Loop for Cyber-physical Consistency 148 6.4. Feedback Loop for Distributed Workflows 152 6.5. Consistency Levels, Scalability and Scalable Consistency 157 6.6. Self-managed Workflows 158 6.7. Adaptations and Meta-adaptations 159 6.8. Multiple Feedback Loops and Process Instances 160 6.9. Transactions and ACID for CPS Workflows 161 6.10. Runtime View on Cyber-physical Synchronization for Workflows 162 6.11. Applicability of Workflow Feedback Loops to other CPS Domains 164 6.12. A Retrofitting Framework for Self-managed CPS WfMSes 165 7. Evaluation 171 7.1. Introduction 171 7.2. Hardware and Software 171 7.3. PROtEUS Base System 174 7.4. PROtEUS with Feedback Service 182 7.5. Feedback Service with Legacy WfMSes 213 7.6. Qualitative Discussion of Requirements and Additional CPS Aspects 217 7.7. Comparison with Related Work 232 7.8. Conclusion 234 8. Summary and Future Work 237 8.1. Summary and Conclusion 237 8.2. Advances of this Thesis 240 8.3. Contributions to the Research Area 242 8.4. Relevance 243 8.5. Open Questions 245 8.6. Future Work 247 Bibliography 249 Acronyms 277 List of Figures 281 List of Tables 285 List of Listings 287 Appendices 28

    Semantic manipulation and business context in big data analytics

    Get PDF
    Business organisations receive a huge amount of data from many sources every day. These data are known as big data. Since they are mostly unstructured, big data creates a complex problem of how to capture, manage, analyse and then derive meaningful information from them. To deal with the challenges that big data has brought, this research proposes a new technique in big data analytics in the business area to integrate semantically meaningful information relevant to textual queries and business context. To achieve this aim, this study makes three major related contributions. Firstly, the relationship between business processes and strategies is established using the concept of a rule-based inference model via facts and annotations. This relationship is required to determine the importance of a big data query for a business organisation. Secondly, we introduce approaches to determine the significance level of a query, by incorporating the processstrategy relationship, process contributions and priority of business strategies. Thirdly, the proposed data analytic technique embeds business context into the bedrock of data collection and analysis process. The first two contributions were implemented using Python programming language including the Pyke package (Pyke is built in the Python environment and has an artificial intelligence tool for the development of expert systems) and their performances were analysed based on a business use case. The last contribution was implemented mainly in the Hadoop and Java programs. Results show that the first contribution successfully establishes the processstrategy relationship, the second calculates the significance level of a query in relation to a business organisation, while the third reveals the huge impact of query significance level and business context on big data collection and captures deep business insights.Doctor of Philosoph

    An approach to cross-domain situation-based context management and highly adaptive services in pervasive environments

    Get PDF
    The concept of context-awareness is widely used in mobile and pervasive computing to reduce explicit user input and customization through the increased use of implicit input. It is considered to be the corner stone technique for developing pervasive computing applications that are flexible, adaptable, and capable of acting autonomously on behalf of the user. This requires the applications to take advantage of the context in order to infer the user’s objective and relevant environmental features. However, context-awareness introduces various software engineering challenges such as the need to provide developers with middleware infrastructure to acquire the context information available in distributed domains, reasoning about contextual situations that span one or more domains, and providing tools to facilitate building context-aware adaptive services. The separation of concerns is a promising approach in the design of such applications where the core logic is designed and implemented separately from the context handling and adaptation logics. In this respect, the aim of this dissertation is to introduce a unified approach for developing such applications and software infrastructure for efficient context management that together address these software engineering challenges and facilitate the design and implementation tasks associated with such context-aware services. The approach is based around a set of new conceptual foundations, including a context modelling technique that describes context at different levels of abstraction, domain-based context management middleware architecture, cross-domain contextual situation recognition, and a generative mechanism for context-aware service adaptation.Prototype tool has been built as an implementation of the proposed unified approach. Case studies have been done to illustrate and evaluate the approach, in terms of its effectiveness and applicability in real-life application scenarios to provide users with personalized services
    corecore