41,751 research outputs found

    Many-Light Real-Time Global Illumination using Sparse Voxel Octree

    Get PDF
    Global illumination (GI) rendering simulates the propagation of light through a 3D volume and its interaction with surfaces, dramatically increasing the fidelity of computer generated images. While off-line GI algorithms such as ray tracing and radiosity can generate physically accurate images, their rendering speeds are too slow for real-time applications. The many-light method is one of many novel emerging real-time global illumination algorithms. However, it requires many shadow maps to be generated for Virtual Point Light (VPL) visibility tests, which reduces its efficiency. Prior solutions restrict either the number or accuracy of shadow map updates, which may lower the accuracy of indirect illumination or prevent the rendering of fully dynamic scenes. In this thesis, we propose a hybrid real-time GI algorithm that utilizes an efficient Sparse Voxel Octree (SVO) ray marching algorithm for visibility tests instead of the shadow map generation step of the many-light algorithm. Our technique achieves high rendering fidelity at about 50 FPS, is highly scalable and can support thousands of VPLs generated on the fly. A survey of current real-time GI techniques as well as details of our implementation using OpenGL and Shader Model 5 are also presented

    Innovative observing strategy and orbit determination for Low Earth Orbit Space Debris

    Full text link
    We present the results of a large scale simulation, reproducing the behavior of a data center for the build-up and maintenance of a complete catalog of space debris in the upper part of the low Earth orbits region (LEO). The purpose is to determine the performances of a network of advanced optical sensors, through the use of the newest orbit determination algorithms developed by the Department of Mathematics of Pisa (DM). Such a network has been proposed to ESA in the Space Situational Awareness (SSA) framework by Carlo Gavazzi Space SpA (CGS), Istituto Nazionale di Astrofisica (INAF), DM, and Istituto di Scienza e Tecnologie dell'Informazione (ISTI-CNR). The conclusion is that it is possible to use a network of optical sensors to build up a catalog containing more than 98% of the objects with perigee height between 1100 and 2000 km, which would be observable by a reference radar system selected as comparison. It is also possible to maintain such a catalog within the accuracy requirements motivated by collision avoidance, and to detect catastrophic fragmentation events. However, such results depend upon specific assumptions on the sensor and on the software technologies

    A Comprehensive Review of Vehicle Detection Techniques Under Varying Moving Cast Shadow Conditions Using Computer Vision and Deep Learning

    Get PDF
    Design of a vision-based traffic analytic system for urban traffic video scenes has a great potential in context of Intelligent Transportation System (ITS). It offers useful traffic-related insights at much lower costs compared to their conventional sensor based counterparts. However, it remains a challenging problem till today due to the complexity factors such as camera hardware constraints, camera movement, object occlusion, object speed, object resolution, traffic flow density, and lighting conditions etc. ITS has many applications including and not just limited to queue estimation, speed detection and different anomalies detection etc. All of these applications are primarily dependent on sensing vehicle presence to form some basis for analysis. Moving cast shadows of vehicles is one of the major problems that affects the vehicle detection as it can cause detection and tracking inaccuracies. Therefore, it is exceedingly important to distinguish dynamic objects from their moving cast shadows for accurate vehicle detection and recognition. This paper provides an in-depth comparative analysis of different traffic paradigm-focused conventional and state-of-the-art shadow detection and removal algorithms. Till date, there has been only one survey which highlights the shadow removal methodologies particularly for traffic paradigm. In this paper, a total of 70 research papers containing results of urban traffic scenes have been shortlisted from the last three decades to give a comprehensive overview of the work done in this area. The study reveals that the preferable way to make a comparative evaluation is to use the existing Highway I, II, and III datasets which are frequently used for qualitative or quantitative analysis of shadow detection or removal algorithms. Furthermore, the paper not only provides cues to solve moving cast shadow problems, but also suggests that even after the advent of Convolutional Neural Networks (CNN)-based vehicle detection methods, the problems caused by moving cast shadows persists. Therefore, this paper proposes a hybrid approach which uses a combination of conventional and state-of-the-art techniques as a pre-processing step for shadow detection and removal before using CNN for vehicles detection. The results indicate a significant improvement in vehicle detection accuracies after using the proposed approach

    Drone Shadow Tracking

    Get PDF
    Aerial videos taken by a drone not too far above the surface may contain the drone's shadow projected on the scene. This deteriorates the aesthetic quality of videos. With the presence of other shadows, shadow removal cannot be directly applied, and the shadow of the drone must be tracked. Tracking a drone's shadow in a video is, however, challenging. The varying size, shape, change of orientation and drone altitude pose difficulties. The shadow can also easily disappear over dark areas. However, a shadow has specific properties that can be leveraged, besides its geometric shape. In this paper, we incorporate knowledge of the shadow's physical properties, in the form of shadow detection masks, into a correlation-based tracking algorithm. We capture a test set of aerial videos taken with different settings and compare our results to those of a state-of-the-art tracking algorithm.Comment: 5 pages, 4 figure

    ORGB: Offset Correction in RGB Color Space for Illumination-Robust Image Processing

    Full text link
    Single materials have colors which form straight lines in RGB space. However, in severe shadow cases, those lines do not intersect the origin, which is inconsistent with the description of most literature. This paper is concerned with the detection and correction of the offset between the intersection and origin. First, we analyze the reason for forming that offset via an optical imaging model. Second, we present a simple and effective way to detect and remove the offset. The resulting images, named ORGB, have almost the same appearance as the original RGB images while are more illumination-robust for color space conversion. Besides, image processing using ORGB instead of RGB is free from the interference of shadows. Finally, the proposed offset correction method is applied to road detection task, improving the performance both in quantitative and qualitative evaluations.Comment: Project website: https://baidut.github.io/ORGB
    • …
    corecore