195 research outputs found

    A hybridized model based on neural network and swarm intelligence-grey wolf algorithm for spatial prediction of urban flood-inundation

    Full text link
    In regions with lack of hydrological and hydraulic data, a spatial flood modeling and mapping is an opportunity for the urban authorities to predict the spatial distribution and the intensity of the flooding. It helps decision-makers to develop effective flood prevention and management plans. In this study, flood inventory data were prepared based on the historical and field surveys data by Sari municipality and regional water company of Mazandaran, Iran. The collected flood data accompanied with different variables (digital elevation model and slope have been considered as topographic variables, land use/land cover, precipitation, curve number, distance to river, distance to channel and depth to groundwater as environmental variables) were applied to novel hybridized model based on neural network and swarm intelligence-grey wolf algorithm (NN-SGW) to map flood-inundation. Several confusion matrix criteria were used for accuracy evaluation by cutoff-dependent and independent metrics (e.g., efficiency (E), positive predictive value (PPV), negative predictive value (NPV), area under the receiver operating characteristic curve (AUC)). The accuracy of the flood inundation map produced by the NN-SGW model was compared with that of maps produced by four state-of-the-art benchmark models: random forest (RF), logistic model tree (LMT), classification and regression trees (CART), and J48 decision tree (J48DT). The NN-SGW model outperformed all benchmark models in both training (E = 90.5%, PPV = 93.7%, NPV = 87.3%, AUC = 96.3%) and validation (E = 79.4%, PPV = 85.3%, NPV = 73.5%, AUC = 88.2%). As the NN-SGW model produced the most accurate flood-inundation map, it can be employed for robust flood contingency planning. Based on the obtained results from NN-SGW model, distance from channel, distance from river, and depth to groundwater were identified as the most important variables for spatial prediction of urban flood inundation. This work can serve as a basis for future studies seeking to predict flood susceptibility in urban areas using hybridized machine learning (ML) models and can also be applied in other urban areas where flood inundation presents a pressing challenge, and there are some problems regarding required model and availability of input data

    BC4LLM: Trusted Artificial Intelligence When Blockchain Meets Large Language Models

    Full text link
    In recent years, artificial intelligence (AI) and machine learning (ML) are reshaping society's production methods and productivity, and also changing the paradigm of scientific research. Among them, the AI language model represented by ChatGPT has made great progress. Such large language models (LLMs) serve people in the form of AI-generated content (AIGC) and are widely used in consulting, healthcare, and education. However, it is difficult to guarantee the authenticity and reliability of AIGC learning data. In addition, there are also hidden dangers of privacy disclosure in distributed AI training. Moreover, the content generated by LLMs is difficult to identify and trace, and it is difficult to cross-platform mutual recognition. The above information security issues in the coming era of AI powered by LLMs will be infinitely amplified and affect everyone's life. Therefore, we consider empowering LLMs using blockchain technology with superior security features to propose a vision for trusted AI. This paper mainly introduces the motivation and technical route of blockchain for LLM (BC4LLM), including reliable learning corpus, secure training process, and identifiable generated content. Meanwhile, this paper also reviews the potential applications and future challenges, especially in the frontier communication networks field, including network resource allocation, dynamic spectrum sharing, and semantic communication. Based on the above work combined and the prospect of blockchain and LLMs, it is expected to help the early realization of trusted AI and provide guidance for the academic community

    A Comprehensive Survey of Deep Learning in Remote Sensing: Theories, Tools and Challenges for the Community

    Full text link
    In recent years, deep learning (DL), a re-branding of neural networks (NNs), has risen to the top in numerous areas, namely computer vision (CV), speech recognition, natural language processing, etc. Whereas remote sensing (RS) possesses a number of unique challenges, primarily related to sensors and applications, inevitably RS draws from many of the same theories as CV; e.g., statistics, fusion, and machine learning, to name a few. This means that the RS community should be aware of, if not at the leading edge of, of advancements like DL. Herein, we provide the most comprehensive survey of state-of-the-art RS DL research. We also review recent new developments in the DL field that can be used in DL for RS. Namely, we focus on theories, tools and challenges for the RS community. Specifically, we focus on unsolved challenges and opportunities as it relates to (i) inadequate data sets, (ii) human-understandable solutions for modelling physical phenomena, (iii) Big Data, (iv) non-traditional heterogeneous data sources, (v) DL architectures and learning algorithms for spectral, spatial and temporal data, (vi) transfer learning, (vii) an improved theoretical understanding of DL systems, (viii) high barriers to entry, and (ix) training and optimizing the DL.Comment: 64 pages, 411 references. To appear in Journal of Applied Remote Sensin

    Discourse analysis of arabic documents and application to automatic summarization

    Get PDF
    Dans un discours, les textes et les conversations ne sont pas seulement une juxtaposition de mots et de phrases. Ils sont plutôt organisés en une structure dans laquelle des unités de discours sont liées les unes aux autres de manière à assurer à la fois la cohérence et la cohésion du discours. La structure du discours a montré son utilité dans de nombreuses applications TALN, y compris la traduction automatique, la génération de texte et le résumé automatique. L'utilité du discours dans les applications TALN dépend principalement de la disponibilité d'un analyseur de discours performant. Pour aider à construire ces analyseurs et à améliorer leurs performances, plusieurs ressources ont été annotées manuellement par des informations de discours dans des différents cadres théoriques. La plupart des ressources disponibles sont en anglais. Récemment, plusieurs efforts ont été entrepris pour développer des ressources discursives pour d'autres langues telles que le chinois, l'allemand, le turc, l'espagnol et le hindi. Néanmoins, l'analyse de discours en arabe standard moderne (MSA) a reçu moins d'attention malgré le fait que MSA est une langue de plus de 422 millions de locuteurs dans 22 pays. Le sujet de thèse s'intègre dans le cadre du traitement automatique de la langue arabe, plus particulièrement, l'analyse de discours de textes arabes. Cette thèse a pour but d'étudier l'apport de l'analyse sémantique et discursive pour la génération de résumé automatique de documents en langue arabe. Pour atteindre cet objectif, nous proposons d'étudier la théorie de la représentation discursive segmentée (SDRT) qui propose un cadre logique pour la représentation sémantique de phrases ainsi qu'une représentation graphique de la structure du texte où les relations de discours sont de nature sémantique plutôt qu'intentionnelle. Cette théorie a été étudiée pour l'anglais, le français et l'allemand mais jamais pour la langue arabe. Notre objectif est alors d'adapter la SDRT à la spécificité de la langue arabe afin d'analyser sémantiquement un texte pour générer un résumé automatique. Nos principales contributions sont les suivantes : Une étude de la faisabilité de la construction d'une structure de discours récursive et complète de textes arabes. En particulier, nous proposons : Un schéma d'annotation qui couvre la totalité d'un texte arabe, dans lequel chaque constituant est lié à d'autres constituants. Un document est alors représenté par un graphe acyclique orienté qui capture les relations explicites et les relations implicites ainsi que des phénomènes de discours complexes, tels que l'attachement, la longue distance du discours pop-ups et les dépendances croisées. Une nouvelle hiérarchie des relations de discours. Nous étudions les relations rhétoriques d'un point de vue sémantique en se concentrant sur leurs effets sémantiques et non pas sur la façon dont elles sont déclenchées par des connecteurs de discours, qui sont souvent ambigües en arabe. o une analyse quantitative (en termes de connecteurs de discours, de fréquences de relations, de proportion de relations implicites, etc.) et une analyse qualitative (accord inter-annotateurs et analyse des erreurs) de la campagne d'annotation. Un outil d'analyse de discours où nous étudions à la fois la segmentation automatique de textes arabes en unités de discours minimales et l'identification automatique des relations explicites et implicites du discours. L'utilisation de notre outil pour résumer des textes arabes. Nous comparons la représentation de discours en graphes et en arbres pour la production de résumés.Within a discourse, texts and conversations are not just a juxtaposition of words and sentences. They are rather organized in a structure in which discourse units are related to each other so as to ensure both discourse coherence and cohesion. Discourse structure has shown to be useful in many NLP applications including machine translation, natural language generation and language technology in general. The usefulness of discourse in NLP applications mainly depends on the availability of powerful discourse parsers. To build such parsers and improve their performances, several resources have been manually annotated with discourse information within different theoretical frameworks. Most available resources are in English. Recently, several efforts have been undertaken to develop manually annotated discourse information for other languages such as Chinese, German, Turkish, Spanish and Hindi. Surprisingly, discourse processing in Modern Standard Arabic (MSA) has received less attention despite the fact that MSA is a language with more than 422 million speakers in 22 countries. Computational processing of Arabic language has received a great attention in the literature for over twenty years. Several resources and tools have been built to deal with Arabic non concatenative morphology and Arabic syntax going from shallow to deep parsing. However, the field is still very vacant at the layer of discourse. As far as we know, the sole effort towards Arabic discourse processing was done in the Leeds Arabic Discourse Treebank that extends the Penn Discourse TreeBank model to MSA. In this thesis, we propose to go beyond the annotation of explicit relations that link adjacent units, by completely specifying the semantic scope of each discourse relation, making transparent an interpretation of the text that takes into account the semantic effects of discourse relations. In particular, we propose the first effort towards a semantically driven approach of Arabic texts following the Segmented Discourse Representation Theory (SDRT). Our main contributions are: A study of the feasibility of building a recursive and complete discourse structures of Arabic texts. In particular, we propose: An annotation scheme for the full discourse coverage of Arabic texts, in which each constituent is linked to other constituents. A document is then represented by an oriented acyclic graph, which captures explicit and implicit relations as well as complex discourse phenomena, such as long-distance attachments, long-distance discourse pop-ups and crossed dependencies. A novel discourse relation hierarchy. We study the rhetorical relations from a semantic point of view by focusing on their effect on meaning and not on how they are lexically triggered by discourse connectives that are often ambiguous, especially in Arabic. A thorough quantitative analysis (in terms of discourse connectives, relation frequencies, proportion of implicit relations, etc.) and qualitative analysis (inter-annotator agreements and error analysis) of the annotation campaign. An automatic discourse parser where we investigate both automatic segmentation of Arabic texts into elementary discourse units and automatic identification of explicit and implicit Arabic discourse relations. An application of our discourse parser to Arabic text summarization. We compare tree-based vs. graph-based discourse representations for producing indicative summaries and show that the full discourse coverage of a document is definitively a plus

    SDbQfSum: Query-focused summarization framework basedon diversity and text semantic analysis

    Get PDF
    Query-focused multi-document summarization (Qf-MDS) is a sub-task of automatic text summarization that aims to extract a substitute summary from a document cluster of the same topic and based on a user query. Unlike other summarization tasks, Qf-MDS has specific research challenges including the differences and similarities across related document sets, the high degree of redundancy inherent in the summaries created from multiple related sources, relevance to the given query, topic diversity in the produced summary and the small source-to-summary compression ratio. In this work, we propose a semantic diversity feature based query-focused extractive summarizer (SDbQfSum) built on powerful text semantic representation techniques underpinned with Wikipedia commonsense knowledge in order to address the query-relevance, centrality, redundancy and diversity challenges. Specifically, a semantically parsed document text is combined with knowledge-based vectorial representation to extract effective sentence importance and query-relevance features. The proposed monolingual summarizer is evaluated on a standard English dataset for automatic query-focused summarization tasks, that is, the DUC2006 dataset. The obtained results show that our summarizer outperforms most state-of-the-art related approaches on one or more ROUGE measures achieving 0.418, 0.092 and 0.152 in ROUGE-1, ROUGE-2,and ROUGE-SU4 respectively. It also attains competitive performance with the slightly outperforming system(s), for example, the difference between our system's result and best system in ROUGE-1 is just 0.006. We also found through the conducted experiments that our proposed custom cluster merging algorithm significantly reduces information redundancy while maintaining topic diversity across documents

    Identification of pathway and gene markers using enhanced directed random walk for multiclass cancer expression data

    Get PDF
    Cancer markers play a significant role in the diagnosis of the origin of cancers and in the detection of cancers from initial treatments. This is a challenging task owing to the heterogeneity nature of cancers. Identification of these markers could help in improving the survival rate of cancer patients, in which dedicated treatment can be provided according to the diagnosis or even prevention. Previous investigations show that the use of pathway topology information could help in the detection of cancer markers from gene expression. Such analysis reduces its complexity from thousands of genes to a few hundreds of pathways. However, most of the existing methods group different cancer subtypes into just disease samples, and consider all pathways contribute equally in the analysis process. Meanwhile, the interaction between multiple genes and the genes with missing edges has been ignored in several other methods, and hence could lead to the poor performance of the identification of cancer markers from gene expression. Thus, this research proposes enhanced directed random walk to identify pathway and gene markers for multiclass cancer gene expression data. Firstly, an improved pathway selection with analysis of variances (ANOVA) that enables the consideration of multiple cancer subtypes is performed, and subsequently the integration of k-mean clustering and average silhouette method in the directed random walk that considers the interaction of multiple genes is also conducted. The proposed methods are tested on benchmark gene expression datasets (breast, lung, and skin cancers) and biological pathways. The performance of the proposed methods is then measured and compared in terms of classification accuracy and area under the receiver operating characteristics curve (AUC). The results indicate that the proposed methods are able to identify a list of pathway and gene markers from the datasets with better classification accuracy and AUC. The proposed methods have improved the classification performance in the range of between 1% and 35% compared with existing methods. Cell cycle and p53 signaling pathway were found significantly associated with breast, lung, and skin cancers, while the cell cycle was highly enriched with squamous cell carcinoma and adenocarcinoma

    The Best Explanation:Beyond Right and Wrong in Question Answering

    Get PDF

    Who wrote this scientific text?

    No full text
    The IEEE bibliographic database contains a number of proven duplications with indication of the original paper(s) copied. This corpus is used to test a method for the detection of hidden intertextuality (commonly named "plagiarism"). The intertextual distance, combined with the sliding window and with various classification techniques, identifies these duplications with a very low risk of error. These experiments also show that several factors blur the identity of the scientific author, including variable group authorship and the high levels of intertextuality accepted, and sometimes desired, in scientific papers on the same topic

    New rough set based maximum partitioning attribute algorithm for categorical data clustering

    Get PDF
    Clustering a set of data into homogeneous groups is a fundamental operation in data mining. Recently, consideration has been put on categorical data clustering, where the data set consists of non-numerical attributes. However, implementing several existing categorical clustering algorithms is challenging as some cannot handle uncertainty while others have stability issues. The Rough Set theory (RST) is a mathematical tool for dealing with categorical data and handling uncertainty. It is also used to identify cause-effect relationships in databases as a form of learning and data mining. Therefore, this study aims to address the issues of uncertainty and stability for categorical clustering, and it proposes an improved algorithm centred on RST. The proposed method employed the partitioning measure to calculate the information system's positive and boundary regions of attributes. Firstly, an attributes partitioning method called Positive Region-based Indiscernibility (PRI) was developed to address the uncertainty issue in attribute partitioning for categorical data. The PRI method requires the positive and boundary regions-based partitioning calculation method. Next, to address the computational complexity issue in the clustering process, a clustering attribute selection method called Maximum Mean Partitioning (MMP) is introduced by computing the mean. The MMP method selects the maximum degree of the mean attribute, and the attribute with the maximum mean partitioning value is chosen as the best clustering attribute. The integration of proposed PRI and MMP methods generated a new rough set hybrid clustering algorithm for categorical data clustering algorithm named Maximum Partitioning Attribute (MPA) algorithm. This hybrid algorithm is an all-inclusive solution for uncertainty, computational complexity, cluster purity, and higher accuracy in attribute partitioning and selecting a clustering attribute. The proposed MPA algorithm is compared against the baseline algorithms, namely Maximum Significance Attribute (MSA), Information-Theoretic Dependency Roughness (ITDR), Maximum Indiscernibility Attribute (MIA), and simple classical K-Mean. In addition, seven small data sets from previously utilized research cases and 21 UCI repository and benchmark datasets are used for validation. Finally, the results were presented in tabular and graphical form, showing the proposed MPA algorithm outperforms the baseline algorithms for all data sets. Furthermore, the results showed that the proposed MPA algorithm improves the rough accuracy against MSA, ITDR, and MIA by 54.42%. Hence, the MPA algorithm has reduced the computational complexity compared to MSA, ITDR, and MIA with 77.11% less time and 58.66% minimum iterations. Similarly, a significant percentage improvement, up to 97.35%, was observed for overall purity by the MPA algorithm against MSA, ITDR, and MIA. In addition, the increment up to 34.41% of the overall accuracy of simple K-means by MPA has been obtained. Hence, it is proven that the proposed MPA has given promising solutions to address the categorical data clustering problem

    IoT and Sensor Networks in Industry and Society

    Get PDF
    The exponential progress of Information and Communication Technology (ICT) is one of the main elements that fueled the acceleration of the globalization pace. Internet of Things (IoT), Artificial Intelligence (AI) and big data analytics are some of the key players of the digital transformation that is affecting every aspect of human's daily life, from environmental monitoring to healthcare systems, from production processes to social interactions. In less than 20 years, people's everyday life has been revolutionized, and concepts such as Smart Home, Smart Grid and Smart City have become familiar also to non-technical users. The integration of embedded systems, ubiquitous Internet access, and Machine-to-Machine (M2M) communications have paved the way for paradigms such as IoT and Cyber Physical Systems (CPS) to be also introduced in high-requirement environments such as those related to industrial processes, under the forms of Industrial Internet of Things (IIoT or I2oT) and Cyber-Physical Production Systems (CPPS). As a consequence, in 2011 the German High-Tech Strategy 2020 Action Plan for Germany first envisioned the concept of Industry 4.0, which is rapidly reshaping traditional industrial processes. The term refers to the promise to be the fourth industrial revolution. Indeed, the first industrial revolution was triggered by water and steam power. Electricity and assembly lines enabled mass production in the second industrial revolution. In the third industrial revolution, the introduction of control automation and Programmable Logic Controllers (PLCs) gave a boost to factory production. As opposed to the previous revolutions, Industry 4.0 takes advantage of Internet access, M2M communications, and deep learning not only to improve production efficiency but also to enable the so-called mass customization, i.e. the mass production of personalized products by means of modularized product design and flexible processes. Less than five years later, in January 2016, the Japanese 5th Science and Technology Basic Plan took a further step by introducing the concept of Super Smart Society or Society 5.0. According to this vision, in the upcoming future, scientific and technological innovation will guide our society into the next social revolution after the hunter-gatherer, agrarian, industrial, and information eras, which respectively represented the previous social revolutions. Society 5.0 is a human-centered society that fosters the simultaneous achievement of economic, environmental and social objectives, to ensure a high quality of life to all citizens. This information-enabled revolution aims to tackle today’s major challenges such as an ageing population, social inequalities, depopulation and constraints related to energy and the environment. Accordingly, the citizens will be experiencing impressive transformations into every aspect of their daily lives. This book offers an insight into the key technologies that are going to shape the future of industry and society. It is subdivided into five parts: the I Part presents a horizontal view of the main enabling technologies, whereas the II-V Parts offer a vertical perspective on four different environments. The I Part, dedicated to IoT and Sensor Network architectures, encompasses three Chapters. In Chapter 1, Peruzzi and Pozzebon analyse the literature on the subject of energy harvesting solutions for IoT monitoring systems and architectures based on Low-Power Wireless Area Networks (LPWAN). The Chapter does not limit the discussion to Long Range Wise Area Network (LoRaWAN), SigFox and Narrowband-IoT (NB-IoT) communication protocols, but it also includes other relevant solutions such as DASH7 and Long Term Evolution MAchine Type Communication (LTE-M). In Chapter 2, Hussein et al. discuss the development of an Internet of Things message protocol that supports multi-topic messaging. The Chapter further presents the implementation of a platform, which integrates the proposed communication protocol, based on Real Time Operating System. In Chapter 3, Li et al. investigate the heterogeneous task scheduling problem for data-intensive scenarios, to reduce the global task execution time, and consequently reducing data centers' energy consumption. The proposed approach aims to maximize the efficiency by comparing the cost between remote task execution and data migration. The II Part is dedicated to Industry 4.0, and includes two Chapters. In Chapter 4, Grecuccio et al. propose a solution to integrate IoT devices by leveraging a blockchain-enabled gateway based on Ethereum, so that they do not need to rely on centralized intermediaries and third-party services. As it is better explained in the paper, where the performance is evaluated in a food-chain traceability application, this solution is particularly beneficial in Industry 4.0 domains. Chapter 5, by De Fazio et al., addresses the issue of safety in workplaces by presenting a smart garment that integrates several low-power sensors to monitor environmental and biophysical parameters. This enables the detection of dangerous situations, so as to prevent or at least reduce the consequences of workers accidents. The III Part is made of two Chapters based on the topic of Smart Buildings. In Chapter 6, Petroșanu et al. review the literature about recent developments in the smart building sector, related to the use of supervised and unsupervised machine learning models of sensory data. The Chapter poses particular attention on enhanced sensing, energy efficiency, and optimal building management. In Chapter 7, Oh examines how much the education of prosumers about their energy consumption habits affects power consumption reduction and encourages energy conservation, sustainable living, and behavioral change, in residential environments. In this Chapter, energy consumption monitoring is made possible thanks to the use of smart plugs. Smart Transport is the subject of the IV Part, including three Chapters. In Chapter 8, Roveri et al. propose an approach that leverages the small world theory to control swarms of vehicles connected through Vehicle-to-Vehicle (V2V) communication protocols. Indeed, considering a queue dominated by short-range car-following dynamics, the Chapter demonstrates that safety and security are increased by the introduction of a few selected random long-range communications. In Chapter 9, Nitti et al. present a real time system to observe and analyze public transport passengers' mobility by tracking them throughout their journey on public transport vehicles. The system is based on the detection of the active Wi-Fi interfaces, through the analysis of Wi-Fi probe requests. In Chapter 10, Miler et al. discuss the development of a tool for the analysis and comparison of efficiency indicated by the integrated IT systems in the operational activities undertaken by Road Transport Enterprises (RTEs). The authors of this Chapter further provide a holistic evaluation of efficiency of telematics systems in RTE operational management. The book ends with the two Chapters of the V Part on Smart Environmental Monitoring. In Chapter 11, He et al. propose a Sea Surface Temperature Prediction (SSTP) model based on time-series similarity measure, multiple pattern learning and parameter optimization. In this strategy, the optimal parameters are determined by means of an improved Particle Swarm Optimization method. In Chapter 12, Tsipis et al. present a low-cost, WSN-based IoT system that seamlessly embeds a three-layered cloud/fog computing architecture, suitable for facilitating smart agricultural applications, especially those related to wildfire monitoring. We wish to thank all the authors that contributed to this book for their efforts. We express our gratitude to all reviewers for the volunteering support and precious feedback during the review process. We hope that this book provides valuable information and spurs meaningful discussion among researchers, engineers, businesspeople, and other experts about the role of new technologies into industry and society
    corecore