53 research outputs found

    Moments of elliptic fourier descriptors

    Get PDF
    This paper develops a recursive method for computing moments of 2D objects described by elliptic Fourier descriptors (EFD). Green’s theorem is utilized to transform 2D surface integrals into 1D line integrals and EFD description is employed to derive recursions for moments computations. Experiments are performed to quantify the accuracy of our proposed method. Comparison with Bernstein-B´ezier representations is also provided

    3D Object Recognition Using Multiple Views And Neural Networks.

    Get PDF
    This paper proposes a method for recognition and classification of 3D objects. The method is based on 2D moments and neural networks. The 2D moments are calculated based on 2D intensity images taken from multiple cameras that have been arranged using multiple views technique. 2D moments are commonly used for 2D pattern recognition

    Mine Classification based on a Fuzzy Characterisation

    No full text
    International audienceHigh resolution sonars provide high-quality acoustic images, allowing the classification of objects from their cast shadow. For a given ground mine except mine with radial symmetry, shadow appearance generally depends on the point of view. After a segmentation step performed on images acquired along a part of a circular trajectory of the sonar around the object, we can match and superimpose binary data. The resulting image displays a fuzzy shadow region whose pixels grey-levels depend on their successive localisation in the images of the sequence, i.e. if they belong or not to the shadow region. As an extension of feature extraction in the binary case, fuzzy geometry is a practical tool to describe fuzzy regions characterised by the degree of membership of each pixel to them. After a Principal Component Analysis applied to a set of fuzzy features, encouraging results have been achieved on simulated sonar images covering both classical and stealthy mines

    Multi-object segmentation using coupled nonparametric shape and relative pose priors

    Get PDF
    We present a new method for multi-object segmentation in a maximum a posteriori estimation framework. Our method is motivated by the observation that neighboring or coupling objects in images generate configurations and co-dependencies which could potentially aid in segmentation if properly exploited. Our approach employs coupled shape and inter-shape pose priors that are computed using training images in a nonparametric multi-variate kernel density estimation framework. The coupled shape prior is obtained by estimating the joint shape distribution of multiple objects and the inter-shape pose priors are modeled via standard moments. Based on such statistical models, we formulate an optimization problem for segmentation, which we solve by an algorithm based on active contours. Our technique provides significant improvements in the segmentation of weakly contrasted objects in a number of applications. In particular for medical image analysis, we use our method to extract brain Basal Ganglia structures, which are members of a complex multi-object system posing a challenging segmentation problem. We also apply our technique to the problem of handwritten character segmentation. Finally, we use our method to segment cars in urban scenes

    Data Fusion for Topographic Object Classification

    Get PDF
    This paper presents research conducted into the automatic recognition of features and objects on topographic maps (for example, buildings, roads, land parcels etc.) using a selection of shape description methods developed mostly in the field of computer vision. In particular the work here focuses on the proposal and evaluation of fusion techniques (at the decision level of representation) for the classification of topographic data. A set of Ordnance Survey large-scale digital data (1:1250 and 1:2500) was used to evaluate the classification performance of the shape recognition methods used. Each technique proved partially successful in distinguishing classes of objects, however, no one technique provided a general solution to the problem. Further outlined experiments combine these techniques, using a data fusion methodology, on the real-world problem of checking and assigning feature codes in large-scale Ordnance Survey digital data

    Application of textural descriptors for the evaluation of surface roughness class in the machining of metals

    Get PDF
    La medición de la rugosidad superficial ha sido una cuestión de especial interés en la investigación de mecanizado de metales durante los últimos cincuenta años. El acabado superficial se puede evaluar mediante algunos parámetros de rugosidad definidos en las normas internacionales. Estas normas están orientadas a dispositivos de medición táctiles que proporcionan registros bidimensionales del perfil de la pieza. Sin embargo, en la última década, la mejora de la visión computarizada y la óptica ha animado a muchos grupos a investigar en la aplicación de estas tecnologías. La evaluación de rugosidad de la superficie no es una excepción. La ventaja de la visión por ordenador en esta área es la caracterización de amplias áreas de superficie proporcionando más información (información 3D). En este contexto, este documento propone un método basado en la visión por ordenador para evaluar la calidad superficial delas piezas mecanizadas. El método consiste en el análisis de imágenes de acabado superficial de piezas mecanizadas mediante cinco vectores de características basados en momentos: Hu, Flusser, Taubin, Zernike y Legendre. Atendiendo a estos descriptores las imágenes se clasificaron en dos clases: baja rugosidad y alta rugosidad, utilizando el algoritmo del vecino k-nn y las redes neuronales. Los momentos utilizados como descriptores en este artículo muestran un comportamiento diferente con respecto a la identificación del acabado superficial, concluyendo que los descriptores Zernike y Legendre proporcionan el mejor rendimiento. Se logró una tasa de error del 6,5% utilizando descriptores Zernike con clasificación k-nn

    Using moment invariants for classifying shapes on large scale maps

    Get PDF
    Automated feature extraction and object recognition are large research areas in the field of image processing and computer vision. Recognition is largely based on the matching of descriptions of shapes. Numerous shapes description techniques have been developed, such as scalar features (dimension, area, number of corners etc.), Fourier descriptors and moment invariants. These techniques numerically describe shapes independent of translation, scale and rotation and can be easily applied to topographical data. The applicability of the moment invariants technique to classify objects on large-scale maps is described. From the test data used, moments are fairly reliable at distinguishing certain classes of topographic object. However, their effectiveness will increase when fused with the results of other techniques
    corecore