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Abstract

This paper develops a recursive method for comput-
ing moments of 2D objects described by elliptic Fourier
descriptors (EFD). Green’s theorem is utilized to trans-
form 2D surface integrals into 1D line integrals and
EFD description is employed to derive recursions for
moments computations. Experiments are performed to
quantify the accuracy of our proposed method. Com-
parison with Bernstein-Bézier representations is also
provided.

1 Introduction

Moments of objects [10] are intrinsic to the shape
[9], and therefore efficient computation of moments is a
desirable feature for many practical tasks.

Moments of inertia are used in mechanical design
and analysis. For example, in the design of aircrafts,
ships, and automobiles the moments of inertia are em-
ployed to determine the dynamics of the vehicle [16].
In the medical domain, moments are used for automatic
diagnosis and prognosis; for example they can be used
in computing volumes of healthy and pathologic tis-
sues [8].

Moment invariants are efficient tools in pattern
recognition applications. In [18], the authors present a
moment based pattern recognition application in agron-
omy and propose a measure for the analysis of the
roundness of rose flowers. Another interesting appli-
cation of moments can be found, for example, in op-
tical character recognition systems such as [3]. Until
recently, it was a common belief that projective mo-
ment invariants do not exist; however, their existence
was proven in [15].

Although moments of objects in different forms have
been widely studied in the literature, to the best of our
knowledge, the moments of the elliptic Fourier descrip-
tors (EFD) have not been explored until now. Since

EFD representation is one of the most powerful bound-
ary modeling tools, efficient computation of its mo-
ments may prove very useful in several model-based
vision and pattern recognition applications. Motivated
by this observation, in this work, we develop a com-
putationally efficient recursive scheme for calculating
moments of objects represented by elliptic Fourier de-
scriptors. Several experiments are performed to quan-
tify the accuracy of our proposed method and compare
it with other representations such as Bernstein-Bézier
representations [4].

2 Background on Elliptic Fourier De-
scriptors

Following [17], let T be an arbitrary positive real
number and let C (t) : [0..T ] → R2,

C (t) = (x (t) , y (t)) (1)

be a planar curve parameterized by t, such that C (t) ∈
C(2). We can describe the curve in Equation (1) using
elliptic Fourier descriptors as follows:

(
x (t)
y (t)

)
=

∞∑

i=0

(
ai bi

ci di

)(
cos

(
2iπt
T

)
sin

(
2iπt
T

)
)

, (2)

where a0 = 1
T

∫ T

0
x (t) dt, b0 = c0 = 0, d0 =

1
T

∫ T

0
y (t) dt, ai = 2

T

∫ T

0
x (t) cos

(
2πit
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)
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2
T

∫ T

0
x (t) sin

(
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)
dt, ci = 2

T

∫ T

0
y (t) cos

(
2πit
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)
dt,

di = 2
T

∫ T

0
y (t) sin

(
2πit
T

)
dt, for any i ∈ N − {0} .

Since cos (·) and sin (·) are continuous functions, the
integrability of C (t) ensures existence of the above in-
tegrals.

3 Moments of 2D Shapes Represented by
EFD

In this section, we develop a recursive scheme for
computing moments of 2D shapes represented by EFD.
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The recursive scheme provides efficient computation of
moments.

We divide the computation of moment mp,q, which
is defined as a surface integral, into two components
that are defined as 1D line integrals. The conversion
from surface to line integral is achieved by the utiliza-
tion of Green’s theorem [5]. We outline the fundamental
steps in deriving recursions and refer the reader to [13]
for details of these derivations.

Consider a 2D shape D ⊆ R2. The standard moment
of order p, q of D is given as:

mp,q =
∫ ∫

D

xpyqdxdy. (3)

Green’s theorem can be used to rewrite Equation (3) as

mp,q =
1

2

∫ T

t=0
x (t)p

y (t)q
[

x (t) y′ (t)

p + 1
−

y (t) x′ (t)

q + 1

]
dt. (4)

We define the following quantities:

αi,j,p,q = j

(
aidj

p + 1
−

bjci

q + 1

)
, (5)

βi,j,p,q = j

(−aicj

p + 1
+

ciaj

q + 1

)
+ i

(
dibj

p + 1
−

bidj

q + 1

)
, (6)

γi,j,p,q = i

(−bjci

p + 1
+

djai

q + 1

)
, (7)

m
c
i,p,q =

∫ T

t=0
x (t)p

y (t)q cos

(
2iπt

T

)
dt, (8)

m
s
i,p,q =

∫ T

t=0
x (t)p

y (t)q sin

(
2iπt

T

)
dt. (9)

Substituting Equation (2) into (4) and using Equa-
tions (5)-(9) we get

mp,q =
π

2T

∞∑

i=0

∞∑

j=0

{
αi,j,p,q

(
mc
|i−j|,p,q + mc

i+j,p,q

)

+βi,j,p,q

[
ms

i+j,p,q − σ (i− j)ms
|i−j|,p,q

]

+γi,j,p,q

(
mc
|i−j|,p,q −mc

i+j,p,q

)}
. (10)

The computation of mp,q is based on the values mc
i,p,q,

and ms
i,p,q, which will be computed recursively as

shown below.
In the case i > 0, p > 0 and q > 0, we have

m
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For details please see [13]. Next, we provide several
simplified results for particular cases of interest.

• i = 0, p = 0, and q = 0 :

mc
0,0,0 = T and ms

0,0,0 = 0.

• i = 0, p = 0, and q > 0 :

m
c
0,0,q =

∞∑
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(
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c
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s
i,0,q−1

)
and m
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• i = 0, p > 0, and q = 0 :

m
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s
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)
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s
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m
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]
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s
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• i > 0, p = 0, and q = 0 :
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• i > 0, p = 0, and q > 0 :

m
c
i,0,q =

q
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4 Complexity Analysis

If schemes of computing moments can be converted
into recursive algorithms [12], one can take advantage
of amortized times of computations. In this context,
usually, moments of higher degree depend on lower de-
grees.
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Let Mr , {mp,q |p + q = r} be the set of mo-
ments of order r. Moreover, let Mr ,

⋃r
i=0 Mi be

the complete set of moments up to r. Suppose that the
order, i.e. the upper limit of the summation in Equa-
tion (2), of the EFD used is L. Let Tmp,q

be the time
required for computing mp,q. As detailed in [14], the

amortized time for each moment is O
(
L (p + q)2

)
and

Tmp,q
= O

(
L2 + L (p + q)2

)
.

In terms of memory consumption, our scheme needs
L2 (p + q + 1)4 memory locations. For today’s com-
puters, this is a very small space requirement. All other
schemes imply similar low memory requirements.

5 Experimental Results

We present experimental results related to the ac-
curacy of our proposed computational scheme. We
test our method on different shapes and provide several
comparisons with other methods.

We first picked several shapes for which moments
can easily be computed analytically. First, we use dis-
crete moments computations method. Second, we use
our proposed method. Third, as a ground truth, we
use the analytical method where the surface integrals
are transformed into line integrals and computed with
Maple [6].

(a) (b) (c)

Figure 1. Circles with different radii are scaled for
visual comparison: (a) R = 10, (b) R = 100, and (c)
R = 1000.

We selected three circles (disks) with radii R =
10, 100, and 1000, and centered at (R, 0) , see Figure 1.
Table 1 shows the relative errors for the discrete method
of moment computations when compared to the ground
truth provided by the analytical method. Our method,
when compared to the ground truth, results in zero rel-
ative error up to fifteen significant decimal digits.

m0,0 m2,0 m0,2
R = 10 0.02915 0.03473 0.05704

R = 100 6.02450 · 10−4 7.22542 · 10−4 12.02910 · 10−4

R = 1000 2.28080 · 10−5 2.73668 · 10−5 4.56018 · 10−5

Table 1. Relative errors of the discrete method.

We next compare the accuracy of moment computa-
tions for objects modeled by EFD and Bernstein-Bézier

curves. In our experiments, we employ interpolation to
approximate several point sets [4]. While efficient algo-
rithms for computing moments of objects represented
by Bernstein-Bézier curves can be found in [7], [12],
and [11], our goal is to compare the accuracy of the mo-
ments computations for the Bernstein-Bézier and EFD
representations. We evaluate Equation (4) in Maple,
symbolically, with a precision of one hundred digits.

A circle can be described exactly by EFD, but
not necessarily with Bernstein-Bézier boundary curves.
Since a circle can be approximated by zeroth and first
harmonics, i.e. n = 0, 1 using EFD, i.e. six coef-
ficients, we approximated the circle with a Bernstein-
Bézier of degree five, which has six control points. The
exact EFD representation of a circle implies higher ac-
curacy when computing moments. In addition, we also
present moments computed for a circle approximated
with a Bernstein-Bézier of degree seven, which has
eight control points. Table 2 illustrates accuracy of mo-
ments computations for a circle with radius R = 1000.
Our method results in zero relative error up to fifteen
significant decimal digits.

Moments Bernstein-Bézier
Degree 5 Degree 7

m0,0 0.02070 12.97549 · 10−4

m1,0 0.04019 25.57672 · 10−4

m0,1 0.00000 0.00000

m2,0 0.05874 40.05980 · 10−4

m1,1 0.00000 0.00000

m0,2 0.03110 4.12989 · 10−4

Table 2. Relative errors of moments for a circle with
radius R = 1000.

Finally, we consider 2D shapes from TOSCA bench-
mark database, see [2] and [1]. These shapes are mod-
eled using EFD representation with different number of
harmonics. In Figure 2, the first column presents orig-
inal images whereas the remaining ones represent EFD
approximations with 128, 64, 32 and 16 harmonics, re-
spectively. Table 3 shows the computed moments up to
order 3 for these objects.

Moments plier scissor horse man
m0,0 0.9999 1.0000 -1.0000 -0.9999
m1,0 -0.0029 -0.0013 -0.0116 -0.0008
m0,1 -0.0135 -0.0073 0.0013 0.0124
m2,0 0.2446 0.2206 -0.1039 -0.0827
m1,1 -0.0004 0.0000 -0.0151 0.0023
m0,2 0.5210 0.5041 -0.1351 -0.3193
m3,0 -0.0020 -0.0008 -0.0053 -0.0001
m2,1 0.1476 -0.1066 0.0029 -0.0113
m1,2 -0.0011 -0.0007 -0.0001 -0.0001
m0,3 -0.0173 0.2278 -0.0214 -0.0491

Table 3. Moment computation results for
different objects from TOSCA database
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(a) (b) (c) (d) (e)

(a) (b) (c) (d) (e)

(a) (b) (c) (d) (e)

(a) (b) (c) (d) (e)

Figure 2. Shapes from TOSCA benchmark
database and EFD approximations with
128, 64, 32, and 16 harmonics.

6 Conclusions

We have outlined a computationally efficient scheme
for calculating moments of objects represented by ellip-
tic Fourier descriptors (EFD). The method is recursive
and therefore implies fast computation of moments. We
have experimented our scheme on 2D shapes modeled
by EFD and provided measurement of accuracy of our
method along with comparisons with some other tech-
niques.
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