58 research outputs found

    A Survey on Proxy Mobile IPv6 Handover

    Full text link
    [EN] As wireless technologies have been improving in recent years, a mobility management mechanism is required to provide seamless and ubiquitous mobility for end users who are roaming among points of attachment in wireless networks. Thus, Mobile IPv6 was developed by the Internet Engineering Task Force (IETF) to support the mobility service. However, Mobile IPv6 is unable to fulfill the requirements of real-time applications, such as video streaming service and voice over IP service, due to its high handover (HO) latency. To address this problem, Proxy Mobile IPv6 (PMIPv6) has been introduced by the IETF. In PMIPv6, which is a network-based approach, the serving network controls mobility management on behalf of the mobile node (MN). Thus, the MN is not required to participate in any mobility-related signaling. However, the PMIPv6 still suffers from lengthy HO latency and packet loss during a HO. This paper explores an elaborated survey on the HO procedure of PMIPv6 protocols and proposed approaches accompanied by a discussion about their points of weakness.This work was supported in part by the University of Malaya under UMRG Grant (RG080/11ICT).Modares, H.; Moravejosharieh, A.; Lloret, J.; Salleh, R. (2016). A Survey on Proxy Mobile IPv6 Handover. IEEE Systems Journal. 10(1):208-217. https://doi.org/10.1109/JSYST.2013.2297705S20821710

    Network-based localized IP mobility management: Proxy Mobile IPv6 and current trends in standardization

    Get PDF
    IP mobility support has been a hot topic over the last years, recently fostered by the role of IP in the evolution of the 3G mobile communication networks. Standardization bodies, namely IETF, IEEE and 3GPP are working on different aspects of the mobility aiming at improving the mobility experience perceived by users. Traditional IP mobility support mechanisms, Mobile IPv4 or Mobile IPv6, are based on the operation of the terminal to keep ongoing sessions despite the movement. The current trend is towards network-based solutions where mobility support is based on network operation. Proxy Mobile IPv6 is a promising specification that allows network operators to provide localized mobility support without relying on mobility functionality or configuration present in the mobile nodes, which greatly eases the deployment of the solution. This paper presents Proxy Mobile IPv6 and the different extensions that are been considered by the standardization bodies to enhance the basic protocol with interesting features needed to offer a richer mobility experience, namely, flow mobility, multicast and network mobility support.European Community's Seventh Framework ProgramThe research leading to the results presented in this paper has received funding from the Spanish MICINN through the I-MOVING project (TEC2010-18907) and from the European Community’s Seventh Framework Programme (FP7/2007-2013) under grant agreement 258053 (MEDIEVAL project).Publicad

    Architecture for Mobile Heterogeneous Multi Domain Networks

    Get PDF
    Multi domain networks can be used in several scenarios including military, enterprize networks, emergency networks and many other cases. In such networks, each domain might be under its own administration. Therefore, the cooperation among domains is conditioned by individual domain policies regarding sharing information, such as network topology, connectivity, mobility, security, various service availability and so on. We propose a new architecture for Heterogeneous Multi Domain (HMD) networks, in which one the operations are subject to specific domain policies. We propose a hierarchical architecture, with an infrastructure of gateways at highest-control level that enables policy based interconnection, mobility and other services among domains. Gateways are responsible for translation among different communication protocols, including routing, signalling, and security. Besides the architecture, we discuss in more details the mobility and adaptive capacity of services in HMD. We discuss the HMD scalability and other advantages compared to existing architectural and mobility solutions. Furthermore, we analyze the dynamic availability at the control level of the hierarchy

    Reliable Multicast Transport for Heterogeneous Mobile IP environment using Cross-Layer Information

    Get PDF
    Reliable multicast transport architecture designed for heterogeneous mobile IP environment using cross-layer information for enhanced Quality of Service (QoS) and seamless handover is discussed. In particular, application-specific reliable multicast retransmission schemes are proposed, which are aimed to minimize the protocol overhead taking into account behaviour of mobile receivers (loss of connectivity and handover) and the specific application requirements for reliable delivery (such as carousel, one-to-many download and streaming delivery combined with recording). The proposed localized retransmission strategies are flexible configured for tree-based multicast transport. Cross layer interactions in order to enhance reliable transport and support seamless handover is discussed considering IEEE 802.21 media independent handover mechanisms. The implementation is based on Linux IPv6 environment. Simulations in ns2 focusing on the benefits of the proposed multicast retransmission schemes for particular application scenarios are presented

    Context transfer support for mobility management in all-IP networks.

    Get PDF
    This thesis is a description of the research undertaken in the course of the PhD and evolves around a context transfer protocol which aims to complement and support mobility management in next generation mobile networks. Based on the literature review, it was identified that there is more to mobility management than handover management and the successful change of routing paths. Supportive mechanisms like fast handover, candidate access router discovery and context transfer can significantly contribute towards achieving seamless handover which is especially important in the case of real time services. The work focused on context transfer motivated by the fact that it could offer great benefits to session re-establishment during the handover operation of a mobile user and preliminary testbed observations illustrated the need for achieving this. Context transfer aims to minimize the impact of certain transport, routing, security-related services on the handover performance. When a mobile node (MN) moves to a new subnet it needs to continue such services that have already been established at the previous subnet. Examples of such services include AAA profile, IPsec state, header compression, QoS policy etc. Re-establishing these services at the new subnet will require a considerable amount of time for the protocol exchanges and as a result time- sensitive real-time traffic will suffer during this time. By transferring state to the new domain candidate services will be quickly re-established. This would also contribute to the seamless operation of application streams and could reduce susceptibility to errors. Furthermore, re-initiation to and from the mobile node will be avoided hence wireless bandwidth efficiency will be conserved. In this research an extension to mobility protocols was proposed for supporting state forwarding capabilities. The idea of forwarding states was also explored for remotely reconfiguring middleboxes to avoid any interruption of a mobile users' sessions or services. Finally a context transfer module was proposed to facilitate the integration of such a mechanism in next generation architectures. The proposals were evaluated analytically, via simulations or via testbed implementation depending on the scenario investigated. The results demonstrated that the proposed solutions can minimize the impact of security services like authentication, authorization and firewalls on a mobile user's multimedia sessions and thus improving the overall handover performance

    Distributed All-IP Mobility Management Architecture Supported by the NDN Overlay

    Get PDF
    Two of the most promising candidate solutions for realizing the next-generation all-IP mobile networks are Mobile IPv6 (MIPv6), which is the host-based and global mobility supporting protocol, and Proxy MIPv6 (PMIPv6), which is the network-based and localized mobility supporting protocol. However, the unprecedented growth of mobile Internet traffic has resulted in the development of distributed mobility management (DMM) architecture by the Internet engineering task force DMM working group. The extension of the basic MIPv6 and PMIPv6 to support their distributed and scalable deployment in the future is one of the major goals of the DMM working group. We propose an all-IP-based mobility management architecture that leverages the concept of Named Data Networking (NDN), which is a distributed content management and addressing architecture. In the proposed solution, mobility support services are distributed among multiple anchor points at the edge of the network, thereby enabling a flat architecture that exploits name-based routing in NDN. Our approach overcomes some of the major limitations of centralized IP mobility management solutions, by extending existing routing protocol and mobility management architecture, to distribute the mobility management function of anchor points in the IP network and optimize the transmission path of mobile traffic

    Bulk binding approach for PMIPv6 protocol to reduce handoff latency in IoT

    Get PDF
    Mobility management protocols are very essential in the new research area of Internet of Things (IoT) as the static attributes of nodes are no longer dominant in the current environment. Proxy MIPv6 (PMIPv6) protocol is a network-based mobility management protocol, where the mobility process is relied on the network entities, named, Mobile Access Gateways (MAGs) and Local Mobility Anchor (LMA). PMIPv6 is considered as the most suitable mobility protocol for WSN as it relieves the sensor nodes from participating in the mobility signaling. However, in PMIPv6, a separate signaling is required for each mobile node (MN) registration, which may increase the network signaling overhead and lead to increase the total handoff latency. The bulk binding approaches were used to enhance the mobility signaling for MNs which are moving together from one MAG to another by exchanging a single bulk binding update message. However, in some cases there might be several MNs move at the same time but among different MAGs. In this paper, a bulk registration scheme based on the clustered sensor PMIPv6 architecture is proposed to reduce the mobility signaling cost by creating a single bulk message for all MNs attached to the cluster. Our mathematical results show that the proposed bulk scheme enhances the PMIPv6 performance by reducing the total handoff latency

    Dynamic mobile access gateway for heterogeneous network using analytic hierarchy process

    Get PDF
    The recent internet and telecommunication networks are expected to be combined together in all-Internet Protocol (IP) platform. Therefore, IP mobility is important to maintain the connectivity of a mobile user (MU) when the MU roams throughout the heterogeneous networks. Common IP mobility protocols such as Mobile IPv6 (MIPv6) has issue of high handover latency. Considering this issue, Proxy Mobile IPv6 (PMIPv6) is proposed in this research as the IP mobility protocol. Even though PMIPv6 overcomes the problem of the signalling overhead in MIPv6 and reduces Layer 3 (L3) handover latency, PMIPv6 suffers from Layer 2 (L2) high handover latency which influences the total handover latency of PMIPv6. Prior to this, multi-threshold handover algorithm is proposed in this research to be implemented in Mobile Access Gateway (MAG) to reduce the L2 handover latency in PMIPv6. Multi-threshold handover algorithm considers user’s speed for the handover decision and the speed is categorized into three groups which are slow speed, medium speed and fast speed. PMIPv6 using multi-threshold handover algorithm shows up to 17% improvement compared to the PMIPv6 using dynamic handover decision method and improvement up to 99% compared to the PMIPv6 with static handover decision method. Another issue in heterogenous network is to decide the preferable network for a specific application. Thus in this research, MAG overcomes the network selection problem using Analytic Hierarchy Process (AHP). Here, five parameters are considered for the decision making, which are cell radius, data rate, applications, cost per bit and user’s speed. In short, Dynamic Mobile Access Gateway (DMAG) is developed by combining multi-threshold handover algorithm and AHP to offer seamless handover process. The performance of DMAG has been simulated using three networks which are WiFi network, 3G network and LTE network. Simulation results prove that DMAG selects the network dynamically using the five parameters compared to a method that used Dynamic Received Signal Strength. The selection reduces handover frequency for the medium speed and fast speed MU
    corecore