2,611 research outputs found

    Optical Three-Axis Tactile Sensor

    Get PDF

    Haptic Stylus and Empirical Studies on Braille, Button, and Texture Display

    Get PDF
    This paper presents a haptic stylus interface with a built-in compact tactile display module and an impact module as well as empirical studies on Braille, button, and texture display. We describe preliminary evaluations verifying the tactile display's performance indicating that it can satisfactorily represent Braille numbers for both the normal and the blind. In order to prove haptic feedback capability of the stylus, an experiment providing impact feedback mimicking the click of a button has been conducted. Since the developed device is small enough to be attached to a force feedback device, its applicability to combined force and tactile feedback display in a pen-held haptic device is also investigated. The handle of pen-held haptic interface was replaced by the pen-like interface to add tactile feedback capability to the device. Since the system provides combination of force, tactile and impact feedback, three haptic representation methods for texture display have been compared on surface with 3 texture groups which differ in direction, groove width, and shape. In addition, we evaluate its capacity to support touch screen operations by providing tactile sensations when a user rubs against an image displayed on a monitor

    Artificial Tactile System and Signal Processing for Haptic applications

    Get PDF
    Human have the ability to interact with the external environment through five main senses which are vision, hearing, smell, taste and touch. Most of all, the sensation like vision or hearing have been well developed and the use of various applications like TV, Camera, or artificial cochlear have been widely generalized. As the next steps, recently, the tactile sensor to mimic the tactile system of human have been attracted by many groups. Especially, after the development of Apple’s iPhone, the public interest about touch sensing applications have been increased explosively. Other researches for tactile sensing have focused on enhancing the performance of tactile sensor like the sensitivity, stability, response time and so on. As a result, there are some researches that the sensor performance of certain criteria is better than that of human tactile system. However, a human tactile system is not only very sensitive but also complex. In other words, ultimately, the tactile system mimicking the human tactile sensation should detect various parameters such as the pressure, temperature, hardness or roughness and also decide the psychological feeling like the pain by a hot material in touching or the smooth/roughness feeling in sliding the certain material. Therefore, in this thesis, it has been studied for the development of multifunctional tactile sensing system detecting various tactile parameters and deciding the kinds of psychological tactile feeling by measured stimulation. As the first step for the development of tactile system, we have studied the tactile sensor using ZnO nanowire. Therefore, in this chapter, the basic characteristics of ZnO nanowire are investigated to confirm the possibility for the tactile sensor. In addition, structural design factors of sensor units have been studied in order to enhance the sensitivity of ZnO nanowire-based tactile sensor. We have primarily demonstrated the effect of a square pattern array design in a pressure sensor using ZnO nanowires. Nanowires grown on the edge of cells can be bent easily because of growth direction, density of nanowires, and buckling effect. Since smaller square pattern arrays induce a higher circumference to cell area ratio, if one sensor unit consists of many micro-level square pattern arrays, the design enhances the piezoelectric efficiency and the sensitivity. As a result, 20um × 20um cell arrays showed three times higher pressure sensitivity than 250um × 250um cell array structures at a pressure range from 4kPa to 14kPa. The induced piezoelectric voltage with the same pressure level also increased drastically. Therefore, the smaller pattern array design is more appropriate for a high-sensitive pressure sensor than a simple one-body cell design for tactile systems, and it has the advantage of better power efficiency, which is also important for artificial tactile systems. Even if, in previous experiments, the possibility of piezoelectric materials as the tactile sensor and the method for the enhancement of pressure sensitivity are confirmed well, the tactile sensor for mimicking the human tactile sensation should measure various parameters as well as the pressure. However, many studies about ‘smooth-rough’ sensation depend on the machine learning technology with simple tactile sensors rather than developing the sensors that can measure various parameters like surface topography, hardness, quality of materials at the same time. Therefore, after the development of the pressure sensor, specific structures based on PDMS are proposed to measure and analyze above-mentioned parameters related to ‘smooth-rough’ decision, as like fingerprint of human. To find the optimized structure, three kinds of the structure shape (cone, cylinder and dome) are fabricated and the pressure sensitivity according to the shape are also measured. FEM simulation is also carried out to support the experimental result. Our tactile sensor with optimized dome structure (500um height) provides high shear force sensitivity, fast response time, stability, and durability. The high sensitivity about the shear force enables better the tactile sensor to measure the various surface information such as the pitch of pattern, the depth, the sliding velocity, the hardness and so on. In addition, after the study to measure the various surface information by dome structure, the research to measure the other surface information is also followed. In our previous study, we confirmed that the surface topography can be reconstructed by mapping the piezoelectric signals according to the location. In this research, to reduce the number of measurements from dozens to once and minimize the data loss at the empty space between adjacent sensors, the electrode array of Zig-Zag type is applied to the tactile sensor. As a result, with just one measurement, the surface topography of broad region can be successfully reconstructed by our tactile sensor as the high-resolution image. Additionally, the temperature sensor based on the resistive mechanism is fabricated between the Zig-Zag electrode lines to measures the temperature of surface materials when the tactile sensor rubs on the materials in real time. Over the development of the tactile sensing applications, the demand for an artificial system like human tactile sensation have been much more increased. Therefore, in this study, as a surrogate for human tactile sensation, we propose an artificial tactile sensing system based on the developed sensors in previous sections. For this, the piezoelectric tactile signal generated by touching and rubbing the material is transferred to DAQ system connected with our tactile sensor. First, the system decides whether the contacted material is dangerous or not. If dangerous like sharp or hot materials, the warning signal is generated by our artificial tactile system. If not, the sensor connected with the system rubs the materials and detects the roughness of the materials. Especially, the human test data related to ‘soft-rough’ detection is applied to a deep learning structure allowing personalization of the system, because tactile responses vary among humans. This approach could be applied to electronic devices with tactile emotional exchange capabilities, as well as various advanced digital experiences. In this thesis, human-like tactile sensing system based on the piezoelectric effect is successfully confirmed through various experiments. Although there are still some issues that need to be improved, this research is expected to be fundamental results for human-like tactile sensing system detecting a variety of the parameters such as the pressure, temperature, surface morphology, hardness, roughness and so on. In the future, through collaborative research with other fields like brain science, signal processing, we hope that this research can mimic psychological tactile sensations and communicate emotional exchange with external environment like real human skin.YList of Contents Abstract i List of contents iii List of tables vi List of figures vii Ⅰ. INTRODUCTION 1 1.1 Motivation 1 1.2 Various transduction mechanisms for the tactile sensor 5 1.2.1 Capacitive mechanism 5 1.2.2 Resistive mechanism 6 1.2.3 Triboelectric effect 7 1.2.4 Piezoelectric effect 9 1.3 Objectives 12 1.4 Reference 13 II. BASIC CHARACTERISTICS AND THE METHOD FOR ENHANC-ING THE PRESSURE SENSITIVITY OF THE TACTILE SENSOR BASED ON ZnO NANOWIRE 19 2.1 Introduction 19 2.2 Basic characteristics of ZnO nanowire 22 2.3 Device Fabrication 31 2.4 Morphological and Electrical characteristics 33 2.5 Pattern structure for enhanced for pressure sensitivity 38 2.6 Simulation result of piezoelectric effect for pattern structure 42 2.7 Reference 46 III. DOME STRUCTURE TO MEAUSRE THE SURFACE INFOR-MATION 52 3.1 Introduction 52 3.2 Basic characteristics of P(VDF-TrFE) 53 3.3 Device fabrication 61 3.4 Interaction mechanism between dome structure and surface material 63 3.5 Simulation and Experimental result comparing cone, cylinder, and dome structure 64 3.6 Simulation and Experimental result of the sensitivity enhancement ef-fect by dome structure 66 3.7 Depth measurement by tactile sensor with dome structure 72 3.8 Pattern of pitch by multi-array tactile sensor with dome structure 77 3.9 Hardness measurement by the tactile sensor with dome structure 79 3.10 Reference 83 IV. ZIG-ZAG ARRAYED TACTILE SENSOR BASED ON PIEZOE-LECTRIC-RESISTIVE MECHANISM TO DETECT THE SURFACE TOPOG-RAPHY AND TEMPERATURE 87 4.1 Introduction 87 4.2 Device fabrication 88 4.3 Piezoelectric characteristics of fabricated tactile sensor 90 4.4 Surface rendering method by the piezoelectric effect 95 4.5 Surface rendering result of 3D printed materials 96 4.6 Temperature sensing in sliding the high temperature material on Zig-Zag tactile sensor 99 4.7 Reference 103 V. TACTILE SENSING SYSTEM FOR PAIN AND SMOOTH/ROUGH DETECTION 105 5.1 Introduction 105 5.2 Components of the tactile sensing system 107 5.3 Artificial tactile sensing system for generating the pain warning 108 5.4 Artificial tactile sensing system for smooth/rough sensing 112 5.5 Reference 117 VⅠ. CONCLUSION 120DoctordCollectio

    Sensors for Robotic Hands: A Survey of State of the Art

    Get PDF
    Recent decades have seen significant progress in the field of artificial hands. Most of the surveys, which try to capture the latest developments in this field, focused on actuation and control systems of these devices. In this paper, our goal is to provide a comprehensive survey of the sensors for artificial hands. In order to present the evolution of the field, we cover five year periods starting at the turn of the millennium. At each period, we present the robot hands with a focus on their sensor systems dividing them into categories, such as prosthetics, research devices, and industrial end-effectors.We also cover the sensors developed for robot hand usage in each era. Finally, the period between 2010 and 2015 introduces the reader to the state of the art and also hints to the future directions in the sensor development for artificial hands

    Synthetic and bio-artificial tactile sensing: a review

    Get PDF
    This paper reviews the state of the art of artificial tactile sensing, with a particular focus on bio-hybrid and fully-biological approaches. To this aim, the study of physiology of the human sense of touch and of the coding mechanisms of tactile information is a significant starting point, which is briefly explored in this review. Then, the progress towards the development of an artificial sense of touch are investigated. Artificial tactile sensing is analysed with respect to the possible approaches to fabricate the outer interface layer: synthetic skin versus bio-artificial skin. With particular respect to the synthetic skin approach, a brief overview is provided on various technologies and transduction principles that can be integrated beneath the skin layer. Then, the main focus moves to approaches characterized by the use of bio-artificial skin as an outer layer of the artificial sensory system. Within this design solution for the skin, bio-hybrid and fully-biological tactile sensing systems are thoroughly presented: while significant results have been reported for the development of tissue engineered skins, the development of mechanotransduction units and their integration is a recent trend that is still lagging behind, therefore requiring research efforts and investments. In the last part of the paper, application domains and perspectives of the reviewed tactile sensing technologies are discussed

    Haptic Media Scenes

    Get PDF
    The aim of this thesis is to apply new media phenomenological and enactive embodied cognition approaches to explain the role of haptic sensitivity and communication in personal computer environments for productivity. Prior theory has given little attention to the role of haptic senses in influencing cognitive processes, and do not frame the richness of haptic communication in interaction design—as haptic interactivity in HCI has historically tended to be designed and analyzed from a perspective on communication as transmissions, sending and receiving haptic signals. The haptic sense may not only mediate contact confirmation and affirmation, but also rich semiotic and affective messages—yet this is a strong contrast between this inherent ability of haptic perception, and current day support for such haptic communication interfaces. I therefore ask: How do the haptic senses (touch and proprioception) impact our cognitive faculty when mediated through digital and sensor technologies? How may these insights be employed in interface design to facilitate rich haptic communication? To answer these questions, I use theoretical close readings that embrace two research fields, new media phenomenology and enactive embodied cognition. The theoretical discussion is supported by neuroscientific evidence, and tested empirically through case studies centered on digital art. I use these insights to develop the concept of the haptic figura, an analytical tool to frame the communicative qualities of haptic media. The concept gauges rich machine- mediated haptic interactivity and communication in systems with a material solution supporting active haptic perception, and the mediation of semiotic and affective messages that are understood and felt. As such the concept may function as a design tool for developers, but also for media critics evaluating haptic media. The tool is used to frame a discussion on opportunities and shortcomings of haptic interfaces for productivity, differentiating between media systems for the hand and the full body. The significance of this investigation is demonstrating that haptic communication is an underutilized element in personal computer environments for productivity and providing an analytical framework for a more nuanced understanding of haptic communication as enabling the mediation of a range of semiotic and affective messages, beyond notification and confirmation interactivity

    Roughness Encoding in Human and Biomimetic Artificial Touch: Spatiotemporal Frequency Modulation and Structural Anisotropy of Fingerprints

    Get PDF
    The influence of fingerprints and their curvature in tactile sensing performance is investigated by comparative analysis of different design parameters in a biomimetic artificial fingertip, having straight or curved fingerprints. The strength in the encoding of the principal spatial period of ridged tactile stimuli (gratings) is evaluated by indenting and sliding the surfaces at controlled normal contact force and tangential sliding velocity, as a function of fingertip rotation along the indentation axis. Curved fingerprints guaranteed higher directional isotropy than straight fingerprints in the encoding of the principal frequency resulting from the ratio between the sliding velocity and the spatial periodicity of the grating. In parallel, human microneurography experiments were performed and a selection of results is included in this work in order to support the significance of the biorobotic study with the artificial tactile system

    Gamma Band Oscillation Response to Somatosensory Feedback Stimulation Schemes Constructed on Basis of Biphasic Neural Touch Representation

    Get PDF
    abstract: Prosthetic users abandon devices due to difficulties performing tasks without proper graded or interpretable feedback. The inability to adequately detect and correct error of the device leads to failure and frustration. In advanced prostheses, peripheral nerve stimulation can be used to deliver sensations, but standard schemes used in sensorized prosthetic systems induce percepts inconsistent with natural sensations, providing limited benefit. Recent uses of time varying stimulation strategies appear to produce more practical sensations, but without a clear path to pursue improvements. This dissertation examines the use of physiologically based stimulation strategies to elicit sensations that are more readily interpretable. A psychophysical experiment designed to investigate sensitivities to the discrimination of perturbation direction within precision grip suggests that perception is biomechanically referenced: increased sensitivities along the ulnar-radial axis align with potential anisotropic deformation of the finger pad, indicating somatosensation uses internal information rather than environmental. Contact-site and direction dependent deformation of the finger pad activates complimentary fast adapting and slow adapting mechanoreceptors, exhibiting parallel activity of the two associate temporal patterns: static and dynamic. The spectrum of temporal activity seen in somatosensory cortex can be explained by a combined representation of these distinct response dynamics, a phenomenon referred in this dissertation to “biphasic representation.” In a reach-to-precision-grasp task, neurons in somatosensory cortex were found to possess biphasic firing patterns in their responses to texture, orientation, and movement. Sensitivities seem to align with variable deformation and mechanoreceptor activity: movement and smooth texture responses align with potential fast adapting activation, non-movement and coarse texture responses align with potential increased slow adapting activation, and responses to orientation are conceptually consistent with coding of tangential load. Using evidence of biphasic representations’ association with perceptual priorities, gamma band phase locking is used to compare responses to peripheral nerve stimulation patterns and mechanical stimulation. Vibrotactile and punctate mechanical stimuli are used to represent the practical and impractical percepts commonly observed in peripheral nerve stimulation feedback. Standard patterns of constant parameters closely mimic impractical vibrotactile stimulation while biphasic patterns better mimic punctate stimulation and provide a platform to investigate intragrip dynamics representing contextual activation.Dissertation/ThesisDoctoral Dissertation Biomedical Engineering 201

    Distributed Sensing and Stimulation Systems Towards Sense of Touch Restoration in Prosthetics

    Get PDF
    Modern prostheses aim at restoring the functional and aesthetic characteristics of the lost limb. To foster prosthesis embodiment and functionality, it is necessary to restitute both volitional control and sensory feedback. Contemporary feedback interfaces presented in research use few sensors and stimulation units to feedback at most two discrete feedback variables (e.g. grasping force and aperture), whereas the human sense of touch relies on a distributed network of mechanoreceptors providing high-fidelity spatial information. To provide this type of feedback in prosthetics, it is necessary to sense tactile information from artificial skin placed on the prosthesis and transmit tactile feedback above the amputation in order to map the interaction between the prosthesis and the environment. This thesis proposes the integration of distributed sensing systems (e-skin) to acquire tactile sensation, and non-invasive multichannel electrotactile feedback and virtual reality to deliver high-bandwidth information to the user. Its core focus addresses the development and testing of close-loop sensory feedback human-machine interface, based on the latest distributed sensing and stimulation techniques for restoring the sense of touch in prosthetics. To this end, the thesis is comprised of two introductory chapters that describe the state of art in the field, the objectives and the used methodology and contributions; as well as three studies distributed over stimulation system level and sensing system level. The first study presents the development of close-loop compensatory tracking system to evaluate the usability and effectiveness of electrotactile sensory feedback in enabling real-time close-loop control in prosthetics. It examines and compares the subject\u2019s adaptive performance and tolerance to random latencies while performing the dynamic control task (i.e. position control) and simultaneously receiving either visual feedback or electrotactile feedback for communicating the momentary tracking error. Moreover, it reported the minimum time delay needed for an abrupt impairment of users\u2019 performance. The experimental results have shown that electrotactile feedback performance is less prone to changes with longer delays. However, visual feedback drops faster than electrotactile with increased time delays. This is a good indication for the effectiveness of electrotactile feedback in enabling close- loop control in prosthetics, since some delays are inevitable. The second study describes the development of a novel non-invasive compact multichannel interface for electrotactile feedback, containing 24 pads electrode matrix, with fully programmable stimulation unit, that investigates the ability of able-bodied human subjects to localize the electrotactile stimulus delivered through the electrode matrix. Furthermore, it designed a novel dual parameter -modulation (interleaved frequency and intensity) and compared it to conventional stimulation (same frequency for all pads). In addition and for the first time, it compared the electrotactile stimulation to mechanical stimulation. More, it exposes the integration of virtual prosthesis with the developed system in order to achieve better user experience and object manipulation through mapping the acquired real-time collected tactile data and feedback it simultaneously to the user. The experimental results demonstrated that the proposed interleaved coding substantially improved the spatial localization compared to same-frequency stimulation. Furthermore, it showed that same-frequency stimulation was equivalent to mechanical stimulation, whereas the performance with dual-parameter modulation was significantly better. The third study presents the realization of a novel, flexible, screen- printed e-skin based on P(VDF-TrFE) piezoelectric polymers, that would cover the fingertips and the palm of the prosthetic hand (particularly the Michelangelo hand by Ottobock) and an assistive sensorized glove for stroke patients. Moreover, it developed a new validation methodology to examine the sensors behavior while being solicited. The characterization results showed compatibility between the expected (modeled) behavior of the electrical response of each sensor to measured mechanical (normal) force at the skin surface, which in turn proved the combination of both fabrication and assembly processes was successful. This paves the way to define a practical, simplified and reproducible characterization protocol for e-skin patches In conclusion, by adopting innovative methodologies in sensing and stimulation systems, this thesis advances the overall development of close-loop sensory feedback human-machine interface used for restoration of sense of touch in prosthetics. Moreover, this research could lead to high-bandwidth high-fidelity transmission of tactile information for modern dexterous prostheses that could ameliorate the end user experience and facilitate it acceptance in the daily life

    Neuromorphic hardware for somatosensory neuroprostheses

    Get PDF
    In individuals with sensory-motor impairments, missing limb functions can be restored using neuroprosthetic devices that directly interface with the nervous system. However, restoring the natural tactile experience through electrical neural stimulation requires complex encoding strategies. Indeed, they are presently limited in effectively conveying or restoring tactile sensations by bandwidth constraints. Neuromorphic technology, which mimics the natural behavior of neurons and synapses, holds promise for replicating the encoding of natural touch, potentially informing neurostimulation design. In this perspective, we propose that incorporating neuromorphic technologies into neuroprostheses could be an effective approach for developing more natural human-machine interfaces, potentially leading to advancements in device performance, acceptability, and embeddability. We also highlight ongoing challenges and the required actions to facilitate the future integration of these advanced technologies
    corecore