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Neuromorphic hardware for somatosensory
neuroprostheses

Elisa Donati 1 & Giacomo Valle 2

In individuals with sensory-motor impairments, missing limb functions can be
restoredusingneuroprosthetic devices that directly interfacewith the nervous
system. However, restoring the natural tactile experience through electrical
neural stimulation requires complex encoding strategies. Indeed, they are
presently limited in effectively conveying or restoring tactile sensations by
bandwidth constraints. Neuromorphic technology, which mimics the natural
behavior of neurons and synapses, holds promise for replicating the encoding
of natural touch, potentially informing neurostimulation design. In this per-
spective, we propose that incorporating neuromorphic technologies into
neuroprostheses could be an effective approach for developing more natural
human-machine interfaces, potentially leading to advancements in device
performance, acceptability, and embeddability. We also highlight ongoing
challenges and the required actions to facilitate the future integration of these
advanced technologies.

Opportunity and challenges
Neuroprosthetic devices have been recently proposed as promising
solutions for restoring sensory-motor functions lost after injury or
neurological disease, as described in Box 1. These devices extend
implantable neural interfaces, which establish a functional connection
pathway between the human nervous system (e.g., peripheral somatic
nerves, cervical or lumbar spinal cord, or somatosensory cortex), and
digital or robotic technology (e.g., computers, prostheses, or robotic
devices). Similarly, electrical neurostimulation has been demonstrated
to be a powerful tool for restoring sensory feedback in people with
sensory loss (e.g., amputees or individuals with spinal cord injury). In
contrast to purely motor neuroprostheses (such as those for restoring
locomotion1, speech2 or hand functions3), sensory neuroprostheses
require a bidirectional loop between the brain and the robotic device
with both volitional control and sensing. Sensory neural interfaces
require not only the ability to record, but also to deliver micro-
stimulation selectively in order to activate the neural tissue; algorithms
for controlling the multidimensional space of stimulation parameters
in an effective and efficient manner; and wearable sensing technology
for detecting body–environment interactions. However, restoring any

sensory information is extremely complex due to its multi-
dimensionality, both in time and space. Restoring somatosensory
touch feedback requires sophisticated stimulation strategies that
simultaneously modulate multiple parameters, e.g., active channels,
pulse frequency, pulse amplitude, and pulse width. This results in
restored sensory information which is still limited compared to the
natural sense of touch. Multiple challenges are currently limiting the
adoption and applications of somatosensory neuroprostheses in the
clinical sphere. The main areas of current development include (1)
neural interfacing (including material, biocompatibility, efficacy, etc.);
(2) algorithms for decoding neural signals and encoding artificial
sensations (e.g., real-time bidirectional systems, AI-based decoders,
and biomimetic encoders); and (3) the engineering challenges
of developing the hardware to perform and apply the necessary
computations (e.g., wearable devices, fully implantable systems).
Considering that presently there are electrodes implanted in humans,
both in the PNS4,5 and CNS6 which have endured for many years, it is
possible to develop and test novel algorithms for improving the effi-
cacy and functionality of these devices. Recently, biomimetic neuro-
stimulation that simulates the natural touch coding with in-silico
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models has been proposed as a promising approach to conveying
sensory information in hand and leg prostheses and has been tested in
first-in-human trials7–11. However, current state-of-the-art methods for
obtaining realistic modeling simulations of the natural sensory pro-
cessing, based on detailed biophysical descriptions, use computa-
tionally expensive processes implemented on external controllers
which are connected to complex neurostimulators that cannot yet be
embedded into implantable devices12–14. Translation of this approach
into clinical practice would require implementing real-time algorithms
that meet the hardware constraints of portable devices.

Neuromorphic technology provides alternative design solutions
that present a paradigm shift where, rather than simulating the com-
plex biophysics of mechanoreceptors, their behavior is faithfully
emulated through the physics of electronic circuits. To achieve the
restoration of the somatosensory experience, the neuromorphic sys-
tem can translate sensory information, recorded by wearable sensors
embedded in the prosthetic limb, and generate biomimetic neural
stimulation patterns (Fig. 1). Contrary to traditional digital processors,
this neuromorphic approach employs analog/digital mixed-signal
CMOS-based hardware that supports in-memory computing and the

implementation of neural computational primitives inspired by neural
circuitry, such as biological time constants and adaptation at different
time scales15. Neuromorphic computing has been extensively used for
processing physiological data and generating actions, both in the
domain of prosthetic control16,17 and bioelectronic medicine18,19. How-
ever, in the domain of somatosensory feedback restoration, neuro-
morphic hardware implementation hasmainly focused thus far on the
design of event-based sensors able to encode touch information in
trains of spikes20, and/or in simulations of spiking neurons using tra-
ditional digital processors or field-programmable gate arrays
(FPGA)21,22. In addition to using standard CMOS technology, there are
several attempts at implementing neural interfaces using stretchable23,
magnetometric24, and organic electronics25 with the goal of reprodu-
cing sensory feedback. Using soft electronics to build artificial skin
brings several advantages in terms of tissue conformability, minimal
invasiveness, and unobtrusiveness that increase the subject’s
engagement26. However, to fully deploy this new technology, existing
soft electronics require overcoming several challenges in biointegra-
tion, low power working regimes, and circuit complexity. Despite the
current promising attempts (see Box 2 for more details),

BOX 1.

Prosthetic hand control

Bidirectional prostheses are closed-loop technologies with two-way communication to and from the nervous system in which the user both
perceives sensations through artificial stimulation and drives a robotic arm through the exploitation of their residual muscles and nerves4,39,40.
Despite recent advancements, current solutions for the bidirectional control of hand prostheses still have non-trivial limits which reduce the
overall usability of dexterous hand prostheses. Dexterous prostheses are controlled by processing electromyographic (EMG) signals recorded
from the residual muscles of the amputee in the stump or elsewhere. Surface EMG (sEMG) acquisition does not require surgery, so it is largely
used in upper-limb prosthetic control154. However, despite the accessibility, EMG control provides limited usability in practice due to high
degrees of freedom and is further limited when external factors are introduced, such as changes in electrode position or environmental
conditions155. The most common control approach is based on decoding EMG signals using traditional machine learning approaches (e.g., MLP,
SVM) to discriminate users’ gestures. However, despite the remarkable results, the identified gestures are rather simple and discretized,
rendering the control less natural whilst requiring high power consumption39.

Improvements can be achieved by increasing the invasiveness of the approach, depending on the specific type of amputation. For high-level
amputations, TargetedMuscle Reinnervation (TMR)156,157 canprovide a suitable surgical technique to enable prosthesis control usingEMGsignals.
Once the residual nerve is reinnervated to another muscle, it works as a biological amplifier providing appropriate EMG signals for motor
commands. For trans-radial amputees, epimysial electrodes showed improvements in prosthesis control with respect to sEMG158,159 in terms of
robustness to environmental conditions.Moreover, recent approaches havebeendeveloped to extract the sources of neural information through
EMG deconvolution, exploiting advanced multi-channel EMG systems160–163.

Increasing efforts havealso been carried out on the development anduse of neural interfaces able to recordelectroneurograms (ENG) related
to hand motor commands from the residual nerves of amputees70,164, or to focally amplify signals through surgical procedures (AMI41 or RPNI36).
Thanks to the intimate interfacing with the residual nervous system, intraneural electrodes have the potential to record from different efferent
fibers and fascicles, allowing the identification of a large set of volitional motor commands. In particular, the extraction of informative neural
signals related to motoneurons could be challenging since sensory axons, innervating the human arm, outnumber motor axons by a ratio of at
least 9:1165. Thus, intraneural or intrafascicular interfaces could provide more selective contact with motor fibers than less invasive approaches,
allowing for an improved signal-to-noise ratio. However, this approach is still far from being implemented in a real-life clinical setting.

Regarding thedecoding algorithms for clinical application, prosthetic control canbedivided into threemain areas:166,167 (i) simple proportional
control, where the amplitude of the remnant muscles’ activity is mapped to the hand’s force or speed; (ii) pattern recognition, where the system
produces a discrete movement from a predefined set; (iii) regression-based algorithms able to continuously estimate multiple control signals.
The current state-of-the-art in prosthetic control is based on pattern recognition using machine learning168 or deep learning169–171. However, a
major disadvantage of a machine learning pipeline is the strong reliance on domain-specific knowledge, needed to properly choose features to
feed themachine learning algorithm (feature extraction), select the best ones among them (feature selection), and tune the hyperparameters of
the target algorithm. Although deep learning loosens these requirements by replacing feature extraction and selection with feature learning,
incorporated into the algorithm’s training, the system requires largedatasets that are difficult to generate and is not suitable for continuousmotor
discrimination.

In recent years, regression-based algorithms have shown a strong potential to deliver robust prosthetic control155. Such methods enable
simultaneous and proportional control by modeling the relationship between an EMG and the kinematics172 or dynamics173 of the gesture and
achieve more intuitive control of the prosthesis174. Regression captures the temporal nature of the EMG, yielding more natural and versatile
control. However, a substantial limitation of the cited contributions is that the issue of implementation on embedded/wearable computational
platforms is not addressed, because theywere not designed to deal with resource constraints, such asmemory, power, and latency, required for
real-time execution in daily use.
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neuromorphic technologies still have a long way to go and could be
further developed to increase the complexity of the modeling and
include more mechanisms present in the afferent pathway, increase
the degree of similarity with biological systems, and provide an
approach thatwill revolutionize thefield of neuroprosthetics. This new

advancements will enable multiple benefits for users, including
improved sensation naturalness, prosthesis embodiment, and home-
use functionality. In addition, this approach will bring advantages in
information encoding, providing an energy-efficient, compact, and
embedded solution. However, there are still open challenges for this

AMPLITUDE
MODULATION

A
m

pl
itu

de

FREQUENCY
MODULATION

Time

A
m

pl
itu

de

ms
μA

Time

HYBRID
MODULATION

Time

A
m

pl
itu

de

Robotic Limb Prostheses Neural InterfacesNeural Stimulations

ROBOTIC
LEGS

ROBOTIC
HANDS ARTIFICAL

SKIN

SENSORIZED
INSOLES

CORTICAL
IMPLANTS

SPINAL
IMPLANTS

PERIPHERAL
IMPLANTS

SENSING STIMULATING

Embedded Electronics

ARTIFICAL
SKIN

SENSORIZED
INSOLES

ROBOTIC
LEGS

ROBOTIC
HANDS

AMPLITUDE
MODULATIONAA

A
m

pl
itu

de

FREQUENCY
MODULATIONAA

Time

A
m

pl
itu

de

ms
μA

Time

HYBRID
MODULATIONAA

Time

A
m

pl
itu

de

Embedded Electronics

Fig. 1 | Neural prostheses for sensory feedback restoration. The main building
blocks of a neural prosthesis for the somatosensory system are the sensing block,
the computing block, and the stimulating block. Sensing technology (e.g., wearable
tactile sensors) has to be embedded in the robotic prostheses in order to extract all
the relevant physical interactions with the external world. Then, the computing
block, composed of the neuromorphic technology, has to translate the sensors’

readouts into electrical patterns of stimulation using biomimetic encoding algo-
rithms. Finally, the stimulating block has to inject currents in the nervous tissue,
through implantable electrodes, able to evoke natural neural activations, allowing
for natural and informative sensations. A portion of the illustration is adapted from
ref. 32.

BOX 2.

State-of-the-art in neural prosthetics

Neural prosthetics is a category of human–machine interfaces that aim to replace motor, sensory, or cognitive impairments due to injury or
disease. Among them, the most advanced are currently visual and cochlear implants.

Cochlear implants are surgically implanted neural prosthetic devices able to restore the loss of hearing functions by stimulating spiral
ganglion nerves. The implant consists of an array of electrodes implanted along the cochlea such that each section stimulates a region
corresponding to a specific frequency175.Most control strategies arebasedonamplitudemodulationof a biphasic current pulse train176. However,
recentworkusesbio-inspiredcoding strategies, basedon theelectrically evokedcompoundactionpotentials, showingabetter representationof
spectral and temporal information177. In neuromorphic computing, the research focuses on the development of event-based cochlea using
CMOS178, FPGA179, or neuromorphic microelectromechanical systems180 and has not yet explored neural prostheses.

Visual implants are composed of an external camera that captures the visual information and sends it to a signal-processing unit for
conversion into a sequence of stimulation patterns which are then sent to the stimulation electrodes.

Depending on the approach of stimulation there are four main locations181: 1. retinal182; 2. lateral geniculate nuclei of the thalamus (LGN)183; 3.
optic nerve184; and 4. cortical185. Recently, works based on the neuromorphic implementation of silicon retinas have been proposed to develop a
new generation of neural prostheses186–188. Compared to standard cameras they show improved perceived light dots (phosphenes) in difficult
lighting conditions and with motion blur189.

Despite the recent progress, the sensation elicitedbycurrent devices is perceivedas artificial anddistorted. Therefore, the identificationof the
effect of stimulation on the nervous system can lead to disruptive results in the field of neuroprosthetics. An example in visual implants shows
that varying the stimulationwaveformmanipulates the response of the retinal ganglion cells, by changing the threshold, which could potentially
lead to a higher spatial resolution in shape perception190. Another aspect to consider is the spread of activation of each electrode since it is not
point-like, and itmay introduce overlapwith activations fromother electrodes. This drawback canbe solvedby using “shaping” algorithmsbased
onmultiple electrodes able tomanipulate the current in a desiredway191. Among the various strategies to generate a proper stimulation strategy,
there are approaches based on deepneural networks used tobuild an end-to-end neural prosthesis192 that can also be trained to approximate the
underlying biological system193. In addition, convolutional neural networks are also used to predict the electrode activation patterns required to
generate a desired stimulus in visual perception194.
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approach that range from the availability of a full neuromorphic
pipeline (sensor–processor–stimulator) to the design of a proper
interface for the generation of the actual pattern of stimulation, up to
its translation in clinical trials.

In this perspective, we report existing works based on neuro-
morphic closed-loop systems, which are designed for sensing and
controlling prosthetic devices through direct interfaces with the
human nervous system in chronic and incurable neurological
conditions27–29.Wepresent the required steps tobuild the next sensory
feedback for limb prostheeneration of neuromorphic hardware for
restoring sensory feedback in neuroprostheses; as well as discuss the
combined challenges of neuroprosthetic devices and neuromorphic
technologies, suggesting possible researchdirections to overcome the
current roadblocks and enable more natural human–machine
interfacing.

Requirements for neuromorphic hardware for
somatosensory neuroprosthesis
Combining advanced sensing systems with neuromorphic encoding
schemes and novel neural interfaces would allow for highly functional
sensory neuroprostheses, a higher sense of embodiment, and a more
complete integration in the human body schema. A closed-loop neu-
romorphic prosthesis would also provide benefits in terms of infor-
mation bandwidth, parallelization, and portability, allowing for
improved biomimetic feedback.

Interfacing to the human nervous system
Neural interfaces for communicating with the brain through
neurostimulation
The field of implantable neural interfaces haswitnessed rapid progress
in the past 30 years30–32. Indeed, several breakthroughs in the interfa-
cing of the nervous system and electronics have been achieved, many
of which have clinical relevance. When entering the phase of clinical
application, it is of paramount importance to understand the working
mechanisms of neural stimulation and to develop fully integrated
neurotechnology able to effectively replace or repair as many biolo-
gical functions as possible. This can substantially improve the quality
of life of patients with sensory-motor deficits.

Different types of neural interfaces have been adopted to record
the neural activity from the brain33–35 or nerves36–38 and, more recently,
to also deliver electrical stimulation to peripheral nerves4,11,39–44 (see
Box 3 for more details), spinal cord45,46, or cortex47–49 to restore
sensory-motor functions. The use of electrical stimulation patterns
allows for a valuable and reliable tool to directly communicatewith the
human nervous system enabling it to encode artificial sensory
information50. Its effectiveness and functionality for sensory feedback
restoration are strongly dependent on the characteristics of the
adopted neural interface (i.e., implantable electrode). Indeed, the
implanted electrode should be highly: (1) biocompatible; (2) selective;
(3) modular; and (4) stable.

Biocompatibility is defined by the intrinsic properties of an elec-
trode such as the materials it is made of, its size, and the implantation
procedure. A biocompatible interface should be made with certified
and standard materials for active implantable medical devices as
required for clinical application51. Another important factor affecting
biocompatibility is the difference in Young’s modulus between the
electrode and the nervous tissue. The smaller the difference, the less
the mechanical stress of the interface on the biological tissue52. Also,
the size ratio between the electrode and the neural tissue could affect
its biocompatibility. Smaller electrodes may have less impact on the
biological environment potentially improving the integration of the
device in the body, but at the expense of robustness and maximum
injectable charge. Finally, the level of invasiveness of the implantation
substantially influences the foreign body reaction (FBR) or inflamma-
tory response that can be responsible for electrode failures or a

decrease in their effectiveness53,54. Notably, recent results have
demonstrated that non-invasive technologies using remapped evoked
sensations are less informative, and intuitive than the neurally evoked
somatotopic sensations restored via implantable devices55,56.

Electrode selectivity is currentlyof great interest tomany research
groups. Indeed, selective stimulation (i.e., defined as the capability of
the electrode to activate small groups of neurons without unin-
tentionally activating other neural regions) could allow substantially
improved effectiveness of these interventions, minimizing the side
effects. The selectivity is dependent on electrode size, shape, active
site configuration, and stimulation protocol. In general, electrodes
penetrating the nervous tissue (such as intraneural or intracortical)
allow for more intimate contact of the electrically active sites with the
target neurons. This scenario, together with a smaller active site area
compared to extraneural or epicortical electrodes, guarantees a more
focal stimulation, activating fewer neurons simultaneously. Moreover,
electrodes with multiple active sites and also with multipolar config-
urations are able to shape the electric field achieving more selective
stimulation57. Thanks to the high selectivity, the stimulation serves its
intended purpose with reduced side effects. More recently, stimula-
tion protocols co-modulating injected charge and high frequency
could potentially increase the selectivity of the adopted interface and
therefore its effectiveness58.

In addition, electrodes allowing for high maximum injectable
charge and stimulation frequency, yield a wider space for parameter
modulation. This is of crucial importance for developing more
sophisticated stimulation strategies allowing the encoding of more
complex features of the sensory experience. A modular interface
exploits specific active site materials and coatings to improve inject-
able charge limits32,59.

The purpose of using implantable neural interfaces is to obtain an
effective neural link that can be exploited for long-termapplications in
everyday life. To this aim, the interface should remain stable and reli-
able over time. Notably, the stability is strongly dependent on the
electrode materials, shape, and implantation procedure. The inva-
siveness of the implant, in this case, decreases the potential stability of
the electrode since the FBRs and the electrode migration are more
likely tomodify the electrode–neural tissue interface32,60. However, the
majority of the implants adopting penetrating electrodes, in particular
in Brain–Computer Interface (BCI) applications, lasted for several
years in human trial applications (more than 10 years)6,61. Nevertheless,
novel electrode materials and coatings have the potential to improve
the long-term stability of intracortical and intraneural interfaces62.

Biomimicry as a solution for restoring naturalistic sensation
The human skin is an incredibly complex and sophisticated deform-
able organcapable of sensing any type ofmechanical interaction of the
humanbodywith the environment. For instance, the skin on our hands
is innervated by tens of thousands of mechano- and proprioceptive
receptors, each of which carries different (albeit overlapping) infor-
mation on items that are being gripped63. This neural information is
then processed at multiple levels along the somatosensory axis from
the dorsal root ganglion (DRG) to the cuneate nucleus, thalamus, and
then to the primary somatosensory cortex64. From the idiosyncratic
spiking responses of each of the afferents, the tactile information is
processed and becomes a conscious percept. To artificially commu-
nicate with this complex system, a detailed knowledge of the neural
geometry of touch is of crucial importance. Indeed, restoring natural
touch through neural interfaces would require stimulating each of
these sensory neurons independently with their own idiosyncratic
activation patterns, in a way that current technologies are nowhere
near ready to implement. State-of-the-art neural interfaces have tens or
hundreds of stimulation channels31, not the thousand and more that
would be required for full biomimetic restoration of touch on the
palmar surface of the human hand.Moreover, each electrode activates
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tens or hundreds of axons and elicits highly unnatural synchronous
activation of these afferents. Until much denser and more selective
neural interfaces become available, attempts to mimic natural nerve
responses will have to settle for mimicking aggregate neural
responses14,50,65. In the natural sensory processing condition, the spa-
tiotemporal dynamics of this aggregate population response in the
sensory cortex seem tomirror those of the population response in the
nerves66, making the assumptions more generalizable for the entire
somatosensory neuroaxis. Moreover, considering that the natural
sensory system is encoding anenormous amount of information about
the tactile experience (such as intensity, type, location, temperature,
and other characteristics of the tactile stimulus), one way to mitigate
the complexity issue is to translate this information into the artificial
sensory space exploiting biomimicry67. Indeed, this method exploits,
as far as possible, existing perceptual representations of natural sen-
sory processing. In fact, to the extent that we can reproduce the
neuronal firing patterns that would occur with an intact nervous sys-
tem, the resulting perceptions could be more natural9 and would also

require minimal learning. While we cannot completely reproduce
natural patterns of neuronal firing, we can exploit key principles of
sensory processing in the development of the encoding algorithms7,8.
In particular, the spatial and temporal components of the neural acti-
vation could be modulated and partially controlled through the neu-
rostimulation parameters8,68. This would allow the exploitation of
residual sensory processing for evoking natural and informative
percepts.

Currently, in the neuroprosthetic field, the scheme of neural sti-
mulation is mostly not defined by the nerve’s natural coding or neu-
romorphic models (Fig. 2A)50. Indeed, after defining the pulse
waveform of the stimulation train, the modulation occurred only on a
single parameter and mostly on individual channels of the neural
interface. This unnatural approach causes the evoked sensations to be
mostly described by users as vibration, tingling, paresthesia, or
electricity32. In fact, paresthetic sensations are likely to arise from the
unnatural activation of nerve fibers58 and can be due to the over-
excitation of afferents or cross-talk between them69. The encoding

BOX 3.

Neural interfaces for peripheral nerve interfacing

Recently, technological breakthroughs in nerve–machine systems were translated into the language of the nervous system, and delivered via
electrical stimulation to the residual nerves (PNS) or central nervous system (CNS) of neurologically disabled individuals195. In current neuro-
modulation devices, the design and material of the neural interface are crucial for their wider adoption and exploitability32. An adequate neural
interface should be able to create selective contact with different fascicles in the nerve bundles to restore the efferent and afferent neural
pathways effectively. To achieve a selective electrical interface to the PNS, various types ofmicroelectrodes have been developed andused over
the last years32,196. The design usually depends on the respective application. Often, very small structures are required tomeet the high demands
on selectivity and to address very small regions of neural tissue, e.g. individual fascicles36. For this reason, these small electrode structures are
usually fabricated by microtechnological processes, e.g., the creation of silicon-based structures, such as Utah arrays197. These electrodes have
been exploited in cortical implants both in animals and,more recently, also in humans. Indeed, Utah arrays are efficient for intracortical implants,
where they are anchored to the skull with pedestals and screws. For this reason, they are still the most adopted technology for implantable BCI
applications33,34,47,48,61. However, for PNS interfacing, the drawback of using silicon-based electrodes is the mismatch between the mechanical
properties in the implant and the nerve tissue, leading to increased stress, tissue damage, and encapsulation of the implant by a layer of
connective tissue198. For this reason, the development of flexible thin-film electrodes based on polymers such as polyimide199 represents a
promising solution. For the electrode conductive tracks, noble metals such as gold or platinum are typically used to improve their electro-
chemical properties; the individual electrode contacts can be coatedwith functionalmaterials (e.g., IrOx or PEDOT)23,200. On the stimulation side,
the use of functional coatings could increase the maximum injectable charge at the active sites. Use of iridium oxide as the stimulation contact
material with its high charge injection capacity keeps the stimulation sites well in the chemically safe charge injection regime201. Indeed, the
optimal neural interface should have small enough active sites to deliver repeated and selective electrical pulses, but at the same time have the
capability of injecting enough charge to active neurons far away or evenwith fibrotic tissue in between. Interestingly, the use of graphene could
overcome several limitations of current neural probes. It promotes high neuronal affinity, chemical inertness, antioxidation, and anticorrosive
properties, optical and magnetic (MRI) transparency, and flexibility, all while remaining highly conductive202.

Theneural interfaceelectrodehas longbeen the limiting technological component for achieving a successful interface to thenervous system.
The current state-of-the-art on implanted interfaces for the peripheral nerve are divided into two types: extraneural, implanted around the nerve
trunk, and intraneural, which penetrates the nerve trunk. Extraneural cuff electrodes are reliable and robust4,203 and imply reduced invasiveness,
but suffer from limited selectivity204 and limited capability to record neural signals. For improving selectivity, intraneural electrodes that are
inserted longitudinally (LIFE44) or transversally (USEA11, TIME9,39) into the peripheral nerve has been developed and tested in human trials. This
approach seems very promising because it combines acceptable invasiveness with good selectivity60. However, USEAs are rigid silicon struc-
tures that record from the tips of the needles. They are transversally inserted in the nerve causing nerve damage in chronic implants54. On the
other hand, the state-of-the-art polyimide-based thin-film electrodes are associated with a major difficulty in approval as an Active Implantable
Medical Device (required for clinical application), because they employ non-standard materials (polyimide)201,205. In addition, the longevity and
stability of these implants have not yet been fully demonstrated in long-term clinical trials (no longer than 6 months39,60). Recently, to achieve
both greater signal specificity and long-term signal stability, the regenerative peripheral nerve interface (RPNI) has been developed as a
promising solution. An RPNI is composed of a transected peripheral nerve, or peripheral nerve fascicle, that is implanted into a free muscle
graft206. The free muscle graft undergoes an approximately 3-month process of revascularization, regeneration, and reinnervation by the
implanted peripheral nerve. This generates a stable, peripheral nerve bio-amplifier that creates high amplitudeEMGsignalswhich canbe used to
control a prosthetic device36,207,208. Moreover, RPNIs have been shown to prevent and treat neuroma pain and phantom pain after amputation209.
Finally, organic materials have also been proposed as promising candidates for neural interfaces, due to their mechanical softness, excellent
electrochemical properties, and biocompatibility. In addition, organic nervetronics, whichmimics functional properties of the biological nervous
system, has been developed to overcome the limitations of the complex and energy-consuming conventional neuroprosthetics that limit long-
term implantation and daily-life usage210
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functions that are used tomodulate the injected charge (pulsewidthor
pulse amplitude)4,39,40 or pulse frequency70,71 of the delivered neuro-
stimulation pulse–train according to values read from the prosthetic
sensor. This mapping generally follows a linear and proportional
relationship to the sensor readings (e.g., the higher the value of the
pressure measured by the sensor is, the higher the stimulation charge
will be). Therefore, the intensity of the perceived sensation is pro-
portionally associated with the stimulation charge and frequency (the
higher the injected charge is, the higher the perceived sensation
intensity will be)47,72. Interestingly, the use of sinusoidal modulation of
the stimulation pulse width has shown promising results in improving
sensation quality40. Unfortunately, these findings have not yet been
replicated by other research groups73. The sensory transformation
from paresthesia to natural qualia seems to require more than pat-
terned and sinusoidal neurostimulation.

In fact, natural touch coding, and the relationship between bio-
logical sensors (cutaneous receptors) and neural activity is more
complex than a sole single-parameter coding. For example in natural
touch, the information about transients is much more salient and
prominent in the neural code than the information about sustained
stimulation63,66, as it includes both rate and temporal coding. Thus, a
more biomimetic pattern should incorporate this information, high-
lighting the contacts7, and should modulate multiple parameters and
electrodes at the same time7,9. The target aim is to electrically induce a
natural pattern of neural activation67, such as the one generated by the
biological receptors in the caseof healthy touch systems.The theoryof

adopting more biomimetic and bio-inspired patterns of stimulation
assumes that replicating the natural firing patterns would lead tomore
natural and intuitive sensations (Fig. 2B). The spatio-temporal mod-
ulation (multi-parameter and multi-channel) of the neural stimulation
would allow to generate more complex and natural evoked activity of
the recruited neuron population. To do so, computational models12–14,
able to replicate the natural neural responses, could be adopted. To
develop such models is fundamental to have ground truth of the
natural spatiotemporal activation that the artificial system needs to
replicate. This will require models able to run in real-time and able to
generalize to every type of tactile input coming from the external
environment. Neuromorphic technology can provide systems able to
emulate (with lowpower consumption) thenatural neural responsesof
different neurons/networks and also to learn and adapt to different
tactile inputs.

Neuromorphic technology in neuroprosthetics
Neuromorphic hardware to boost neuroprosthetic applications
Neuromorphic technologies use event-driven, parallel, and in-
memory computing techniques to emulate computations per-
formed by biological nervous systems74,75. They comprise of
neuron and synapse circuits implemented using standard CMOS
technologies with biologically plausible time constants (from milli-
seconds to seconds or even minutes) that make them ideal candi-
dates to emulate neural dynamics76. Unlike conventional digital
technologies, neuromorphic processors implement memory storage
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co-distributed with the processing, which allows memory and power
consumption to be minimized77. Moreover, they often support net-
work reconfigurability17,78, conveying information as temporal spikes
rather than numeric values79. Spikes allow sparse and asynchronous
communication which relies on the time of firing and enables effi-
cient spatiotemporal pattern discrimination80. Box. 4 outlines the
features of some representative neuromorphic processors.

In the field of neuroprostheses, neuromorphic solutions are
increasingly explored to build tactile sensors and restore feedback
sensation. In thepastdecade, differentways to create an artificial sense
of touch have been explored using different sensors, e.g., resistive81

piezoresistive82,83, capacitive84, optical85, piezoelectric86,87, or
acoustic88. As in biology, event-driven sensors locally encode changes
of stimulus intensity with a train of spikes utilizing a specific dynamic
temporal pattern, in contrast to conventional tactile sensors that are
sampled periodically and return a continuous scalar pressure value
even when no force is applied. Encoding changes decrease the data to
process, allowing a more energy-efficient and biomimetic approach.
Current implementations of neuromorphic tactile sensors can be
divided into two classes: soft neuromorphic, where tactile sensors are
combined with a microcontroller or other digital processors to simu-
late spiking model neurons, or neuromorphic sensors that directly
output spike trains.

In soft applications, the sensor outputs are transmitted into the
digital processor or FPGA where a neuron spiking model encodes the
signal into spikes21,22. Although these implementations are convenient
solutions for system-level applications, the need for a digital device to
simulate simple spiking neuron models limits the power performance
and miniaturization. This approach allows the implementation of
multisensory systems with high spatial resolution. An example
includes a 64 × 64 resistive sensor matrix combined with a piezo-
resistive fabric with a sub-millisecond response time and a sampling
frequency of 5 kHz. The sensory array is connected to an FPGA to
handle the parallelismof the sensors and to generate spikes every time
a significant change is detected for a particular element89,90. Another
implementation is composed of two by two microelectronic mechan-
ical systems (MEMS) arrays, where each sensor is composed of 4 pie-
zoresistors working at 375Hz interfaced with an FPGA that simulates a
simplemodel of spiking neurons, the Izhikevichmodel91, to reproduce
the behavior of tactile receptors22 which can be applied to the cate-
gorization of naturalistic textures92. The asynchronously coded elec-
tronic skin (ACES) consists of 240 artificial mechanoreceptors that
asynchronously transmit spikeswith a latency of 1ms and anultra-high
temporal resolution precision of <60 ns. Each receptor consists of a
resistive sensor, a microcontroller for the generation of the spike,
and a series of passive components to perform signal conditioning93.
Soft implementations are used for both stimulations, mainly non-
inasively21,94,95, and, more extensively, for texture discrimination.
The feasibility of texture discrimination has been demonstrated using
different approaches, with the most notable approach using piezo-
electric sensor arrays and the Izhikevich spiking neural model.
Various analytical methods were applied for the investigation of
spatiotemporal spike patterns, such as spike train distance-based
kNN96, interspike interval statistics and spike distance metrics92, a
recurrent spiking neural network97, and an extreme learning
machine98. Another approach is based on 24 capacitive square sensors
in a rectangular grid layout working at 20 kHz. The output is propor-
tional to the intensity of the force and it is converted into spikes using
an integrate and fire neuron utilizing an adaptive threshold. This has
been used for the classification of Braille stimuli99. However, while
these implementations can serve as tools for the development of
applications, they do not reach the same low-power performance and
miniaturization of directly designing biomimetic sensors, and the
neural model investigated is rather simple, although other neuron
models can be explored.

Current neuromorphic implementations based on mixed-mode
subthreshold circuits represent promising solutions to solve the pro-
blemofpower consumption andminiaturization.However, there is the
need formultiple transducers to emulate differentmechanoreceptors,
and the difficulty of their mechanical interfacing limits their stable
integration on prostheses or robotic platforms100. They include pie-
zoelectric transducers99,101,102, which detect fast changes, and hence
emulate the behavior of rapid adapting mechanoreceptors (RAs), and
capacitive transducers which have the advantage of keeping their
capacitance over time enabling the emulation of slow adaptive
mechanoreceptors (SAs)103. Another example uses semi-volatile car-
bon nanotube transistors to build a sensor system with sensory neu-
rons and a perceptual synaptic network to differentiate the temporal
features of tactile patterns104. In both implementations, the silicon
neuron is a LIF neuronwith the basic neural function of integrating the
incoming information and encoding the information into a spike once
the membrane voltage reaches a threshold.

At present, neuromorphic implementations are still in a proof-of-
concept stage, and they have not yet been tested in neuroprosthetic
applications. However, they have been deployed for spatiotemporal
discrimination tasks, such as Braille letter reading105. Very recently,
Wang and colleagues presented apromisingmonolithic soft prosthetic
e-skin capable of multimodal perception, neuromorphic pulse-train
signal generation, and closed-loop actuation. With a trilayer, high-
permittivity elastomeric dielectric, they achieved a low subthreshold
swing comparable to that of polycrystalline silicon transistors which
operate at a low voltage, consume little power, and integrate medium-
scale circuits that enable stretchable organic devices26.

A third explorable alternative is the integration of standard sensor
arrayswith neuromorphic technologies,where themechanoreceptors’
behavior is not simulated in a digital processor but emulated in silicon
neurons, and their behavior is set by the neurons’ parameters. This
approach replaces the digital processor of the soft solution with a
more power-efficient solution; however, it adds more circuit com-
plexity than that present in event-based pixels. The adaptation in the
mechanoreceptors can be emulated by a non-linear adaptive neuron
circuit with a calcium channel responsible for the spike frequency
adaptation in real neurons106. The siliconneuronmodel can vary froma
complex conductance-based Hodgkin–Huxley model with a high
degree of biological compatibility107, to the Adaptive Leaky Integrate-
and-Fire (AD-LIF) model. Recent implementations of AD-LIF silicon
neurons use 22 nm technology, with a layout area of 15 × 60μm2 per
neuron, an adaptation time constant of up to 5 s, and a power con-
sumption of 14 pJ/spike, that enables its use in edge computing
applications, including integration in neurorobotic applications108.

Compared to standard approaches, neuromorphic tactile sensors
offer a solution to the drawbackof limited bandwidth, both in terms of
the frequency of the acquired data and the high-density receptor
arrays, by using populations of spiking neurons with limited band-
width (e.g., able to fire atmost at a few Hertz or tens of Hertz) that can
collectively encode signals with much higher bandwidth and dynamic
range109. Sensors could transmit the generated spikes by using the
address event representation (AER) communication protocol, which is
the most common protocol in neuromorphic technologies, and uti-
lizes the address of the source or destination neuron to distinguish the
spikes that travel on a shared digital bus110. To further improve the
distributed sensory transmission, a compressivemethodon the sensor
side using asynchronous impulse radio ultra-wideband (IR-UWB) for
wireless low-power communication can be explored111. Wireless com-
munication using IR-UWB could improve system acceptance and
usability reducing the use of wires that pass along the prosthetic
device.

Pattern generation for electric stimulation. Once appropriate
mechanoreceptor output spike trains are generated, they serve as the
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input to generate the activation pattern for electric stimulation. Gen-
erating an effective natural pattern requires a compression stage and a
transformation in the stimulator’s parameters, combining multiple
spike trains into a single train for use in clinical applications. Common
approaches include computing the sum (representing an aggregate
neural response) or the average of the output spike trains9, which may
result in a high firing rate where spatial information could be com-
promised. In traditional machine learning, the use of compression
algorithms, such as clustering and classification, are utilized to extract
important features in real-time applications112. In cortical recordings,
multiple spike trains can be merged into a single spike train by iden-
tifying temporal spike patterns within mechanoreceptors’ spike trains
by analyzing temporal correlations with statistical methods such as
entropy, or cross-correlation113. In neuromorphic sensors, while some
studies address temporal compression114, only a few have focused on
spatial and temporal down-sampling on event-based data, primarily
relying on hardware filters and focusing on event-based cameras115,116.

To date, only soft neuromorphic solutions have been interfaced
with non-invasive stimulation through transcutaneous electrical nerve
stimulation (TENS)94,95, where the number of spikes is calculated at
each time point and a threshold is set to define the sensitivity and
accuracy of the spiking behavior21.

An unexplored approach is the use of a recurrent neural network
that receives the mechanoreceptors’ output as its input and analyzes
sequences by storing information in its internal memory state and
outputs a singular pattern117. Although the network benefits from
potential implementation on a neuromorphic chip, its implementation

is not straightforward since it would require an appropriate training
function, similar to autoencoders, where the compressed information
is used to recreate the original signal. In addition, to overcome the
problem of misclassification or regression error, we can add a safety
mechanism at the output of the network to check the range of the rate
of stimulation, avoiding the generation of an unpleasant pattern of
stimulation. This safety mechanism can be implemented by an addi-
tional layer of recurrent inhibition that compresses the firing rate in a
signal with a high dynamic range118 or by exploring a new approach of
using hierarchical reservoir networks which allows networks to func-
tion across markedly diverse timescales, exceeding the performance
achievable by single reservoirs119.

The compressed spike train is then used as input for the electric
stimulator where the spikes are converted into pulses in real time. This
conversion can introduce some drawbacks such as delays from the
sensor’s output to the electrical stimulation120, or a lack of dynamics in
the stimulation’s parameters (e.g., frequency, pulse width, etc.)95,121,122.
To preserve the temporal information carried in the spikes and enable
real-time operation, the conversion of the signal to spikes is critical21.
Three strategies have been proposed and are based on prior work
that shows biological significance under electrical stimulation for eli-
citing sensory perception:72,123 pulse width modulation, with fixed fre-
quency and the pulse width dependent on the number of spikes
per window; pulse frequency modulation with fixed pulses and
frequencies proportional to the number of spikes counted in a time-
programmable window; and a neuromorphic match where the tem-
poral information is kept in the neuron’s spiking activity. In the latter

BOX 4.

State-of-the-art neuromorphic technology

Analog (mixed signal) chips. BrainScales2 is a mixed-signal wafer-scale system that runs in 1000×–10,000× accelerated time and implements
physical models of neurons and synapses211. It comprises 512 neurons and 112k synapses per core with online spike-driven synaptic plasticity
(SDSP). Recent benchmarking of this chip has shown that learning corrects for themismatch (non-homogeneity of devices) present in the analog
hardware212. Another example is Neurogrid213, from Stanford, which implements a scalable analog neuromorphic chip, simulating up to 1 million
neurons and 8G synapses using 1800-fold less energy per synaptic activation than a GPU. Following hierarchical distribution and aggregation of
spiking events, like the cortical columns in the cortex, Neurogrid greatly minimizes the required wiring and enables it to simulate multiscale
neural models in a time and energy-efficient fashion. DYNAP-SE214, and the new generation DYNAP-se2, are designed with an end-to-end event-
based sensory-motor system in mind. Implementing synaptic and neuronal dynamics using analog circuits with multiple time constants, allows
the real-time processing of incoming signals. Braindrop, a 0.85mm2, 4096-neuron, and 64k-synapse, low-power neuromorphic system, was
designed with a comprehensive set of high-level programming abstractions and a synthesis procedure for mapping them to mismatched
subthreshold analog hardware215. For typical network configurations, Braindrop achieves an energy-per-equivalent synaptic operation of 388 fJ.
Braindop has been designed specifically as a substrate for implementing the neural engineering framework (NEF).

Analog neuromorphic technologies represent an ideal solution for highly optimized tasks, thanks to extremely power-efficient and fast
asynchronous in-memory computing. It can be deployed for next-generation computing and signal processing—for ultra-low-power and real-
time applications. Analog neuromorphic technologies are currently innovating processors with analog computational cores and digital inter-
faces, improving the reconfigurability and the quality of signal transmission.

Digital chips. IBM’s TrueNorth, a milestone in neuromorphic research, is a multicore processor, with 4096 cores, each one having 256
programmable neurons for a total of a million neurons. Each neuron has 256 programmable synapses, giving a total of 268 million, allowing
neural network inference workloads at power levels as low as 70mW216. Another chip was developed by Intel, Loihi217, and more recently the
second generation, Loihi2, with 1 million neurons and 120 million synapses, allows the implementation of more brain-inspired networks using
recurrence, precise spike-timing relationships, synaptic plasticity, and sparsity,which solve adiverse rangeof problems, such asdataprocessing,
adaptive control and constrained optimization, with orders of magnitude lower latency and energy compared to state-of-the-art conventional
approaches217. Another example is Spinnaker 2218, an ARM-based processor built with a GF 22 nm FDSOI process, which takes advantage of the
run-time adaptive body biasing technology, which can be exploited for cutting-edge power consumption219,220. Another chip built using 28 nm
FDSOI technology is online-learning digital spiking neuromorphic (ODIN) which consists of a single neuron synaptic core with 256 neurons and
2562 synapses. Each neuron can be configured to reproduce Izhikevich behaviors91. The synapses embed a 3-bit weight and amapping table bit
that allows enabling or disabling SDSP locally, thus allowing for the exploration of both off-chip training and on-chip online learning setups.
Brainchip’Akida is one of the first commercial neuromorphic chips, and it is available for integration in ASIC products or as a System on a Chip
(SoC) product. The SoC is built around a core neural processor comprised of 80 neural processing units, which enables the modeling of 1.2
million neurons and 109 synapses. It supports convolutional neural networks (CNNs) and fully connected networks221. Power consumption in
standard tasks ranges from 100μW to 300mW.
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approach, the neuron model encodes the information in frequency
output, resembling natural modulation. Using silicon neurons rather
than simulated neurons will allow for the use of the output neurons as
pulse generators by adding a pulse extender circuit to the output of
the neuron124. The pulse extender enables the generation of pulses
with settable width, maintaining compact and low power
implementation.

So far, the clinical implementations of neuromorphic approaches
are limited to soft neuromorphic sensors in non-invasive stimulation,
leaving room to explore neuromorphic solutions in neurostimulation
for both sensors and processors.

Neuromorphic neurostimulator. Invasive closed-loop applications
are still based on biomimetic approaches and, currently, neuro-
morphic approaches have yet to be fully explored. Biomimetic
approaches involve the simulation of mechanoreceptors using pow-
erful simulators running ondigital processors12,13,125; however, when the
complexity of the information encoding increases, it becomes com-
putationally expensive and requires bulky stimulators, hindering real-
time portable implementations. As described above, neuromorphic
technologies promise a solution by using simulators to emulate the
mechanoreceptors’ behavior thanks to their intrinsic properties, thus
allowing portable solutions. Different mechanoreceptors can be
emulated by setting different parameters in the chip, i.e., threshold,
and adaptation time constants126 to match both slow and rapidly
adapting mechanoreceptors (SAs and RAs). Skin deformation can be
emulated by implementing mesh networks, in which neurons are
connected with their neighbors via weights that depend on the emu-
latedmechanoreceptor type. The higher the contact force, the further
the propagation from the contact point.

To design an end-to-end neuromorphic pipeline and exploit all
the advantages of the neuromorphic paradigm, the electric stimulator
must be seamlessly incorporated. CMOS-based electric stimulators
have been recently proposed and are regarded as ideal candidates127,128.
Peripheral neural stimulation requires biphasic current pulses (from 10
to 1000 µA) to avoid charge accumulation, at the tissue interface,
whichwould otherwise severely damage neighboring tissue. To design
efficient peripheral stimulators, in termsof the amplitude resolution of
the stimulus, current-mode stimulators are often preferred, although
voltage-mode stimulators are very efficient in terms of power
consumption129. In current-mode stimulation, the amount of delivered
charge is set by controllable parameters such as the injected current
and the duration of the pulse128. The major issue with current-mode
stimulation is the high variability of electrode-tissue impedance (from
10 kΩ to 1MΩ) that can generate a drop in the voltage. To overcome
this limitation, the system can operate under a high voltage supply
(from 15 V up to 30V) that can be generated, and controlled, by
embedding programmable voltage boosters. In addition, CMOS sti-
mulators can be affected by mismatches that modify the generated
pulses. This can be mitigated by different techniques such as blocking
capacitors, or by using resistors connected to the terminals130. By using
the impulse radio ultra-wideband (IR-UWB) the stimulator can be
implanted close to the targeted nerve and can receive input from the
processing unit, enhancing the embeddability of the system and
simultaneously enhancing the comfort and acceptability for the
subject131.

Location of electric stimulation along the ascending pathway. In
addition to the many challenges described in tactile feedback
restoration, there remains a need to determine the suitable location
for electrical stimulation which depends on the severity of the neural
injury and the degree of residual function. Stimulation can target
either the peripheral or central nervous systems, but with fundamental
differences in the information processing, and limitations imposed by
the anatomy and physiology of the site132. Peripheral stimulation

includes stimulation of primary afferent neurons in the residual
limb39,133 and of the DRG134. Targeting primary afferents and the DRG
has the advantage of utilizing the distinct behavior of the various
receptor types to directly generate complex stimulation patterns.
However, since the somatotopy is not guaranteed within nerves, the
specific location of the different fibers is unknown a-priori. Thus, very
selective interfaces and a long phase of mapping are required for
effective targeting of the PNS. Central nervous system stimulation
includes stimulation of the spinal cord45,135,136, the ventral poster-
olateral thalamus137, and the somatosensory cortex47,138. Stimulation at
the spinal cord level presents some advantages compared to stimula-
tion in the residual limb, such as more discernable somatotopy, valid
for both distal and proximal amputation; as well as more robust
implantation procedures. However, the low selectivity of the spinal
electrodes affects the spatial resolution of the restored feedback.
Finally, direct stimulation of the somatosensory cortex (Brodmann’s
Area 1) using intracortical electrodes (ICMS) exploits the somatotopic
organization of the sensory representation, and induces less pares-
thetic sensations when compared to peripheral stimulation. However,
since the neurons are organized in networks and columns, ICMS
evokes both direct and indirect neural activation, even in nearby areas
(e.g.,motor cortex—M1). This can complicate the design of closed-loop
BCI10. Notably, the higher the stimulation location in the somatosen-
sory neuroaxis, the more the mechanoreceptors’ outputs would
require transformation; specifically firing depression and signal inte-
gration. Therefore, additional neural and synaptic mechanisms, such
as spike frequency, short-time depression, and excitatory–inhibitory
balance are required. Due to the high flexibility of their parameter and
network reconfigurability, neuromorphic technologies could allow for
stimulation at any level within the pathwaywithout the need to rethink
and redesign the stimulator.

Biomimetic neuro-robotic devices
The implementation of a natural neurostimulation approach for sen-
sory restoration requires sensitized neuro-robotic prostheses. A
prosthetic device will be used in daily life where the user has to
accomplish a variety of motor tasks. The natural feedback provided to
the user should match the body–environment interactions in terms of
(1) time (i.e., real-time feedback; the sensation has to be perceived
without delaywith thephysical interaction); (2) space (i.e. somatotopic
feedback; the sensation has to be perceived in the same location of the
physical interaction); (3)modality (i.e., homologous feedback; the type
of perceived sensation has to match the type of the physical interac-
tion); (4) intensity (i.e., modulated feedback; the intensity of the sen-
sation has to match the intensity of the sensory experience); (5)
naturalness (i.e., natural feedback; the evoked sensation has to be
almost identical to a sensation experience on an intact hand).When an
artificial sensory modality fulfills all these requirements, it can be
considered comparable to a natural sensorymodality and will provide
high prosthesis embodiment and integration139.

To fulfill this specific design, the neuro-robotic prosthesis should
be equipped with multiple wearable sensors able to detect robustly
and reliably, in real-time, the interactions with the external world.
Signals from multiple sensors have to be streamed and integrated,
obtaining a reliable and stable input for the sensory encoding. The
neuroprosthesis would require a robotic prosthesis equipped with
wearable sensors, a neuromorphic controller chip, and a stimulating
system. Sensor information is transmitted to the chip, which trans-
duces them (using the biomimetic encodings, i.e., transfer functions
based on natural sensory processing) into instructions for the neural
stimulator. In particular, the neuromorphic hardware, embedded in
the prosthetic device, would convert the artificial readouts of the
sensors into biomimetic neurostimulation patterns. The translated
signals are then converted into impulses of current, which are deliv-
ered to the residual peripheral nerve through electrodes, implanted
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directly into the nerve itself. Thismust be performed in real-time, with
latency below 100ms, to elicit an unperceivable delay for users140. This
architecture will constitute a neuromorphic sensory neuroprosthesis.
At the core of the closed-loop biomimetic prosthesis lies the ability to
seamlessly capture, process, and transmit tactile/pressure informa-
tion. Neuromorphic hardware can process in real-time such informa-
tion and, by mimicking the intricate neural encoding mechanisms of
the somatosensory system, can enable artificial limbs to provide users
with natural and informative feedback (Fig. 3).

Then, the intact nervous systemdoes the rest: the signals from the
residual nerves are conveyed to the brain of the user, who is able to
perceivewhathappens at theprosthesis and adjust themotor behavior
accordingly. The machine and the body are finally connected.

Future directions and open questions
Humans possess fine motor skills that aid in accurately using and
manipulating objects and tools, maintaining balance and walking, or
performing any number of highly complex daily activities. In patients
with amputations, missing functions can be restored using prostheses.
However, dexterous prostheses are highly sophisticated and require
the restoration of sensory information to improve the quality of con-
trol and acceptability of the patients, enabling a more natural and
pleasant experience with the external device.

Analyzing the current state of the field, some recent works
showed the first evidence of how biomimetic neural stimulation could

be effectively adopted to encode more natural and functional soma-
tosensory feedback in neuroprosthetics. Indeed in PNS, biomimetic
stimulation (both for upper- and lower-limb) showed to evoke more
natural precepts8,9 and more informativeness feedback to accomplish
functional tasks8,9,11. In CNS, multichannel biomimetic ICMS conveys
finely graded force feedback inBCI thatmore closely approximates the
sensitivity conferred by natural touch7.

Regarding the engineering challenges, neuromorphic technolo-
gies present properties that enable the functional and structural
replication of the nervous system, allowing for an ideal solution that
integrates with existing neural interfaces, or for the creation of new
interfaces in neurorobotic applications.

To make advances in the design of neuromorphic hardware for
sensory restoration, and even more in general for the biomimetic
approach, it is essential to develop more sophisticated event-based
sensors where the sensors are integrated with a silicon model able to
generate complex dynamics to resemble biologicalmechanoreceptors
in a compact and low-power design, allows for powerful portable
solutions. It is also important to understand how to encode multiple
spike trains generated into fewer trains which can then be used to
instruct the electric stimulation. This requirement is a consequence of
the limited selectivity of the actual sensors, which can be overcome in
the future by improving the electrode selectivity and signal bandwidth,
more precisely targeting the desired nerve, hence, enhancing dis-
crimination of the elicited sensation.
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Fig. 3 | Biomimicry implemented in a neuro-robotic device thanks to neuro-
morphic hardware. The complete design of a closed-loop biomimetic neuro-
robotic prosthesis exploiting neuromorphic hardware is depicted. The pressure
events under the prosthetic foot are sensed by the wearable sensors embedded in
artificial skin. The stream of information from these sensors is the input for the
neuromorphic chip that converts them into bio-inspired neural stimulation pat-
terns resembling natural somatosensory processing. The co-modulations of the

neurostimulation parameters and the channels of the implanted neural interfaces
will allow the evoking of natural patterns of activation in the residual nervous
systemof the user. The electrically evoked sensationwill be natural and informative
allowing for the maximal exploitation of the robotic prosthesis in the sensory-
motor loop. A portion of the illustration is adapted from ref. 42. Grafica_001© 2021
by Pietro Comaschi is licensed under CC BY 4.0.
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In addition to the required selectivity, interface stability is a cru-
cial factor for the development of long-term solutions. The implanta-
tion of electrodes in human peripheral nerves is associated with
biological responses in the nerve due to foreign body reactions (FBRs),
causing changes to the properties of nerve–electrode interfaces.
Similar FBRwas observed for various penetrating electrodes (e.g. Utah
array141 or polyimide-based electrodes60) implanted in human periph-
eral nerves. The encapsulation of the electrodes and their possible
migration are among the theorized causes of poor stability over-time,
in particular for evoked sensation location and perceptual threshold.
The growth of fibrotic tissue could influence the effectiveness of the
neurostimulation (e.g., lower conductivity due to a physical barrier
between the electrode and neurons). Interestingly, pharmacological
strategies have been proposed to modulate the FBR to neural
implants142. The use of a collagen coating containing antifibrotic drugs
on the intraneural electrode could enable a reduced growth of fibrotic
tissue and macrophage infiltration around the implants. The increase
in the biocompatibility (i.e., bio-integration and durability) of the
devicewouldguarantee the longer-term stability of the implant. Due to
the problem of the electrodes’ possible failures and other biological
reactions of the nerve (e.g., demyelination, changes in fiber distribu-
tion, etc.), constant re-calibration of the neural stimulation would be
required. A possible solution to this issue is the exploitation of
AI-based algorithms (e.g., Bayesian optimization, reinforcement
learning, etc.) able to recalibrate the neurostimulation, identifying the

best parameter configuration in a fully automatic and smart way143.
This combined development of innovative hardware, materials, and
software will allow for a future generation of neural interfaces able to
provide effective neurostimulation for long-term applications.

Regarding the challenges in interfacingwith the nerves, one of the
barriers to the success of the approach presented here is related to
the ability of evoking a desired spatiotemporal pattern of activation in
the targeted neurons. Firstly, even with the latest and most selective
available interfaces, the number of neurons activated with each pulse
of stimulation is too high. In addition, all the neurons are simulta-
neously activated causing synchrony that is not present in vivo during
natural touch67. Indeed, the natural asynchronous activation is driven
in part by the probabilistic nature of action potential generation in
sensory organs, such asmuscle spindles144 or retinal cells145, and in part
by the stochastic nature of synaptic transmission146. Recently, inter-
esting approaches exploiting high-frequency electrical stimulation
have been proposed to desynchronize neural activity58,147. However,
the effect of high-frequency stimulation could induce undesired
strong sensations, since frequency modulation has an effect on per-
ceived sensation intensity148. Another option could be to exploit other
techniques in activating the neural tissue, such as optogenetic, and
ultrasound stimulation. Indeed, optogenetic stimulation potentially
provides the ability to target molecularly defined neuron subtypes,
access opsins engendering neural inhibition, and optically recruit
axons in a fashion that might mimic natural recruitment149,150. In

BOX 5.

Neural adaptation to neurostimulation

In biological sensory systems, prolonged exposure to a defined stimulus can lead to diminished sensations or their complete extinction. The
reason for this behavior lies in a phenomenon called stimulus adaptation, observed across many different species and in several brain sensory
areas222, e.g., olfactory223 and visual224 cortex, and consists of a neuronal firing rate decrease in response to a constantly presented stimulus225.
Adaptation primarilymeans that the organismdetects that a certainmonotonous stimulus is no longer of importance and thus can be neglected,
to free up resources for a potentiallymore important change in input. This is a computationalmechanism, responsible for separatingbehaviorally
relevant information from the continuous streamof sensory information226. Its basis lies in the fact that if therewasnohabituation or a reduction in
responsiveness to aconstant andprolonged stimulus, thenervous systemwouldnot be able to respond fully to input changesor other stimuli.

Even though this behavior is usually natural and beneficial for the system, when the aim is to artificially restore a sensory channel using
neuroprosthetic devices, this phenomenon has to be taken into account. In this application, absolute reliability is necessary to provide mean-
ingful and continuous sensory information to prosthetic users. Indeed, this technology potentially depends upon long-lasting trains of neuro-
stimulation which is potentially compromised by the adaptation of the targeted nerve to neurostimulation148,227,228.

To tackle this issue, a deeper understanding of this phenomenon is currently of great interest. For the natural sense of touch, the first stage of
sensory adaptation appears at the level of the cutaneousmechanoreceptors229. Since in the case of amputation the hand/footmechanoreceptors
are bypassed, the neural stimulation of the proximal residual nerve takes place above the level of the receptors. Thus, in this case, the main
factors responsible for sensory adaptation can be summarized as (1) reduction in synaptic transmission (e.g. short-term synaptic depression230,
presynaptic inhibition231 or synaptic depletion232,233); (2) conduction failure of the afferent fibers with neurostimulation (i.e., nerve block)234 or
dorsal root ganglion T-junctionfiltering235; (3) unbalanced activity in excitatory/inhibitory (E/I) networks236,237. A conduction block of the nerve can
be excluded since this phenomenon typically happens at higher frequencies (>1 kHz234). Moreover, adaptation has been observed not only with
PNS but also when stimulating the sensory cortex directly (e.g., using intracortical microstimulation228).

Interestingly, it is possible to observe important relationships between stimulation parameters and adaptation time variables. For example,
varying the amplitude or the frequency of the neurostimulation has a direct effect on the perceived sensation intensity72,148, resulting in different
adaptation time227,238. A possible explanation for this phenomenon can likely be found by analyzing the different spatiotemporal properties of the
neurostimulation148,239. Modulation of the amplitude is reflected in the recruitment of fiber populations57,240, with higher amplitudes activating
morefibers. Taking into account the fact that even a small number of activated fibers can delivermeaningful sensory information to the brain241, it
turns out that with more fibers activated (with higher amplitude), the more time it takes for the sensation to completely disappear due to
adaptation. On the other hand, higher frequencies result in increased firing activity, which causes a reduction in synaptic transmission and,
eventually, a faster adaptation148,228.

Recent findings with vestibular prostheses showed that pulsatile stimulation produced by the prosthesis appears to induce long-term
depression at afferent-central neuron synapses in the vestibular nuclei due to the synchrony evoked across the vestibular afferent population—
such synchrony is not present during natural head motion242. Moreover, there is evidence that multiple sites of plasticity within the vestibular-
ocular reflex pathways can rapidly shape motor performance in vivo.

To obtain a comprehensive understanding of the adaptation phenomenon, computational modeling could be a powerful tool to unveil its
characteristics and eventually even predict its undesired effects in neuroprosthetic devices238,243.
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addition, the neuromorphic approach could also be adopted for other
sensory prosthesis designs, in which the biomimetic approach has
been proven to be effective for improving functional performance
(e.g., enhanced speech intelligibility for cochlear implants;151 and
improved restoration of gaze stability in vestibular prostheses152).
Thus, the development of prostheses that can account for such
pathway-specific heterogeneities will be essential to improving func-
tional outcomes across sensory systems.

Regarding the specific considerations that need to be addressed
whengenerating output signals for PNS stimulation, the safety limits of
amplitude, pulse width, and frequency must always be considered to
avoid electrode degradation, tissue damage, fast adaptation (Box 5),
and sensations that are too strong. Notably, possible interferences
with other sensorymodalities suchasproprioception ormotor signals,
due to undesired afferent activation, are currently under investigation
by research groups working in the field of bidirectional sensory-motor
prosthetics10.

Finally, the development of fully biomimetic neuroprostheses,
able to restore natural and effective sensations, requires a quantitative
assessment of the naturalness of this synthetic somatosensory feed-
back. This assessment represents a further challenge in the develop-
ment of this type of neuroprosthesis since sensation naturalness is
highly subjective. The lack of a bio-signal to objectively quantify the
error between the evoked and target sensations makes the develop-
ment of efficient algorithms very challenging. Perceived naturalness
could be influenced by past or present experience, and could be
modified with the modulation of stimulation parameters and its rela-
ted perceived intensity153. To this aim, a detailed evaluation is needed,
combining both subjective (e.g., questionnaires, free description,
psychophysics) and objective measures (e.g., reaction times, neural
recordings, performance metrics, learning).

Our perspective informs the design of a future generation of bio-
inspired neuroprosthetic devices allowing the artificial conveyance of
more complex sensory information with neurostimulation. The
approach proposed here could potentially increase, not only the effi-
cacy but also the acceptance of neuroprosthetic devices, improving
the quality of life of people with sensory impairments. The use of
neurostimulation is also critical to brain–computer interfacing, as well
as bioelectronic medicine, in which the electrical stimulation targets
the central, or the autonomic, nervous systems, respectively.
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