1,863 research outputs found

    Experiments with mmWave Automotive Radar Test-bed

    Full text link
    Millimeter-wave (mmW) radars are being increasingly integrated in commercial vehicles to support new Adaptive Driver Assisted Systems (ADAS) for its ability to provide high accuracy location, velocity, and angle estimates of objects, largely independent of environmental conditions. Such radar sensors not only perform basic functions such as detection and ranging/angular localization, but also provide critical inputs for environmental perception via object recognition and classification. To explore radar-based ADAS applications, we have assembled a lab-scale frequency modulated continuous wave (FMCW) radar test-bed (https://depts.washington.edu/funlab/research) based on Texas Instrument's (TI) automotive chipset family. In this work, we describe the test-bed components and provide a summary of FMCW radar operational principles. To date, we have created a large raw radar dataset for various objects under controlled scenarios. Thereafter, we apply some radar imaging algorithms to the collected dataset, and present some preliminary results that validate its capabilities in terms of object recognition.Comment: 6 pages, 2019 Asilomar conferenc

    Development of a Cost-Efficient Multi-Target Classification System Based on FMCW Radar for Security Gate Monitoring

    Get PDF
    Radar systems have a long history. Like many other great inventions, the origin of radar systems lies in warfare. Only in the last decade, radar systems have found widespread civil use in industrial measurement scenarios and automotive safety applications. Due to their resilience against harsh environments, they are used instead of or in addition to optical or ultrasonic systems. Radar sensors hold excellent capabilities to estimate distance and motion accurately, penetrate non-metallic objects, and remain unaffected by weather conditions. These capabilities make these devices extremely flexible in their applications. Electromagnetic waves centered at frequencies around 24 GHz offer high precision target measurements, compact antenna, and circuitry design, and lower atmospheric absorption than higher frequency-based systems. This thesis studies non-cooperative automatic radar multi-target detection and classification. A prototype of a radar system with a new microwave-radar-based technique for short-range detection and classification of multiple human and vehicle targets passing through a road gate is presented. It allows identifying different types of targets, i.e., pedestrians, motorcycles, cars, and trucks. The developed system is based on a low-cost 24 GHz off-the-shelf FMCW radar, combined with an embedded Raspberry Pi PC for data acquisition and transmission to a remote processing PC, which takes care of detection and classification. This approach, which can find applications in both security and infrastructure surveillance, relies upon the processing of the scattered-field data acquired by the radar. The developed method is based on an ad-hoc processing chain to accomplish the automatic target recognition task, which consists of blocks performing clutter and leakage removal with a frame subtraction technique, clustering with a DBSCAN approach, tracking algorithm based on the \u3b1-\u3b2 filter to follow the targets during traversal, features extraction, and finally classification of targets with a classification scheme based on support vector machines. The approach is validated in real experimental scenarios, showing its capabilities incorrectly detecting multiple targets belonging to different classes (i.e., pedestrians, cars, motorcycles, and trucks). The approach has been validated with experimental data acquired in different scenarios, showing good identification capabilities

    A systematic review of perception system and simulators for autonomous vehicles research

    Get PDF
    This paper presents a systematic review of the perception systems and simulators for autonomous vehicles (AV). This work has been divided into three parts. In the first part, perception systems are categorized as environment perception systems and positioning estimation systems. The paper presents the physical fundamentals, principle functioning, and electromagnetic spectrum used to operate the most common sensors used in perception systems (ultrasonic, RADAR, LiDAR, cameras, IMU, GNSS, RTK, etc.). Furthermore, their strengths and weaknesses are shown, and the quantification of their features using spider charts will allow proper selection of different sensors depending on 11 features. In the second part, the main elements to be taken into account in the simulation of a perception system of an AV are presented. For this purpose, the paper describes simulators for model-based development, the main game engines that can be used for simulation, simulators from the robotics field, and lastly simulators used specifically for AV. Finally, the current state of regulations that are being applied in different countries around the world on issues concerning the implementation of autonomous vehicles is presented.This work was partially supported by DGT (ref. SPIP2017-02286) and GenoVision (ref. BFU2017-88300-C2-2-R) Spanish Government projects, and the “Research Programme for Groups of Scientific Excellence in the Region of Murcia" of the Seneca Foundation (Agency for Science and Technology in the Region of Murcia – 19895/GERM/15)

    A Short-Range FMCW Radar-Based Approach for Multi-Target Human-Vehicle Detection

    Get PDF
    In this article, a new microwave-radar-based technique for short-range detection and classification of multiple human and vehicle targets crossing a monitored area is proposed. This approach, which can find applications in both security and infrastructure surveillance, relies upon the processing of the scattered-field data acquired by low-cost off-The-shelf components, i.e., a 24 GHz frequency-modulated continuous wave (FMCW) radar module and a Raspberry Pi mini-PC. The developed method is based on an ad hoc processing chain to accomplish the automatic target recognition (ATR) task, which consists of blocks performing clutter and leakage removal with an infinite impulse response (IIR) filter, clustering with a density-based spatial clustering of applications with noise (DBSCAN) approach, tracking using a Benedict-Bordner alphaalpha -etaeta filter, features extraction, and finally classification of targets by means of a kk-nearest neighbor ( kk-NN) algorithm. The approach is validated in real experimental scenarios, showing its capabilities in correctly detecting multiple targets belonging to different classes (i.e., pedestrians, cars, motorcycles, and trucks)

    Application of advanced technology to space automation

    Get PDF
    Automated operations in space provide the key to optimized mission design and data acquisition at minimum cost for the future. The results of this study strongly accentuate this statement and should provide further incentive for immediate development of specific automtion technology as defined herein. Essential automation technology requirements were identified for future programs. The study was undertaken to address the future role of automation in the space program, the potential benefits to be derived, and the technology efforts that should be directed toward obtaining these benefits

    Atomic Norm decomposition for sparse model reconstruction applied to positioning and wireless communications

    Get PDF
    This thesis explores the recovery of sparse signals, arising in the wireless communication and radar system fields, via atomic norm decomposition. Particularly, we focus on compressed sensing gridless methodologies, which avoid the always existing error due to the discretization of a continuous space in on-grid methods. We define the sparse signal by means of a linear combination of so called atoms defined in a continuous parametrical atom set with infinite cardinality. Those atoms are fully characterized by a multi-dimensional parameter containing very relevant information about the application scenario itself. Also, the number of composite atoms is much lower than the dimension of the problem, which yields sparsity. We address a gridless optimization solution enforcing sparsity via atomic norm minimization to extract the parameters that characterize the atom from an observed measurement of the model, which enables model recovery. We also study a machine learning approach to estimate the number of composite atoms that construct the model, given that in certain scenarios this number is unknown. The applications studied in the thesis lay on the field of wireless communications, particularly on MIMO mmWave channels, which due to their natural properties can be modeled as sparse. We apply the proposed methods to positioning in automotive pulse radar working in the mmWave range, where we extract relevant information such as angle of arrival (AoA), distance and velocity from the received echoes of objects or targets. Next we study the design of a hybrid precoder for mmWave channels which allows the reduction of hardware cost in the system by minimizing as much as possible the number of required RF chains. Last, we explore full channel estimation by finding the angular parameters that model the channel. For all the applications we provide a numerical analysis where we compare our proposed method with state-of-the-art techniques, showing that our proposal outperforms the alternative methods.Programa de Doctorado en Multimedia y Comunicaciones por la Universidad Carlos III de Madrid y la Universidad Rey Juan CarlosPresidente: Juan José Murillo Fuentes.- Secretario: Pablo Martínez Olmos.- Vocal: David Luengo Garcí

    An intra-vehicular wireless multimedia sensor network for smartphone-based low-cost advanced driver-assistance systems

    Get PDF
    Advanced driver-assistance systems (ADAS) are more prevalent in high-end vehicles than in low-end vehicles. The research proposes an alternative for drivers without having to wait years to gain access to the safety ADAS offers. Wireless Multimedia Sensor Networks (WMSN) for ADAS applications in collaboration with smartphones is non-existent. Intra-vehicle environments cause difficulties in data transfer for wireless networks where performance of such networks in an intra-vehicle network is investigated. A low-cost alternative was proposed that extends a smartphone’s sensor perception, using a camera- based wireless sensor network. This dissertation presents the design of a low-cost ADAS alternative that uses an intra-vehicle wireless sensor network structured by a Wi-Fi Direct topology, using a smartphone as the processing platform. In addition, to expand on the smartphone’s other commonly available wireless protocols, the Bluetooth protocol was used to collect blind spot sensory data, being processed by the smartphone. Both protocols form part of the Intra-Vehicular Wireless Sensor Network (IVWSN). Essential ADAS features developed on the smartphone ADAS application carried out both lane detection and collision detection on a vehicle. A smartphone’s processing power was harnessed and used as a generic object detector through a convolution neural network, using the sensory network’s video streams. Blind spot sensors on the lateral sides of the vehicle provided sensory data transmitted to the smartphone through Bluetooth. IVWSNs are complex environments with many reflective materials that may impede communication. The network in a vehicle environment should be reliable. The network’s performance was analysed to ensure that the network could carry out detection in real-time, which would be essential for the driver’s safety. General ADAS systems use wired harnessing for communication and, therefore, the practicality of a novel wireless ADAS solution was tested. It was found that a low-cost advanced driver-assistance system alternative can be conceptualised by using object detection techniques being processed on a smartphone from multiple streams, sourced from an IVWSN, composed of camera sensors. A low-cost CMOS camera sensors network with a smartphone found an application, using Wi-Fi Direct to create an intra-vehicle wireless network as a low-cost advanced driver-assistance system.Dissertation (MEng (Computer Engineering))--University of Pretoria, 2021.Electrical, Electronic and Computer EngineeringMEng (Computer Engineering)Unrestricte

    Drone Obstacle Avoidance and Navigation Using Artificial Intelligence

    Get PDF
    This thesis presents an implementation and integration of a robust obstacle avoidance and navigation module with ardupilot. It explores the problems in the current solution of obstacle avoidance and tries to mitigate it with a new design. With the recent innovation in artificial intelligence, it also explores opportunities to enable and improve the functionalities of obstacle avoidance and navigation using AI techniques. Understanding different types of sensors for both navigation and obstacle avoidance is required for the implementation of the design and a study of the same is presented as a background. A research on an autonomous car is done for better understanding autonomy and learning how it is solving the problem of obstacle avoidance and navigation. The implementation part of the thesis is focused on the design of a robust obstacle avoidance module and is tested with obstacle avoidance sensors such as Garmin lidar and Realsense r200. Image segmentation is used to verify the possibility of using the convolutional neural network for better understanding the nature of obstacles. Similarly, the end to end control with a single camera input using a deep neural network is used for verifying the possibility of using AI for navigation. In the end, a robust obstacle avoidance library is developed and tested both in the simulator and real drone. Image segmentation is implemented, deployed and tested. A possibility of an end to end control is also verified by obtaining a proof of concept
    • …
    corecore