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ABSTRACT

This thesis explores the recovery of sparse signals, arising in the wireless commu-
nication and radar system fields, via atomic norm decomposition. Particularly, we
focus on compressed sensing gridless methodologies, which avoid the always existing
error due to the discretization of a continuous space in on-grid methods. We define
the sparse signal by means of a linear combination of so called atoms defined in a
continuous parametrical atom set with infinite cardinality. Those atoms are fully
characterized by a multi-dimensional parameter containing very relevant informa-
tion about the application scenario itself. Also, the number of composite atoms is
much lower than the dimension of the problem, which yields sparsity. We address
a gridless optimization solution enforcing sparsity via atomic norm minimization to
extract the parameters that characterize the atom from an observed measurement
of the model, which enables model recovery. We also study a machine learning ap-
proach to estimate the number of composite atoms that construct the model, given
that in certain scenarios this number is unknown.

The applications studied in the thesis lay on the field of wireless communications,
particularly on MIMO mmWave channels, which due to their natural properties can
be modeled as sparse. We apply the proposed methods to positioning in automotive
pulse radar working in the mmWave range, where we extract relevant information
such as angle of arrival (AoA), distance and velocity from the received echoes of
objects or targets. Next we study the design of a hybrid precoder for mmWave
channels which allows the reduction of hardware cost in the system by minimizing
as much as possible the number of required RF chains. Last, we explore full chan-
nel estimation by finding the angular parameters that model the channel. For all
the applications we provide a numerical analysis where we compare our proposed
method with state-of-the-art techniques, showing that our proposal outperforms the
alternative methods.

Keywords: atomic norm, compressed sensing, mmWave, massive multiple-input
multiple-output (MIMO), sparse, automotive, pulse radar, superresolution, gridless,
hybrid precoder, RF chain, channel estimation, AoD, AoA, machine learning.
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Chapter 1

Introduction

Structurally constrained models with very limited degrees of freedom compared to
the dimension of available data are present in many science and engineering fields.
The applications where they arise go from signal processing [4]–[6], statistics [7],
computer vision [8], machine learning [9] to neuroscience [10]. The sparsity of those
models can be due to many factors, e.g. data gathering by means of sensor networks
[11] where size and cost of the sensors yield sparsity, magnetic resonance imaging
(MRI) where time for data acquisition is constrained, or wireless communications
in millimeter-wave (mmWave) channels where the number of scatterers and thus
propagation echoes is limited.

These models, known as sparse, are formulated by a linear combination of a set
of so called atoms belonging to a known atom set. In this thesis we will focus on
a specific set with infinite cardinality whose atoms are a Fourier transform fully
characterized by a d-dimensional parameter f ∈ Td. The linear combination is done
over a small number of atoms if compared to the dimension of the available data,
causing the model to be sparse. Due to the sparsity of the model, the measured
observations of the linear combination of atoms need fewer samples than required
by the Nyquist-Shannon sampling theorem [12] to recover the data. Reconstructing
the sparse model from this particular underdetermined system is what is known as
compressed sensing.

Existing methods for parameter extraction via compressed sensing can be classi-
fied in two main groups: on-grid methods and gridless methods. The former group
searches for the parameters in a discrete space, forcing the estimates to lay on the
grid. Thus, even with a very intensive sampling of the continuous space, there will
always be an error between the estimates and the real values [13], [14]. Conversely,
the latter operates directly on the continuous space, and therefore, avoids any errors
caused by the grid. Gridless methods are usually more computationally expensive.

In this thesis we aim to a gridless solution that allows the recovery of the d-
dimensional parameters that characterize the atoms in the continuous domain in
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Chapter 1. Introduction

which they are defined. Several works have studied these solutions but, initially
they were only applied in the context of line spectral estimation [15]–[17] and then in
Angle of Arrival (AoA) estimation in 1-dimensional (1-D) linear antenna arrays [18],
[19] and non-uniform manifolds [20]. Only more recently, multidimensional scenarios
have been considered in [21]–[23] and further elaborated in [24] for AoA estimation
in uniform and non-uniform antenna array deployments. It is important to note
that 3-dimensional (3-D) arrays, especially non-uniform arrays, have become very
important in the present and future next generations of wireless communications
with Enhanced Mobile Broadband (EMB), Massive Machine Type (MMT), or Ultra-
Reliable Low-Latency (URLL) communications among others. Non-uniform arrays
are much more common than uniform arrays since they can fit already existing
spaces with other purposes [25]. The works in [26], [27] have studied non-uniform
geometries with reference to a 1-D parameter space.

The applications studied in this work are related to MIMO wireless communi-
cations in the millimeter-wave range. The nature of propagation in this frequency
range presents severe path loss if compared to traditional microwave channels, due
to the 10× increase in carrier frequency. This pathloss can be mitigated by means
of MIMO deployments where multiple antenna arrays are placed both at transmit-
ter and receiver sides. The aforementioned pathloss is seriously worsened with any
obstacle that the signal may encounter. Therefore, it leads to sparse channels in
terms of the number of propagation paths, specially if we compare that number
to the full dimension of the MIMO scenario. The parameter f that characterizes
the sparse model can contain, depending on the application, angular spread in the
multidimensional propagation scenario, i.e. angle of departure (AoD) and angle of
arrival (AoA); propagation delay or Doppler shift. We propose some techniques to
recover the parameters enforcing sparsity using atomic norm minimization [24], [28],
[29]. Also, we provide numerical analysis in each of the applications studied in the
thesis.

1.1 Objectives and motivation

In wireless communications, and specially in mmWave channels there are plenty of
scenarios where sparse models may apply. Furthermore, very relevant information
about the scenario itself is contained in the parameters embedded in the model,
such as, as mentioned above, angles of departure and arrival, delay or Doppler shift.
Thus, a method capable of retrieving this information by measuring the model is
of high interest and the main motivation of the thesis. Existing techniques usually
can be divided into two different approaches, as introduced earlier. On the one
hand, relying on a predefined grid to find the parameters of the model, yielding an
exhaustive search over the grid, or dictionary, and a computational complexity that
grows with the length of the dictionary. And on the other hand, gridless techniques

2



1.2. Contributions

aim to find the parameters of the model in a continuous space.

The objective of this thesis is to give some new results on the gridless recovery
of multidimensional parameters in wireless communication and radar scenarios.

1.2 Contributions

The contributions of this thesis are:

• Validation via numerical analysis of the theoretical results presented in [24].

• Application of gridless methodology for parameter extraction in sparse models
to the design of a low complexity precoder in mmWave channels. We limit
as much as possible the number of radio-frequency (RF) chains needed in a
hybrid precoder, enabling up to 3-dimensional MIMO propagation, whereas in
the literature, hybrid precoders are mostly studied in the linear case (1D).

• Application to positioning by estimation of parameters such as direction, dis-
tance and velocity. Compared to state-of-the-art techniques based on grid, our
gridless methods outperform them for equal computational complexity.

• Application to full channel estimation, including relevant parameter extraction
such as angles of departure and arrival of propagation echoes. Propagation is
studied in MIMO mmWave sparse channels.

• A machine learning based methodology to estimate the number of composite
atoms in the sparse model. We leverage the prior knowledge of the system to
enable the possibility of training a model offline and use its predictions online
to have an estimation of the number of atoms. We explore and test several
models.

1.3 Thesis structure

The rest of the document is organized as follows:

• Chapter 2. Gridless methodology based on Atomic Norm for sparse
model recovery

In this chapter, we present a general formulation for sparse model recovery.
We define the parametric atom set based on the Fourier transform of some
parameter f with which we will work throughout this research. Also, we present
the optimization problems and associated resolvability conditions under which
the parameters that define the atoms can be recovered.

3



Chapter 1. Introduction

• Chapter 3. General model for MIMO millimeter-wave channels

We explore here MIMO propagation in mmWave channels and its sparse na-
ture. We explain how different scenarios in wireless communications can fit
into sparse models as the one presented in chapter 2.

• Chapter 4. Machine Learning approach for estimation of number of
composite atoms

Next, in this chapter, we present a machine learning approach to estimate the
number of composite atoms that define the signal model. We particularize the
scenario for a mmWave MIMO channel as defined in chapter 3 where the atoms
can be also understood as propagation paths. We explore several models and
present their performance.

• Chapter 5. Super-resolution in automotive pulse radars

This and the following two chapters are applications of the type of sparse mod-
els studied in the thesis. In this first application we explore automotive pulse
radars working in the mmWave range. This range provides the sparsity needed
to model the received echoes as sparse. From this, and using the techniques
presented in chapter 2 and the formulation in chapter 3 we extract relevant
information about the echoes or targets such as angle of arrival, distance and
velocity. Numerical analysis show that the obtained results with our proposed
gridless method outperform those of state-of-the-art techniques.

• Chapter 6. Low complexity hybrid precoding strategies for MIMO
in sparse mmWave channels

The second application deals with low complexity hybrid precoder design in
mmWave MIMO channels. The model is described and formulated as in chap-
ter 3, with a very limited number of propagation paths compared to the di-
mension of the transmit and receive antenna arrays. The aim is to leverage
the inherent sparsity of the channel to reduce as much as possible the number
of needed RF chains yielding a reduction of the hardware cost at the trans-
mitter. We use the gridless methodology presented in chapter 2 to extract
relevant information that enables the low complexity design of hybrid pre-
coders. We compare the results obtained with our gridless methodology which
outperforms state-of-the-art grid methods.

• Chapter 7. Full channel estimation using atomic norm

The last application presented in this work has to be with full channel esti-
mation. Again we leverage the sparse nature of mmWave MIMO channels to
extract relevant information about the parameters that characterize the chan-
nel, i.e. angle of departure and angle of arrival. With the extraction of these
parameters we are able to estimate the channel. Some results are presented
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via numerical analysis and compared to state-of-the-art techniques where we
show that our proposal outperforms the alternative methods.

• Chapter 8. Conclusion and future work

Finally, in this last chapter we draw some conclusions and suggest some points
where further research can be carried on in the future.

1.4 Notation

Scalars, vectors and matrices

Let [·]⊤, [·]† and (·)∗ denote, respectively, transpose, Hermitian and complex conju-
gate. ∥ · ∥ρ denotes the ℓρ norm and mod (x, y) is the remainder of x divided by y,
i.e. the y–modulus operator. Xg is the generalized inverse of matrix X. The inner
product between x and y is denoted by x ·y. Let ⊗, ⊙, and ◦ denote the Kronecker,
the Khatri–Rao, and the Schur products, respectively. The operator diag(x) returns
a diagonal matrix whose diagonal is the vector x.

Sets

A set is defined by enumerating its elements or by comprehension (between curly
brackets, {·}). For any positive integer N , let [N ] be the set {1, 2, . . . , N}. Given
two integer numbers a and b, let a : b be the set {a, a+1, . . . , b}. T is the unit circle,
i.e. the interval [0, 1). For a given set I, |I| denotes its cardinality, i.e. the number
of elements in the set, and Ī is the complement of I.

Indexing

Given a matrix X, let X(I) and X(I) denote respectively the submatrices resultant
of selecting the rows and columns in the index set I. Given a vector x, x(I) is the
subvector resultant of selecting the elements in the index set I.
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Chapter 2

Gridless methodology based on
Atomic Norm for sparse model
recovery

We consider a continuous set of structured parametric vectors in CJ defined as:

AJ =

{︃
aJ(f) =

1√
J

[︂
ej2πj

⊤
1 f , ej2πj

⊤
2 f , . . . , ej2πj

⊤
J f
]︂⊤

: f ∈ Td
}︃
, (2.1)

where jn with n ∈ [J ] are vectors of dimension d as jn =
[︁
j1n, . . . , j

d
n

]︁⊤ whose
elements jin take values jin ∈ {0, 1, . . . , Ji − 1} with i ∈ [d]. Thus,

⎡⎢⎢⎢⎢⎣
j⊤1
j⊤2
...
j⊤J

⎤⎥⎥⎥⎥⎦ =

⎡⎢⎣j
1
1 · · · jd1
... . . . ...
j1J . . . jdJ

⎤⎥⎦ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 · · · 0 0

0 0 · · · 0 1
... . . . ...

...
0 0 · · · 0 Jd − 1

0 0 · · · 1 0
...

...
...

...
0 0 · · · 1 Jd − 1
...

...
...

...
...

J1 − 1 J2 − 1 · · · Jd−1 − 1 Jd − 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

Then, the structure of the so called atoms aJ(f) belonging to the set AJ is fully
characterized by vector J = [J1, J2, . . . , Jd]

⊤ containing the number of elements per
dimension and the d-dimensional parameter f = [f1, f2, . . . , fd]

⊤ ∈ Td.

This definition of the atom set AJ yields a more compact representation where
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one single atom can be a concatenation of Kronecker products as

aJ(f) =
1√
J

[︂
ej2πj

⊤
1 f , ej2πj

⊤
2 f , . . . , ej2πj

⊤
J f
]︂⊤

=aJ(f1)⊗ aJ(f2)⊗ · · · ⊗ aJ(fd)

=⊗d
i=1 aJ(fi),

(2.2)

with aJ(fi) =
1√
Ji

[︁
1, ej2π1fi , ej2π2fi , . . . , ej2π(Ji−1)fi

]︁⊤ ∈ AJi .

This atom set arises in many scenarios, as it will be seen in next chapters, such
as wireless propagation of electromagnetic waves or in d-D Fourier transform [4]–[6].

In this thesis we deal with signal models x ∈ CJ which are a sparse linear
combination of K atoms in AJ, and the sparsity is coming from the fact that K is
very small if compared to the dimension of the data itself J , i.e K ≪ J :

x =
K∑︂
k=1

ukaJ(fk) = [aJ(f1), . . . , aJ(fK)]u = AJ(f1:K)u (2.3)

where uk ∈ C, aJ(fk) ∈ AJ with k ∈ K, AJ(f1:K) = [aJ(f1), . . . , aJ(fK)] and f1:K
represent the set of frequencies {f1, . . . , fK}, all of them assumed to be different and
containing relevant information on the signal x. Special attention must be given
to the ordering in the Kronecker product in (2.2). Let the notation Jd → Jd−1 →
· · · → J1 denote an ordering such that first goes Jd, then one by one through Jd−1, to
the last J1. Note that this ordering induces a particular indexing in signal x, which
comes from the atoms aJ(fk), k ∈ [K]. The Kronecker ordering can be arbitrary,
which implies that it can be properly chosen.

Particularly we are interested in measurement scenarios such that the measured
signal y ∈ CS is a noisy sampled version of x:

y = Bx+w = B
K∑︂
k=1

ukaJ(fk) +w (2.4)

where w ∈ CS is the measurement noise, and the so–called sampling matrix B is a
binary fat matrix given by

B =
[︁
IS|0S×(J−S)

]︁
Π ∈ {0, 1}S×J (2.5)

where Π is a permutation matrix and S ≤ J . One very clear example of that
measurement scenario is the received signal on an array of antennas where some
of the antennas are not active (see chapter 3). In this scenario the parameter set
f1:K would contain relevant information on the propagation characteristic of the
electromagnetic waves, such as the AoA.

In summary, in this thesis we target the following problem, applied to different
wireless propagation and positioning scenarios:
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Problem 1. Knowing the observed noisy vector y = Bx+w = B
∑︁K

k=1 ukaJ(fk)+

w ∈ CS and knowing the matrix that maps the linear measurements B ∈ CS×J , the
objective is to robustly recover1 the signal data x, the atoms aJ(fk) for k ∈ [K]

alongside with the recovery of the parameter fk.

With this objective in mind the challenge is to gridlessly recover the signal model
x and the atoms aJ(fk) with their parameters fk for k ∈ [K], from the observed signal
y. For doing so, the model x needs to be sparse, i.e. it must follow (2.3). From that,
a new challenge arises that is how to accomplish a sparse model on x by enforcing
a very small number of degrees of freedom in the atom set AJ. Additionally, a
procedure is needed to identify the atoms, {aJ(f1), aJ(f2), . . . , aJ(fK)}, among the
atom set AJ or the frequency set {f1, f2, . . . , fK} that composes x.

Next, we present two definition of norms [30], [31] and the corresponding asso-
ciated optimization problems as a first approach to data signal x recovery.

2.1 Atomic norm definitions and associated opti-
mization problems

We define two norms, analogously to ℓ0 and ℓ1, restricted to the span{AJ} ⊆ CJ

of the atom set AJ. These norms will be denoted as atomic norms (AN) and are
defined below.

Definition 1. Given a J-D vector x, its ℓ0-AN (ℓAJ,0) in AJ is defined as

∥x∥AJ,0
= inf

f∈Td,uk∈C

{︄
K : x =

K∑︂
k=1

ukaJ(fk)

}︄
.

Definition 2. Given a J-D vector x, its ℓ1-AN (ℓAJ,1) in AJ is defined as

∥x∥AJ,1
= inf

f∈Td,uk∈C

{︄
K∑︂
k=1

|uk| : x =
K∑︂
k=1

ukaJ(fk)

}︄
.

Note that the definition of the ℓAJ,0 enforces the sparsest linear combination of
a signal vector x in the atom set AJ, therefore, given the measurement y in (2.4),
we aim at targeting Problem 1 and recover x by solving [1]:

min
x

(1− η) ∥y −Bx∥22 + η ∥x∥AJ,0
(P.1)

1A recovery scheme is said to be robust if the distance between recovered and true signals is
only controlled by the noise power.
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wherein we require that Bx be close (in the ℓ2-norm) to y, while forcing x to be a
sparse linear combination of the atoms in AJ. Here, η ∈ (0, 1) is a parameter ruling
the sparsity of the solution enforced by the ℓAJ,0 AN.

Similarly, using the definition of the ℓAJ,1 we still can enforce a linear combination
of a signal vector x in the atom set AJ, although we cannot ensure that is the
sparsest. Then to approach Problem 1 and recover x we also propose to solve as
follows [1]:

min
x

(1− η) ∥y −Bx∥22 + η ∥x∥AJ,1
(P.2)

wherein we require that Bx be close (in the ℓ2-norm) to y, while forcing x to be a
linear combination of the atoms in AJ with the minimum ℓ1 norm.

Unfortunately, (P.1) and (P.2) present some drawbacks that must be taken into
consideration. Although the solution of any of both optimization problems would
enforce respectivelly the sparsest solution in AJ and the minimum ℓ1 norm in AJ,
we still need to address how to solve on the norms ℓAJ,0 and ℓAJ,1, also there is no
insights on the atoms that build the model, i.e. the solution does not provide a
procedure to recover the composite atoms.

Next, following a similar procedure as the one presented in [31] to solve opti-
mization problems on ℓ0 and ℓ1 norms, we illustrate how the ℓAJ,0 can be computed
by solving a rank minimization problem, and how the ℓAJ,1 can be computed by
solving a nuclear norm minimization problem.

2.2 Rank and nuclear norm optimization to solve
atomic norms

Given a signal as in (2.3) with atoms in AJ we can find a so called a multi–level
Toeplitz (MLT) matrix structure that arises as the signal covariance matrix [22]:

Definition 3. Given the ordered vector J = [J1, . . . , Jd]
⊤ with ordering Jd →

· · · → J1, a J × J d-LT matrix TJ is defined recursively as follows:

TJ =

⎡⎢⎢⎢⎢⎣
T0;J2:d T1;J2:d · · · T(J1−1);J2:d

T†
1;J2:d

T0;J2:d · · · T(J1−2);J2:d
...

...
T†

(J1−1);J2:d
T†

(J1−2);J2:d
· · · T0;J2:d

⎤⎥⎥⎥⎥⎦ (2.6)

Thus, matrix TJ has J1 × J1 blocks Ta;J2:d with 0 ≤ a ≤ J1 − 1. Likewise, each
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block is defined in a recursive way having J2 × J2 sub–blocks:

Ta;J2:d =

⎡⎢⎢⎢⎢⎣
Ta;0;J3:d Ta;1;J3:d · · · Ta;(J2−1);J3:d

T†
a;1;J3:d

Ta;0;J3:d · · · Ta;(J2−2);J3:d
...

...
T†
a;(J2−1);J3:d

T†
a;(J2−2);J3:d

· · · Ta;0;J3:d

⎤⎥⎥⎥⎥⎦ (2.7)

Again, each sub–block Ta;b;J3:d with 0 ≤ b ≤ J2 − 1 would be defined recursively
with J3 × J3 blocks. This procedure repeats until the last level, where each block is
simply a Jd × Jd Hermitian Toeplitz matrix.

For the 1-D scenario, i.e. d = 1, Definition 3 states that TJ1 is a Hermitian
Toeplitz matrix. Result from Carathéodory and Fejér [32] shows that a positive
semidefinite (PSD) rank–deficient Toeplitz matrix with rank{TJ1} = r < J1 can be
uniquely decomposed as TJ1 = AJ1(f1:r)PA

†
J1
(f1:r), being AJ1(f1:r) a J1 × r Vander-

monde matrix whose r columns are atoms in the atom set AJ1 with 1-D frequencies
{f1, . . . , fr} and being P a diagonal matrix with real positive elements, i.e. in R+.
Thus, if a matrix meets the conditions of being a PSD rank–deficient Toeptlitz ma-
trix, it is at the same time the covariance matrix of a mixture of 1-D complex atoms
from AJ1 . In the applications studied in this thesis one dimension is not enough so a
challenge arises, that is, extending the result from [32] to d-D scenarios where d > 1.
In addition, not only the result from [32] must be valid for multidimensional cases
but it is also necessary a Vandermonde–like decomposition, parametrized by a d-D
frequency set {f1, . . . , fr}, that can be applied to a PSD rank–deficient MLT matrix.
Similarly to the 1-D case, for the d-D case, if a matrix is PSD, rank–deficient and
has a MLT structure, it is at the same time the covariance matrix of the mixture
of r d-D atoms from AJ. This challenge was first introduced by [22] and [24] gave
further extension to it.

This thesis will use the Vandermonde decomposition result for a multidimen-
sional block Toeplitz matrix given in [24, Lemma 1, Remark 3]:

Lemma 1. Let TJ ∈ CJ×J be a PSD d-LT matrix with rank r < J . If the rank of the
Jd×Jd upper–left corner of TJ is also equal to r and r < Jd, then, TJ can be uniquely
decomposed via Algorithm 1, as TJ = AJ(f1:r)PA

†
J(f1:r), with f1:r = {f1, f2, . . . , fr} ∈

Td×r, being a unique set of frequencies, AJ(f1:r) = [aJ(f1), aJ(f2), . . . , aJ(fr)] ∈ CJ×r

with aJ(fk) ∈ AJ, being the atom matrix parametrized by the vector of frequencies
f1:r, and P = diag([p1, . . . , pr]), pk ∈ R+ with k ∈ [r].

As mentioned before, the ordering of the Kronecker product in (2.2) and the
induced indexing of the signal as in (2.3) deserve especial attention. Lemma 1 and
its associated Algorithm 1 show the interesting relationship between that Kronecker
ordering of the atoms decomposing the matrix and the nesting ordering of the d-
LT matrix. The d-LT matrix is the input for Algorithm 1 which at the same time
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is the covariance matrix of the signal x whose indexing comes from that Kronecker
ordering, and hence, both orderings are related. Let the ordering of the d-LT matrix
be Jd → Jd−1 → · · · → J1. This forces the output atoms from the decomposition in
Algorithm 1 to follow an identical Kronecker structure Jd → Jd−1 → · · · → J1.

Furthermore, Lemma 1 states that the uniqueness of the Vandermonde decom-
position of the d-LT matrix TJ is in fact given by the dimension of the innermost
Toeplitz block of TJ. At least, it is mini{Ji}, which would be equivalent to the
result in [22, Theorem 1]. Given the aforementioned relation between the Kronecker
structure of the signal and the nesting ordering in the corresponding d-LT matrix,
and recalling that the Kronecker ordering is arbitrary and can be tailored, a proper
ordering of the nesting structure in TJ would yield an innermost block with dimen-
sion maxi{Ji}. This ordering will be called as canonical ordering and it gives a
nesting structure in the d-LT matrix TJ which will be called as canonical structure
and will be the structure considered in this thesis.

Definition 4. A d-LT matrix is said to posses a canonical structure if the vector
J = [J1, . . . , Jd]

⊤, which contains the number of Fourier samples in each of the d
dimensions, has an ordering such that J1 ≤ J2 ≤ · · · ≤ Jd. The matrix set of PSD
canonical d-LT matrix is denoted as T .

We recall next the conditions and procedure to solve ℓAJ,0 and ℓAJ,1 in the noise-
less case, using the results in [24], and from there accordingly reformulate (P.1) and
(P.2).

Without loss of generality, the Kronecker ordering of the atoms in (2.2) will be
always assumed to be such that J1 ≤ J2 ≤ · · · ≤ Jd where Ji, i ∈ [d], is the number
of samples in each of the d dimensions. Although this may not be the original
situation, the reading of the elements of the data signal vector can be performed
accordingly to enforce it. Note that this will ensure that the covariance matrix of
the data signal has a canonical structure as defined in Definition 4 in every situation.
Also, without loss or generality,

Assumption 1. The d-D frequency vectors fk with k ∈ [K] are assumed to be
identically distributed random vectors with independent components uniformly dis-
tributed on [0, 1) such that fik ∼ U [0, 1).

Definition 5. B(K) ⊂ {0, 1}S×J denotes the subset of all binary sampling matrices
as in (2.5) for which it exists a subset of rows of B ∈ {0, 1}S×J , say L ⊆ [S] with
2K < |L| ≤ S such that:

Condition 1. Under Assumption 1, B(L)AJ(f1:2K) is injective as map from
C2K → C|L|;

Condition 2. denoted by f1:K a set of K frequencies satisfying Assumption
1 and by f⋄1:r⋄ an arbitrary set of r⋄ ≤ K frequencies such that for any k ∈ [K]
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and i ∈ [r⋄], f⋄i ̸= fk, rank
{︁
B(L)AJ(f

⋄
1:K+r⋄)

}︁
= K + rank

{︁
B(L)AJ(f

⋄
1:r⋄)

}︁
, with

f⋄1:K+r⋄ =
[︁
f1:K , f

⋄
1:+r⋄

]︁
.

Definition 5 sets the mathematical conditions under which the sampling matrix B

allows unique recovery of the data signal. Next we provide the Theorem that states
the equivalence between optimizing for ℓAJ,0 and a rank minimization problem.

Theorem 1. [24, Th. 1] Consider a measured signal y = Bx = B
∑︁K

k=1 ukaJ(fk)

where the atoms are defined in the atom set domain AJ. Under Assumption 1,
provided that K < maxi∈[d]{Ji}, if B ∈ B(K) as in Definition 5, the sparse model x
in (2.3) and its associated atoms/frequencies f1:K ∈ Td×K can be uniquely identified
by solving the optimization problem

min
r,x∈CJ ,TJ∈T

rank{TJ}

s.t.

[︄
TJ x

x† r

]︄
⪰ 0 y = Bx

(P.3)

where T ⊆ CJ×J denotes the set of all canonical PSD d-LT matrices (Definition 4).
The frequencies f1:K ∈ Td×K can be obtained by Vandermonde decomposition, via
Algorithm 1, of the d-LT matrix TJ solution of (P.3).

It is interesting to note that the constraint

[︄
TJ x

x† r

]︄
⪰ 0 implies that x lies

in the column span of TJ according to the Schur complement lemma. Given that
the optimal solution of (P.3) also ensures unique multi–level Vandermonde decom-
position of the optimal TJ (T◦

J) as in Lemma 1, consequently, the optimal vector
x◦ solving (P.3) must be a linear combination of the atoms taken from AJ, poss-
esing by construction the same nesting order of the sub–blocks composing T◦

J. Also
rank{T◦

J} = r◦ = K.

To solve ℓAJ,1 as a nuclear norm minimization problem we recall next Theorem:

Theorem 2. [24, Th. 3] Consider a measured signal y = Bx = B
∑︁K

k=1 ukaJ(fk)

where the atoms are defined in the atom set domain AJ. The sparse model x in
(2.3) and its associated atoms/frequencies f1:K ∈ Td×K can be uniquely identified by
solving the optimization problem

min
t,x∈CJ ,TJ∈T

1

2
t+

1

2
Tr {TJ}

s.t.

[︄
TJ x

x† t

]︄
⪰ 0 y = Bx

(P.4)

if under Assumption 1, and with B ∈ B(K) as in Definition 5, we have that i) K <

maxi∈[d]{Ji} and that ii) the optimal solution to (P.4) denoted by
(︂
t◦,x◦

ℓAJ,1
,T◦

J

)︂
, also

satisfies r◦ℓAJ,1
< maxi∈[d]{Ji}.
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Again, for the nuclear norm optimization problem, the frequencies f1:K ∈ Td×K

can be obtained by Vandermonde decomposition, via Algorithm 1, of the d-LT
matrix TJ solution of (P.4).

With these two results we can reformulate (P.1) and (P.2) as follows:

min
x

(1− η) ∥y −Bx∥22 + ηrank{TJ}

s.t.

[︄
TJ x

x† r

]︄
⪰ 0

(P.5)

min
x

(1− η) ∥y −Bx∥22 + η

(︃
1

2
t+

1

2
Tr {TJ}

)︃
s.t.

[︄
TJ x

x† t

]︄
⪰ 0

(P.6)

These two optimization problems, particularly the convex relaxation formulation
in (P.6), will be used along this thesis to solve and recover relevant parameters
in signals constructed as a sparse linear combination of atoms in AJ. Similarly
to what was done in (P.3) and (P.4) once we have the optimal solution to (P.6),
the frequencies f1:K ∈ Td×K can be obtained by Vandermonde decomposition, via
Algorithm 1, of the d-LT matrix TJ solution.

2.2.1 Sampling matrices with injectivity properties

The conditions in Definition 5 may appear difficult to be achieved, however, they
can be easily met for some practical sampling schemes B. For that, we need to find
the largest non-trivial atom with structure in AS with S = [S1, . . . Sd] inside the
sampled atom BaJ(f), or equivalently a permutation matrix Πo, such that

BaJ(f)Πo =

[︄
ej2π∆faS(g)

q

]︄
(2.8)

where aS(g) ∈ AS with J ⪰ S, g is any permutation of
[︁
α1f

1, . . . , αdf
d
]︁⊤ with αi a

proper positive integer, ∆ = [∆1, . . . ,∆d] and ∆i ∈ [Ji], i ∈ [d], q ∈ CJ−
∏︁d
i=1 Si . We

define the following parameters LS =
∑︁d

i=1 Si and NS =
∏︁d

i=1 Si, and we identify a
non-trivial atom inside BaJ(f) only in those cases where LS ≥ (d+ 1) or NS ≥ 2.

If we have found the non-trivial atom inside BaJ(f), to meet Definition 5 con-
ditions we need that LS − (d − 1) ≥ 2K [24, Col. 1]. Also therein we can find a
conjecture, under which Definition 5 conditions still holds if NS > 2K.

Along the results presented in this thesis, we will make sure that these conditions
are met in order to ensure perfect frequency recovery in the noiseless case as a
prerequisite for accurate parameter estimation in the presence of noise.
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2.3 Computational complexity

According to [33], an interior point method to solve a semidefinite optimization
problem requires

O
(︁
m(n3 +mn2 +m2)

√
n log(1/ϵ)

)︁
(2.9)

arithmetic operations, where n is the dimension of the variable to be optimized, m
is the number of constraints and ϵ is the accuracy parameter.

Using (2.9), the complexity of either (P.6) or of any convex combination of [22,
Eq. 45] with ℓ2 norm ([22, Eq. 53]) is obtained upon setting n = J and m = 1. The
complexity in all these scenarios is said to be given by O(J3.5).
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Algorithm 1 Vandermonde decomposition of a d-LT matrix
Definitions:
J = [J1, . . . , Jd] and Jt:d = [Jt, . . . , Jd].
AJt:d(f

t:d
1:r) = ⊙d

s=tAJs(f
s
1:r) with t ∈ [d] and:

ft:d1:r = [ft:d1 , . . . , f
t:d
r ], being ft:dk = [ftk, . . . , f

d
k ]

⊤.
AJs(f

s
1:r) = [aJs(f

s
1), . . . , aJs(f

s
r )], being aJs(f

s
k) =

[︁
1, ej2πf

s
k , . . . , ej2π(Js−1)fsk

]︁
.

Input: TJ with rank{TJ} = r.
1) Obtain the Cholesky decomposition of TJ = C1:dC

†
1:d.

Decomposing in the spatial i dimension
for i = 1, ..., d− 1 do

2) Define the sets Ii = {1, . . . , (Ji − 1)
∏︁d

s=i+1 Js} and I+
i = {1 +∏︁d

s=i+1 Js, . . . ,
∏︁d

s=i Js} and Ii+1 = {1, . . . ,
∏︁d

s=i+1 Js}.
3) Find the r × r Ui unitary matrix such that C

(Ii)
i:d Ui = C

(I+
i )

i:d .
4) Obtain the eigen–decomposition Ui = KiJiK

†
i having that Ji =

diag
(︂[︂
ej2πf

′i
1 , . . . , ej2πf

′i
r

]︂)︂
.

5) Set the
∏︁d

s=i+1 Js × r matrix C(i+1):d = C
(Ii+1)
i:d .

end for
6) Define the sets Id = {1, . . . , Jd−1} and I+

d = {2, . . . , Jd}.
7) Find the r × r Ud Unitary matrix such that C

(Id)
d Ud = C

(I+
d )

d .
8) Obtain the eigen–decomposition Ud = KdJdK

†
d having that Jd =

diag
(︂[︂
ej2πf

′d
1 , . . . , ej2πf

′d
r

]︂)︂
.

Frequency pairing
9) Set fd1:r = f ′d1:r = [f ′d1 , . . . , f

′d
r ]

for i = d : d− 1 : 1 do
10) Get Pi =

(︁
AJi:d

(︁
f i:d1:r
)︁)︁g

Ci:dC
†
i:d

(︂
A†

Ji:d

(︁
f i:d1:r
)︁)︂g

11) Get Oi = 1/
√
Pi

(︁
AJi:d

(︁
f i:d1:r
)︁)︁g

Ci:d.
12) Define the paired set

f(i−1):d
1:r =

[︂(︁
f ′i−1
1:r

)︁⊤
,
(︁
f i:d1:rOi

)︁⊤]︂⊤
.

end for
Output: The recovered paired frequencies f1:r, the atom set AJ(f1:r) =

[aJ(f1), . . . , aJ(fr)] and the r × r diagonal matrix P such that TJ =

AJ(f1:r)PA
†
J(f1:r).
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Chapter 3

General model for MIMO
millimeter-wave channels

New paradigms in wireless communications, fifth (5G) and sixth (6G) generations,
demand a huge increase in the systems capacity as well as other requirements such
as multidimensional space awareness or ubiquitous connectivity. This has led to the
development and leverage of a series of technologies to meet those needs, among
which we can find Multiple-Input Multiple-Output (MIMO), carrier aggregation,
advanced channel coding and interference coordination, which are used to deploy
the antenna arrays and achieve the required capacity while meeting the other re-
quirements. Large antenna arrays have been widely explored [34] and are usually
deployed embedded in already existing spaces that have other additional usages,
such as surfaces [25], [35] or smart surfaces [36]. However, despite the importance
of the aforementioned technologies, the current spectrum is saturated which is in-
compatible with the needs of the new paradigms. Therefore, it has led researchers
and technicians to explore alternative and underused bands.

The GSM Association identifies three bands, or frequency ranges, that meet the
needs imposed by the novel paradigms in wireless communications [37]. Starting
from lower frequency to higher frequency, the first proposed range is the band below
1 GHz. This band is aimed to give wide coverage and support in all areas no
matter they are urban, suburban or rural. Additionally, low rate applications such
as Internet of Things (IoT) are also eligible to operate within this band. Next, the
frequencies from 1 to 6 GHz are intended to give service to emerging utilities such
as intelligent transport including self-driving cars. Last, frequencies above 6 GHz
and specially the millimeter-wave (mmWave) range, which goes from 30 GHz to 300
GHz [38], [39], will support ultra-high broadband services, e.g. augmented reality,
or high resolution positioning systems. The latter range is the one that meets the
requirements mentioned above and will be studied in this work.

Although it may seem that the use of mmWave bands has only advantages, the
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Chapter 3. General model for MIMO millimeter-wave channels

truth is that its nature present severe propagation drawbacks which implies many
challenges. One well-known characteristic of propagation in mmWave channels is
the extremely high free-space path loss due to 10× increase in carrier frequency
if compared to traditional microwave systems. Fortunately, the very same reason
makes multidimensional antenna arrays achievable given that the increase in carrier
frequency implies a decrease in wavelength which allows to deploy smaller antennas
creating small sized arrays. Those arrays can then mitigate the inherent path loss
in mmWave channels via MIMO multiplexing and diversity gains.

The aforementioned path loss experienced in mmWave band systems is worsened
by any obstacle the signal may encounter, e.g. rain, foliage, buildings, walls, specular
reflections or scattering, etc, and also by other phenomena such as atmospheric
absorption. For the sake of illustration, at 30 GHz (mmWave range lower bound)
and at a distance of 100 m, the path loss can be over 102 dB which is a pronounced
loss. Furthermore, frequencies around 60 GHz and 180 GHz suffer from atmospheric
absorption effects which may cause an extra attenuation of 10 dB/km. All of this
often results in a small number of propagation paths between both ends of the
communication, i.e. low angular spreads both in azimuth and elevation [39] and
delay-spreads below 10 ns in outdoor urban environments [38], [40], and below 20
ns in indoor environments [41]. The scarcity of propagation paths between the
transmitter side and the receiver side leads to sparse channel models described in
[42].

Thus, large MIMO arrays can be leveraged to mitigate all the path loss effects
inherent to mmWave systems. Additionally, due to the sparsity of the model, low
complexity designs can be achieved.

The aim of this chapter is to define a general model for a point-to-point MIMO
mmWave propagation channel system with M transmit antennas and N receive
antennas. The model can be easily tailored for multi-user scenarios, if needed. All
the applications studied in this thesis will share the channel model defined herein,
which will be particularized for each of the scenarios. The geometry of MIMO arrays
vary within a wide range, they can go from i) uniform arrays where antennas are
deployed with a fixed separation in each dimension, ii) they can have a “uniform
array”-like shape with some missing elements, e.g. 3-D arrays usually do not deploy
antennas in the inside of the volume, or iii) they can have fully arbitrary shapes
along the 3-D space, as for example Large Intelligent Surfaces (LIS) [36] or conformal
array deployments [3]. Having uniform arrays in 3-D antenna deployments is rare
given that they typically will have to adapt to surfaces. In this thesis, non-uniform
arrays with a “uniform array”-like shape are studied, where basically the actual array
is a sampled version of a virtual or larger uniform array.
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3.1. Steering vectors for multidimensional arrays

3.1 Steering vectors for multidimensional arrays

Propagation in wireless communications is partly characterized by the transmit and
receive antenna steering vectors tM(ϑ, ϕ) ∈ CM and rN(θ, φ) ∈ CN , that respec-
tively depend on the angle of departure (AoD) azimuth and elevation (ϑ, ϕ) ∈(︁
[0, 2π],

[︁
−π

2
, π
2

]︁)︁
and on the angle of arrival (AoA) azimuth and elevation (θ, φ) ∈(︁

[0, 2π],
[︁
−π

2
, π
2

]︁)︁
and provide information about the phase response of the array

for every propagation angular direction. The structure of the transmit and receive
steering vectors depend on the number of antennas M and N and on the normalized
positions of the radiating elements, denoted by qm = [qxm, q

y
m, q

z
m]

⊤ with m ∈ [M ] for
the transmit elements and vn = [vxn, v

y
n, v

z
n]

⊤ with n ∈ [N ] for the receive elements
in the 3-D space.

Antenna array deployments have at most 3 dimensions, i.e. d ∈ {1, 2, 3} being
d the number of dimensions. A linear array is the 1-D case where only propaga-
tion in the azimuth direction is relevant. The 2-D scenario is a planar array where
hemispherical propagation is significant and finally, in the 3-D case, spherical prop-
agation is considered. The coordinate system is arbitrary and thus the axes can be
placed properly. Without loss of generality, the coordinate axes are defined such
that in 1-D deployments, only the Z axis is considered, in 2-D, Y and Z axes are
considered and in 3-D the three X, Y and Z axes are accounted. Thus, the antenna
positions for a d-D deployment are

qm =

⎧⎪⎪⎨⎪⎪⎩
[qzm]

⊤ if dt = 1

[qym, q
z
m]

⊤ if dt = 2

[qxm, q
y
m, q

z
m]

⊤ if dt = 3

vn =

⎧⎪⎪⎨⎪⎪⎩
[vzn]

⊤ if dr = 1

[vyn, v
z
n]

⊤ if dr = 2

[vxn, v
y
n, v

z
n]

⊤ if dr = 3

(3.1)

where dt and dr are the particularized number of dimensions at the transmitter and
receiver respectively.

Let c(α, ε) be the general propagation vector in a d-D deployment, either at the
transmitter or the receiver side with azimuth angle α and elevation angle ε:

c(α, ε) =

⎧⎪⎪⎨⎪⎪⎩
[cz1(α, ε)]

⊤ = 2π [cosα]⊤ if d = 1

[cy1(α, ε), c
z
2(α, ε)]

⊤ = 2π [sinα sin ε, cosα]⊤ if d = 2

[cx1(α, ε), c
y
2(α, ε), c

z
3(α, ε)]

⊤ = 2π [sinα cos ε, sinα sin ε, cosα]⊤ if d = 3

(3.2)
where α ∈ [0, 2π] and ε ∈

[︁
−π

2
, π
2

]︁
. Note that a linear or a planar array can also

be represented as a 3-D structure but the normalized positions of the m-th antenna
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Chapter 3. General model for MIMO millimeter-wave channels

would be, for the linear array, qm = [0, 0, qzm]
⊤, i.e. only has antennas in the Z axis,

and for the planar array, qm = [0, qym, q
z
m]

⊤, i.e. Y and Z axes.

The corresponding phases seen by the m-th and n-th antennas are given by:

Ψm(ϑ, ϕ) = q⊤
mc(ϑ, ϕ)

Φn(θ, φ) = v⊤
n c(θ, φ)

(3.3)

Thence, the steering vectors respectively at the transmitter and receiver can be
represented as

tM(ϑ, ϕ) =
[︁
ejΨ1(ϑ,ϕ), . . . , ejΨM (ϑ,ϕ)

]︁⊤
rN(θ, φ) =

[︁
ejΦ1(θ,φ), . . . , ejΦN (θ,φ)

]︁⊤ (3.4)

The steering vectors in (3.4) can be simplified for uniform arrays scenarios. Fur-
thermore, the steering vector of a general non-uniform array can be equivalently
represented by a sampled version of the steering vector of a virtual uniform array
via a proper sampling/sensing measuring matrix. This will be shown later in the
following sections.

3.2 Steering vector for uniform d-D arrays

Uniform d-D antenna arrays deploy equally spaced radiating elements along all the d-
D space. Thus, the number of total antenna elements at each side of the communica-
tion link is the product of the number of antennas in each dimension, which we name
respectively Mi with i ∈ [dt] and Ni with i ∈ [dr], i.e. Mu =

∏︁dt
i=1 Mi at the transmit-

ter and Nu =
∏︁dr

i=1 Ni at the receiver, where dt and dr are the number of dimensions
at the transmitter and receiver, respectively. The uniform structures can be identi-
fied with vectors M = [M1, . . . ,Mdt ]

⊤ and N = [N1, . . . ,Ndr ]
⊤ respectively for both

transmitter and receiver. In uniform deployments the antennas take fixed positions
based on the uniform spacing, which are given by qm =

[︁
m1
mδ

1, . . . ,mdt
mδ

dt
]︁⊤ with

mi
m ∈ {0, 1, . . .Mi−1} and δi being the antenna spacing in dimension i, with i ∈ [dt],

at the transmitter side for the m-th antenna. Similarly at the receiver, the position
of the n-th antenna is given by vn =

[︁
n1nρ

1, . . . , ndrn ρ
dr
]︁⊤ with nin ∈ {0, 1, . . .Ni − 1}

and ρi being the antenna spacing in dimension i, with i ∈ [dr].

Next, consider the normalized frequency vectors g ∈ Tdt and f ∈ Tdr that con-
tain, respectively, the information on the AoD (transmitter) and AoA (receiver)
azimuth and elevation. Note that the elements of g and f are defined within the
unit circle T, so the 1-modulus operator is computed in each of the dimensions as

g = [g1, . . . , gdt ]⊤ = [mod (δ1c1(ϑ, ϕ), 1) , . . . ,mod (δdtcdt(ϑ, ϕ), 1)]
⊤

f = [f1, . . . , fdr ]⊤ = [mod (ρ1c1(θ, φ), 1) , . . . ,mod (ρdrcdr(θ, φ), 1)]
⊤ (3.5)
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3.3. Sparse MIMO channel model with non-uniform d-D antenna
deployment

where ci is the i-th element of the generic phase response vector c defined in (3.2).

The normalized positions of the m-th and n-th antennas are defined as mm =[︁
m1
m, . . . ,m

dt
m

]︁⊤ and nn =
[︁
n1n, . . . , n

dr
n

]︁⊤. Then, developing the general steering
vectors in (3.4), the steering vectors tM(g) and rN(f), labelled respectively using the
vectors M and N that identify the uniform structure, are obtained as

tM(g) =
1√
Mu

[︂
ej2πg

⊤m1 , ej2πg
⊤m2 , . . . , ej2πg

⊤mM
]︂⊤

= ⊗dt
i=1tMi

(gi)

rN(f) =
1√
Nu

[︂
ej2πf

⊤n1 , ej2πf
⊤n2 , . . . , ej2πf

⊤nN
]︂⊤

= ⊗dr
i=1rNi(f

i)

(3.6)

where, for the i-th dimension, tMi
(gi) = 1√

Mi

[︂
1, ej2πg

i
, ej2π2g

i
, . . . , ej2π(Mi−1)gi

]︂⊤
at

the transmitter side, and rNi(f
i) = 1√

Ni

[︂
1, ej2πf

i
, ej2π2f

i
, . . . , ej2π(Ni−1)fi

]︂⊤
at the re-

ceiver.

3.3 Sparse MIMO channel model with non-uniform
d-D antenna deployment

As mentioned above, we focus on non-uniform antenna deployments that can be
represented by a sampled version of a so called virtual uniform array via a proper
sampling/sensing measuring matrix. Thus, a non-uniform deployment is a more
general scenario than a uniform array.

Let the virtual uniform array at the transmitter be characterized by the steering
vector tM(g) ∈ CMu , where M is the vector containing the number of antennas in
each of the dimensions and Mu is the total number of transmit antennas in the
virtual uniform array. Equivalently, let rN(f) ∈ CNu be the steering vector of the
virtual uniform array at the receiver, where N is the vector containing the number
of antennas in each of the dimensions and Nu is the total number of receive antennas
in the virtual uniform array. Thus, the sampled non-uniform antenna deployment
with M transmit antennas and N receive antennas is characterized by the following
two steering vectors, respectively for the transmitter and receiver:

tM(f) = BttM(g)

rN(f) = BrrN(f)
(3.7)

where Bt ∈ {0, 1}M×Mu and Br ∈ {0, 1}N×Nu are binary fat matrices, i.e. M ≤Mu

and N ≤ Nu, whose element bij equals 1 if the uniform array element j ∈ [Mu] (or
j ∈ [Nu] for the receiver) is included as the sampled array element i ∈ [M ] (or i ∈ [N ]

for the receiver), and bij = 0 otherwise. Thus, sensing matrices Bt ∈ {0, 1}M×Mu and
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Chapter 3. General model for MIMO millimeter-wave channels

Br ∈ {0, 1}N×Nu must effectively remove antenna elements from the virtual uniform
array and must ensure that the elements from the uniform array are mapped only
once into the sampled array. The sensing or sampling matrices must then have at
most one 1 per column and row, having all-zero columns in the positions of the
elements that are not included in the sampled array. This yields some restrictions
to the sensing matrices: Bt =

[︁
IM ,0M×(Mu−M)

]︁
Π, with Π being a permutation

matrix, all being equivalent at the receiver. Note that this definition is also valid for
uniform structures where the sampling matrices are identity matrices, i.e. Bt = IM
for the transmitter array and Br = IN for the receiver deployment, given that all
antennas from the virtual uniform array are included into the real array.

x̂

ŷ

ẑ

δz2
δy1

(a)

x̂

ŷ

ẑ

δz2
δy1

(b)

x̂

ŷ

ẑ

δy2

δx1

δz3

(c)

Fig. 3.1. Examples of non-uniform deployments sampled from virtual uniform arrays at the
transmitter side. (a) A 2-D deployment with M = 4 antennas sampled from a
virtual uniform array of M = [2, 4]. (b) A 2-D deployment with M = 4 antennas
sampled from a virtual uniform array of M = [3, 4]. (c) A 3-D deployment with
M = 20 antennas sampled from a virtual uniform array of M = [3, 3, 3]. Filled
antennas are sampled and blank antennas are filtered out from the virtual uniform
array.

In Fig. 3.1 there are some examples of non-uniform deployments sampled from a
virtual uniform array where sampled antennas are filled whereas removed or filtered
antennas are blank. The examples are at the transmitter side, but examples of
receive deployments would be equivalent. Note how different uniform arrays can
be sampled accordingly to obtain the same sampled non-uniform deployment as it
is the case for Fig. 3.1(a) and Fig. 3.1(b). In Fig. 3.1(a), a virtual uniform 2-
D structure with M = [2, 4] is sampled to obtained non-uniform deployment with
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3.3. Sparse MIMO channel model with non-uniform d-D antenna
deployment

M = 4 antennas. The sampling procedure is the following:

tM(g) = BttM(g)

⎡⎢⎢⎢⎣
ej2πf

z

ej2π2f
z

ej2πf
y

ej2π(f
y+3fz)

⎤⎥⎥⎥⎦
⏞ ⏟⏟ ⏞

tM (g)

=

⎡⎢⎢⎢⎣
0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 1

⎤⎥⎥⎥⎦
⏞ ⏟⏟ ⏞

Bt

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1

ej2πf
z

ej2π2f
z

ej2π3f
z

ej2πf
y

ej2π(f
y+fz)

ej2π(f
y+2fz)

ej2π(f
y+3fz)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
⏞ ⏟⏟ ⏞

tM(g)

(3.8)

For the applications studied in this thesis a narrowband stationary mmWave
propagation scenario with M antennas at the transmitter and N antennas at the
receiver is considered [42]. Letting dt and dr be the number of dimensions respec-
tively at transmitter and receiver, where both dt ≤ 3 and dr ≤ 3, the channel matrix
H ∈ CN×M is then modeled as

H =
K∑︂
k=1

γkrN(fk)t
†
M(gk)

= RN(f1:K)GT†
M(g1:K)

= BrRN(f1:K)GT†
M(g1:K)B

†
t

= BrHuB
†
t

(3.9)

where K is the number of propagation paths, gk ∈ Tdt and fk ∈ Tdr are the nor-
malized frequency vectors that respectively contain the information on the AoD
and AoA of the k-th propagation path, γk ∈ C is the gain of the k-th multipath,
G = diag([γ1, . . . , γK ]

⊤) = diag(γ) ∈ CK×K , TM(g1:K) = [tM(g1), . . . , tM(gK)] ∈
CM×K and RN(f1:K) = [rN(f1), . . . , rN(fK)] ∈ CN×K are the matrices containing
the steering vectors of the sampled array at the transmitter and receiver, respec-
tively. Similarly, the steering vectors of the virtual uniform array at the transmit-
ter and receiver are TM(g1:K) = [tM(g1), . . . , tM(gK)] ∈ CMu×K and RN(f1:K) =

[rN(f1), . . . , rN(fK)] ∈ CNu×K , and Bt ∈ {0, 1}M×Mu and Br ∈ {0, 1}N×Nu are the
sensing matrices that lead to non-uniform array antenna deployments.
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Chapter 3. General model for MIMO millimeter-wave channels

Channel matrix H can be vectorized as
h = vec(H)

= (Bt ⊗Br) vec(Hu)

= (Bt ⊗Br)
K∑︂
k=1

γkt
∗
M(gk)⊗ rN(fk)

= (Bt ⊗Br)
K∑︂
k=1

γkuL(lk)

= (Bt ⊗Br)UL(l1:K)γ

= (Bt ⊗Br)hu

(3.10)

where dl = dt + dr, L = [M⊤,N⊤]⊤ = [M1, . . . ,Mdt ,N1, . . . ,Ndr ]
⊤ = [L1, . . . , Ldl ]

⊤,
lk =

[︁
−g⊤

k , f
⊤
k

]︁⊤ ∈ Tdl , and considering Lu = MuNu, then hu =
∑︁K

k=1 γkuL(lk) ∈
CLu .

3.4 Measurement scenarios

The different challenges that arise in each of the applications studied in this the-
sis differ mainly on both the information that is accessible and the information
that has to be recovered. Every application shares the definition of the MIMO
mmWave channel posed in (3.9) where the sampling matrices Bt ∈ {0, 1}M×Mu and
Br ∈ {0, 1}N×Nu are used to sample a uniform structure into a non-uniform antenna
deployment as depicted in Fig. 3.1.

3.4.1 Single Measurement Vector

Let a signal vector s ∈ CM be transmitted over a channel H ∈ CN×M with M

antennas at the transmitter and N antennas at the receiver. In this case, only
one vector s ∈ CM is transmitted and thus, only one observation is received and
processed, which yields to a Single Measurement Vector (SMV) scenario where the
received measurement vector is given by

y = Hs+w

= BrRN(f1:K)GT†
M(g1:K)B

†
ts+w

(3.11)

where w ∈ CN is additive white circular-symmetric complex Gaussian noise with
independent zero-mean components and σ2

w variance.

3.4.2 Multiple Measurement Vector

Next, consider the approach of Multiple Measurement Vector (MMV) where a set
of P observations is received Y = [y1, . . . ,yP ] ∈ CN×P and processed jointly after

24



3.5. Applications

a signal sequence S = [s1, . . . , sP ] ∈ CM×P is transmitted.

Y = HS+W

= BrRN(f1:K)GT†
M(g1:K)B

†
tS+W

(3.12)

where W ∈ CN×P is additive white circular-symmetric complex Gaussian noise with
independent zero-mean components and σ2

w variance.

From the vectorized version of the channel in (3.10), the received MMV signal
can be vectorized as

y = vec(Y)

=
(︁
S⊤ ⊗ IN

)︁
(Bt ⊗Br)UL(l1:K)γ +w

=
(︁
S⊤ ⊗ IN

)︁
(Bt ⊗Br)hu +w

(3.13)

where w = vec(W) ∈ CPN and hu ∈ CLu is the vectorized parametric channel.

3.5 Applications

This section will cover the challenges that arise in the studied applications. From
SMV and MMV formulas in (3.11), (3.12) and (3.13), the specific problems for each
of the applications will be derived.

The steering vector formulation for a uniform d-D structure can be generalized
from that on (3.6). Note that if the array is uniform, the steering vector, either
at the transmitter or at the receiver if fully characterized by only two parameters:
the vector containing the number of antennas in each dimension and the frequency
parameters. Thus, at transmitter side, tM(gk) is fully characterized by the vector
M and the frequency parameters gk, with k ∈ [K] and, in the same way, at receiver
side, rN(fk) is fully characterized by vector N and the frequency parameters fk, with
k ∈ [K]. This allows to redefine a generic steering vector which is valid for both
ends of the communication:

aJ(fk) =
1√
J

⎡⎢⎣e
j2πj⊤1 fk

...
ej2πj

⊤
J fk

⎤⎥⎦ (3.14)

where J = [J1, . . . , Jd]
⊤ is a generic vector containing the number of antennas in each

of the d dimensions and J =
∏︁d

i=1 Ji. The generic vector J can be particularized
as M for the transmitter and as N for the receiver. Also, consider the matrix
AJ(f1:K) = [aJ(f1), . . . , aJ(fK)] as the concatenation of all K steering vectors.

3.5.1 Applications using SMV

Application to automotive pulse radar in mmWave (see chapter 5) and to low com-
plexity hybrid precoder design in mmWave (see chapter 6) when no complexity
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constrain is imposed can be considered as a SMV scenario, where we basically have
an observation as

y = BAJ(f1:K)u+w (3.15)

where the different parameters B, J, f and u will be particularized for each appli-
cations, and w is Gaussian noise with independent zero-mean and σ2

w variance.

Automotive pulse radar

In the case of pulse radar we want to extract relevant information at the receiver from
an unknown signal s ∈ CM which is transmitted over the parametric channel H ∈
CN×M . This yields a received measurement signal y ∈ CN as in (3.11). Processing
the observed vector y ∈ CN , the objective is to extract the unknown parameters
of the channel {f1, . . . , fK}, which contain information about the AoA azimuth and
elevation angles (θ, φ) of the received signal, and also delay and Doppler shift which
allow an estimate of distance and velocity.

Since only the reception parameters are to be recovered, from (3.11) the observed
vector y ∈ CN can be reformulated as:

y = BrRN(f1:K)GT†
M(g1:K)B

†
ts⏞ ⏟⏟ ⏞

u

+w

= BrRN(f1:K)u+w

= BrAN(f1:K)u+w

(3.16)

where the unknown information on the transmission parameters {g1, . . . , gK}, the
gain matrix G ∈ CK×K and transmitted signal s ∈ CM is gathered into the unknown
vector u ∈ CK . Thus, the known information in (3.16) is the shape of the array,
which includes the knowledge of vector N and matrix Br ∈ {0, 1}N×Nu , the observ-
able received vector y ∈ CN and the structure of the steering vectors of the virtual
uniform array AN(f1:K) ∈ CNu×K . Conversely, the unkowns are the vector u ∈ CK

containing the information on the gains and transmission, the noise w ∈ CN and
the parameters/frequencies of the channel {f1, . . . , fK} ∈ Tdr which contains infor-
mation on the AoA. distance and velocity and are the input of the steering vector
matrix.

By solving (P.5) or (P.6) the dr-LT matrix TN is obtained. From that, Algorithm
1 is applied on TN to recover the channel parameters {f1, . . . , fK} which contain the
relevant information about the received signal.

Low complexity hybrid precoder design

For the hybrid precoder design, we explore the structure of an optimal precoder
unveiling a measurement of a linear combination of atoms, due to the nature of the
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mmWave channel in (3.9). This allows us to design a hybrid precoder following a set
of SMV where the observations are the columns of the optimal precoder, which we
assume accessible, and the objective is to retrieve the parameters that characterize
the atoms so that a hybrid precoder can be built that approximates as much as
possible to the optimal.

3.5.2 Applications using MMV

For the applications mentioned above we also study MMV scenarios that arise when
we impose a complexity constrain. For example, in the radar application, we may
want to divide the samples in one of the dimensions into several groups generating
a MMV with which the optimization proposed in (P.6) is adapted in chapter 5 to
solve for all the measurements at once. Similarly, for the hybrid precoder application
we may want to find the parameters that characterize the atoms jointly for all the
columns of the precoder at once. In this case, we have a MMV, i.e. one measurement
vector for each column of the precoder, and also (P.6) is adapted in chapter 6 for
the multiple measurement case.

Full Channel estimation using atomic norm

The last application of the thesis also follows a MMV scenario. Here, a known se-
quence of pilots P ∈ CM×P is transmitted over the channel and a set of observations
is received as Y = [y1, . . . ,yP ] ∈ CN×P . Using the formulation in (3.13) of the
vectorized received signal we have that

y = vec(Y)

=
(︁
P⊤ ⊗ IN

)︁
(Bt ⊗Br)UL(l1:K)γ +w

= QUL(l1:K)γ +w

= QAL(l1:K)γ +w

= Qhu +w

(3.17)

where Q =
(︁
P⊤ ⊗ IN

)︁
(Bt ⊗Br) ∈ CNP×MuNu is a known matrix containing the

information on the transmitted pilots and on the non-uniform array structures.
By solving (P.5) or (P.6) and then applying Algorithm 1 on the obtained dr-LT
matrix TL, the channel parameters {l1, . . . , lK} which contain the information on
the AoD and AoA can be recovered alongside with the channel fading coefficients
γ = [γ1, . . . , γK ]

⊤ which allows full channel estimation.
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Chapter 4

Machine Learning approach for
estimation of number of composite
atoms

Ideally, in the noiseless case, the rank of the data signal covariance matrix TJ ∈
CJ×J , which results from the optimization problems (P.3) and (P.4), should be
equal either to the number of composite atoms K if K < J , or equal to J in the
other case. Furthermore, given the conditions of Theorems 1 and 2 we seek that the
matrix is rank deficient having rank{TJ} = r = K < J . With that we would ensure
unique signal and frequency recovery. However, there are several scenarios where
this rank condition would not hold:

• In the noiseless case, for the convex relaxation approach (P.4) and depending
on the frequency realization: indeed, depending on the frequency realization
(rarely), solving (P.4) provide a solution such that the number of relevant
eigenvalues of TJ are larger than K and therefore rank{TJ} > K. This would
be an scenario where unique recovery of the frequencies and signal cannot be
assured, and that is the reason why a rank condition is explicitly added in
Th. 2. If all conditions hold in Th. 2, we can assure that rank{TJ} = r =

K < J [24].

• In the noiseless case, both for (P.3), (P.4): numerical inaccuracies of the solver
used (in our case in Matlab) lead to rank{TJ} = J . However, from observation,
there are clearly K eigenvalues different from zero, and the rest are extremely
close to zero.

• The presence of noise provide rank{TJ} = J , despite there maybe a number
close to K of relevant eigenvalues from the matrix decomposition.

Note that in any of these scenarios, a problem arises in the sense that rank{TJ},
along with the matrix TJ itself, are the input to Algorithm 1 and will tell the
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algorithm how many frequencies fk, k ∈ [rank{TJ}] must recover. Therefore, it is
of high interest to have the best estimation of K taking only into account the most
relevant eigenvectors from the decomposition of TJ.

The rank of a matrix can be defined as the number of non-zero eigenvalues with
the i-th eigenvalue denoted as λi ∈ R, i ∈ [J ]. Thus, although the number of
non-zero eigenvalues is expected to be equal to K, in the aforementioned scenarios
we may find that matrix TJ is full-rank, i.e. rank{TJ} = J , which will make
impossible for Algorithm 1 to decompose the exact number of desired parameter
sets. Fortunately, in those scenarios where the first K eigenvalues {λ1, . . . , λK} are
dominant, i.e. much larger than the rest, and eigenvalues {λK+1, . . . , λJ} are close
to 0, we can consider the latest eigenvalues as spurious and therefore discard them.

In this chapter, a Machine Learning (ML) approach is proposed to identify the
relevant eigenvalues. Basically, the problem consists in estimating the number of
dominant eigenvalues from the set of eigenvalues by training a model that learns
when an eigenvalue is dominant and when an eigenvalue can be considered as spuri-
ous. Thus, the output of that model, K̂, is an estimate of the number of composite
atoms.

4.1 Problem setup and data gathering

For this problem, we will consider a Single Measurement Vector (SMV) as in (3.16)
where we receive a number of echoes in a d-D antenna deployment with J antennas
and Jx, Jy and Jz antennas in the abscissa, ordinate and applicate axes respec-
tively which will be vectorized as J = [Jx, Jy, Jz]

⊤ = [J1, . . . , Jd]
⊤. Without loss

of generality, we assume a canonical ordering as explained in chapter 2 such that
J1 ≤ · · · ≤ Jd.

We assume a uniform antenna deployment with which the received signal can be
formulated as

y = AJ(f1:K)u+w, (4.1)

where the unknowns are the number of echoes K, the frequency set f1:K , the signal
u ∈ CK and, of course, the noise w ∈ CJ .

From this measurement, the d-LT matrix TJ ∈ CJ×J is obtained via the convex
optimization problem in (P.6), and we assume that conditions in Theorem 2 apply.
Also, due to the canonical ordering imposed in vector J, this matrix will have a
Kronecker structure such that Jd → Jd−1 → · · · → J1.

Thence, matrix TJ ∈ CJ×J will be decomposed to extract its eigenvalues. In
favorable scenarios with sufficient SNR, there will be K dominant eigenvalues and
the rest being very close to 0. Conversely, for non favorable scenarios with very
limited SNR the spurious eigenvalues can be very close to the dominant ones making
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almost impossible to distinguish them.
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Fig. 4.1. Examples of the first 15 ordered and normalized eigenvalues of TJ with J =

[3, 5, 6]⊤ for (a) a favorable scenario with K = 3 and SNR = 20dB and (b) a non
favorable scenario with K = 2 and SNR = 0dB.

In Fig. 4.1, examples of the 15 first normalized eigenvalues of TJ, with J =

[3, 5, 6]⊤, are depicted for two very different scenarios. Normalized eigenvalues are
denoted as λ̄i with i ∈ [J ], and they standardize the dataset forcing the first normal-
ized eigenvalue to be always λ̄1 = 1. Fig. 4.1(a) is a favorable scenario with K = 3

and SNR = 20dB whereas Fig. 4.1(b) is a non favorable scenario with K = 2 and
SNR = 0dB. Note how in Fig. 4.1(a) we can clearly identify 3 dominant eigenvalues
corresponding to the actual value of K = 3, however, in Fig. 4.1(b), we see two
clear dominant eigenvalues but we also see a third one which is greater than 0. At
simple sight, one can identify the dominant λ̄1 and λ̄2 in Fig. 4.1(b) and discard
the spurious λ̄3, but doing it automatically is of high interest and require a machine
that learns from a set of examples. It is important to note that in both scenarios,
λ̄4:J are close but not exactly 0, causing matrix TJ to be full-rank. Therefore, the
objective is to successfully identify the number of dominant eigenvalues, K̂, given
a complete set of eigenvalues of TJ. Thence, with eigenvalues λ̄1:K̂ , matrix TJ is
truncated accordingly before plugging it into Algorithm 1 along with the estimate
K̂ itself.

4.2 Data preparation

The first step is to gather sufficient amount of data to train a Machine Learning
model. For that we generate synthetic data by running a set of simulations for a
3-D scenario with uniform deployment at the receiver with J = 90 receive antennas
and J = [Jx, Jy, Jz]

⊤ = [J1, J2, J3]
⊤ = [3, 5, 6]⊤, i.e. Jx = 3, Jy = 5 and Jz = 6, as the
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Variable Set of values

K {1, 2, 3, 4, 5}
SNR (dB) {−10,−3,−2,−1, 0, 1, 2, 3, 5, 10, 15, 20, 25, 30, 50, 75, 100, 500}
f1:K and u

samples
100 different samples

Noise w

samples
100 different samples

TABLE 4.1. SCENARIO PARAMETERS FOR DATA
GATHERING.

one used in Fig. 4.1. The simulations run different scenarios with the parameters
described in Table 4.1. Therefore, for each SNR value we have 50000 examples
which yields a dataset with a total of 900000 examples. The model should be
able to discern the dominant λ1:K̂ in a varied set of conditions which are covered
with these simulation parameters. Note that the array structure at the receiver,
J, is known and is also assumed, without loss of generality, to possess a canonical
ordering. With this information we know that the receiver can only decompose at
max 5 propagation paths, given that maxi{Ji} = 6. Thus, the estimated number of
echoes K̂ is bounded in the set {1, 2, 3, 4, 5} which is the reason why only K ∈ [5]

are simulated.

Also, as mentioned previously, the set of eigenvalues is normalized so that λ̄1 = 1.
This prevents having undesired variance among different conditions and standardizes
the sets of eigenvalues helping the models learn the patterns.

Once the data is gathered we have sufficient information to train a supervised
model. The input data for the model is denoted as Xin and the output or labeled
data, yout:

• Xin ∈ R900000×90 are the examples of the set of J = 90 eigenvalues of matrix
TJ for each of the simulation runs.

• yout ∈ [5]900000 is the ground truth for the model, i.e. the true K for each of
the simulation runs.

Since the structure of the antenna array is known, it is important to note that
the model can be trained offline with this data. Then, predictions can be made
later in an online manner with an already prepared model for the specific antenna
deployment.

This problem can be modeled as a regression scenario where we try to approx-
imate a mapping function (f) that maps input data (Xin) to output data (yout)
where yout takes discrete values. Note that for regression models, the output ŷout
would be a single number which will have to be approximated to the closest value
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in the set {1, 2, 3, 4, 5} to find the final solution, i.e.

K̂ =arg min
i∈[maxl{Jl}−1]

∥ŷout − i∥22

=argmin
i∈[5]

∥ŷout − i∥22 .
(4.2)

However, since the structure of the receive array is known and thence we know
the maximum number of echoes that our system can detect, i.e. K ∈ [5], the
problem can also be approached as a multiclass or multinomial classification. We
can transform the output into 5 different classes and try to approximate a function
f that maps input data Xin to one single output class in yout. Thus, this is one
of those special cases where regression and classification models overlap. We will
compare the performance of a number of models, both regression and classification,
to finally propose one of them to solve the problem.

With the data collected, the split in train and test sets is done carefully in a way
that it is made independently for every SNR value in Table 4.1. This is done so that
both train and test sets have examples of every noise scenario. Therefore, once the
split is done separately for every value of SNR, the pieces are joined together to have
a single train dataset (Xtrain and ytrain) and a single test dataset (Xtest and ytest).
The split is done with percentages 80% training data and 20% test data.

4.3 Proposed models

Next, a set of models are tested and compared in terms of their performance. The
training is done following a 3-fold cross-validation over the training set to avoid
overfitting and performing a grid search of hyperparameters in those models that
accepts them, selecting the best option.

First, we have a set of regression models:

• Linear regression, where the mean square error of a linear function that
maps Xtrain to ytrain is minimized [43].

• XGBoost Regressor or Extreme Gradient Boosting for regression. This is an
ensemble based on decision trees where the MSE is minimized using gradient
descent [44]. The hyperparameter tuning in training/validation stage yielded
20 estimators, a maximum tree depth of 4 and a learning rate of 0.1.

• Fully connected neural network regression. We test several topologies
with different number of hidden layers with different sizes as depicted in Fig.
4.2(a) where the output layer is activated with a linear function. The best
topology found in training/validation stage has 3 hidden layers of sizes 200,
50 and 10.
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Fig. 4.2. Fully connected neural network topologies. In (a) a regression network with J

inputs and only one output and in (b) a multiclass classification with J inputs
and 5 outputs activated with a softmax function.

And then a set of classification models:

• Multinomial Naive Bayes classification. A very computational efficient
algorithm based on Bayes theorem. Often used as a benchmark due to its
efficiency [45].

• XGBoost Classification or Extreme Gradient Boosting for classification.
This is an ensemble based on decision trees where the accuracy is minimized
using gradient descent. This works very similarly to the XGBoost Regres-
sor [44]. The hyperparameter tuning in training/validation stage yielded 20
estimators, a maximum tree depth of 4 and a learning rate of 0.1.

• Multinomial logistic regression. An extension to Logistic Regression,
where binary classification is supported via a binomial . This predicts a multi-
nomial probability, i.e. one probability value for each of the output classes
[46]. The hyperparameters for the model are: ℓ2 penalty term, and a L-BFGS
solver [47].

• Fully connected neural network classification. As in Fig. 4.2(b) where
the output layer is activated with a softmax function with 5 different outputs
(one per each class) which tell the probability of the input to belong to each
of the classes. Several topologies are tested in training/validation stage. The
topology giving the best results is the same as for the regression neural network,
except for the output layer (5 different outputs) and the activation function
in the output layer.
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MSE

Model 0dB 5dB 25dB

Linear regression 1.44 0.86 0.59
XGBoost Regressor 1.29 0.81 0.65
Neural Network regression 1.2 0.49 0.1

TABLE 4.2. REGRESSION MODELS PERFORMANCE

4.4 Results

4.4.1 Regression models

The comparison on the performance of the regression models is shown in Table
4.2 where we calculate the MSE for three different SNRs values. With these three
values, we have an insightful view on the behavior of the models under different
noisy scenarios. The MSE is calculated as

ϵMSE =
1

n

n∑︂
i

⃓⃓⃓
K − K̂

⃓⃓⃓2
(4.3)

where n is the number of examples in the test dataset, K is the actual number of
atoms and K̂ is the estimate of the model.

The best regression model, based on the MSE, is the neural network regression.

4.4.2 Classification models

Finally, we discuss here the performance of the classification models. In Table 4.3
the comparison on the performance of the models is shown for three different SNR
values where we calculate the overall accuracy and the MSE. Note that calculating
the MSE in a classification problem is not common at all, but, since this is a very
special case of classification where the labels have also an actual numerical meaning
we can calculate it following (4.3). In Figs 4.3-4.6 we depict the confusion matrices
for the classifiers for the same three values of SNR. Also, in Fig. 4.7(b) we plot the
performance (accuracy and MSE) in terms of SNR.

For multinomial classification problems, the typical metrics for binary classifi-
cation cannot be used, except for the accuracy that basically is the rate of correct
predictions over all the predicted set. However, the problem can be converted into
a set of binary classifications where we calculate the metrics evaluating one vs the
rest, e.g. we can consider that the positive class is K = 1 and the negative class
K ̸= 1, and then repeat the process for the 5 classes and average over all the One
VS Rest metrics. Thence, considering TP as the number of true positives, TN as
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the number of true negatives, FP as the number of false positives and FN as the
number of false negatives we calculate the following metrics:

• Accuracy. This is the most intuitive metric. The ratio of observations pre-
dicted correctly over the total of observations:

accuracy =
TP + TN

TP + FP + TN + FN
(4.4)

• Precision. Among every observation that the model predicted positive (TP+

FP ), how many did the model predicted correctly. A typical example where
this metric is useful is anti-spam filters where the model has to be very sure
that if a mail is labelled as spam, it really is.

precision =
TP

TP + FP
(4.5)

• Recall. Among all observations that are actually positive (TP + FN), how
many did the model predicted correctly. A typical example where this metric
is useful is in health related issues where the illness of an individual needs to
be detected precisely.

recall =
TP

TP + FN
(4.6)

• F1-score. This is a balance between precision and recall metrics and is cal-
culated as

f1-score =
2× recall × precision

recall + precision
(4.7)

• AUROC (Area Under the Receiver Operating Curve). The ROC curve plots
the probability of having false positive against the probability of true positive
and the AUROC is the area under that curve which is used as a summary of
the curve itself [48]. A value of 0.5 < AUROC < 1 denotes a high chance
that the model predicts the labels correctly, with 0.5 meaning that the model
makes random guesses and a value of 1 when the model labels the observations
perfectly. Values less than 0.5 may be a sign that there is enough information
to train a good model but the labelling or the training went wrong.

In the lights of the results, we choose the neural network classifier as the best
model among both the regressors and classifiers, according to its confusion matrices
in Fig. 4.6, its overall performance in Table 4.3 and Fig. 4.7(b), and the One VS
Rest results in Fig. 4.8(d).
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Accuracy MSE

Model 0dB 5dB 25dB 0dB 5dB 25dB

Naive Bayes classifier 44.75% 70.85% 89.85% 2 0.44 0.1
Logistic regression 47.84% 70.28% 94.86% 1.72 0.53 0.05
XGBoost classifier 48.79% 64.79% 95.57% 1.58 0.47 0.04
Neural Network classifier 48.7% 72.31% 97.47% 1.54 0.18 0.02

TABLE 4.3. CLASSIFICATION MODELS PERFORMANCE
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Fig. 4.3. Normalized (%) confusion matrices for Multinomial Naive Bayes classifier for
different SNRs. In (a) for SNR = 0dB, in (b) for SNR = 5dB and in (c), SNR =

25dB.
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Fig. 4.4. Normalized (%) confusion matrices for Logistic regression for different SNRs. In
(a) for SNR = 0dB, in (b) for SNR = 5dB and in (c), SNR = 25dB.
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Fig. 4.5. Normalized (%) confusion matrices for XGBoost classifier for different SNRs. In
(a) for SNR = 0dB, in (b) for SNR = 5dB and in (c), SNR = 25dB.
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Fig. 4.6. Normalized (%) confusion matrices for Neural network classifier for different
SNRs. In (a) for SNR = 0dB, in (b) for SNR = 5dB and in (c), SNR = 25dB.
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Fig. 4.7. Comparison of the proposed models. In (a), MSE is depicted in terms of SNR for
the regression models and in (b), accuracy and MSE in terms of SNR are plotted
for classification models.
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Fig. 4.8. One VS Rest metrics in terms of SNR for the classification models. (a) for Multi-
nomial Naive Bayes, (b) for Multinomial Logistic Regression, (c) for XGBoost
Classifier and (d) for the neural network classifier.
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Chapter 5

Super-resolution in automotive pulse
radars

Millimeter-wave (mmWave) radars are one of the key technologies for advanced
driver assistant systems (ADASs) and eventually for future self–driving cars [49]–
[53]. This adoption is made possible given recent hardware developments, which
allow building cost-effective wideband transceivers equipped with a large number
of antennas and powerful digital processing units [54], [55]. Automotive radars
currently operate in two frequency bands across the globe, namely, 24.25÷26.65 GHz
(expected to be phased out by 2022) and 76 ÷ 81 GHz [55]–[57], and are already
employed in adaptive cruise control with stop-and-go, automatic emergency brake,
lane change and park assistance, cross traffic alert, blind spot detection, and collision
warning [58]. Differently from other optical and ultrasound sensors, mmWave radars
can operate under adverse weather and light conditions and enable the simultaneous
measurement of the delay, radial velocity, and azimuth and elevation angles of arrival
(AoA) of prospective targets/obstacles within a single Coherent Processing Interval
(CPI), thus allowing the construction of a four dimensional image of the inspected
region.

This image is obtained by using adequate signal processing techniques to recover
the echoes generated by multiple prospective targets. Classical approaches for delay
and Doppler estimation rely on the correlation properties of the probing signal and
achieve a resolution approximately equal to the inverse of the signal bandwidth and
duration, respectively, also known as Rayleigh limit. Similarly, digital beamforming
is commonly used for direction of arrival estimation, whose angular resolution mainly
depends upon the number of antennas deployed. More advanced algorithms may ob-
tain a resolution beyond the Rayleigh limit (usually referred to as super-resolution)
for a sufficiently large SNR at the price of an increased complexity. Unfortunately,
well-established solutions based on the use of the sample covariance matrix, such as
the Capon’s method [59], the multiple signal classification (MUSIC) [60], the estima-
tion of signal parameters via rotational invariance techniques (ESPRIT) [61],[62],

41



Chapter 5. Super-resolution in automotive pulse radars

and their subsequent extensions, may hardly be employed in automotive applica-
tions. Indeed, the surrounding environment is rapidly changing over time following
the vehicle speed and the dynamics of the vehicle surroundings, limiting the number
of valid snapshots that can be processed since in most cases the scenario will change
even at every new snapshot. Also, the performance of these algorithms may degrade
when the number of targets is unknown. Recently, an adaptive matched filter with
Adaptive Matched Filter with Iterative Interference Cancellation (IIC-AMF) has
been derived in [63], which extracts the prospective echoes one-by-one, after remov-
ing the interference caused by the previously-detected (stronger) signal components.
This approach perform well on a single snapshot and do not require prior knowl-
edge of the model order; its major limitation is the need of a search-grid, whereby
not only we will face off-grid losses, but more importantly its implementation may
become unaffordable in a multi-dimensional parameter space due to the exponential
increase of required grid points.

To overcome the limitations of the above methods, we propose to address grid-
less techniques based on the atomic norm minimization to enforce sparsity in the
continuous parameter domain [24], [28], [29] with the constraint that we need to ad-
dress non-uniform antenna deployments that for sure will be present in automotive
applications since the radar is likely to be integrated in the car body and massive
antenna deployments may be forced to match the curvature/volume of the available
surfaces/cavities.

In this chapter, we consider a wideband mmWave pulse radar and study the
problem of super-resolving the echoes generated by multiple prospective targets.
We first derive the signal model and show that the sum of the received echoes can
be represented as a sparse linear combination of atoms as in (2.4); the model unveils
the four dimensional environment image with delay and Doppler dimensions as well
as a non-uniform 3-D receive array for azimuth and elevation measurement. Then,
the positioning parameters are recovered by leveraging the procedure presented in
chapter 2 and in [24]. Furthermore, since this problem has a complexity scaling up
with the dimension of the observed data vector, we propose and study a reduced-
complexity approximation. In addition to the convex relaxation of the ℓ0-AN in
terms of the ℓ1 atomic norm (ℓ1-AN) [21], [30], we parse the data samples acquired
along one (or more) dimension(s) into multiple reduced-sized groups sharing the
same (up to the phase of the weighting coefficients) atomic decomposition. Suffi-
cient conditions for unique signal recovery in the noiseless case are provided and
discussed in chapter 2, while the performance achievable in additive Gaussian noise
are assessed by means of numerical examples.
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5.1 Radar system description

The radar is considered to be operating at the carrier frequency fo and equipped with
a wide-beam illuminator and a co-located receive array. The designed system aims
at determining of the number of observed echoes and of their absolute amplitudes
and location parameters (delay, Doppler shift, azimuth, and elevation), assuming
that each echo is generated by a point-like target.

5.1.1 Probing signal

The probing signal is composed of pulse trains in order to provide reliable reference
time for delay measurement. Up to a scaling factor accounting for the transmit
energy (included next in the target response), the baseband signal emitted over a
CPI with duration Tcpi is [64]

s(t) =
Jν−1∑︂
l=0

C∑︂
p=0

cl(p)ψ(t− pTc − lT )⏞ ⏟⏟ ⏞
gl(t−lT )

=
Jν−1∑︂
l=0

gl(t− lT )

(5.1)

where

• T is the Pulse Repetition Time (PRT), which controls both the unambiguous
delay and Doppler intervals;

• Jν ≥ 1 is the number of processed pulses, which determines the length of the
CPI, say Tcpi = JνT ;

• gl(t) is the l-th pulse, composed of C subpulses (also called chips), where C is
a positive integer;

• cl = [cl(0), . . . , cl(C − 1)]⊤ is the fast-time code of the l-th pulse, normalized
to have ∥cl∥22 = C;

• ψ(t) is the subpulse waveform, assumed to have unit-energy and support in
[0, Tψ];

• Tc is the subpulse repetition time.

In the following we denote by Tg = (C−1)Tc+Tψ the duration of each pulse. The
pulse gl(t), depending on the fast-time codes, determine the occupied bandwidth,
say B, of the probing signal. In this work, we propose to set cl equal for all pulses
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following a Barker sequence [64], [65]. Finally, the CPI is limited by the target
mobility, as otherwise delay and/or Doppler and/or angle migration may occur. For
example, let vmax > 0 and v̇max > 0 be the maximum radial velocity and acceleration;
then, delay and Doppler migration can be neglected if

2vmaxTcpi
co

≪ 1

B
,

2v̇maxTcpi
λo

≪ 1

Tcpi
(5.2)

respectively.

5.1.2 Received signal

We first consider a 3-D uniform array at the radar receiver and denote by Jx ≥ 1,
Jy ≥ 1, and Jz ≥ 1 the number of elements along each of the spatial dimensions, and
by ρx, ρy, and ρz the corresponding spacing normalized by λo. The signal received
by the n-th antenna, positioned at λo[xnρx, ynρy, znρz], with xn ∈ {0, . . . , Jx − 1},
yn ∈ {0, . . . , Jy − 1}, zn ∈ {0, . . . , Jz − 1}, and n ∈ [JxJyJz], can be modeled as

rn(t) =
K∑︂
k=1

hk,n(θn, φn)e
−j2πνkts(t− τk) + wn(t) (5.3)

where

• K ≥ 0 is the number of observed echoes;

• τk ∈ [τmin, τmax) is the delay of the k-th echo, with 0 < τmin < τmax; we assume
τmax < T − Tg, so that the echoes produced by the current pulse are entirely
received before the transmission of the next pulse; for half-duplex operation,
we also require τmin > Tg;

• νk ∈ [−νmax, νmax) is the Doppler shift of the k-th echo, with νmax = 2vmax/λo;

• hk,n(θk, φk) ∈ C is the channel response of the k-th echo at the n-th antenna:

hk,n(θk, φk) = γke
j2π(fxkxn+fykyn+fzkzn) (5.4)

where γk ∈ C is the target response or gain of the k-th multipath and

fxk = mod(ρx sin(θk) cos(φk), 1)

fyk = mod(ρy sin(θk) sin(φk), 1)

fzk = mod(ρz cos(θk), 1)

(5.5)

are the frequencies along the dimensions of the array, respectively, with θk and
φk being azimuth and elevation angles of arrival, respectively, defined similarly
as in (3.5)2.
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Fig. 5.1. Example of processing window in the l-th pulse interval.

• wn(t) is the additive noise, modeled as a complex circularly-symmetric Gaus-
sian process with independent zero-mean components and σ2

w variance.

As illustrated in Fig. 5.1, in the l-th pulse interval we process the signal received
in the following window

Wl =

[︃
lT + ⌊τmin/Tc⌋Tc, lT + ⌈(τmax + Tg)/Tc⌉Tc

]︃
(5.6)

with duration given by Tw.

Also, consider the set of projection signals {χl,m(t)}+∞
m=−∞

χl,m(t) =

⎧⎨⎩ 1√
Tw
e−j2π

m
Tw

t, t ∈ Wl

0, t /∈ Wl.
(5.7)

which we use for further processing the received signal rn(t) in the n-th antenna by
projecting it onto each of the signals χl,n(t). In particular, we have the following

2Note that, compared to the channel model in chapter 3 in (3.9), here hk,n(θk, φk) represents
the channel response from the k-th target as a single element radiating point, i.e. M = [1], to a 3-D
uniform array N = [Jx, Jy, Jz]

⊤. Then, for the k-th target, the channel matrix would correspond
to:

Hk =

⎡⎢⎢⎢⎢⎣
hk,1(θk, φk)

hk,2(θk, φk)
...

hk,JxJyJz (θk, φk)

⎤⎥⎥⎥⎥⎦ = rN

⎛⎜⎝
⎡⎢⎣fxkfyk
fzk

⎤⎥⎦
⎞⎟⎠ γk
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resulting samples

yn,l,m =

∫︂
Wl

rn(t)χ
∗
l,m(t)dt

=

√︃
1

Tw

K∑︂
k=1

hk,n(θk, φk)
C−1∑︂
p=0

cl(p)

∫︂
Wl

ψ(t− τk − pTc − lT )ej2π(
m
Tw

−νk)tdt

+
1√
Tw

∫︂
Wl

wn(t)e
j2π m

Tw
tdt

=

√︃
1

Tw

K∑︂
k=1

hk,n(θk, φk)
C−1∑︂
p=0

cl(p)Ψ

(︃
m

Tw
− νk

)︃
ej2π(

m
Tw

−νk)(τk+pTc+lT ) + wn,l,m

(5.8)
where Ψ(β) is the Fourier Transform of ψ(t):

Ψ(β) =

∫︂ Tψ

0

ψ(t)ej2πβtdt (5.9)

and wn,m,l is the projection of wn(t) onto χl,n(t).

Notice now that for typical system parameters we have

νk/B ≪ 1 (5.10)

2πνkTg ≪ 1; (5.11)

for example, if fo = 79 GHz, B = 4 GHz, Tc ≃ 1/B, C = 10, and Tψ = 6Tc, even
assuming νk = 80 KHz (corresponding to a relative radial velocity of 546 Km/h,
which is beyond that encountered in most automotive applications), we have νk/B ≃
2 · 10−5 and 2πνkTg ≃ 1.9 · 10−3. Exploiting (5.10) and (5.11), we can write

Ψ

(︃
m

Tw
− νk

)︃
≃ Ψ

(︃
m

Tw

)︃
(5.12)

ej2πνkpTc ≃ 1, p = 0, . . . , C − 1 (5.13)

whereby yn,m,l in (5.8) simplifies to

yn,l,m =

√︃
1

Tw
Ψ

(︃
m

Tw

)︃(︄C−1∑︂
p=0

cl(p)e
j2π m

M
p

)︄
ej2π

mlN
M

⏞ ⏟⏟ ⏞
dl,m

K∑︂
k=1

hk,n(θk, φk)e
j2πfτkmej2πf

ν
k l + wn,m,l

=dl,m

K∑︂
k=1

βke
j2πfxkxnej2πf

y
kynej2πf

z
kznej2πf

τ
kmej2πf

ν
k l + wn,m,l

(5.14)
where we have absorbed the irrelevant term e−j2πνkτk into the phase of the target
response in (5.4) defining the new term βk = e−j2πνkτkγk, and we have defined the
delay and Doppler frequencies

fτk = mod

(︃
τk
Tw
, 1

)︃
(5.15)

fνk = mod (−νkT, 1) (5.16)
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respectively.

• The complex coefficient dl,m is independent of the unknown parameters of the
observed echoes.

• Since τmax − τmin < Tw by construction, fτk uniquely specifies the delay of the
k-th target.

• If νmax ≤ 1/(2T ), fνk uniquely specifies the Doppler shift of the k-th target.

The number of non trivial samples {yn,l,m}∞m=−∞ in m is deeply linked to the
product between the signal bandwidth and the length of the processing window.
Defining F = ⌊BTw/2⌋ we consider as significant the samples {yn,l,m}Fm=−F∀n, l and
define Jτ = 2F + 1. However, for the n-th antenna and l-th PRT, computing and
processing all the Fourier coefficients is not feasible in practice due to complexity
constraints. Here we may choose F < ⌊BTw/2⌋ to limit the complexity, as it shown
in section 5.2.2.

5.1.3 Vector representation of the received signal

In total, the number of received samples is J = JxJyJzJνJτ , being each sample
yn,(l−1),(m−(F+1)) with n ∈ [JxJyJz], l ∈ [Jν ] and m ∈ Jτ . The set of dimen-
sions {Jx, Jy, Jz, Jν , Jτ} can be properly ordered defining the ordered vector J =

[J1, J2, J3, J4, J5]
⊤ = Π[Jx, Jy, Jz, Jν , Jτ ]

⊤, where Π is a d × d permutation matrix,
with in this case d = 5, which sorts the dimensions in ascending order such that
J1 ≤ J2 ≤ · · · ≤ J5. Note that the received samples can be piled arbitrarily
and if done properly, the composite atoms posses a Kronecker ordering such that
J5 → J4 → · · · → J1, with sampling dimensions following J1 ≤ J2 ≤ · · · ≤ J5. The
irrelevant scaling coefficient e−j2πfτkF ≈ 1 can be embedded into the recently created
term βk, defining the term uk = e−j2πf

τ
kF ej2πνkτkγk. Then, the resulting vector from

piling the received samples in a proper way is

y = D
K∑︂
k=1

ukaJ(fk) +w (5.17)

where aJ(fk) ∈ AJ, f = [f1, f2, f3, f4, f5]
⊤ = Π[fx, fy, fz, fν , fτ ]

⊤, D ∈ CJ×J is a diagonal
matrix resulting from piling coefficients dl,m with the same piling structure as for
the received samples yn,(l−1),(m−(F+1)), and the noise vector w ∈ CJ is obtained in a
similar way, piling the noise coefficients wn,m,l. Note that the Kronecker ordering of
the composite atoms allows that

aJ(fk) =aJ1(f
1
k)⊗ aJ2(f

2
k)⊗ aJ3(f

3
k)⊗ aJ4(f

4
k)⊗ aJ5(f

5
k)

=⊗d
i=1 aJi(f

i
k)

(5.18)
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Fig. 5.2. Example of a uniform (front) and a non-uniform (side) planar array deployed on
the body of a car; for ease of explanation, the curvature of the involved surfaces
is neglected. The blue dots are the missing antennas of the virtual uniform array
(see Sec. 5.1.4 for details). The green dotted rectangle identifies the uniform sub-
array, contained in the side array, with the largest sum of the elements along each
dimension (see Sec. 2.2.1 for details).

with d = 5.

The piled vector y ∈ CJ in (5.17) is a measurement vector of a sparse model with
atoms from the atom set AJ. That vector can also be represented in an enlarged
virtual atom domain. To achieve a virtual enlargement of the atom set AJ to an
enlarged atom set AE, with E = [E1,E2,E3,E4,E5]

⊤, E ⪰ J, E =
∏︁d

i=1 Ei and Ei > Ji
for at least 1 dimension i ∈ [d], we make use of a matrix Be ∈ {0, 1}J×E such that

y =D
K∑︂
k=1

ukaJ(fk) +w

=D
K∑︂
k=1

ukB
eaE(fk) +w

=B
K∑︂
k=1

ukaE(fk) +w

(5.19)

where the enlarged atoms aE(fk) ∈ AE and B = DBe ∈ CJ×E. Note that given
the diagonal structure of matrix D ∈ CJ×J and the structure of sampling matrix
Be ∈ {0, 1}, i.e. Be =

[︁
IJ ,0J×(E−J)

]︁
Π, the structure of the resulting matrix

B ∈ CJ×E is similar to that of Be, i.e. only one element per row and column is
different from zero.

5.1.4 Non-uniform array

Physical constraints may prevent the deployment of a uniform array [18], [35], [66],
[67]: for example, this may occur when the antenna is embedded in the car body
to save space and costs (see Fig. 5.2). To handle this situation, we consider here a
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non-uniform array with Ja elements, obtained by sampling a larger virtual uniform
array containing Jx, Jy, and Jz elements,i.e. Ja < JxJyJz. We define an index set
Ia ⊂ [JxJyJz], with |Ia| = Ja, which will identify the active antennas from the
uniform 3-D deployment.

Thus, in this non-uniform scenario, the available S = JaJνJτ received samples
yn,(l−1),(m−(F+1)) with n ∈ Ia ⊂ [JxJyJz], l ∈ [Jν ] and m ∈ [Jτ ] can be read accord-
ingly, as in previous section, to generate the measurement vector y ∈ CS in the atom
set AJ. We recall here that J = [J1, J2, J3, J4, J5]

⊤ = Π[Jx, Jy, Jz, Jν , Jτ ]
⊤, where Π is

a d × d permutation matrix which orders the dimensions in an ascending way, i.e.
J1 ≤ J2 ≤ · · · ≤ J5. To remove the elements in the atoms that represent missing (not
active) antennas from the virtual uniform array we use a binary sampling matrix
Ba ∈ {0, 1}S×JxJyJzJνJτ . Thence, the measurement vector y ∈ CS is formulated as

y =BaD
K∑︂
k=1

ukaJ(fk) +w

=BaD
K∑︂
k=1

ukB
eaE(fk) +w

=B
K∑︂
k=1

ukaE(fk) +w

(5.20)

where B = BaDBe ∈ CS×E. Note that the structure of B ∈ CS×E in this scenario
is similar to the one in (5.19) where there is only one non-zero element per row and
column.

Fig. 5.2 shows an example of a non-uniform planar array with Ja = 14 antennas
which is deployed on the side of the car. The non-uniform array is obtained by
sampling a virtual uniform array with Jx = 1, Jy = 3, and Jz = 6; the blue dots are
the missing elements of the virtual array,

5.1.5 Conditions to meet injectivity properties defined in Def-
inition 5

In Definition 5, the mathematical conditions for a sampling matrix to meet injec-
tivity properties are shown. Particularly, in this radar application the resulting
sampling matrix obtained in both scenarios (5.19) (enlarged) and (5.20) (sampled),
named both as an abuse of notation B to keep the notation uncluttered, do not
belong to the binary sampling matrices set B. However, thanks to the diagonal
structure of D, the conditions in Definition 5 can be easily checked. When multi-
plying the diagonal matrix D, its rank is preserved which implies that the condition
for injectivity is also preserved.

Thus, for the uniform antenna deployment, we have a resulting sampling matrix
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B such that:

BaE(f) =DBeaE

=DaJ(f)
(5.21)

The largest non trivial underlying atom structure we can find in the array, i.e.
in AJ, has the relevant parameters LS =

∑︁d
i=1 Ji = Jx + Jy + Jz + Jν + Jτ and

NS =
∏︁d

i=1 Ji = J , given that the largest atom structure is the uniform array itself.

For the non-uniform antenna deployment, the resulting sampling matrix B is
such that:

BaE(f) =BaDBeaE

=BaDaJ(f)
(5.22)

where, in this scenario matrix B preserves all the samples from Doppler and delay
domains, i.e. Jν and Jτ , and thus, the atom structure for these two dimensions is
preserved. However, the sampling is done in the 3-D spatial domain, i.e. dimensions
Jx, Jy and Jz. Following (2.8), the largest underlying structure has dimensions
Sx ≥ 1, Sy ≥ 1 and Sz ≥ 1. In this case, the relevant parameters are LS =

Sx + Sy + Sz + Jν + Jτ and NS = SxSySzJνJτ ≤ Ja. In Fig. 5.2, we have an example
of a non-uniform array in the side of the car with Ja = 14 antennas. Note that the
largest underlying structure we can find is highlighted with a green dotted line and
its parameters are Sx = 1, Sy = 2 and Sz = 5.

5.2 Gridless signal and echo parameter recovery

The measurement models (5.19) and (5.20), obtained in the previous section from
processing and properly piling the received samples, are noisy measurements of a
linear combination of K atoms taken from the atomic set AE =

{︁
aE(f)|f ∈ Td

}︁
, with

d = 5. Here B, which is either in the set CJ×E or in CS×E is a known observation
matrix, while x ∈ CE is the unknown signal of interest containing the information
about the prospective echoes.

Therefore, we can apply either (P.5) or its convex relaxation or (P.6) in the
enlarged dimension E to estimate the number of received echoes K and their multi-
dimensional frequency vectors {f1, f2 . . . , fK}. The corresponding numerical results
are given in section 5.3.

5.2.1 Complexity analysis

Recalling section 2.3, and given the enlargement in the radar application given
by the structure E = [E1,E2,E3,E4,E5]

⊤, we have that the complexity of (P.6) is
given by O(E3.5). Furthermore, Theorems 1 and 2 provide some useful guidelines
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to set the relevant system parameters determining E. For example, we can set
Ei = Ji for all i = 1, . . . , d − 1 and Ed = (LS − (d − 1))/2 to ensure the largest
resolvabilty region in the noiseless case, while limiting the computational complexity
implied by the enlargement of the composite steering vector in (5.19) and (5.20).
Also, if a bound on the number on the maximum number of targets K∗ would be
known, the composite steering vector can be shortened (rather than enlarged) if
K∗ < min{(LS − (d− 1))/2, Jd}; this idea will be developed in next section, where
we propose to reduce the complexity, by accordingly reducing the dimensionality of
the problem through splitting the available measurements in multiple sub-vectors.

5.2.2 Reduced-complexity signal and echo parameter recov-
ery

In some applications, the number of data samples along one or more dimensions
can be much larger than the number of prospective targets, which gives abundant
degrees of freedom. For example, this may happen when the receive array has a mas-
sive number of antennas along any of the axes and/or when a large range interval is
inspected in wide-band systems and/or when a large number of pulses are processed
in low-mobility scenarios. This gap would be even more apparent if motivated by
improved performance, we use virtual enlarged scenarios. Recall that in [24] it is
shown that by enlarging the last dimension of the structure E = [E1,E2,E3,E4,E5]

⊤,
we have better performance in the recovery of the frequencies, both in the noiseless
and noisy cases and when we solve for either (P.5) or its convex relaxation or (P.6).
Being this the case, we still need to take into account the complexity associated to
solve (P.6) and find the proper balance between performance and complexity, spe-
cially in those cases where the computational complexity required due to the system
parameters may be prohibitive; to overcome this drawback, we can reduce the size of
the involved vectors and matrices, at eventually the price of some performance loss
in the presence of noise. To this end, we discuss next a low-complexity formulation
of (P.6), wherein the data samples acquired along one dimension (typically the one
containing the largest number of observations) are split into multiple reduced-sized
groups (corresponding to as many sub-arrays or sub-bands or pulse subtrains in the
aforementioned examples).

We assume we are in the non-uniform array scenario and that no virtual en-
largement is provided, i.e. J = E. Without loss of generality, we focus on the
delay dimension, but similar arguments can be replicated for any other dimension.
For each pulse and antenna, we take LτJτ Fourier coefficients; these coefficients are
then split into Lτ ≥ 1 groups of size Jτ ≥ 2, corresponding to as many contiguous
and non-overlapping sub-bands, as illustrated in Fig. 5.3. Lτ and Jτ are design pa-
rameters that allow to control the computational complexity and the resolvability
region, as it will be explained later on. Now, after piling up the samples paralleling

51



Chapter 5. Super-resolution in automotive pulse radars

[Hz]

LτJτ/Tw

Jτ/Tw

Y1

Sub-band 1

x
yn,l,−4

x
yn,l,−3

x
yn,l,−2

Jτ/Tw

Y2

Sub-band 2

x
yn,l,−1

x
yn,l,0

x
yn,l,1

Jτ/Tw

Y3

Sub-band 3

x
yn,l,2

x
yn,l,3

x
yn,l,4

1/Tw

Fig. 5.3. Example of processed sub-bands. It is assumed here that there are 9 samples
in the frequency domain within the processed bandwidth (corresponding to the
cross-marked frequencies), which are split into Lτ = 3 groups of Jτ = 3 elements.

the derivations in Sections 5.1.3 and 5.1.4 we obtain Lτ vectors, one per sub-band.
Thus, for the ℓ-th sub-band, vector yℓ ∈ CS is defined as

yℓ = Bℓxℓ +wℓ (5.23)

with ℓ ∈ [Lτ ], where the sampling matrix Bℓ ∈ CS×E and the noise vector wℓ ∈ CS

are defined similarly to B and w in (5.20), and

xℓ =
K∑︂
k=1

uke
j2πfτk (ℓ−1)JτaJ(fk) = AJ (f1:K)u

ℓ ∈ CE (5.24)

is a linear combination of K atoms in AJ, with

uℓ = [u1e
j2πfτ1 (ℓ−1)Jτ , . . . , uKe

j2πfτK(ℓ−1)Jτ ]⊤ ∈ CK .

We highlight that the target parameters {fk, uk} with k ∈ [K] specifying xℓ are
the same on all sub-bands; hence, xℓ with ℓ ∈ [Lτ ] not only have the same ℓ0-AN, but
also a similar atomic decomposition, which only differs in the phase of the weighting
coefficients, leading to a Multiple Measurement Vector (MMV) scenario similar to
the one in (3.12).

Given the measurements yℓ, with ℓ ∈ [Lτ ], we propose to recover xℓ with ℓ ∈ [Lτ ]

as the solution to

min
t,xℓ,TJ∈T

1− η

Lτ

∑︂
ℓ∈[Lτ ]

⃦⃦
yℓ −Bℓxℓ

⃦⃦2
2
+
η

2

(︁
t+ Tr {TJ}

)︁
s.t.

[︄
TJ xℓ(︁
xℓ
)︁†

t

]︄
⪰ 0, ℓ ∈ [Lτ ].

(P.7)

For both uniform and non-uniform antenna deployments, and recalling how LS
is obtained from section 5.1.5, we now have the following recovery result.
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Fig. 5.4. MSE in the estimation of entire frequency vector vs η when [Jx, Jy, Jν , Jz, Jτ ]
⊤ =

[1, 2, 2, 4, 6]⊤, K = {2, 3} and Lτ = {1, 2, 4, 8}.
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Chapter 5. Super-resolution in automotive pulse radars

Theorem 3. If K < min{(LS − (d − 1))/2, Jd}, (P.7) allows to uniquely identify
the target parameters {fk, uk}Kk=1 specifying xℓ in the noiseless case if the optimal
canonical d-LT matrix, say T◦

J, is such that rank{T◦
J} < Jd.

The complexity of (P.7) is obtained upon setting n = J and m = Lτ in (2.9)
and therefore given by O (LτJ

3.5 + L2
τJ

2.5 + L3
τ ). Clearly, increasing Lτ and/or Jτ

may be helpful in the presence of noise (as also verified in Sec. 5.3) at the price
of a increased complexity; specifically, increasing the number of sub-bands results
into additional constraints, while increasing the size of each sub-band results into a
larger dimension of the vector xℓ and of the matrix TJ. For Lτ = 1, we obtain the
case discussed in the previous subsections.

5.3 Numerical analysis

We consider an automotive radar operating with a carrier frequency of fo = 79 GHz,
a two-side bandwidth of B = 4 GHz, and a PRT of T = 0.5 µs. The chip waveform
ψ(t) is a raised cosine with roll-off factor 0.22 and support in [0, 6Tc], while cl is
a Barker code of length C = 10, whereby B ≈ 1/Tc. The car is equipped with a
wide-beam illuminator and a receive uniform array with Jx = 1, Jy = 2 and Jz = 4,
as the one in the front of the vehicle in Fig. 5.2. We assume that the car can
accelerate from 0 to 60 Km/h in 4 s and consider a minimum and maximum radial
velocity of vmin = −54 Km/h and vmax = 54 Km/h, respectively. We assume that
Jν = 2 pulses are jointly processed and that the minimum and maximum inspected
range are dmin = 58 cm (tied to the pulse length) and dmax = 7 m, respectively,
whereby τmax − τmin ≈ 187Tc. To limit the computational complexity, we resort
to the formulation in (P.7), with Jτ = 6, and a variable number of sub-bands Lτ ,
namely, Lτ = {1, 2, 4, 8}.Also, no enlargement of the composite steering vector is
enforced. With the above parameters, we have [Jx, Jy, Jν , Jz, Jτ ]

⊤ = [1, 2, 2, 4, 6]⊤

and J = E = 96.

The noise process wn(t) is independent across the antennas and white, with
a power spectral density σ2

w. Unless otherwise stated, the targets are randomly
positioned within the inspected region. As to the target response γk, we assume that
its phase ϕk is uniformly distributed in [0, 2π); also, its amplitude ak is set equal to
āk/(cτk/2)

2, where āk is a unit-power Rayleigh random variable accounting for the
target fluctuation and (cτk/2)

2 models the path-loss, for k = 1, . . . , K; finally, we
define the average (over both āk and τk) SNR of the k-th target across the exploited
sub-bands as

SNRk =
E[|ak|2]
σ2
wLτ

aJ(fk)
†

(︄
Lτ∑︂
ℓ=1

Bℓ†Bℓ

)︄
aJ(fk) (5.25)

which is assumed to be equal for all targets, i.e. SNR1 = · · · = SNRK = SNR.
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5.3.1 Benchmarks

We evaluate the theoretical results presented in chapter 2 [24] applied to our radar
scenario, and compare it with the methods in [22] and [63]. Prior to [24] results,
the technique in [22] was the state-of-the-art solution for gridless multidimensional
frequency recovery; specifically, we present here the performance of the solution in
[22, Eq. 53], which we reformulate using a convex combination of [22, Sec. IV.C,
Eq. 45] and ∥y−Bx∥22 to handle the noise presence. The IIC-AMF in [63] extracts
the prospective targets one-by-one from the noisy measurement in (5.17). While
the algorithm was originally presented with reference to a 2D measurement space
involving the delay and Doppler dimensions, it has been extended here to handle
the additional spatial dimensions and the multiple sub-bands. The implementation
complexity of IIC-AMF is tied to the adopted dictionary length named as LD and
given by O (K(LGJ

2 + J3 + 5J2 + 2LG)). In Sec. 5.3.3 a uniform grid with LD =

940 elements is used to maintain the same implementation complexity required to
solve either (P.6) or (P.7), while in Sec. 5.3.4 a uniform grid with LD = 10.000

elements is used, leading to a implementation complexity larger than that required
to solve (P.6) or (P.7).

In the implementation of all algorithms, the number K of prospective targets is
assumed known, by using the methodology proposed in Chapter 4.

5.3.2 Optimization of η

In the proposed optimization problems, the parameter η can be chosen in order to
minimize the recovery error. Our numerical simulations indicate that the optimal
η depends upon the SNR, the number of sub-bands Lτ , and on the structure of the
composite steering vector specified by the vector J. Since Lτ and J are known a
priory, the value of the η can be optimized off-line, at least for a nominal design
SNR. Fig. 5.4 reports the MSE in the estimation of entire frequency vector, defined
as 1

d
E
{︁
∥fk − f̂k∥22

}︁
, versus η for [Jx, Jy, Jν , Jz, Jτ ]⊤ = [1, 2, 2, 4, 6]⊤, K = {2, 3}, Lτ =

{1, 2, 4, 8}, and SNR = {0, 10, 20} dB. The optimal η decreases as SNR or Lτ is
increased; also, it is seen by inspection that, for a given SNR and Lτ , the optimal η
does not depend much on the number of targets K to be resolved.

5.3.3 Estimation performance vs K, SNR, and Lτ

Upon choosing the optimal η, we assess here the effects of the parameters K, SNR,
and Lτ on the estimation performance, when [Jx, Jy, Jν , Jz, Jτ ]

⊤ = [1, 2, 2, 4, 6]⊤ and
Lτ = {1, 4}. Figs. 5.5(a) and 5.5(b) show the MSE in the estimation of entire
frequency vector versus K when SNR = 20 dB and versus SNR when K = 3,
respectively. Next, Figs. 5.5(c)- 5.5(f) show the MAE in the estimation of the
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Fig. 5.5. Analysis of the estimation error performance when [Jx, Jy, Jν , Jz, Jτ ]
⊤ =

[1, 2, 2, 4, 6]⊤, Lτ = {1, 4}, and η is optimally designed. (a) MSE in the estima-
tion of entire frequency vector vs K for SNR = 20 dB. (b) MSE in the estimation
of entire frequency vector vs SNR for K = 3. (c-f) MAE in the estimation of the
scalar frequency along each non-singleton dimension i ∈ {τ, ν, z, y}, respectively,
vs K for SNR = 20 dB.
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scalar frequency along each non-singleton dimension i ∈ {τ, ν, z, y}, respectively,
defined as E

{︁
|fik − f̂

i

k|
}︁
. For the reader’s sake, Fig. 5.5(c) also reports on the right

vertical axis the MAE in the estimation of the target range, i.e. δr = coTw
2

E
{︁
|fτk −

f τ̂ k|
}︁
, while Fig. 5.5(d) the MAE in the estimation of the target radial velocity,

i.e. δv = co
2foT

E
{︁
|fνk − f ν̂ k|

}︁
. As expected, the estimation error increases with K,

while decreases with SNR and Lτ . Different performance/complexity trade-offs can
be achieved by changing Lτ . Finally, it is verified by inspection that our solution
outperforms both the gridless approach in [22] and the IIC-AMF [63].

5.3.4 Estimation performance vs the target separation

Upon choosing the optimal η, we simulate here K = 2 targets with f1 ∈ Td and
f2 = f1+[±∆f , . . . ,±∆f ]

⊤ and evaluate the estimation performance as a function of
∆f ; we assume here [Jx, Jy, Jν , Jz, Jτ ]

⊤ = [1, 2, 2, 4, 6]⊤ and Lτ = 1. A key parameter
in classical resolution theory is the RL, considered to be the minimum resolvable
separation of two objects with equal intensities [68], [69] along a given dimension.
Since we have here a different number of samples along the considered dimensions,
we take as a reference unit, say RLo, the RL along the τ -axis (which is the smallest
RL among the involved non-singleton dimensions), namely, RLo = 1/Jτ = 1/6, and
vary ∆f from 0.1/RLo to 1.5/RLo. The corresponding results are shown in Fig. 5.6.
Specifically, Fig. 5.6(a) shows the MSE in the estimation of entire frequency vector
for SNR = 20dB, while Fig. 5.6(b) shows the MAE in the estimation of the scalar
frequency along each non-singleton dimension i ∈ {y, z, ν, τ}. Finally, Fig. 5.6(c)
shows the minimum SNR ensuring a successful recovery of the frequency vectors
(also referred to as the phase transition curve in [69]); following [69], we declare here
a successful recovery if 1

d
E
{︂
∥fk − f̂k∥1

}︂
< ∆f

2
. Again, the proposed solution always

outperforms the considered benchmarks.
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Fig. 5.6. MSE in the estimation of entire frequency vector (a), MAE in the estimation of
each scalar frequency (b), and the minimum SNR ensuring a successful recovery
of the frequency vectors (c) versus ∆f/RLo when K = 2, [Jx, Jy, Jν , Jz, Jτ ]⊤ =

[1, 2, 2, 4, 6]⊤, and η is optimally designed. In (a-b), it is assumed SNR = 20 dB.
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Chapter 6

Low complexity hybrid precoding
strategies for MIMO in sparse
mmWave channels

mmWave band usage for 5G-6G presents many challenges, as discussed in chapter
3, some of which are recalled next. First, this band experiences significant free–
space path loss due to the ten-fold increase in carrier frequency. Fortunately, this
increase in carrier frequency implies a decrease in wavelength, which facilitates the
deployment of large antenna arrays in small areas that can take advantage of the
well-known multiplexing and diversity gain of MIMO to mitigate path loss. A second
important challenge, very relevant for this chapter, relates to mmWave hardware
design, a subject of significant research since the 1970s. While the first mmWave
system implementations were based on gallium arsenide (GaAs), the improvement
that CMOS technology brought to traditional microwave systems has recently led
researchers and industry practitioners to develop CMOS subsystems for mmWave
systems. Nonetheless, mmWave system design based on CMOS technology is still
under ongoing investigation, as mmWave CMOS is not easily extrapolated from
microwave CMOS [70]. A last challenge to take into consideration is the cost of
mmWave hardware (low noise amplifiers, power amplifiers, antennas, etc.), mainly
due to its reduced size and low power consumption requirements [38], which creates
the need for the design of low complexity MIMO communication solutions in these
bands. With MIMO becoming a key technology for 5G due to its improved spectral
efficiency and diversity gains, it is important to address the specific challenges of
implementing MIMO, or even massive MIMO, in the mmWave band.

In this chapter, we focus on the design of a low complexity precoder in a multiuser
MIMO (MU-MIMO) downlink (DL) scenario. Under conventional microwave prop-
agation, MIMO precoding can be easily implemented digitally at baseband (BB),
and requires dedicated Radio Frequency (RF) hardware, i.e. an RF chain for each
antenna element. This approach is named fully-digital (FD) implementation. In
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mmWave bands we have two circumstances that refrain from using one dedicated
RF chain for each antenna element, which are i) typically antenna deployments in
mmWave are very large, precisely to overcome the challenging propagation scenario
and ii) RF hardware for mmWave wavelengths is more expensive and power consum-
ing than for conventional microwave wavelengths. Hybrid (HB) precoding divides
the precoding implementation into digital BB processing, bandpass modulation and
analog processing, allowing a potential reduction on the number of RF chains and
thus enabling a viable precoding architecture for mmWave systems.

In this chapter, by reformulating the hybrid precoder design as a matrix factor-
ization problem, and adopting the atomic norm minimization approach from chapter
2, we propose a new hybrid precoding algorithm that takes advantage of the sparse
nature of the mmWave channel and that it is able to closely approach the perfor-
mance of the optimal fully-digital precoder.

The results presented in this chapter are an extension of the results presented in
my Master Thesis [71] by addressing the following novel challenges:

• Gridless recovery of parameters: compared to the results in [71] where an on-
grid approach was used for parameter retrieval, here we propose to gridlessly
resolve the recovery of the relevant channel parameters that allow for the
design of hybrid precoders.

• Multidimensional parameter recovery compared to the one-dimensional recov-
ery proposed in [71]. This scenario indeed addresses transmission strategies
for future wireless communication systems where the signal processing in the
base station needs to be aware of the 3D positioning of the user equipment.

6.1 System description

6.1.1 Propagation in MU-MIMO mmWave sparse channels

Consider a MU-MIMO propagation scenario in the downlink (DL) with a d-D an-
tenna deployment at the base station (BS) withM antennas, i.e. M = [M1, . . . ,Md]

⊤,
being Mi the number of antennas in dimension i ∈ [d], and K single-antenna users at
the receiver side, i.e. N = [1]⊤ for every user. Due to the nature of mmWave prop-
agation, this can be modeled as a sparse channel matrix H ∈ CK×M as formulated
in (3.9). In the MU-MIMO scenario we assume line of sight (LOS) and thus, only
K propagation paths are present, one per user. Also, the steering vectors matrix at
the receiver, RN(f1:K) is considered an identity matrix IK×K since each user only
has an antenna and thus only sees its frequency given that the single-antenna users
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are not co-located. Thus, channel matrix in (3.9) can be further reformulated as

H = RN(f1:K)GT†
M(g1:K)B

†
t

= GT†
M(g1:K)B

†
t

=

⎡⎢⎣ γ1t
†
M(g1)
...

γKt
†
M(gK)

⎤⎥⎦B†
t

= [h1, . . . ,hK ]
†

(6.1)

where, if a uniform array is considered at the BS, sampling matrix Bt is an identity
matrix, IM×M .

6.1.2 Transmission strategies

In this scenario, the definition of the transmission strategy is the real and unique
challenge, given the assumption that users do not cooperate. Indeed, the best solu-
tion to overcome the co-channel interference, and eventually provide each user with
reasonable performance is to preprocess, with a proper transmission strategy, the
signal intended for each user at the BS.

Many transmission strategies have been studied in the literature. The DL MU-
MIMO sum-rate, defined as the maximum aggregation of all the users’ data rates
is achieved via dirty paper coding (DPC), a highly complex transmission strategy
for which finding practical dirty paper codes that approach the capacity limit is
still unknown. However, linear precoding can achieve the same multiplexing gain as
DPC, with a certain offset with respect to the sum-rate performance [72]. Thus, a
linear precoder would be able to transmit as many data threads as the DPC, while
requiring a much less complex transmission implementation [73]. All transmission
strategies rely on a certain level of channel knowledge at the BS. The best scenario
is characterized by full channel knowledge at the transmitter, also referred to as
Channel State Information (CSI) at the transmitter (CSIT). Other more realistic
assumptions provide the BS with partial information of the channel (PCSI). Exam-
ples include quantized information, delayed information, or even long-term variation
(statistics). These scenarios differ in performance, with CSI outperforming PCSI,
and also in complexity, with CSI being more complex to acquire than PCSI [74].
For the rest of this chapter, we will focus on linear precoders with CSIT.

Linear transmission strategies

Linear precoding strategies provide implementation advantages compared to non-
linear techniques, allowing a trade-off between complexity and performance. The
linear precoder implements a transformation of the K threads of information into
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Linear precoder Design criteria Formulation

Conjugate beamforming For large values of M is equiv-
alent to a zero–forcing ap-
proach

VCB = H†

Zero–forcing Eliminates spatial interference VZF = H† (︁HH†)︁−1

MMSE Minimizes the mean squared
error of each user

VMMSE = H† (︁CHH† + σ2
wI
)︁−1

CB−1

TABLE 6.1. EXAMPLE OF LINEAR PRECODERS WITH
THEIR CORRESPONDING DESIGN CRITERIA.

the M transmitted symbols, which is linearly modeled in its low-pass equivalent by
a precoding matrix named V = [v1, . . . ,vK ] ∈ CM×K , being vk the transformation
applied to user k’s signal and to be transmitted through the M antennas.

When designing a linear precoder, an optimization criteria should be determined
and applied according to the level of channel knowledge at the transmitter. Focusing
on full CSI, where the BS has full access to H, the linear precoder could be chosen
to optimize i) the sum-rate, ii) the signal to interference and noise ratio (SINR),
iii) the mean squared error (MSE), or iv) it could even be proposed to eliminate
the inter-user interference (block-diagonalization), or the spatial interference (zero-
forcing, or conjugate beamforming).3 Some examples of linear precoders, together
with the optimized performance criteria, are shown in Table 6.1. Among the several
linear precoders, in the following we will focus on the MSE precoder as the reference
linear precoder for the proposed hybrid implementation and its performance.

Building linear precoders

Any linear precoding strategy has two particular elements. The first one is digi-
tal processing, where transformations are done in baseband (BB) to the discrete
symbols. The second one is analog processing, where the discrete symbols are trans-
formed and modulated in band-pass, see Fig. 6.1. These two stages, digital and
analog processing, can be modeled within the low-pass equivalent linear precoding
matrix as V = RP ∈ CM×K , where matrix P ∈ CF×K represents the BB processing
and has no predefined structure and R ∈ CM×F implements the analog processing;
P will be referred to as BB matrix and R as RF matrix. F is the number of RF
chains implemented in the band-pass modulation. Thus, RF matrix R = [r1, . . . , rF ]

consists of a set of phase shifters, switches and mixers where the vector rl represents
the input phase shift to each of the M transmit antennas from the l-th RF chain.
We represent this phase shift as rml = 1√

M
ej2πβml , where the phase βml ∈ T may take

3It should be noted that when the users have one single antenna, both block-diagonalization
and zero-forcing beamforming provide the same performance.
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Fig. 6.1. Block diagram of the processing to be implemented in the BS: (a) Digital and ana-
log processing for a FD implementation of the transmission strategy; (b) Digital
and analog processing for a HB implementation of the transmission strategy.

different values depending on the precoding scenario that will be discussed next:

• If F =M typically rml = 1√
M

if m = l and zero otherwise.

• If F < M , then rml =
1√
M
ej2πm

⊤
mgl , with mm =

[︁
m1
m, . . . ,m

d
m

]︁⊤ being the
normalized position of the antenna elements of the transmit array, βml ∈ T,
gl ∈ Td for m ∈ [M ] as in (3.5) and l ∈ [F ].

Finally, the BB matrix P is normalized so that the columns of V = [v1, . . . ,vK ],
being vk the beamforming vector for the information of the k-th user, are ||vk|| = 1.

The hardware/software design of the system will depend on the choice of F and
on how the split in the precoding processing is done, i.e. digital and analog, given
that digital processing is implemented in software and analog processing is performed
at hardware. The scenario known as fully-digital (FD) has F = M , i.e. one RF
chain for each transmit antenna yielding a square RF matrix R. In this case, matrix
R is typically forced to be an identity matrix with some type of normalization, given
that any phase shift or mixing performed in a square matrix can be done digitally
at baseband by matrix P, being it the reason why this scenario is called fully-
digital (FD) (depicted in Fig. 6.1(a)). Conversely, we could also decide to reduce
the number of RF chains making F < M , and in this scenario the tall R matrix
would typically have a non-diagonal structure, allowing a certain number of mixers
and phase shifters to be active in order to implement the analog processing (see
Fig. 6.1(b)). In this case, the transmitter implements digital and analog processing
together with the band-pass modulation. This hardware/software implementation
is said to be hybrid.

In the following, we discuss the most adequate hardware/software implementa-
tion of the transmission strategy: fully-digital or hybrid. The answer is obviously
not universal and it will depend on several factors, such as performance, cost of
hardware for analog processing and band-pass modulators, and space issues for the
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deployment of a certain number of RF chains, among others. Most of the precoders
in the literature for DL MU-MIMO provide a structure for the precoding matrix
V that, apparently, and without digging into any suitable potential decomposition,
would only match the FD implementation (see examples in Table 6.1). In this case,
a hybrid implementation with F < M would not be feasible without compromising
performance unless we are able to leverage a suitable internal decomposition of the
precoder matrix that matches the hybrid implementation. Assuming performance
is not an issue, either because there is an internal decomposition of V that allows a
hybrid implementation, or because the performance loss can be compensated with
other benefits of the hardware implementation (e.g. reduced cost, reduced complex-
ity), there is still scope for discussion on when it is suitable to reduce the number of
RF chains compared to the number of antennas at the BS. In any system, reducing
the number of RF chains would force analog processing, with the increase in cost
that this hardware implementation would incur. However, since the number of RF
chains are being reduced, there is a trade-off between the additional cost due to
analog processing and the cost reduction due to the smaller number of RF chains.
In this scenario, there is typically a net reduction of the hardware cost (RF chains
are more expensive than the analog processing hardware required).

A remaining issue to address when deciding between a FD or HB transmitter
is the role of the baseband processing. Typical system parametrization in MU-
MIMO, and specially in mmWave channels, assume M ≫ K, i.e. the number of
antennas at the BS should be larger than the number of information threads K to
be transmitted. In this case, we could still face two scenarios, F ≥ K or F < K. In
the first scenario, the baseband processing is performed by a tall or square matrix,
ensuring that we are providing a level of redundancy that helps overcoming the
channel impairments and allows for an accurate estimate of the transmitted thread.
However, the second scenario is not as straightforward since the baseband processing
matrix would be fat and therefore the thread information is being compressed before
the analog processing. In this scenario, we should ensure that the analog processing
overcomes this compressing loss, which in many cases may not be possible due to
the spatial multiplexing gain reduction [74].

Next, we depict the downlink (DL) and uplink (UL) scenario in a MU-MIMO
system. From that, we unveil the hybrid structure inherent in the MMSE precoder.

6.1.3 DL scenario

The full DL system is depcited in Fig. 6.2 where a transmit information vector with
unit-energy, i.i.d. elements s = [s1, . . . , sK ]

⊤ ∈ CK is scaled, prior to transmission,
by means of a matrix Q1/2 = diag(q1/2) ∈ RK×K , where q = [q1, . . . , qK ]

⊤ ∈ RK

contains the energy of each information symbol. Then the information vector is
preprocessed by the precoder matrix V ∈ CM×K , obtaining the signal vector x =
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s = [s1, . . . , sK ]
⊤

Q1/2 V
x

H

+

w1

y1
b1

x̂1
q
−1/2
1

ŝ1

... ...
+

wK
yK

bK
x̂K

q
−1/2
K

ŝK

Fig. 6.2. Downlink MU-MIMO system model.

VQ1/2s ∈ CM . Finally, x is transmitted through a flat fading DL MIMO channel
H ∈ CK×M as in (6.1). The received signal is then given by

ŝ =Q−1/2B (Hx+w)

=Q−1/2B
(︂
HVQ1/2s+w

)︂
,

(6.2)

where B = diag (b) ∈ RK×K is a diagonal matrix that scales each user received
signal. Both vectors q ∈ RK and b ∈ RK are used to achieve downlink/uplink
(DL/UL) duality [75], [76], that would be needed to obtain the optimal Mean Square
Error (MSE) precoder and also precoder normalization. Finally, w ∈ CK is an
additive white circular-symmetric complex Gaussian noise vector with independent
zero-mean components and σ2

w-variance. Thus, the signal ŝk received by the k-th
user, with k ∈ [K], is then formulated as follows:

ŝk = q
−1/2
k bkh

†
kVQ1/2s+ q

−1/2
k bkwk

= q
−1/2
k bk

K∑︂
i=1

q
1/2
i h†

kvisi + q
−1/2
k bkwk

= bkh
†
kvksk⏞ ⏟⏟ ⏞

desired symbol

+ q
−1/2
k bk

K∑︂
i=1
i ̸=k

q
1/2
i h†

kvisi

⏞ ⏟⏟ ⏞
multiuser interference

+ q
−1/2
k bkwk⏞ ⏟⏟ ⏞

noise

.

(6.3)

Therefore assuming uncorrelated symbols, the Signal to Interference and Noise
Ratio (SINR) of the k-th user in the DL, SINRDL

k , is given by:

SINRDL
k =

qkh
†
kvkv

†
khk∑︁K

i=1
i ̸=k

qih
†
kviv

†
ihk + σ2

w

=
qk||v†

khk||2∑︁K
i=1
i ̸=k

qi||v†
ihk||2 + σ2

w

.

(6.4)
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And the k-th user’s MSE is given by:

ϵDL
k = E

{︁
∥ŝk − sk∥22

}︁
= 1− bkv

†
khk − bkh

†
kvk +

b2k
qk

h†
kVQV†hk +

b2k
qk
σ2
w.

(6.5)

It should be noted that the design of the precoder V = [v1, . . . ,vK ] under a
MSE criteria minimization, minvk ϵ

DL
k , leads to a coupled solution for each of the

user beamformers. For this reason, as it is shown in the next sections 6.1.4 and
6.1.5, we propose to apply DL/UL duality [75], [76] to obtain the optimal receiver
in the UL and further get the equivalent precoder in the DL that achieves the same
MSE region.

6.1.4 UL scenario

As stated earlier, we consider the precoder that minimizes MSE (see (6.5)) with a
hybrid structure as V = RP as the reference linear precoder. For that we apply
DL/UL duality and assume Time Division Duplexing (TDD). Thus, the equivalent
UL scenario is depicted in Fig. 6.3 where the k-th user transmits with power ck and
both B and C = diag ([c1, . . . , cK ]) = diag(c) are scaling matrices only affecting the
MSE and not the SINR when applied at the receiver.

s1
c
−1/2
1

x1

...
sK

c
−1/2
K

xK

H† +

w
y

V† B
x̂

C−1/2
ŝ

Fig. 6.3. Uplink MU-MIMO system model.

Thus, in the UL, we obtain the SINR of the k-th user as

SINRUL
k =

ckv
†
khkh

†
kvk∑︁K

i=1
i ̸=k

civ
†
khih

†
ivk + σ2

wv
†
kvk

=
ck||v†

khk||2∑︁K
i=1
i ̸=k

ci||v†
khi||2 + σ2

w||vk||2
,

(6.6)

and the k-th user’s MSE is given by

ϵUL
k = 1− bkh

†
kvk − bkv

†
khk +

b2k
ck
v†
kH

†CHvk +
b2k
ck
σ2
wv

†
kvk. (6.7)
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6.1.5 Precoder Design

The receiver for a Minimum Mean Square Error (MMSE) criteria in the UL, for
fixed C and B matrices, is obtained by solving arg minvk ϵ

UL
k , i.e.

∂ϵUL
k

∂v†
k

= −bkhk +
b2k
ck
H†CHvk +

b2k
ck
σ2
wvk = 0, (6.8)

which yields

vMMSE
k =

ck
bk

(︁
H†CH+ σ2

wI
)︁−1

hk. (6.9)

The optimal MMSE receiver is then derived as

VMMSE =
[︁
vMMSE
1 , . . . ,vMMSE

K

]︁
=
(︁
H†CH+ σ2

wI
)︁−1

H†CB−1
(6.10)

and since B can be any diagonal matrix we will choose it to achieve ||vMMSE
k || = 1.

Given matrices C ∈ RK×K and B ∈ RK×K , the SINR region,
{︁
SINRUL

1 , . . . , SINRUL
K

}︁
,

and MSE region,
{︁
ϵUL
1 , . . . , ϵUL

K

}︁
, achieved in the UL with VMMSE† as the precoder

exactly match those in the DL, with VMMSE as the precoder and q being the power
allocation in the DL as [75], [76]:

q = σ2
wQ

−1
pw1K , (6.11)

with

Qpw =

⎡⎢⎢⎢⎢⎣
1

SINRUL
1
||vMMSE†

1 h1||2 −||vMMSE†
2 h1||2 . . . −||vMMSE†

K h1||2

−||vMMSE†
1 h2||2 1

SINRUL
2
||vMMSE†

2 h2||2 . . . −||vMMSE†
K h2||2

... . . . ...
−||vMMSE†

1 hK ||2 −||vMMSE†
2 hK ||2 . . . 1

SINRUL
K
||vMMSE†

K hK ||2

⎤⎥⎥⎥⎥⎦ .
(6.12)

Furthermore if V and the SINR region for the UL/DL are known, the power
allocation in for the UL is given by

c =σ2
wQ

−⊤
pw

[︃
||vMMSE

1 ||2, . . . , ||vMMSE
K ||2

]︃⊤
=σ2

wQ
−⊤
pw 1K ,

(6.13)

where the last equality comes from the fact that the columns of matrix V are
normalized.
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Unveiling a hybrid structure in the full-digital MMSE precoder

Further developing (6.10) using the channel definition in (6.1) and applying matrix
inversion identity we have that

VMMSE =
(︁
H†CH+ σ2

wI
)︁−1

H†CB−1

=σ−2
w H† (︁σ−2

w HH† + C−1
)︁−1

B−1

=H† (︁CHH† + σ2
wI
)︁−1

CB−1

=BtTM(g1:K)G
†R†

N(f1:K)
(︁
CHH† + σ2

wI
)︁−1

CB−1

=BtTM(g1:K)P
MMSE

(6.14)

The factorization form used for the MMSE precoder in (6.14) immediately reveals
how to obtain a hybrid structure from a fully-digital implementation. The key aspect
is to have knowledge of the matrix BtTM(g1:K), or in other words, having knowledge
of the frequency parameters at the transmitter {g1, . . . , gK}, given that the structure
of the atoms in TM(g1:K) and the sampling matrix Bt are known. The consideration
that identifying a proper precoder factorization allows a hybrid implementation of
such precoder, can be in principle extended to other CSI based precoders, like, for
example, all those precoders where V = H†O, with O being any arbitrary matrix
(e.g. zero–forcing and conjugate beamforming).

Mapping the factorization given in (6.14) with the decomposition in terms of R
and P described in Section 6.1.2, it follows immediately that R = BtTM(g1:K). From
this consideration, it follows that in a sparse MU-MIMO channel as defined in (6.1)
with a small number of users (K ≪M), the MMSE precoder would potentially have
a desirable hybrid structure with a number of RF chains much lower than the number
of antennas, and consequently at a lower cost than a classical FD implementation
while maintaining the same performance.

In fact, it should be noted that hybrid implementations that arise from this type
of decomposition and from a potential knowledge of the transmission parameters
{g1, . . . , gK} has the following characteristics. First, the system performance does
not change, in the sense that whatever performance is achieved by the FD imple-
mentation (minimum MSE, interference cancellation, maximum SINR, etc.) will be
achieved by the hybrid implementation. Second, the number of RF chains match
the number of users seen at the transmitter, which in a sparse channel is low and
would allow for a corresponding cost/complexity reduction compared to the FD im-
plementation. Finally, note that, in general, no claim can be made regarding the
fact that this is the minimum number of RF chains that guarantee the same perfor-
mance achieved in the FD implementation. This will in general also depend on the
rank of the matrix H.
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6.2 Solving the hybrid precoding using Atomic Norm

As stated earlier, the hybrid structure is feasible when setting R = BtTM(g1:K).
Thus, assuming CSI at the transmitter, we have that for the k-th column of the
known precoder matrix4 V, vk = Rpk = BtTM(g1:K)pk = Bt

∑︁K
i=1 tM(gk)pki with

k ∈ [K]. This representation unveils that the precoder is a binary measurement of
a linear combination of atoms in AM as in (2.1). If we set xk = Rpk we can pose
the problem as vk = Btxk, where we have the same structure as in (2.4) by setting
w = 0. Note that all precoder vectors vk with k ∈ [K], are generated by means of the
same steering matrix TM(g1:K), and it is the weighting applied to the combination
of the steering vectors, what provides the different vk. This is clearly a Multiple
Measurement Vector (MMV) scenario equivalent to the one in (3.12) with W = 0,
where we have a set of measurements [v1, . . . ,vK ] = BtTM(g1:K)[p1, . . . ,pK ].

Thence, we have two options to unveil the hybrid structure. One is looking at
the problem from a Single Measurement Vector (SMV) perspective. In this case, the
set of frequencies {g1, . . . , gK} can be found by solving the optimization problem
(P.6) for any of the vk with k ∈ [K] observations. The second option is to look at
the problem from a MMV perspective and recall here optimization (P.7), where a
low complexity alternative was proposed splitting the data samples acquired in one
dimension into multiple groups which altogether solved the optimization. Here, the
problem can be formulated likewise, i.e. a set of sample vectors (vk, k ∈ [K]) are
obtained and they all are binary measurements of linear combinations of atoms in
AM built with the same frequency parameter set (g1:K). Only one last consideration,
here we are in a noiseless scenario given that measurements come directly from this
linear combination without any additive disturbance. Thus, we adapt (P.7) to this
application, by setting the minimization cost function in ℓ2 to zero due to the absence
of noise and by adding a constraint that ensures that the solution matches the known
precoding vectors:

min
t,xk,TM∈T

1

2

(︁
t+ Tr {TM}

)︁
s.t.

[︄
TM xk
(xk)

† t

]︄
⪰ 0, vk = Btxk k ∈ [K]

(P.8)

For this chapter, we will use the MMV perspective and unveil the hybrid pre-
coding structure by using (P.8).

The complexity of (P.8), upon setting n = M and m = K in (2.9), is given by
O (KM3.5 +K2M2.5 +K3).

Thence, the frequency set g1:K is found by solving the Vandermonde decomposi-
tion of TM, solution of (P.8). As stated earlier, once the frequency set is recovered,

4Note that we can either address the proper VMMSE as in (6.14), or any other precoding
structure such that V = H†O
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RF matrix can be computed easily as BtTM(g1:K). And finally, BB matrix, is cal-
culated using a Least Squares solution, assuming CSIT and thus, having access to
VMMSE as

P =
(︁
R†R

)︁−1
R†VMMSE. (6.15)

With both matrices R and P, the HB precoder matrix estimation is finally
computed as V = RP.

6.3 Numerical analysis

We consider a DL MU-MIMO scenario with a BS transmitting with a uniform 18-
antenna deployment distributed as M = [M1,M2]

⊤ = [3, 6]⊤ with K single-antenna
users. The number of users varies in the set {1, 2, 3, 4, 5}. Numerical results are
showed next for the proposed method in (P.8) as well as two other methods, OMP
and MUSIC introduced below, used for comparison.

In Fig. 6.4(a) we plot the error (MSE) in the recovery of the frequency set g1:K

versus K, where ĝk denotes the recovered frequency vector. In Fig. 6.4(b) we depict
the error (MSE) of the HB precoder with respect to the MMSE optimal precoder,
where we denote the v̂k as the HB precoder based on the recovery of the frequency
parameters.

The rate achieved for every K ∈ [5] for the proposed method and the two bench-
marks is depicted in Fig. 6.5(a) with respect to the SNR. In Fig. 6.5(b) we depict
the MSE of the received signal, E{∥s− ŝ∥22} with respect to the SNR, compared to
both benchmarks.

Computational complexity is adjusted in both benchmark methods so that it
matches the one in (P.8) so that comparisons are fair. We can clearly see that the
proposed method outperforms the benchmarks in all the results.

6.3.1 Benchmarks

Next, for comparison purposes, two alternative state-of-the-art methods for param-
eter recovery are proposed: MUSIC and OMP. All the results presented in this
section will be compared with these two methods. The proposed alternative algo-
rithms, unlike (P.8), rely on a predefined grid or dictionary of frequencies which is
used to find the true frequencies. The length of the dictionary for each of the two
methods is chosen so that computational complexity matches that of (P.8).
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Orthogonal Matching Pursuit (OMP)

One of the first approaches to solve this factorization problem is given in [42] for
a single–user MIMO scenario. In this case, the reference precoder maximizes the
mutual information and it is given by the right-hand side eigenvectors of the channel
matrix. To make feasible the search of the RF phases, they assume a predefined
dictionary of length LOMP with a grid on all the frequency space that characterize
the possible position of the scatterers, and they choose the “best” F vectors within
that dictionary by means of an orthogonal matching pursuit (OMP) algorithm. This
work is further extended to the multi-user scenario [74] by optimizing, in two stages,
the RF beamformers to maximize each user desired power, and the baseband beams
to overcome the remaining multiuser interference. In this case, again, the search on
the phases is not over all the phase space, but it is still brute force search over a
discrete predefined phase dictionary whose cardinality depends on the discrete set
of phases that the phase shifters can implement.

This algorithm uses K iterations to find K frequency vectors gk. In each iter-
ation, one location in the dictionary is chosen so that it best matches the residual
from the observation y. Then this dictionary entry is added to the support estimate
and removed from the dictionary, and the residual is updated. The procedure is
repeated until the K entries are found.

Computational complexity of OMP is given by

O

(︃
K
(︁
L2

OMPK +MK + LOMP
)︁
+

K∑︂
i=1

i3 + 2Mi2 + 2MKi

)︃
(6.16)

where LOMP is the length of the dictionary and d is the number of dimensions.

MUltiple SIgnal Classification (MUSIC)

MUSIC was first proposed in 1979 [60] and has been widely used and improved for
frequency and direction of arrival estimation [69].

Given an observation system as y = Bx+w, the covariance matrix of signal x is
estimated based on the observation y. Then, the matrix is split between signal (first
K eigenvalues/eigenvectors) and noise and with this information a noise spectrum
function is constructed over a predefined frequency dictionary of arbitrary length
LMUSIC. Then, the frequencies are estimated by locating the peaks. Here we use an
improved version of this algorithm introduced in [69] where the observation vector
is piled following a d-D Hankel matrix with dimension H < M .

Computational complexity of MUSIC algorithm is given by

O

(︃
LMUSIC

(︁
H2 +Hd−HK + 2H −K + 1

)︁
+H(H −K)2

)︃
(6.17)
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Fig. 6.4. MSE of frequency recovery in terms of K (a) and MSE of precoder estimation in
terms of K (b) for a MU-MIMO DL scenario with M = [3, 6]⊤ and K ∈ [5] users.

where LMUSIC is the length of the dictionary, d is the number of dimensions and H
is the dimension of the d-D Hankel matrix.
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Fig. 6.5. Spectral efficiency in terms of SNR (a) and MSE of the received signal in terms
of SNR (b) for a MU-MIMO DL scenario with M = [3, 6]⊤ and K ∈ {1, 2, 3, 5}
users.
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Chapter 7

Full channel estimation using atomic
norm

As stated in previous chapters, increasing demands for higher capacity in present
and upcoming generations of mobile communications have led the industry and re-
searchers to explore the mmWave frequency range. The available bandwidth in this
range is promising, being a very good candidate to meet the specified requirements in
wireless communications speed. However, propagation in mmWave channels presents
serious drawbacks due to the high path loss, atmospheric absorption and other con-
ditions such as foliage loss, rain attenuation, diffraction, obstacle blockage, etc [77].
To counter this, MIMO technologies have been widely adopted in 5G deployments,
being an enabling technology for ultra-high speed wireless communications due to
the gains of spatial diversity [78]. Channel estimation in this type of scenarios is more
challenging than in single-antenna transmissions given that the overhead grows with
the number of antennas in the system [79], [80]. Thus, leveraging the sparse nature
of propagation in the mmWave range to reduce the overhead in the transmission is
of high interest. Several studies in the literature have explored compressed sensing
techniques to recover the relevant information from the received signal which allows
to reduce the number of necessary pilots and therefore, reducing the overhead in the
communication [81], [82]. Other works, inspired by recent studies on deep neural
networks for sparse signal recovery [83] have applied convolutional neural networks
(CNN) for sparse channel estimation in mmWave MIMO channels [84].

A sparse model as in (3.9) is fully characterized by the structures of both trans-
mitter and receiver, the angles of departure (AoD) and arrival (AoD) and the channel
fading coefficients for every propagation path. In this chapter, we aim to apply the
gridless methodology presented in chapter 2 to extract the angular information of
the communication, AoD and AoA simultaneously, and with that, reconstruct the
channel to provide a full channel estimation. We also compare the proposed grid-
less method with state-of-the-art techniques introduced in the previous chapter, i.e.
OMP and MUSIC.
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7.1 System model

This application follows a multiple measurement vector (MMV) as explained in
section 3.5.2. We consider a MIMO propagation scenario with a dt-dimensional
antenna array deployment at the transmitter with M antennas and a dr-dimensional
antenna array deployment with N antennas at the receiver. For the transmitter, the
m-th antenna is placed at qm and the n-th receive element is placed at vn as in (3.1).
We considered both deployments as a sampled version of a uniform deployment,
with sampling matrices Bt ∈ {0, 1}M×Mu and Br ∈ {0, 1}N×Nu respectively for
transmitter and receiver, where Mu and Nu are the number of antennas in the virtual
uniform deployments at transmitter and receiver. Thus, channel matrix H ∈ CN×M

is modeled as in (3.9).

We focus in this chapter on full channel estimation and in gridlessly extracting
all relevant propagation parameter such as AoA, AoD and channel gains. For that
a sequence of known pilots P = [p1, . . . ,pP ] ∈ CM×P of length P is transmitted
over the channel generating a set of measurements Y = [y1, . . . ,yP ] ∈ CN×P . So,
plugging the pilot sequence into the MMV (3.12) we have that

Y =HP+W

=BrRN(f1:K)GT†
M(g1:K)B

†
tP+W

(7.1)

and recalling (3.13), we can vectorize the observation as

y = vec(Y)

=
(︁
P⊤ ⊗ IN

)︁
(Bt ⊗Br)AL(l1:K)γ +w

= QAL(l1:K)γ +w

= Qhu +w

(7.2)

where matrix Q =
(︁
P⊤ ⊗ IN

)︁
(Bt ⊗Br) ∈ CNP×MuNu is known and contains the

pilots and the information about the non-uniform or sampled structures. Note that
matrix Q is not a binary measuring matrix but it has a very specific structure
based on the antenna structures at the transmitter and at the receiver. Frequency
parameters regarding AoD, {g1, . . . , gK}, and AoA, {f1, . . . , fK}, are contained in
lk = [−g⊤

k , f
⊤
k ]

⊤ ∈ Tdl for k ∈ [K], being dl = dt + dr. The vector L = [M⊤,N⊤]⊤

contains the number of antennas in each dimension at the transmitter and at the
receiver. Finally, AL(l1:K) = [aL(l1), . . . , aL(lK)] ∈ CMuNu×K is the matrix containing
the K atoms (or steering vectors) defined as in (3.14). Thus, the unknown elements
are the frequency parameters {l1, . . . , lK} and the fading coefficients γ ∈ CK .

Therefore, the problem is formulated so that the observation vector y ∈ CN is a
binary measurement, done by means of matrix Q, of a linear combination of atoms
in AL. With these formulation we can use (P.5) and its convex relaxation (P.6)
to recover the frequency set l1:K . Once the frequencies are recovered, the channel
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fading coefficients γ = [γ1, . . . , γK ]
⊤ can be estimated. Finally, the channel matrix

H can be reconstructed.

7.2 Numerical analysis

We consider a transmitter with a uniform linear array deployment with M = 4

antenna elements, with M = [M1]
⊤ = [4]⊤. At the receiver we have a uniform

planar array with N = 24 and N = [N1,N2]
⊤ = [4, 6]⊤. The propagation scenario

will be characterized by K ∈ {1, 2, 3, 4, 5} scatterers located randomly that will
particularize the angles of departure and arrival following (3.2) and, consequently,
the channel parameters lk = [−g⊤

k , f
⊤
k ]

⊤. The sequence of pilots P that is transmitted
over the channel would have length P ∈ {2, 3, 4, 5, 6}. We next show numerical
results on frequency recovery error (l1:K), channel fading coefficients (γ) and full
channel estimation (H) for different values of SNR.

7.2.1 Optimization of η

The optimization problem proposed in (P.6) has a parameter η that can be chosen
so that it minimizes recovery error. The numerical simulations showed next indicate
that there is an optimal value for η which depends on the SNR and the dimensional
structure of the transmitter and receiver systems L which characterize the structure
of the steering vectors AL(l1:K). Both L and P are known a priori which allows to
optimize η off-line. In Fig. 7.1 we report the MSE in the entire frequency vector
recovery, defined E{∥lk− l̂k∥22}, versus η. We see that the η starts making a difference
from a certain value for P , being useless for short pilot sequences. We can also see
by inspection that for a given value of SNR and P , the optimal η does not depend
much on the number of scatterers K to be resolved.

7.2.2 Benchmarks

For comparison purposes we use the same two alternative methods used in chapter
6, i.e. OMP and MUSIC. Both alternative methods rely on a predefined dictionary
of atoms over which the best K entries are selected. The length of the dictionary
is chosen so that the computational complexity of both algorithms matches that of
our proposed solution (P.6).

OMP

We recall that this is an K-iterative method that selects in an entry of the dictionary
in each iteration. The computational complexity of this method is given in (6.16).
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Fig. 7.1. Optimization of η for M = [4]⊤, N = [4, 6]⊤ with (a) SNR = 0dB, (b) SNR = 5dB,
(c) SNR = 10dB and (d) SNR = 20dB.
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ĥ
k
∥2 2
}

(b) SNR = 20dB

Fig. 7.2. MSE of channel estimation versus number of pilots P for M = [4]⊤ and N = [4, 6]⊤

for (a) SNR = 0dB, (b) SNR = 3dB, etc

MUSIC

We recall that this method splits the estimated covariance using an eigenvalue de-
composition and from that it searches through the dictionary finding the best K
atoms that might have composed the signal. The computational complexity of this
algorithm is given in (6.17).

7.2.3 Error in channel estimation

Once we have the optimal value of η has been found for every value of SNR, obtained
by repeating the process shown in Fig. 7.1, we can run simulations comparing
the performance on frequency recovery, and channel fading coefficients and channel
estimation. In Fig. 7.3 we depict the MSE in the recovery of the frequency set in
Fig. 7.3(a), the MSE in the channel fading coefficient estimation in Fig. 7.3(b) and
finally, the MSE in full channel estimation in Fig. 7.3(c).

We can see that our proposed method (P.6) outperforms the two alternative
methods for any given SNR and any length of the pilot sequence. This yields that
a shorter pilot sequence is enough for the proposed solution to achieve the same
performance than the state-of-the-art solutions for a given SNR. Therefore, it makes
communication more efficient given that less space is required for the pilot sequence
in the transmitted signal.
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ĥ
k
∥2 2
}

(c)

Fig. 7.3. Results for M = [4]⊤, N = [4, 6]⊤ for MSE of frequency recovery (a), channel
coefficients γ = [γ1, . . . , γK ]⊤ estimation MSE (b), and channel estimation MSE
(c).
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Chapter 8

Conclusion and future work

This thesis studies different applications of sparse signal and gridless parameter re-
covery via atomic norm decomposition. Sparse signals are formulated here as a linear
combination of a number of atoms in the continuous space belonging to a so called
atom set AJ with infinite cardinality. Recovery relies on the rank minimization of a
multi-level Toeplitz (MLT) matrix with a proper structure based on a d-dimensional
Kronecker ordering. Also, a convex relaxation which guarantees parameter recovery
in polynomial time, as opposed to the rank minimization, is explored. We propose
a gridless methodology to recover the so called atoms, which are fully characterized
by a d-dimensional parameter f, and test it in different application scenarios. Also,
we explore a machine learning approach to estimate the number of composite atoms
that characterize the model in the scenarios where that number is unknown.

The proposed methods have been applied to several scenarios in the field of
wireless communications. By numerical analysis we show that our proposed method
improve significantly the performance when compared to state-of-the-art techniques.
If the structure of the atoms is designed properly (via Kronecker ordering) without
losing generality in the model, the complexity needed to recover the composite
atoms of the model is linear in the sparsity degree, whereas in former solutions
was exponential.

Next, we recapitulate the different applications studied in the thesis and finally
outline some points for further research in future work.

8.1 Conclusions

Several applications are studied in this thesis that consist in parametric model
recovery. We delivered numerical analysis that show how the proposed solution
outperforms some of the state-of-the-art techniques for frequency and parameter
extraction.
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8.1.1 Automotive radar in mmWave frequency range

Millimeter-wave radars are key components of advanced driver assistant systems.
In this thesis we have considered a mmWave pulse radar and, using the signal mea-
surements at the antenna elements of a 3D receive array, we have studied the super-
resolution of multiple target echoes. Upon exploiting the atomic norm to harness
sparsity in the continuous parameter domain, the identification of the target param-
eters is re-cast in terms of the rank–minimization of a properly-structured multi-level
Toeplitz matrix. As mentioned earlier, we have also developed and studied a convex
relaxation that ensures the extraction of the relevant parameters in polynomial time.
Finally, we have developed and discussed a low-complexity implementation of the
recovery strategy that offers advantageous complexity/performance trade-offs.

8.1.2 Hybrid precoder design

For this application, we address one of the main challenges presented by mmWave
systems via the design of a hybrid precoder in a MU-MIMO scenario. This precoder
takes advantage of the sparse nature of mmWave channels to reduce the number or
RF chains, therefore scaling down the total hardware cost, and yielding a feasible
transmission strategy in this millimeter bands. We described some of the state-of-
the-art algorithms for hybrid precoding, such as MUSIC and OMP, and present a
novel algorithm based on AN by reformulating the hybrid precoder design as a matrix
factorization problem and adopting the rank minimization of a MLT matrix, and
the convex relaxation that ensures polynomial time. The AN–based precoder allows
a hardware complexity (number of RF chains) reduction given that for a given error
in terms of distance to the optimal fully-digital precoder, AN-based precoder needs
less RF chains than the state-of-the-art precoders. Thus, mmWave spectrum can be
exploited in a feasible way by the use of MIMO and hybrid precoding. Further, AN
is revealed as a promising algorithm to leverage the sparse nature of the mmWave
channel in order to reduce the number or RF chains.

8.1.3 Full channel estimation

In this application we leverage the sparse nature of mmWave propagation to estimate
the channel. This is done by extracting the K frequency parameters of the channel
which contain the information on the angles of departure and arrival and with which
the channel matrix can be reconstructed. This is done, as in the other applications,
with the rank minimization of a MLT matrix with a specific structure. We also
studied the convex relaxation that guarantees recovery in polynomial time. We
compare the proposed solution with some of the state-of-the-art methods such as
OMP and MUSIC. We see via numerical analysis that our method outperforms both
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alternative algorithms.

8.2 Future work

Next we outline some points for further research

• Explore the theoretical conditions under which robust parameter recovery is
achieved for noisy measurements.

• Study the feasibility of a different data gathering and training approach for
the Machine Learning model to estimate the number of composite atoms that
allow us to do the predictions without having to obtain matrix TJ.

• Extend the applications to other science and engineering fields where the stud-
ied sparse models fit, such as sensor networks, magnetic resonance imaging,
computer vision, etc.
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