3,097 research outputs found

    Battery State of Health Monitoring via Estimation of Health-Relevant Electrochemical Variables

    Full text link
    This dissertation explores and compares the effectiveness of estimating two health-relevant electrochemical variables, the side reaction current density and the number of cyclable Li-ions, as indicators of battery state of health (SOH) in battery management systems of electric vehicles (EV) and hybrid electric vehicles (HEV). The choice of these two electrochemical variables is based on the assumption that battery degradation is mainly caused by consumption of cyclable Li-ions. This assumption is valid for the two widely-used types of EV/HEV batteries considered herein, namely LiFePO4 and LMO-based mixture batteries. This dissertation provides formulations to estimate these two electrochemical variables from measurements of battery terminal voltage and current. Estimation is necessary here because the electrochemical variables cannot be measured on-board. Estimation of the side reaction current density is formulated as a subsystem identification problem and is solved using retrospective-cost subsystem identification. A new subsystem identification algorithm, the two-step filter, is also developed to improve the estimation accuracy of the side reaction current density under the presence of state of charge (SOC) estimation errors. On the contrary, the number of cyclable Li-ions is estimated as an unknown battery parameter using the extended Kalman filter. This dissertation also analyzes the robustness of estimation of the two electrochemical variables by providing a framework to obtain the lower bound of relative estimation errors of each of the two variables under non-ideal conditions for algorithms that estimate the variable by minimizing the error between measured voltage and estimated voltage. This framework determines that the lower bound of the relative estimation error of a variable is proportional to the error in either measurement or estimate of battery terminal voltage caused by non-ideal conditions, and inversely proportional to the sensitivity of the voltage to the variable and the magnitude of the variable itself. This framework also yields the same lower bound for the covariance of unbiased estimates as given by the Fisher information. The effectiveness of estimating the side reaction current density and the number of cyclable Li-ions as SOH indicators is also discussed through comparison. Compared to the number of cyclable Li-ions or other SOH indicators such as capacity and internal resistance, the side reaction current density is a more ideal SOH indicator when it can be estimated accurately, because it can instantaneously indicate battery degradation rate. However, estimation of the side reaction current density under practical non-ideal conditions is fundamentally difficult due to the fact that the sensitivity of the voltage to the side reaction current density and the magnitude of the side reaction current density are both low. On the other hand, the number of cyclable Li-ions is a promising SOH indicator for battery management systems in practice because it provides an indication of the remaining capacity from the first principles, can be estimated using a standard algorithm and simple models, and demonstrates high robustness to non-ideal conditions. Future extensions of this work include i) studying the impact of temperature on estimation of health-relevant electrochemical variables by including thermal dynamics in the model, ii) validating experimentally estimation of the number of cyclable Li-ions, and iii) extending estimation of the side reaction current density to other side-reaction-based battery degradation and safety problems such as Lithium plating and dendrite formation.PHDMechanical EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttps://deepblue.lib.umich.edu/bitstream/2027.42/137087/1/zhouxin_1.pd

    Modeling and control of fuel cell-battery hybrid energy sources

    Get PDF
    Environmental, political, and availability concerns regarding fossil fuels in recent decades have garnered substantial research and development in the area of alternative energy systems. Among various alternative energy systems, fuel cells and batteries have attracted significant attention both in academia and industry considering their superior performances and numerous advantages. In this dissertation, the modeling and control of these two electrochemical sources as the main constituents of fuel cell-battery hybrid energy sources are studied with ultimate goals of improving their performance, reducing their development and operational costs and consequently, easing their widespread commercialization. More specifically, Paper I provides a comprehensive background and literature review about Li-ion battery and its Battery Management System (BMS). Furthermore, the development of an experimental BMS design testbench is introduced in this paper. Paper II discusses the design of a novel observer for Li-ion battery State of Charge (SOC) estimation, as one of the most important functionalities of BMSs. Paper III addresses the control-oriented modeling and analysis of open-cathode fuel cells in order to provide a comprehensive system-level understanding of their real-time operation and to establish a basis for control design. Finally, in Paper IV a feedback controller, combined with a novel output-injection observer, is designed and implemented for open-cathode fuel cell temperature control. It is shown that temperature control not only ensures the fuel cell temperature reference is properly maintained, but, along with an uncertainty estimator, can also be used to adaptively stabilize the output voltage --Abstract, page iv

    An energy-aware architecture : a practical implementation for autonomous underwater vehicles

    Get PDF
    Energy awareness, fault tolerance and performance estimation are important aspects for extending the autonomy levels of today’s autonomous vehicles. Those are related to the concepts of survivability and reliability, two important factors that often limit the trust of end users in conducting large-scale deployments of such vehicles. With the aim of preparing the way for persistent autonomous operations this work focuses its efforts on investigating those effects on underwater vehicles capable of long-term missions. A novel energy-aware architecture for autonomous underwater vehicles (AUVs) is presented. This, by monitoring at runtime the vehicle’s energy usage, is capable of detecting and mitigating failures in the propulsion subsystem, one of the most common sources of mission-time problems. Furthermore it estimates the vehicle’s performance when operating in unknown environments and in the presence of external disturbances. These capabilities are a great contribution for reducing the operational uncertainty that most underwater platforms face during their deployment. Using knowledge collected while conducting real missions the proposed architecture allows the optimisation of on-board resource usage. This improves the vehicle’s effectiveness when operating in unknown stochastic scenarios or when facing the problem of resource scarcity. The architecture has been implemented on a real vehicle, Nessie AUV, used for real sea experiments as part of multiple research projects. These gave the opportunity of evaluating the improvements of the proposed system when considering more complex autonomous tasks. Together with Nessie AUV, the commercial platform IVER3 AUV has been involved in the evaluating the feasibility of this approach. Results and operational experience, gathered both in real sea scenarios and in controlled environment experiments, are discussed in detail showing the benefits and the operational constraints of the introduced architecture, alongside suggestions for future research directions

    A Concept of Operations for an Integrated Vehicle Health Assurance System

    Get PDF
    This document describes a Concept of Operations (ConOps) for an Integrated Vehicle Health Assurance System (IVHAS). This ConOps is associated with the Maintain Vehicle Safety (MVS) between Major Inspections Technical Challenge in the Vehicle Systems Safety Technologies (VSST) Project within NASA s Aviation Safety Program. In particular, this document seeks to describe an integrated system concept for vehicle health assurance that integrates ground-based inspection and repair information with in-flight measurement data for airframe, propulsion, and avionics subsystems. The MVS Technical Challenge intends to maintain vehicle safety between major inspections by developing and demonstrating new integrated health management and failure prevention technologies to assure the integrity of vehicle systems between major inspection intervals and maintain vehicle state awareness during flight. The approach provided by this ConOps is intended to help optimize technology selection and development, as well as allow the initial integration and demonstration of these subsystem technologies over the 5 year span of the VSST program, and serve as a guideline for developing IVHAS technologies under the Aviation Safety Program within the next 5 to 15 years. A long-term vision of IVHAS is provided to describe a basic roadmap for more intelligent and autonomous vehicle systems

    State-of-the-Art Sensors Technology in Spain 2015: Volume 1

    Get PDF
    This book provides a comprehensive overview of state-of-the-art sensors technology in specific leading areas. Industrial researchers, engineers and professionals can find information on the most advanced technologies and developments, together with data processing. Further research covers specific devices and technologies that capture and distribute data to be processed by applying dedicated techniques or procedures, which is where sensors play the most important role. The book provides insights and solutions for different problems covering a broad spectrum of possibilities, thanks to a set of applications and solutions based on sensory technologies. Topics include: • Signal analysis for spectral power • 3D precise measurements • Electromagnetic propagation • Drugs detection • e-health environments based on social sensor networks • Robots in wireless environments, navigation, teleoperation, object grasping, demining • Wireless sensor networks • Industrial IoT • Insights in smart cities • Voice recognition • FPGA interfaces • Flight mill device for measurements on insects • Optical systems: UV, LEDs, lasers, fiber optics • Machine vision • Power dissipation • Liquid level in fuel tanks • Parabolic solar tracker • Force sensors • Control for a twin roto

    Adaptive Input Reconstruction with Application to Model Refinement, State Estimation, and Adaptive Control.

    Full text link
    Input reconstruction is the process of using the output of a system to estimate its input. In some cases, input reconstruction can be accomplished by determining the output of the inverse of a model of the system whose input is the output of the original system. Inversion, however, requires an exact and fully known analytical model, and is limited by instabilities arising from nonminimum-phase zeros. The main contribution of this work is a novel technique for input reconstruction that does not require model inversion. This technique is based on a retrospective cost, which requires a limited number of Markov parameters. Retrospective cost input reconstruction (RCIR) does not require knowledge of nonminimum-phase zero locations or an analytical model of the system. RCIR provides a technique that can be used for model refinement, state estimation, and adaptive control. In the model refinement application, data are used to refine or improve a model of a system. It is assumed that the difference between the model output and the data is due to an unmodeled subsystem whose interconnection with the modeled system is inaccessible, that is, the interconnection signals cannot be measured and thus standard system identification techniques cannot be used. Using input reconstruction, these inaccessible signals can be estimated, and the inaccessible subsystem can be fitted. We demonstrate input reconstruction in a model refinement framework by identifying unknown physics in a space weather model and by estimating an unknown film growth in a lithium ion battery. The same technique can be used to obtain estimates of states that cannot be directly measured. Adaptive control can be formulated as a model-refinement problem, where the unknown subsystem is the idealized controller that minimizes a measured performance variable. Minimal modeling input reconstruction for adaptive control is useful for applications where modeling information may be difficult to obtain. We demonstrate adaptive control of a seeker-guided missile with unknown aerodynamics.Ph.D.Aerospace EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/91520/1/amdamato_1.pd

    Data driven techniques for on-board performance estimation and prediction in vehicular applications.

    Get PDF
    L'abstract è presente nell'allegato / the abstract is in the attachmen

    A Review: Prognostics and Health Management in Automotive and Aerospace

    Get PDF
    Prognostics and Health Management (PHM) attracts increasing interest of many researchers due to its potentially important applications in diverse disciplines and industries. In general, PHM systems use real-time and historical state information of subsystems and components of the operating systems to provide actionable information, enabling intelligent decision-making for improved performance, safety, reliability, and maintainability. Every year, a substantial number of papers in this area including theory and practical applications, appear in academic journals, conference proceedings and technical reports. This paper aims to summarize and review researches, developments and recent contributions in PHM for automotive- and aerospace industries. It can also be considered as the starting point for researchers and practitioners in general to assist them through PHM implementation and help them to accomplish their work more easily.Algorithms and the Foundations of Software technolog
    • …
    corecore