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Abstract

Energy awareness, fault tolerance and performance estimation are important aspects for

extending the autonomy levels of today’s autonomous vehicles. Those are related to the

concepts of survivability and reliability, two important factors that often limit the trust

of end users in conducting large-scale deployments of such vehicles. With the aim of

preparing the way for persistent autonomous operations this work focuses its efforts on

investigating those effects on underwater vehicles capable of long-term missions.

A novel energy-aware architecture for autonomous underwater vehicles (AUVs) is

presented. This, by monitoring at runtime the vehicle’s energy usage, is capable of

detecting and mitigating failures in the propulsion subsystem, one of the most common

sources of mission-time problems. Furthermore it estimates the vehicle’s performance

when operating in unknown environments and in the presence of external disturbances.

These capabilities are a great contribution for reducing the operational uncertainty that

most underwater platforms face during their deployment. Using knowledge collected while

conducting real missions the proposed architecture allows the optimisation of on-board

resource usage. This improves the vehicle’s effectiveness when operating in unknown

stochastic scenarios or when facing the problem of resource scarcity.

The architecture has been implemented on a real vehicle, Nessie AUV, used for real sea

experiments as part of multiple research projects. These gave the opportunity of evaluating

the improvements of the proposed system when considering more complex autonomous

tasks. Together with Nessie AUV, the commercial platform IVER3 AUV has been involved

in the evaluating the feasibility of this approach. Results and operational experience,

gathered both in real sea scenarios and in controlled environment experiments, are

discussed in detail showing the benefits and the operational constraints of the introduced

architecture, alongside suggestions for future research directions.
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Chapter 1

Introduction

Our freedom to doubt was born out of a

struggle against authority in the early days

of science. It was a very deep and strong

struggle: permit us to question, to doubt, to

not be sure. I think that it is important that

we do not forget this struggle and thus

perhaps lose what we have gained.

Richard P. Feynman

In the field of underwater vehicles, and autonomous robotics in general, long-term

autonomy, robust operations and self-awareness are active areas of research. In the

recent years different joint efforts [1]–[4], in the form of European projects, have been

exploring new operating scenarios for the underwater domain, where multiple vehicles

are often envisioned conducting cooperative long missions with high degrees of autonomy

and without human intervention. These scenarios require improvements to be made

in different areas [5], [6] of today’s autonomous architectures, for instance, advanced

mission planning, on-board knowledge representation, real-time status assessment and

self-aware management, to name a few. These requirements are needed to deliver reliable

and trustworthy platforms that can found applications in real life scenarios, such as oil

and gas, maritime security, underwater archaeology or sea construction. One key aspect

of this new wave of research is the persistent autonomy [1] concept: an improved level

of autonomy [7] where underwater platforms are tasked with the execution of longer

and more complex missions while being capable of coping with dynamic environments,

uncertainty and unexpected events. This also has the goal of reducing the need for operator

assistance to a minimum and, at the same time, maximizing the platform’s efficiency when

operating in the field.

Several strategies are often employed to characterise the operation of a complex system,

such as Autonomous Underwater Vehicles (AUVs) deployed in marine environments. One

of those is the introduction of non-functional requirements. These are used in this domain
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to help end users or operators to qualify the system’s properties in terms of expected

behaviours, end goals and service availability. Non-functional requirements are opposed

to functional ones, focused on characterising, instead, behaviours of specific system’s

components such as sensors or scientific payload. In the underwater context, service

availability is usually constrained by the physical limitations of marine environments,

such as low bandwidth communications, absence of Global Navigation Satellite System

(GNSS) signals, resource shortage, limited a priori knowledge of mission environments or,

more generally, the presence of unknown conditions and dynamic scenarios. Given these

limitations non-functional requirements are often broadly defined.

A relevant requirement for long-term underwater operations is the operability one.

This defines the ability to keep a system reliable and in a safe functioning condition

under a wide range of possible operating scenarios, such as the ones encountered during

long-term operations. The operability requirement is related to two more specific ones:

reliability and survivability. The former, classically defined as the ability of a system to

operate under given conditions for a specific amount of time, is used for evaluating the

system with respect to failures of its internal components. The latter, on the other hand,

defines a similar ability when considering, instead, external factors and potential failures

on the system’s operations not originated from the system itself.

The challenges of long-term autonomy and the need of improving the operability of

unmanned platforms have pushed researchers to address these issues with the introduction

of different strategies. These are, for instance, behaviour-based architectures [8], expert

systems [9] and semantic representations [10], [11], that allow a vehicle to react, respond

and, potentially, overcome an unexpected event or failure encountered during long-term

operations. Each approach leverages a specific aspect of the artificial intelligence domain

and it offers a general solution that often abstracts away from the physical properties of

the underlying underwater vehicle. This feature, while reasonable for vehicles used only in

research laboratories, becomes a limitation when those are tasked with more challenging

field operations [12], such as deep-sea inspections, cooperative tasks or under-ice missions,

that require a guaranteed level of reliability from the physical hardware and software

architectures in order to survive the harsh environmental conditions to which underwater

vehicles are constantly exposed.

An aspect, often underestimated by previous proposals, is that most underwater

vehicles share a common design where a limited energy source provides the electrical

power required by all internal subsystems and additional payloads. This characteristic

highlights the fact that the energy usage still represents a critical aspect of their design

where even a small undetected fault or variation from the expected behaviour could result in

a non-predictable or dangerous outcome. This feature suggests that increased awareness,

specifically in the energy domain, represents an enabling factor for long-term autonomous

operations conducted with a minimum amount of external intervention. Despite its

importance, limited research has been done on the energy-awareness topic for unmanned
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1.1. Research Objectives

vehicles. Main contributions are in the field of ground [13]–[15] and aerial vehicles

[16], [17], where recent studies show that energy-aware mission characterization and

energy-reliable planning are beneficial techniques to improve the effectiveness of vehicles

during field operations. In the underwater domain, on the other hand, energy related

aspects have been only marginally addressed.

1.1 Research Objectives

The aim of this work is to extend previous literature in the underwater field, specifically

by introducing the concept of energy-awareness as essential in the architectural design

(e.g. hardware and software) of next-generation vehicles. The work investigates the use

of knowledge derived from the runtime analysis of on-board energy consumption. This,

together with other techniques, aims at developing an architecture that can improve the

reliability and survivability aspects of long-term autonomy AUVs. Two main questions are

explicitly addressed by this research:

• Is it possible to assess the internal qualitative state of an underwater vehicle by moni-

toring the energy usage of its internal components?

• Is it possible to estimate the effect of external disturbances on future mission’s perfor-

mance by monitoring the energy consumption of an underwater vehicle?

These are related to some relevant limitations, identified in previous research, to the

long-term deployment of autonomous vehicles: the presence of efficient failure mitigation

capabilities [18], [19] and the availability of on-line reliability estimation modules [13],
[15] that can function both in presence of operational uncertainty and in unknown

environments. These aspects, analysed individually in the past, are evaluated together in

this work with respect to their implication for the vehicle’s autonomy architecture.

1.2 Methodology Overview

A practical implementation of an energy-aware architecture is presented for an existing

underwater vehicle, the Nessie AUV, used in real sea trials. This required, initially, the

development of a hardware solution (known as low-cost energy monitor) that provides the

existing platform with energy monitoring capabilities for its internal subsystems. Using

measurements collected in controlled environments this solution allowed the characteri-

sation of the behaviour of internal components and the derivation of analytical models

later used in the proposed architecture for fault diagnostic purposes.

Attention is then focused on introducing an energy-based fault mitigation framework.

This monitors at runtime the behaviour of vehicle’s propulsion: a relevant subsystem that

is often affected by failures during sea operations, is shown for instance in Figure 1.1. The

framework, after recognising unexpected conditions such as soft-failures (or degradations),
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1.2. Methodology Overview

(a) (b)

Figure 1.1: Example of marine actuators. Field operations in shallow water are often affected by
seaweed ingestion in the thruster’s duct. Maintenance operations require long intervention time
in particular if the thruster is damaged during sea operations.

is able to introduce an adequate reaction, for instance reconfiguring the use of actuators,

that allows the vehicle to resume its normal operations. Field experiments are then used

to validate the usefulness of such an approach. Results show good mitigation capabilities,

when in presence of moderate degradations and complete support for detection of faults

even when in presence of environmental disturbances.

After handling the mitigation aspects, attention is shifted toward the introduction of

a runtime performance estimation framework. This is used for evaluating the vehicle’s

navigation performance when in presence of external disturbances, such as sea currents.

The framework employs measurements collected at runtime with the low-cost energy

monitor. After an initial collection of samples it provides higher level modules with con-

stantly updated energy metrics that characterise the vehicle’s behaviour with respect to

the external environment. Another relevant feature is the feasibility assessment for the

current vehicle’s mission. This is done using an iterative process that employs metrics

calculated at runtime together with knowledge of the mission’s plan to evaluate if con-

straints on the resource usage can be respected when taking into account the measured

locomotion performance. Together with assessment aspects, the performance estimations

are employed in route optimisation procedures aimed at adjusting the vehicle’s behaviour

when conducting inspection tasks in unknown scenarios. These, shown for example in

Figure 1.2, are objectives of interest of the recent research efforts [1]–[4] focused on

improving the intervention capabilities of next-generation AUVs. Even with the runtime

performance estimation framework, field experiments are used to validate the derivation

of environmental knowledge from energy measurements and the estimation of mission

feasibility in presence of external disturbances. Overall results show that the analysis of

energy provides enough information to assess with good confidence the vehicle’s perfor-

mance, to evaluate the probability of completing a mission successfully and to provide

useful metrics for optimisation procedures that allow improving the vehicle’s effectiveness

in the field.
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1.3. Outline

(a) (b)

Figure 1.2: Field operations with Nessie AUV conducting inspection tasks around human-made
structures. Operators supervise an initial field testing using a remote console where telemetry data
is shown. The vehicle inspects the supporting structures of a marine pier and collects geometric
information using the on-board sensors.

The results collected in this work suggest that an improved energy-awareness repre-

sents a valid proposition for extending the underwater platform capabilities while, at the

same time, reducing their dependability on human intervention. Remarkable features

of this work are: the introduction of a low-cost energy monitoring solution suitable to

be used in a broad class of vehicle’s designs, the use of energy-derived metrics in the

implementation of a fault mitigation system, capable of detecting unexpected behaviours

such as soft-failures or degradations in the propulsion system, and in the estimation of

the navigation performance when in presence of external disturbances, evaluating their

consequences on the mission given energy usage constraints. The development of the work

is also supported by the use of a state-of-the-art non-linear regression algorithm, known

as Locally Weighted Projection Regression (LWPR), that is employed in the data-driven

approach used for representing vehicle’s components and environmental effects.

1.3 Outline

The rest of this work is organised as follows. In Chapter 2 related studies found in literature

are presented. Work done focusing on the main subsystems of autonomous underwater

vehicle is discussed, with attention to the battery and propulsion subsystems as object of

interest for the proposed architecture. After the initial discussion relevant work done in

the context of fault detection, diagnosis and mitigation is introduced. This describes other

strategies, used in the past, to address the issue of survivability for underwater vehicles.

Together with this aspect, other studies focused around the concept of reliability in the

context of autonomous missions are presented.

In Chapter 3 the new energy-aware architecture is proposed while describing its use

in the context of a wider autonomy software solution, previously employed in field ex-

periments conducted with the experimental platform involved in this work. The main
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1.3. Outline

architectural elements, a fault mitigation and a runtime performance estimation frame-

work, are also presented in this chapter. These, while relying on the runtime analysis

of the vehicle’s energy consumption, address the two principal aspects studied in this

research: self-assessment of the vehicle’s state and analysis of external factors. Beside

discussing these features, the information flow within developed modules is also described

with respect to the execution of a general autonomous mission.

In Chapter 4 a detailed discussion of the fault mitigation framework is presented. This

targets the propulsion subsystem, a component often affected by operational uncertainty,

and aims at detecting and mitigate the presence of degradation faults. These affects

marine actuators by changing their efficiency, disrupting the vehicle’s navigation in the

more severe cases or lowering the overall performance in the less severe ones. These

failures are targeted explicitly as they represent a generalisation of the simpler scenario,

often found in literature, when a sudden loss of the actuators is considered.

In Chapter 5 the runtime performance estimation framework is introduced. This makes

use of energy measurements similar to the ones collected by the mitigation framework

and it evaluates the navigation performance of the vehicle when operating in presence

of external disturbances. Together with estimation aspects two optimisation procedures,

still built around energy-derived metrics, are also introduced. These employ the collected

operational knowledge to adapt the vehicle’s tasks, calculating a suitable navigation route

that is efficient both in terms of energy consumption and maximising the gathering of

information in the case of inspection missions.

In Chapter 7 the experimental validation of the proposed architecture is discussed.

First the operational experience acquired during sea trial campaigns involving the Nessie

AUV is reported. Second the results of experiments conducted in real sea scenarios and in

controlled environments are presented. A relevant aspect of this validation, targeting the

fault mitigation framework, is the reported experience when a real failure in the propulsion

subsystem of the Nessie AUV has been discovered at the end of sea operations. This event

allowed the collection of relevant data and the evaluation of the proposed diagnostic

system when in presence of both synthetic and real failures. Together with such analyses,

other results are presented for experiments focusing the runtime estimation framework.

In this case two different platforms, the Nessie AUV together with a commercial solution,

the IVER3 AUV, have been deployed for field missions while their navigation performance

is analysed by the proposed architecture. In this context further experiments conducted

in simulated scenarios are also discussed. These show how the knowledge acquired using

the proposed architecture is employed by route optimisation procedures to improve the

vehicle’s effectiveness when operating in unknown environments. In Chapter 8, finally,

the contributions of this work are summarised and the major findings are presented with

respect to the relevant elements of the energy-aware architecture. After discussing those,

future research directions are also presented, highlighting additional techniques that

could further extend the capabilities of the proposed architecture.
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Chapter 2

Related Work

We have found it of paramount importance

that in order to progress we must recognize

our ignorance and leave room for doubt.

Scientific knowledge is a body of statements

of varying degrees of certainty – some most

unsure, some nearly sure, but none

absolutely certain.

Richard P. Feynman

AUVs, like other unmanned systems, may share a common architecture where a limited

energy source provides the electrical power needed by internal subsystems connected to

the primary electric bus. This characteristic makes these platforms depend on the constant

availability of on-board resources and it highlights the fact that energy usage still represents

a key aspect of their design. In fact, when operating away from human supervision even

small undetected failures could result in a non-predictable or dangerous outcome for

the system itself. Such events often materialise as degradations, small deviations from

expected behaviours rather than abrupt or sudden changes in the operating conditions,

of an internal subsystem. This subtle characteristic makes these faults difficult to detect

if dedicated system management modules are not introduced in the original vehicle’s

architecture. For those reasons reliability and survivability concepts [10], [20] or, more

in general, operability ones still represent an open problem in the autonomous vehicles

community. In the following sections previous relevant work is presented together with its

implications for marine vehicles. First, underwater vehicles are briefly discussed and their

relevant subsystems are analysed. Second, diagnostic techniques applied in the context of

fault detection and mitigation are introduced. Finally, high abstraction level decisions in

the mission management’s context are also discussed when considering reliability aspects

and environmental uncertainty.
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2.1. Autonomous Underwater Vehicles

2.1 Autonomous Underwater Vehicles

Researchers analysed availability issues of autonomous systems in different contexts: from

industrial automation domains to more common Electric Vehicles (EVs) and unmanned

platforms, such as Unmanned Aerial Vehicles (UAVs), Unmanned Ground Vehicles (UGVs)

or Unmanned Surface Vehicles (USVs). In the underwater domain, however, several

challenges often limit a detailed analysis of those aspects. In fact, reduced communication

bandwidth, short operating ranges, higher component costs, small payload sizes and low

computational capabilities have, historically, required vehicle’s designers to concentrate

their focus on a specific set of tasks and to limit on-board systems to what is strictly

necessary to serve the vehicle’s purpose. In the recent years, with the development of

sea-gliders [21] operating in ocean-scale deployments and with the experience gathered

during long-term under-ice missions [22], [23], reliability and survivability aspects have

become again a priority for the next generation of underwater designs.

Most of the current AUVs, for instance, used in research [24]–[26], competitions [27]–
[29] or commercial applications [30]–[32], include monitoring capabilities of on-board

resources, such as battery, voltages and temperatures. These capabilities, however, are

often limited to data acquisition or telemetry roles and are not fully integrated within

the vehicle’s software architecture for advanced health management and monitoring

operations. This is because most of the time reliable operations are still achieved through

a human-in-the-loop process, such as scheduled maintenance and dedicated testing, that

certifies the platform’s efficiency before deploying vehicles in the real conditions. Two

relevant subsystems, battery and propulsion, are often the focus of maintenance operations.

These components represent the key parts of any design and have been focus of previous

research studies.

2.2 Battery System

Bradley et al. [33] conducted a survey on power systems for AUVs highlighting how the

battery system becomes a critical component for long-term deployments. In this work the

authors also analyse how the introduction of Lithium Ion (Li-ion) and Lithium Ion Polymer

(LiPo) batteries in the underwater domain is beneficial compared to other technologies,

such as Lead–acid, Nickel Cadmium (NiCd) or Nickel Metal Hydride (NiMH) chemistry,

used in earlier designs. Table 2.1 highlights the main characteristics of the most common

battery chemistries.

Li-ion batteries are known for their large energy density (≥ 200 W h/L) and high

specific energy (≥ 150 W h/kg). This characteristic allows designers to store large quanti-

ties of energy (1 kWh to 15 kWh) in small confined volumes such as marine hulls. The

choice of this chemistry is widespread among modern platforms, especially for low-cost

small-size vehicles (20 kg to 80 kg) and commercial medium-size platforms (100 kg to
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2.2. Battery System

Chemistry Energy Density (W h/L) Specific Energy (W h/kg) Cycles

Lead–Acid 60 – 75 30 – 40 500 – 800
Nickel Cadmium (NiCd) 50 – 150 40 – 60 ≈ 1500
Nickel Metal (NiMH) 140 – 300 30 – 80 500 – 1000
Li-ion (LiCoO2) 250 – 360 150 – 250 400 – 1200
Lithium Polymer 230 – 300 130 – 200 500 – 1000
Lithium Iron (LiFePO4) 170 – 220 80 – 120 ≥ 2000

Table 2.1: Comparison of rechargeable battery chemistries.

600 kg). Under optimal conditions these vehicles are able to operate continuously for 6 h

to 48 h before depleting the on-board energy resources [34]. Table 2.2 shows an overview

for current commercial AUVs, highlighting their expected duration and stored energy

resources.

Name Depth (m) Weight (kg) Energy (kWh) Duration (h)

Remus 100 100 45 1.0 10
IVER3 100 38 0.7 12
Bluefin-9 200 50 1.5 12

Bluefin-12 200 204 4.5 26
Remus 600 600 326 5.2 50
MUNIN 1000 300 5.0 22
Hugin 1000 3000 850 15.0 24

Table 2.2: Comparison of small and medium class commercial AUVs.

2.2.1 Analytical Models

Despite the benefits of Li-ion and LiPo batteries their non-linear behaviour introduces

extra challenges that system engineers need to take into account when integrating those

components. Management of energy resources has been studied extensively [35] in the

context of portable and mobile systems. Different methods [36] have been proposed to

evaluate the State of Charge (SOC), State of Health (SOH) and Depth of Discharge (DOD)

of integrated battery packs from discrete voltage, current and temperature measurements.

Several formulations [37]–[39] have been proposed to analytically represent the state of

a battery and thus infer the effective residual capacity in real usage scenarios. In these

works equivalent circuit models are introduced and validated in controlled experiments.

Examples of those are shown in Figure 2.1 and in Figure 2.2, where, respectively, an

accurate lumped parameter equivalent circuit and a simpler, yet effective, low parameter

count alternative are presented. The first model has been introduced by Chen et al. [39]
and combines an accurate current-voltage characteristic (I-V) with an equivalent model

for the battery lifetime, expressed in this case as combination of battery capacity and

self-discharge effects. This model has been validated on several Li-ion and NiMH cells and

it shows a 30 mV maximum error voltage together with a 0.4% battery runtime prediction
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2.2. Battery System
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Figure 2.1: Accurate Li-ion battery model with lumped parameters. This includes lifetime (left)
and current-voltage characteristic (right) components to reproduce the behaviour of real battery
cells. Battery capacity is modelled using the charge stored in the capacitor Ccap. Recovery and
second-order effects are modelled using capacitors CTS and CT L (adapted from [39]).

error in presence of different load profiles. Such a performance is achieved using a large

number of parameters (more than 7) and knowledge of cycle count and temperature effects.

The model itself is a combination of previous state-of-the-art formulations and it used as a

reference in term of performance [38]. On the other hand, the second model, introduced

by Johnson et al. [37], trades some accuracy by neglecting some non-linear dependencies

often observed in Li-ion chemistries and simplifies the final lumped parameter equivalent

circuit. In this case only 5 parameters are used and no extra dependencies are required

to model the two principal aspects of vehicle’s batteries, such as their internal resistance

and the non-linear depletion effect under load. This has been derived from previous

formulations and has been applied with satisfactory results to commercial batteries used

in the EV community.

Additional work [40], [41] has been done recently towards a probabilistic estimation

of battery state. This expands previous studies introducing relationships with ageing

effects and components health state often only observed on longer time scales. These

studies combine analytical models, real measurements and historical data using different

approaches, such as Bayesian frameworks and Particle Filter methods, and improve the

quality of state estimations together with Remaining Useful Life (RUL) [42] predictions.

Cb

VCb

Re

Rc

Cc

Rt Vo

Is

Figure 2.2: Simplified Li-ion battery model with lumped parameters. Battery capacity and recovery
effects are modelled using the charge stored in the capacitors Cb and Cc (adapted from [37]).
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2.2. Battery System

2.2.2 SOC Estimation

Abundance of battery models, often different in terms of parameters and complexity,

finds, in some cases, limited application in the underwater domain. This is because,

for instance, several methods given their complexity rely on the off-line processing of a

large amount of data or because the lack of on-board computational resources prevents a

correct evaluation of runtime estimations needed to model the non-linear battery effects.

Simpler techniques, however, are available in literature [43]. Some of these estimate the

SOC by means of coulomb-counting (CC) procedures [44] and provide a good trade-off

between complexity and accuracy often required for the implementation in embedded

monitoring systems, such as Battery Management Systems (BMSs). Other approaches

[45], instead, rely on fusion techniques, such as Kalman filter and its variants, to combine

lumped parameters linear models with real measurements and, thus, estimate the SOC

for a given battery system. Table 2.3 shows the principal features of different classes of

SOC estimation techniques.

Method Advantages Disadvantages Example

Direct Quick, provides SOH esti-
mation

Hard to access, chemistry
dependant

Acid density, cathodic
galvanostatic

Indirect Off-line Accurate, provides SOH es-
timation

Temperature dependant,
costly, exclusive usage

Full discharge, internal
resistance

Indirect On-line Economic, supports all bat-
tery types, dynamic

Historical data, may re-
quire large computation

Coulomb counting, OCV,
PHM algorithms

Table 2.3: Comparison of SOC estimation methods. Direct methods observe internal quantities
within a battery system and require physical access to individual cells. Indirect methods, on the
other hand, only target quantities that are externally observable to a battery system.

From a system point of view battery models are represented using a continuous time

state-state formulation:

ẋ= A x+B u (2.1)

y= C x+D u (2.2)

where x is the state vector, y the output vector, u the input vector and A, B, C, D are

matrices that describe the linear system. In the case of a simplified lumped parameters

battery model, such as the NREL-Saft [37] also shown in Figure 2.2, these equations take

the following expression:
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(2.4)

where Rt , Rc, Re, Cc are model parameters, Cb the equivalent capacity that represents

the energy stored inside the battery cell, VCb
, VCc

, respectively the voltages across Cb and

Cc capacitors, Is the current drawn from the battery and Vo the output voltage. The pair

Rc, Cc is used to model the voltage recovery effect of Li-ion chemistries. The Rt and Re,

instead, are used to model the internal resistance effects of the battery in open-circuit

and under-load conditions.

Using this model, the battery state is represented by the pair VCb
, VCc

and the overall

battery energy is thus expressed as the usable charge stored inside in the capacitor Cb:

ebat f ul l
=

1
2

CbV 2
high −

1
2

CbV 2
low (2.5)

where Vhigh and Vlow represent the operating voltage range of the modelled battery. In

this case the residual battery energy at a given time can be expressed as:

ebat(t) =
1
2

Cb

�

V 2
high − V (t)2

�

V (t)≥ Vlow (2.6)

where V (t) is the state voltage calculated using the dynamical model while using the

battery. This model has been applied successfully in the case of Flying Fish UAV [17],
an solar-powered sea-plane used for research, to single cell Li-ion batteries common in

the RC model domain. Tuned parameters for small cells are Rt = 2.2mΩ, Rc = 0.4mΩ,

Re = 1.1mΩ, Cc = 4.0 kF, Cb = 18.45kF when considering an individual Li-ion cell with

operating range of 3.1 V to 4.2 V.

2.2.3 Coulomb-Counting Method

Coulomb methods estimate the SOC by integrating current measurements from a given

starting condition:

SOC(t) =







SOC0 +
1
Cn

∫ t

t0
|Ibat | d t charge

SOC0 − 1
Cn

∫ t

t0
|Ibat | d t discharge

(2.7)

their accuracy is related to the availability of precise current measurements Ibat , jitter-free

time intervals d t, specific knowledge of the initial battery status SOC0 and total battery

capacity Cn. Coulomb-counting methods do not fully exploit the availability of analytical

models and therefore they require a low implementation effort.

In many cases prognostic techniques [43] can provide accurate initial conditions that

make the application of this relative simple counting process attractive in specific scenarios.
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2.2. Battery System

Low noise conditions are usually rare in complex systems and data fusion techniques are

often required to increase the accuracy of resulting estimations.

2.2.4 Fusion Methods

Fusion methods rely on the availability of simplified linear analytical models that in

combination with runtime measurements can provide a robust estimation of the SOC.

When implementing embedded systems it is often common to represent the above models

in discrete time. This allows a more straightforward transition from modelling phase

and development ones. In the case of a linear system in presence of external noise the

following formulation is used:

xk = Ak−1xk−1 +Bk−1uk−1 +wk−1 (2.8)

yk = Ckxk +Dkuk + vk (2.9)

wk ∼ N(rk,Rk) (2.10)

vk ∼ N(qk,Qk) (2.11)

where wk, vk represent, respectively, the process and the measurement noise that char-

acterise a real system. These quantities are assumed to follow a multivariate normal

distribution N(µ,Σ) with known mean and covariance, respectively, rk, qk and Rk, Qk.

Using this system representation battery models are augmented [45] with the intro-

duction of Kalman filtering procedure to combine the analytical formulations with real

measurements and adjust at runtime the estimation of SOC for a given device. Under

Kalman assumption the system can be seen as:

xk|k−1 = Fkxk−1|k−1 +Bkuk +wk (2.12)

zk = Hkxk + vk (2.13)

where Fk is the state transition model, Bk the control-input model, zk the observation (or

measurement) at time k of the true state xk and Hk the observation model, and:

wk ∼ N(0,Rk) (2.14)

vk ∼ N(0,Qk) (2.15)

where wk, vk represent, respectively, the process and the measurement noise under the

zero-mean assumption. In its simple form the Kalman filter (KF) equations are thus

expressed as:

x̂k|k−1 = Fkx̂k−1|k−1 +Bkuk (2.16)

Pk|k−1 = FkPk−1|k−1 + FT
k +Qk (2.17)
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2.2. Battery System

for the prediction stage, where Qk is the process noise covariance, Pk−1|k−1 the a priori

error covariance matrix. The update stage, instead, is expressed as:

ỹk = zk −Hkx̂k|k−1 (2.18)

Sk = HkPk|k−1HT
k +Rk (2.19)

Kk = Pk|k−1HT
k S−1

k (2.20)

where ỹk is the innovation (or measurement residual), Rk the observation noise covariance,

Kk the Kalman gain, derived from the Sk innovation covariance, and as:

x̂k|k = x̂k|k−1 +Kkỹk (2.21)

Pk = (I−KkHk)Pk|k−1 (2.22)

where x̂k|k, Pk the a posteriori state estimate and covariance estimate of the system. In this

case Fk ∼ Ak and Hk ∼ Ck are derived from the discrete-time linear system formulation

for a given battery model.

When considering larger vehicle systems, the limiting factor for SOC estimates is

usually not related to the accuracy of estimation methods but rather the precision of

embedded sensors and measuring devices. Nonetheless variations of the original Kalman

Filter are often found in literature. One example is the Extended Kalman Filter (EKF)

[45] applied to Li-ion chemistry. The EKF soften some strong assumptions required in the

standard formulation. In the EKF state transition and observation models don’t need to

be linear functions of the state xk but may be, instead, differentiable functions:

xk = f (xk−1,uk−1) +wk (2.23)

zk = g (xk) + vk (2.24)

allowing, thus, a more complex relationship between variables than the standard filter

variant. In battery research, the EKF has been successfully applied to different types of

Li-ion cells [45] achieving an average SOC estimation error and a voltage error rate as

low as 3.19% and 4.15% respectively.

2.2.5 Current Sensing

Most of battery models introduced so far rely on accurate current sensing capabilities.

This is because the internal battery state is better derived using precise measurements of

the current flowing through the device. Ziegler et al. [46] presented a detailed review of

current sensing techniques. These cover different application scenarios, from embedded

low power systems to larger industrial applications. In the context of a mobile system

several options are available to vehicle’s designers. Extra care is needed in selecting the

right trade-off between sensing efficiency and measurement accuracy. Table 2.4 shows
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the main features of the principal current sensing technologies.

Name Bandwidth DC cap. Accuracy Isolation Range Power Loss

Shunt Resistor (SMD) kHz – MHz yes 0.1% – 2% no mA – A mW – W
Current Transformer kHz – MHz no 0.1% – 1% yes A – kA mW
Rogowski Coil kHz – MHz no 0.2% – 5% yes A – MA mW
Hall Effect kHz yes 0.5% – 5% yes mA – kA mW

Table 2.4: Comparison of common current sensing technologies.

In the domain of battery powered vehicles important aspects are the isolation charac-

teristics of embedded sensors, due to the dynamic nature of on-board loads, and their

integration capabilities [47], [48]. For these reasons, conventional Shunt Resistor methods

find application mostly in low power subsystems while Hall Effect and other magnetic

technologies are commonly applied for monitoring the main electrical bus and other

high power subsystems, such as propulsion and attitude control ones. The availability of

current sensors is a relevant aspect in a vehicle’s design as it allows not only the accurate

derivation of battery states but it can further employed in monitoring [49], [50] the energy

consumption and the power usage in autonomous vehicles.

2.3 Propulsion System

Beside the battery system another relevant component that affects the vehicle’s reliability

is the propulsion subsystem. This provides locomotion and control capabilities to marine

vehicles and represents the central component for different types of operations, such as

low speed manoeuvring, station keeping and general navigation [51]. For autonomous

underwater systems, with exception of sea gliders or bio-inspired vehicles, electrical

motors and propellers, in the form of marine thrusters, are the technology of choice for

this subsystem. Even in this domain several methods have been proposed in literature

to derive accurate component models by means of practical identification in controlled

environments or analytical modelling. Components of interest for these analyses are

underwater thrusters, also known as main actuators, used for control or general locomotion,

and auxiliary actuators, used for operating control surfaces, such as fins and rudders,

often found in more advanced AUV designs.

Healey et al. [52] and later Whitcomb et al. [53] introduced a relevant study of

modelling techniques for small marine thrusters. In the first work a three element model

(electric motor, propeller mapping and fluid model) is derived together with a set of

identification experiments. These elements are responsible for the principal effects that

characterise the behaviour of real devices. This approach, while it is extensive, often

requires a great number of parameters and identification procedures to describe correctly

the behaviour a specific type of actuator. The work of Kim et al. [54] improves the modelling

accuracy by taking into account the effects of ambient flow velocity. This models the drop

in performance that real actuators show during operation in non-static conditions. Even
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Figure 2.3: Example of thrust current and velocity approximations for marine thrusters. Collected
samples are fitted using piecewise function approximations with respect to the forward and reverse
operating modes of the analysed actuator (adapted from [55]).

in this case, however, the need of extensive controlled environment experiments, where

water flow and component velocity can be adjusted, makes the suggested procedure

impractical for hardware-in-the-loop testing and for on-board implementation of the

resulting models.

Most of the early studies focus on the detailed analysis of thrusters behaviour under

different environmental conditions and they do not take into account the effects of control

electronics found in commercial off-the-self (COTS) components. These are, for instance,

Electronic Speed Control (ESC) circuits or more advanced motor controllers usually

packaged together with efficient marine actuators. An ESC acts as a proxy between the

electrical motor itself and the external control by regulating the component’s operations

according to the feedback received by internal sensors. Those circuits integrate useful

features, such as stall protection, detection of ventilation and current limiting, and can

adjust on the fly operational parameters such as output power or shaft speed to guarantee

smooth and reliable operations. On the other hand they introduce an extra layer between

control architecture and physical actuators that make accurate modelling difficult. In those

cases system designers can adopt a black-box approach, for instance using data driven

methods, to overcome those limitations and still derive a useful set of characteristics that

can describe the behaviour of underlying systems.

Aiming at a simpler modelling strategy, Hanai et al. [55] introduced an effective

procedure to derive a model that relies on fewer parameters and employs a shorter

identification procedure. This approach is better suited for using the derived model

on-board as few modifications are required for control software and the use of external

force sensors is required only during an initial training. The proposed model relies on

three sets of equations: first, a thrust to voltage characteristic is fitted to training data,

this represents the overall input-output characteristic of the actuator (e.g. voltage is the
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control input for the motor controller), second, a current to thrust function approximation

is derived and, finally, a velocity to thrust function has also been approximated from

training data. Those are written as:

V (T ) =







a0T + a1
2
p

T + a2
3
p

T + a3
4
p

T T ≥ 0

b0|T |+ b1
2
p|T |+ b2

3
p|T |+ b3

4
p|T | T < 0

(2.25)

where T is the actuator’s output thrust, ax , bx the set of parameters that identify the

piecewise-continuous fit, respectively for the positive and negative thrust range, as:

Test(I) =















c0I + c1 I ≥ − c1
c0

0 − d1
d0
< I < − c1

c0

d0I + d1 I ≤ − d1
d0

(2.26)

where Test is the estimated thrust, I the actuator’s current draw, cx , dx the set of coefficients

for two linear approximations with a dead zone in between, and as:

Test(ω) =







k0ω
5 + k1ω

4 + k2ω
3 + k3ω

2 + k4ω ω≥ 0

l0ω
5 + l1ω

4 + l2ω
3 + l3ω

2 + l4ω ω< 0
(2.27)

where ω is the propeller shaft velocity, kx and lx the set of coefficients for two 5-degree

polynomials continuous through the origin. An example of thrust approximations functions

is shown in Figure 2.3.

The availability of two thrust approximations is then exploited in the same work [55]
to detect failures in a specific actuator. This is done, for instance in the case of thruster

ventilation, by measuring the difference between estimated thrust values, the first derived

taking into account the variable I and the other using the variable ω as measured by

the vehicle. The calculated difference determines the state of actuator fault. While of

great relevance from a practical point of view, the proposed approach does not explicitly

address the effects of device latencies or motor controller delays. Those aspects, not of

primary importance from the modelling point of view, gain their relevance if derived

models are meant to be used in real-time, for instance, in fault detection systems or fault

tolerant control schemas. In fact, precise knowledge of actuators characteristics allows

the calculation on-the-fly of their expected behaviour and thus recognise the presence of

any unwanted activity.

2.4 Fault Detection and Diagnosis

The goal of diagnostic methods is to use some a priori knowledge of a system (or process)

to detect the presence of faults and to apply different search strategies to isolate their root
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cause. This practice is also known in literature as Fault Detection and Isolation (FDI).

The system’s knowledge usually comes in the form of relationships between observations

(or symptoms) and failures (or effects). Correct definition of those usually requires an

understanding of the underlying process properties and it is necessary to correctly classify

and identify behaviour not experienced during normal operations. Venkatasubramanian

Method Advantages Disadvantages Examples

Quantitative Fast, robust, efficient Require accurate identifica-
tion of models

Observers, Parity Space,
Kalman Filters

Qualitative Simple, can provide fault
explanations

Often limited to few fault
hypothesis

Fault Tree, Causal Models,
Qualitative Physics

Process History Accurate process model not
usually required

Require large amount of
quality training data

Expert Systems, Neural
Networks, Statistical Clas-
sifiers

Table 2.5: General classification of diagnostic methods.

et al. [56]–[58] conducted a comprehensive review of different diagnostic strategies and

identified three broad families of methods that are available for system’s designers. These

differ in the way process knowledge is represented, for instance with the support of

analytical models, statistical analysis or historical experience, and how search strategies

are used to make decisions on the state of a system. An overview of FDI methods is shown

in Table 2.5.

Method Advantages Disadvantages

Parity Equations Suitable for additive faults, small com-
putational effort

May show less robustness to external
disturbances

State Estimation Robust to external disturbances, bal-
anced reaction times

May require more effort for non-linear
processes

Parameter Estimation Suitable for multiplicative faults, re-
quires only knowledge of model’s struc-
ture

Larger computational effort as on-line
estimation is required

Table 2.6: Overview of quantitative diagnostic methods using a model-based approach.

The first set of methods is known as quantitative model-based [56], where the monitored

system is compared against its analytical representation, such as a mathematical functional

relationship between process’s inputs and outputs. The second one is known as qualitative

model-based [57]. In this case the a priori knowledge is represented by means of qualitative

expressions, such as fault trees, causal models or abstraction hierarchies. The third one is

known as process history based [58], where knowledge is derived from analysis of past

system’s behaviour without relying on a specific understanding of the underlying input-

output relationships. A detailed classification of quantitative diagnostic methods is found

in Gertler [59] and Isermann [60] where industrial applications are also described. In this

case diagnostic strategies are broadly classified in model-based and model-free approaches,
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Figure 2.4: Generalised schema for a model-based diagnostic system. Failures can be related to the
actuators, the sensors or, in specific cases, to the process itself. These are detected, for instance,
by comparing the expected and real behaviour using an analytical model for the process under
analysis.

highlighting the importance of analytical representations for the implementation of real-

time diagnostic systems.

Model-based approaches often represent the methodology of choice for diagnostic

system designers. This is because of the availability of much experimental work in different

type of domains, for instance, in the context of aerospace or automotive industries and,

more in general, of industrial process control. Detailed reviews are found in Isermann

[61] and Hwang et al. [62], where different subsets of methods are discussed together

with their applications on real systems. Table 2.6 shows a comparison among common

fault detection methods. A general schema for a model-based diagnostic system, instead,

is shown in Figure 2.4. This highlights the principal elements of typical systems such

as fault detection and fault diagnosis aspects. The latter is often implemented in a

change detection module that operates on the features extracted during the detection

phases. This element is responsible for the diagnosis task that extracts information

about a given fault, such as its size (or severity), location, time, and correctly identifying

its type. Two main methodologies are usually followed when implementing such a

module: classification methods and inference methods. The former relies on a set of

techniques such as statistical classification (decision trees, Bayes classifiers), pattern

recognition, approximation methods or artificial intelligence methods (fuzzy or neural

network classifiers). The latter, instead, relies on binary or approximate reasoning and

tends to rely on expert knowledge to correctly recognize a specific fault.

In the marine domain relevant work on fault detection and diagnosis topics has been

developed in the past focusing around the propulsion subsystem. Previous studies show,

in fact, that the runtime detection of unwanted behaviours is a key aspect to guarantee

reliable and safe operations when limited or no human intervention is available. Such

systems find successful application in different operational environments from Remotely
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Operated Vehicles (ROVs) [63] to larger marine vessels [64].

2.4.1 Model-based Methods for Underwater Systems

In the context of autonomous underwater systems several model-based strategies have

been proposed to estimate the health status of the on-board actuators. These are usually

focussed on a common set of actuator’s control and feedback signals, such as input voltages,

throttle commands, propeller speeds, load currents. They differ, on the other hand, in the

way fault information is extracted (e.g. selecting specific features) or in the way decisions

are taken (e.g. using alternative change detection methods) about the presence of failures.

Other differences are in the number of tuning parameters or in the presence of extensive

validations in real sea conditions.

Advanced diagnosis techniques have been investigated in several works [65]–[68].
These tend to provide a good trade-off between accuracy and precision in identifying

multiple fault hypotheses and for this reason they are objectives of interest in the au-

tonomous system community. In the work of Alessandri et al. [65] the model’s dynamics

are taken into account in a diagnostic loop closed around the vehicle’s motion. A series

of exclusive filters evaluate the platform’s behaviour under different fault hypotheses

and residuals are evaluated to detect the presence of a specific fault condition. Such an

approach has been validated in controlled conditions demonstrating its effectiveness. The

work of Antonelli et al. [66] is based, instead, on the use of Support Vector Machine (SVM).

This core functionality of the proposed system allows it to benefit from the robustness

offered by a well-understood data-driven approach and, at the same time, to manage the

residual uncertainty usually resulting from unmodelled non-linear vehicle’s dynamics.

On the other hand, this approach requires the use of a clean and an extensive dataset of

fault-free trajectories with an off-line training procedure in order to obtain a well tuned

system. The contribution of Miskovic et al. [67], instead, relies on a Principal Component

Analysis (PCA) technique applied together with a simplified thruster model. This strategy

offers the capability of recognizing a broad range of faults classifying their typology using

a specific set of logical relationships. Its implementation relies on the availability of a

precise statistical model for the control input signals. This aspect, together with the need

of codifying expert knowledge as a static set of rules and lack of extensive field validation,

makes this method less suitable for implementation on a long-term autonomy platform.

The work of Wang [68] suggests the use of a fuzzy neural network (FNN) to model the ve-

hicle’s dynamics. Detection of faults is done comparing the expected behaviour, suggested

by the FNN output, with measurements taken from vehicle’s sensors. This approach,

while flexible because of its fuzzy representation, is presented only with simulated results.

Moreover, together other machine learning approaches, it relies on the availability of

good training data for the vehicle’s dynamics. On the other hand, a simpler yet effective

diagnostic strategy is presented in the work of Hanai et al. [55] where the general vehicle’s

dynamics are not taken into account. In this case a lower level model-based thruster
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fault detection scheme is introduced. The actuator’s model is derived through a series

of simple experiments conducted in controlled environments. Such procedures identify

the relationship between input and output signals for each vehicle’s actuator. Knowledge

of these models provides an effective way to assess the correct behaviour of propulsion

system and to detect problems even if small deviations from nominal characteristics are

introduced. This aspect represents an advantage compared to other architectures as small

and subtle changes in the propulsion system are more difficult to detect if taking into

account a larger motion model. In fact, underwater dynamics are of non-linear nature

[69] and highly affected by environmental disturbances or measurement noise.

More in general experimental validations of fault detection systems during field mis-

sions [18], [55] suggest that model-based techniques represent good candidates for

building a real-time diagnostic system that monitors the effectiveness of propulsion sub-

systems. Such methodologies, even if dealing with multiple actuators, do not require heavy

computations and can be efficiently integrated inside control software architectures.Such

an approach offers accuracies proportional to the quality of underlying models and the

precision of on-board sensors. Furthermore, it does not employ parameters that require

tuning for a specific type of underwater mission. These aspects give model-based strategies

the required robustness and effectiveness to be integrated in autonomy architectures for

long-term deployments.

2.4.2 Alternative Methods and Operational Experience

Other fault detection strategies [60] rely on model-free methods, such as spectrum analy-

sis, limit checking or, more in general, qualitative approaches. While still of relevance

from a diagnostic point of view their application to the AUV domain requires extensive

tuning, expert knowledge and a strict set of parameters that limits their scope to a spe-

cific vehicle’s configuration or environment. This is in contrast with the flexibility often

required by operators, for instance, allowing different payloads to be exchanged between

consecutive deployments. Moreover, on-the-fly mission reconfiguration and automatic

tuning capabilities are often desired features that are currently the objectives of research

in the context of long-term autonomy operations.

An example of a model-free method is the limit checking approach. This analyses a

set of signals and it applies a series of checks, for instance, on upper and lower bounds,

to detect the possible occurrence of a fault condition. Such a methodology, while not

requiring design efforts and being easy to implement, has a limited fault specificity and

its requires a reduced sensitivity to accommodate the expected variations (e.g. system

noise) in monitored signals. This strategy is often employed at higher system levels,

for instance, in the software domain, or when designing hybrid diagnostic systems (e.g.

combining multiple strategies). This methodology found often application together with

a classification method known as fault-tree analysis (FTA). This technique relies on

expert knowledge and analysis conducted during the system’s design to represent the
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Figure 2.5: Example of fault-tree diagram for an underwater vehicle. Three main subsystems are
represented in the tree along with their principal components. Logic relationships (AND, OR)
define how faults are propagated from components to the overall system.

relationships between components and failures in terms of hierarchical trees. An example

of FTA applied to a generic AUV system is shown in Figure 2.5. This highlights the

dependencies among principal components (sensors, propulsion, battery) and introduces

logical functions (AND, OR, XOR, etc.) to describe how faults can propagate through

the AUV at runtime. Such an approach is often not enough to capture all the possible

failure modes that real hardware components may show during their life-time. This is

because a comprehensive representation of all fault possibilities makes the fault-tree

grow exponentially. On the other hand, FTA and limit checking techniques are often

employed in hybrid diagnostic systems that make use of a strong method (e.g. quantitative

model-based) together with a simpler (or higher level) method to represent the overall

system’s state.

More general strategies have been explored in the area of integrated health manage-

ment and control. Relevant work has been done in the context of ground [70] and aerial

[71] autonomous robots. In these domains availability of affordable sensors and high

communication bandwidths allow designers to develop distributed schemas where some

diagnostics and mitigation modules are implemented outside the vehicle’s architecture

(e.g. in ground control centres or with the support of larger cloud platforms). Such an

approach is often not a viable alternative in the underwater domain. This is because

of limitations with the acoustic communications and the relative short coverage of low

latency communication links in the maritime domain. Those aspects suggest the develop-

ment of integrated on-board architectures [72] where most of the sensors data has to be

processed by the vehicle itself in order to assess its health status. Such decisions can then
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Component Failure Severity Probability

Battery System

Failed to charge minor occasional
Protection fuse blown moderate occasional
Not sourcing current moderate remote
Not switching on moderate remote

Propulsion system

Loss of propeller speed minor occasional
Thruster stall minor occasional
Thruster flooding critical remote
Entanglements (sea weed, objects, lines, etc.) moderate frequent

Sensors

GPS poor accuracy minor frequent
GPS lost initialization minor frequent
GPS antenna fail moderate remote
DVL poor accuracy moderate occasional
DVL failure critical remote
IMU failure critical remote

Control Surfaces

Not responding to commands moderate occasional
Intermittent drive faults moderate occasional
Actuator feedback fault moderate occasional
Actuator offset from zero minor occasional

Communications
Antenna failure (WiFi, Iridium, GSM, etc.) critical remote
Loss of connection (intermittent, reduced bandwidth) minor frequent
Acoustic modem failure (low sensitivity, errors) minor occasional

Science Payload
No sonar data collected minor remote
No CTD data collected minor remote

Emergency Abort
Failure to abort critical remote
Premature abort moderate remote

Software
Collision avoidance failure critical remote
Control failure (remote control, telemetry, etc.) minor occasional
Navigation failure (loss of guidance, map drift, etc.) moderate occasional
System exception (software error, restart) minor occasional

Others
Power switch failure critical remote
Short due to failure (mechanical, electrical) moderate occasional

Table 2.7: Overview of common observed failures on AUVs during long-term deployments.

be shared over low bandwidth acoustic communication links [10] to notify neighbouring

vehicles and human operators about the effective capabilities of a given autonomous unit.

An interesting aspect of the operational experience collected in the context of long-

term missions [18], [73], [74] is the identification of a broader range of possible system’s

failures for underwater platforms. Table 2.7 shows the most common problems seen in

practice and highlights their impact on the vehicle’s effectiveness and their occurrence’s

probability. Such a list is only a reminder for the large number of possible fault conditions

that a proper diagnostic system should handle in order to provide autonomous platform

good levels of self-assessment and fault management capabilities.
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2.5. Fault Mitigation

2.5 Fault Mitigation

Beside detection and isolation aspects, other relevant work has been done in the area of

mitigation and fault accommodation. This practice is often referred in literature as Fault

Detection, Isolation and Recovery (FDIR) and it can be considered as natural extension

of previous diagnostic techniques with the capability of reconfiguring a system after the

identification of problems. In the autonomous systems domain such procedures are often

Figure 2.6: Example of thruster configurations. An X-shaped configuration (left) uses all thrusters
to provide locomotion along the vehicle’s principal axis. A traditional approach (right) uses pairs of
thrusters directly along those axis and it does not fully utilise the set of thruster for cruise control.
Lateral motion, used for manoeuvring, is controlled with a different subset of actuators.

implemented with changes in the vehicle’s operating conditions, for instance by selecting

a different navigation mode or an alternative use of available actuators, in order to reduce

the impact of faulty components on the correct vehicle’s behaviour. The feasibility of such

an approach is highly affected by the platform’s design and, in the case of component

failures, by the presence of hardware redundancy.

An example of this is the use of redundancy in the propulsion subsystem, for instance,

in a vehicle designed with an X-shaped actuator configuration. In this case each thruster

has a 45 degrees offset from the vehicle’s principal axes. Such an approach relies on

the simultaneous use of actuator’s pairs to produce the necessary thrust to move an

underwater vehicle. This is shown schematically in Figure 2.6. A similar choice represents

a trade-off between control capabilities and platform’s survivability in presence of actuator

failures. Focusing on this subsystem relevant work has been conducted in the past for

optimising the use of the remaining actuators in the event of thruster failures. Such

approaches research alternative thrust allocation solutions by remapping the distribution

of generated forces among the efficient actuators with the intent of partially restore the

platform’s control capabilities according to the original vehicle’s design.

2.5.1 Classical Control Strategies

A similar mitigation strategy has been initially proposed by Yang et al. [75] where an

experimental study has been conducted relying only on the thruster redundancy. Later,

the contributions of Sarkar et al. [76] and Omerdic et al. [77] reviewed the original
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2.5. Fault Mitigation

strategy with the use of weighting coefficients for actuator’s forces and introduced a more

generic formulation for underwater systems. The resulting mitigation strategy relies on

a proportional redistribution of forces done according to the original thrust allocation

schema among available actuators. A general example of control architecture is shown in

CONTROL

LAW

THRUST

ALLOCATION
LINEARIZATION THRUSTERS

x

ẋ

τ f u

VEHICLE DYNAMICS

Figure 2.7: Overview of control schema for a generic autonomous underwater vehicle. Desired
position x and ẋ velocity vectors are provided to a control law that calculates the generalized
thrust vector τ. An allocation procedure maps this to actuator’s forces f . Finally, a linearization
procedure converts forces in low-level thruster’s commands u.

Figure 2.7, where the main components, such as control law, vehicle dynamics, thrusters,

are represented.

The thrust allocation module takes care of mapping the generalized force vector τ

into local actuator forces u. Mitigation strategies, often, operate at this stage preventing

failures from affecting the vehicle’s navigation performance. In such cases a modified

architecture is introduced, for instance, as in the FDAS approach [77], by replacing it with

a pair of accommodation and diagnosis modules. A possible resulting schema is shown

in Figure 2.8. The concept of thruster efficiency, on the other hand, has been introduced

and coupled with a diagnostic framework in the contribution of Hanai et al. [78]. This

represents a comprehensive FDIR schema where a diagnostic system coupled together

with a mitigation strategy is implemented in a real AUV. In this work the diagnostic part

provides health status estimations for all vehicle’s actuators. Such estimates are then used

to dynamically adjust the force’s redistribution weights in the event of fault detection.

CONTROL

LAW

FAULT

ACCOMMODATION
LINEARIZATION THRUSTERS

FAULT DIAGNOSIS

x

ẋ

τ f u

VEHICLE DYNAMICS

Figure 2.8: Overview of control schema with fault accommodation capabilities. A diagnosis module
is added to the general schema to monitor the actuators’ control feedback. A modified allocation
procedure utilise the diagnostic output to provide accommodation in presence of failures.

In the work developed on ODIN AUV [76] the introduction of weighting requires the
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AGENT

ENVIRONMENT

at

st

rt

Figure 2.9: General schema of reinforcement learning (RL) methods. An agent acts on the envi-
ronment using an action at . Reward rt and state update st are propagated back to the agent after
interacting with the environment. Reinforcement learning approaches aims at finding an optimal
sequence of actions that maximises the overall return (R=

∑

t rt) of the generated behaviour.

use of a modified controller schema to prevent thruster saturation. This aspect, while

solving elegantly the problem of saturation, introduces some restrictions in the design

of customized control architectures. An example of those is seen in [79], [80] where

a common control schema has been adapted to a specific operating mode that an AUV

may encounter during its long-term operations. In such cases the fault adaptation should

be attempted even if in presence of multiple control strategies, selected according to

the current task. Furthermore, in the work developed on the SAUVIM AUV [78] the

integration of a fault accommodation system with an higher level software architecture

(e.g. autonomy modules) is not discussed. Two other aspects are also left aside in the

above works: the effects of force redistribution on the navigation performance and on the

energy usage profile [81] of the autonomous platform. These aspects, while not of primary

importance from the control point of view, influence the behaviour and effectiveness of

vehicles over the duration of long mission. Incorporating these concepts into a unified

architecture can help decisions taken by higher level autonomy modules, for instance, at

planning and mission execution levels. This, which represent an active area of research

[82], enables modern autonomy architectures to adapt and optimise on-the-fly the current

execution plan in terms of resource usage and task selection during long-term missions.

2.5.2 Alternative Strategies

Other fault-tolerant techniques exist and do not rely on classical control methods. In

those cases mitigation solutions are found using machine learning (ML) or evolutionary

strategies [83]. These methodologies, usually, rely on the availability of good quality

training data, for instance, recorded from human operations in learning by demonstration

studies or collected with specific controlled environment experiments. An example of ML

approach for intervention AUVs is the use of reinforcement learning (RF) techniques as

shown by Ahmadzadeh et al. [84], [85]. A general schema for reinforcement learning

approaches is shown in Figure 2.9. These works introduce a system to learn a new

control policy in case of actuator’s loss. Such a strategy is effective in recovery from

hard failures. Experimental validations shows how the platform manages to adjust its
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navigation capabilities to the new operational state. In those specific cases this is achieved

with changes in navigation heading and with the use of lateral motion and more complex

trajectories. On the other hand, RF techniques require a great deal of simulation and

experimentation before a valid policy is derived for a specific fault condition. Such a

constraint is not always applicable for vehicles operating at sea because of the great range

of unexpected events that can possibly be encountered during a long-term mission. Further

more immediate reactions are often needed, for instance to avoid dangerous behaviours,

or when a minor failure or degradation is detected.

2.6 Mission Reliability

Another topic of interest when analysing the effectiveness of autonomous systems is the

concept of reliability applied to mission management. In fact, FDIR capabilities alone

are not often sufficient to guarantee the correct development of long duration missions

executed without human supervision. Those methodologies, while necessary for assuring

quick reactions to sudden events, are not responsible for researching or implementing

long-term accommodation strategies that should be taken into account in presence of

unexpected scenarios (e.g. failures) or changes in the operating conditions not originally

considered in the mission plan.

Different aspects are often investigated when approaching those issues. One is the

analysis of failure’s effects on the mission’s development (e.g. can the platform continue

with future tasks?) as well as the evaluation of original goal’s viability (e.g. can still

the mission’s objective be achieved?). Several studies and architectures [86] have been

investigated on this topic focusing on providing an effective way of assessing the platform’s

reliability in conducting complex missions. An example of this is the phase mission

reliability analysis [87] approach studied in the UAV domain. This methodology aims

at evaluating those effects by combining smaller fault-tree analyses for each operational

phase that compose a long or complex autonomous mission. Such an approach allows

for a quick numerical evaluation. In the underwater context, on the other hand, field

missions have been evaluated using Markov-chain models [74], where sequential missions

(often found in this domain) are described as a set of discrete states with respective state

transition probabilities. For example, a mission can be represented analytically as:

Pr(Xn+1 = x | X1 = x1, X2 = x2, . . . , Xn = xn) = Pr(Xn+1 = x | Xn = xn) (2.28)

where X i ∈ S and S is the set of possible states, also known as the state space. The

(2.28) is usually defined under the assumption that conditional probabilities are well

defined. Such an approach allows simplified analysis of the mission by considering the

probability of moving onto a next state as conditional only on the present state. The

aim of such a strategy is to correlate the mission’s states with a risk and survivability

analysis derived from previous operational experience as well as expert knowledge. An
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Figure 2.10: Markov-chain representation for a generic mission process. State S0 and S4 represents
the initial and recovery phases of the mission. States S1 to S3 are associated with general control
tasks (e.g. diving, surfacing, trajectory following). States S5 and S6 with target recognition and
identification tasks (e.g. sonar processing, target reacquisition).

example of a possible Markov-chain representation for a simple underwater mission

is shown in Figure 2.10. In this case a plan with 7 states is taken into account. The

initial (S0) and recovery (S4) phases are identified as edge cases while intermediate states

(S1, S2, S3, S5, S6) are connected together in a cyclic graph representing the sequence of

repeated operations usually performed by an underwater vehicle. This approach, while

of relevance, is difficult to apply in architectures that employ more complex planning

[1], [2] or optimization strategies, where often, a degree of uncertainty is embedded

into higher level planning procedures. In those cases neither Markov-chain models nor

expert knowledge can exhaustively handle all the possible outcomes that an autonomous

platform can encounter during its operations.

Another methodology that evaluates the reliability of autonomous mission is the

analysis of its evolution when the availability of on-board resource is scarce or uncertain.

An example of relevant work in the underwater domain is the study of evolutionary

techniques for adapting on-the-fly survey missions [88]. This work highlights how energy

management issues are a relevant aspect to guarantee reliable operations when away from

human supervision in unknown environments. Such a characteristic puts underwater

vehicles in the same context of other mobile systems, where relevant studies [13]–[15],
[89]–[91] have been conducted extensively on energy management aspects and on the

effect of environmental disturbances on the reliability of missions. In the works of Saha et

al. [89] and LeSage et al. [14] effort has been put, first, in understanding and modelling the

effect of different discharge or load profiles on the behaviour of stored energy resources in

the context of realistic missions. Such aspects are relevant if the mobile system is capable

of carrying out complex tasks (e.g. survey areas, manipulating objects, navigating in

cluttered environments) and a wide range of energy demands are usually experienced

during their development. Those studies investigate how the usage of energy resources is

influenced by the health status of on-board batteries and by specific mission profiles. For

instance, frequent executions of highly demanding tasks (e.g. take-off, landing, diving,

surfacing, etc.) result in a reduced availability of energy resources due to an excessive

stress on the battery system, leading, in extreme cases, to premature termination of
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Figure 2.11: Example of load distribution for an autonomous vehicle (adapted from [14]).

missions.

A detailed analysis [14] has been carried out on UGVs’s systems using identification

procedures to isolate and quantify different types of power load configurations experienced

during field missions. Advanced platforms, in fact, can be fitted with a broad range of

auxiliary sensors, complex algorithms and on-board computer systems that can process

great amount of data while operating in the field. Figure 2.11 and Table 2.8 show an

example result for the proposed methodology. Different clusters are identified analysing

the platform’s performance when deployed in different operating scenarios. This loads

classification, together with occurrence probabilities derived over the course of typical

missions, allowed researchers to obtain statistical models (e.g. Gaussian Mixtures, Markov

processes) that can be used to simulate the possible future evolution of realistic missions.

Such an approach is then used to estimate the effective residual time that on-board battery

system can sustain when experiencing mission-like stimulations.

Cluster Name Mean (A) Std (A)

L1 Hotel Loads 1.0 0.50
L2 Sensors 2.3 0.65
L3 Navigation 3.2 0.40
L4 Navigation + Sensors 4.1 0.75
L5 Diving + Sensors 5.0 0.45

Table 2.8: Example of load clustering for an autonomous underwater vehicle.

Other efforts have been focused in estimating the mission’s energy requirements [13]
using real-time measurements and a priori knowledge gathered from previous deployments

and comparing it to the available on-board resources. This strategy represents an useful

technique because real field operations are often affected by external disturbances or

temporal changes of the mission environment that require constant adjustments of on-

board predictions. Such high variability in the operating conditions is, often, enough to

invalidate most of the original assumptions made during initial planning phases. Failing

to take into account those aspects often results in shorter mission times, vehicles getting

stuck away from recovery zones and, more in general, the necessity of introducing large
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Figure 2.12: Example of travel time prediction for UGV missions (adapted from [15]). Process
history is used to characterise the mission’s behaviour, for instance, calculating the probability
density for the expected locomotion time with respect to the mission’s travel distance.

safety margins in the resource planning phases.

A further extension of the load characterization study introduces the use of energy

estimations in evaluating the feasibility of an autonomous mission [15]. This procedure

is carried out while a vehicle is operating in the field by correlating the available energy

resources with requirements derived from its current mission plan. Among those are the

estimation of vehicle’s remaining mission time, that in case of ground systems operating

on unknown terrains is a function of many factors (e.g. driving style, friction, wheel

grip, etc.) as shown, for instance, in Figure 2.12, and the prediction of residual battery

runtime (i.e. time before on-board resources depletion) using samples collected during

mission’s execution. Experimental results on UGVs validate the use of such a methodology

in proving a more robust assessment of autonomous missions. Altogether, the work done

on UGVs and UAVs suggests how the use of runtime energy frameworks is beneficial to

quantify effects of the external environment on the mission’s execution, both in term of

feasibility (e.g. the probability of successfully completing the current plan) and estimation

of future resource usage.

2.6.1 Dynamic Environments and Mission Planning

In the underwater domain vehicles operating in presence of dynamic environments and

unknown disturbances are a well-known problem. Relevant work has been done in the

past to handle this operational uncertainty using different approaches. Generic and more

comprehensive strategies include the use of extensive semantic frameworks, both to

address the presence of unexpected events [20] (e.g. failures) and to improve the vehicle’s

situational awareness [10] in presence of complex missions.

On the other hand, more specific work aims at improving the planning of AUV missions

by embedding environmental effects and user’s constraints in the problem formulation.

In this domain the concept of on-line mission adaptation [88] has been explored for

adjusting the mission’s operational parameters (e.g. duration, survey area, speed) in
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presence of resource constraints. Further attention has been given also to the concept

of contingency planning [92], where the use of overly-conservative plans is discussed

together the implications on suboptimal use of on-board resources. Finally, an example

of planning for autonomous inspection tasks [82] is discussed in presence of temporal

constraints. A relevant application in the same context is the problem of autonomous

intervention [93], where a vehicle is envisioned to replace divers or remotely operated

systems to interact with subsea panels.

More generally, the problem of planning [94] is often extended to the underwater

domain [95] using the experience gained in other domains, such as mobile ground systems

and aerial robotics. Solutions are often researched using probabilistic approaches [96] (e.g.

using a Markov decision process) by employing reinforcement learning [97] strategies or

more classic dynamic programming techniques.

Path-Planning Problem

Beside global mission planning aspects other relevant work has been done on the path-

planning problem [98]–[102], where evolutionary approaches [98], search procedures

[99] or gradient based techniques [100] are discussed in presence of ocean current maps

and large variable environments. The use of adapting sampling and mixed integer linear

programming is discussed in [101] while energy-aware aspects in context of dynamic

path-planning are also mentioned in [102]. All of these works highlight the necessity of

including environmental effects in the planning domain of long-term deployments as their

analysis can substantially improve the vehicle’s effectiveness when operating away from

human supervision. Furthermore, work done on path planning shows how navigating

along optimal paths improves the vehicle’s efficiency in terms of resource usage and how

this contributes to extend the vehicle’s persistence out in the field.

2.6.2 Probability of Completion

A common approach in analysing reliability aspects is to introduce a compact represen-

tation for the underlying processes that characterise a given dynamical system. This

allows the definition of the reliability integral (2.29): an expression that quantifies the

expectation of a system working correctly and in normal conditions. The integral [103],
[104] is generally defined over a set of edge conditions which are known to trigger a

failure or to exceed the system’s specifications:

R= 1−
∫

F
p(θ )dθ (2.29)

where F is the failure domain defined by a limit state function g(θ) as F = {θ ∈ Θ :

g(θ )≤ 0} and p(θ ) is the probability density function of θ . Several numerical methods

[105] exist to evaluate this expression and often combine domain knowledge with Monte
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Carlo strategies to both quantify the probability terms and to identify the failure domain.

Alternatively to this expression it is common to formulate such analyses focusing only on

the right-hand side of (2.29). This is known as probability of failure (PF) and it is defined

as:

PF =

∫

F
p(θ )dθ (2.30)

where the integral term is solved on a domain exceeding the failure boundary. In a general

case θ represents a random vector of multiple variables and p(θ ) takes the form of a joint

probability density.

In the autonomous systems domain underlying processes of interest are, for instance,

defined at mission or task levels, according to the level of detail and the scope of supporting

analysis. In the case of mission level abstractions the process is described as a sequence

of intermediate steps (e.g. actions or tasks) that platforms need to carry out when trying

to reach their specific goals.

M = {A0, A1, . . . , An} (2.31)

Failure domains are identified, for example, as combinations of limits derived by the use

of on-board resources (e.g. battery energy, fuel consumption, availability of recharging

stations, etc.), the allocation of temporal or spatial resources (e.g. maximum mission time,

coverage areas, etc.) and user-defined operational constraints. Two common variables,

used in previous works [13], [15], are the mission time (tm) and mission energy consumption

(em). Considering just these two variables the probability of failure can be expressed in

the form of:

P(tm > tT , em > eT ) =

∫ ∞

tT

∫ ∞

eT

fM(tm, em) d tmdem (2.32)

where fM is the joint probability density (given tm, em), derived from the mission process

M (2.31), and the parameters tT , eT are the upper-limits, respectively, of mission time

and energy consumption. When considered from the point of view of reliability the (2.32)

is then expressed as:

R= 1− P(tm > tT , em > eT ) (2.33)

and it is referred in literature [15] as Probability of Mission Completion (PoMC). This

characterises the chance of successfully conducting the underlying mission M within

the platform’s energy and time constraints. Such a formulation implies the temporal

dependency of the fM term. This, in fact, is usually determined by several factors (e.g.

changes in the environment) and by the presence of advanced decision making processes

(e.g. on-line or adaptive planning) that can modify on-the-fly the process itself. An

example of the joint density term, calculated for a generic sequential mission of repeatable

tasks, is shown in Figure 2.13. In this case fM follows a bivariate normal distribution:

fM(x1, x2) =
1

2πσ1σ2

p

1−ρ2
e−

z
2(1−ρ2) (2.34)
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Figure 2.13: Example of bivariate normal probability density fM (tm, em) for a generic mission
process with repeatable tasks. Uncertainty of energy consumption and time duration characterise
the shape of the surface with respect to a correlation coefficient ρ.

where z is a location term defined as:

z =
(x1 −µ1)2

σ2
1

− 2ρ(x1 −µ1)(x2 −µ2)
σ1σ2

+
(x2 −µ2)2

σ2
2

(2.35)

and ρ is the correlation coefficient between random variables, also defined as:

ρ = Cor(x1, x2) =
Cov(x1, x2)
σ1σ2

(2.36)

In the case of PoMC the above model is identified for the variables tm, em by the parameters

µt ,µe and σt ,σe, respectively, means and variances of mission time and energy usage.

Those values are usually derived using models formulated for intermediate tasks Ai that

compose the mission process M . The identification of the coefficient ρ, instead, is a

process that requires experimentation1 and, as shown also in previous works [15], is

affected by operational uncertainty2 and external disturbances.

2.6.3 Range and Energy Evaluations

Availability of accurate state estimation techniques, for example in the battery context,

allowed researchers in the mobile systems community to devise several methodologies

1Both in terms of simulations (e.g. using Monte Carlo methods) and of real mission’s analysis.
2Uncertainty in autonomous operations is given by non-ideal execution behaviours of intermediate tasks. It
can be modelled as additive error for the underlying statistical models of vehicle’s actions.
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for evaluating the energy requirements and the effective range of battery-powered sys-

tems [106]–[108] operating in real scenarios. Analyses have been done, for instance,

conducting experiments with human operators, evaluating the effects of their decisions

and control styles on the performance of mobile systems, or with the identification of

repeated behaviours from previous deployments. These aspects, often underestimated in

power-rich scenarios such as indoor or large ground systems, plays an important role in

the marine domain where the access to resources, vehicles or support structures is often

not practical or totally unavailable.

Previous work on performance evaluation of underwater vehicles has been done by

Willcox et al. [81]. In this work researchers analysed the behaviour of AUVs conducting

scientific surveys in marine environments while deriving simple metrics to calculate their

expected energy requirements. Their formulation is effective when power loads can be

assumed constant and without variations for most of mission’s time. Such conditions are

often found in regular data gathering tasks where the vehicle is required to follow regular

trajectories and maintaining a constant attitude (e.g. speed, depth, heading, power usage).

Considering the survey of a large mission area the energy usage can be approximated3 as:

esurv =

�

ρCdSν3
surv

2ηp
+H

�

tsurv (2.37)

where νsurv represents the survey speed, tsurv the survey duration, ηp the propulsion

efficiency, Cd the drag coefficient, ρ the density of water, S the vehicle’s surface area and

H the platform’s hotel load. Knowledge of (2.37) allows planners to correlate energy

requirements with operational parameters, like νsurv and tsurv, often objective of interest

for operators when analysing the feasibility of such missions. Another relevant aspect

of (2.37) is that it allows finding an approximate expression for the minimum required

survey energy given the survey’s parameters. In fact, assuming being in presence of a

known square survey area A, the total linear distance can be expressed as:

L ≈ A
2λ
− 2λ≈= A

2λ
(2.38)

where λ is the survey resolution (e.g. the distance between parallel tracks of a lawn

mower pattern) set by operators. In such a case the survey speed is thus expressed as:

νsurv ≈ L/tsurv (2.39)

and by dividing the (2.37) by L, one gets:

εavg =
esurv

L
=
ρCdSν2

surv

2ηp
+

H
V

(2.40)

3The equation (2.37) does not takes into account any environmental effect, such as sea currents, wind
variations and, more in general, the effects of vehicle’s manoeuvres.
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Figure 2.14: Example of survey profiles for a generic AUV. Curves are calculated for different spatial
resolutions λ and speeds ν within the vehicle’s allowed range (e.g. [0.25, 2.5] m/s). Minima are
identified once the λ parameter is further restricted taking into account the resolution of on-board
sensors.

the expression of the energy usage per unit distance (ε), a relevant metric4 to evaluate the

survey’s performance. Deriving this quantity with respect to νsurv and setting it to zero

gives an estimate of the optimal survey speed:

νopt =
3

√

√

√
Hηp

ρCdS
(2.41)

The use of (2.41) in the (2.37) allows, thus, the calculation of the minimum energy

requirement for the survey under analysis:

emin =
3LH
2νopt

=
3
2

topt H (2.42)

Figure 2.14 shows an example of resulting survey profiles for a generic AUV surveying a

given area A. Curves are calculated from (2.37) by varying the vehicle’s speed ν within

thruster’s capabilities ν ∈ [0.25,2.0] and using different survey resolutions λ ∈ [1,10].
Results shows how fast survey speeds require more energy to complete a mission and,

at the same time, a selection of slower ones leads also to a raised energy requirement.

Such a behaviour is given by the consequent increase of total navigation time tsurv while

being in presence of a fixed hotel load H. Despite its exploratory relevance the expression

(2.42) represents only a rough approximation of the actual energy requirement, more

correctly its lower-bound. Such a quantity finds most use during the initial stages of the

mission planning process, where the limited knowledge of operational environments may

require the use of rough assumptions or idealised behaviours.

4In this case such a metric is averaged along the full length of the survey and represent the overall behaviour
of the platform rather then its local performance.

35



2.7. Summary

2.7 Summary

This chapter analysed some of the main aspects affecting reliability and survivability

issues of modern underwater platforms. Initially the battery subsystem has been analysed

introducing the work done by researchers in the power systems community that provides

analytical models to accurately represent the internal status of battery elements. Beside

pure modelling aspects, work done in the prognostic and health management domain

suggests that more complex techniques are often needed to better characterise the temporal

evolution of such a subsystem. In fact, when considered as part of a more complex

platform, on-board power sources are affected by specific usage patterns that may affect

their efficiency during field operations. Later, after discussing vehicle’s power sources, the

propulsion subsystem has been also analysed. This, in fact, represents another relevant

component that limits the capabilities of unmanned platforms when in presence of failures

or other unexpected events, such degradations of on-board actuators.

Energy usage and propulsion systems have been related to survivability issues while

discussing existing diagnostic and repair methodologies applied in the context of fault

detection and mitigation. Those, commonly employed in presence of more complex

industrial scenarios, find more and more usage in autonomous robotics applications where

advanced or hybrid techniques are often needed to discover, evaluate and respond at

runtime to unexpected events that may be encountered while operating in unknown

environments and while away from human supervision. Several approaches, such as

ones based on machine learning, statistical analysis and unsupervised techniques, are

commonly found in literature. On the other hand, in the marine domain fewer applications

are reported and model-based techniques are often preferred by vehicle’s designers given

the constraints of underwater operations (e.g. limited communications) and the ones of

underwater platforms (e.g. limited computational capabilities). Along with survivability

aspects, reliability issues have also been discussed while analysing autonomous missions

together with the use of on-board resources and vehicle’s capabilities. In this context,

more approaches are found for the underwater domain and several strategies are followed

by vehicle’s designers to make sure complex missions can be conducted efficiently without

human intervention. Probabilistic methods are introduced in such a scenario. Some of

those aim at modelling the complete evolution of missions, identifying those are a set of

known states. On the other hand, work done on unmanned ground vehicles shows also

that more focused solutions, built around analysis of vehicle’s performance in unknown

environments, are a valid alternative to estimate the reliability of a given mission.
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Chapter 3

Energy-Aware Architecture

It is important to realize that in physics

today, we have no knowledge what energy is.

We do not have a picture that energy comes

in little blobs of a definite amount.

Richard P. Feynman

This work introduces an architecture focused on improving reliability and survivability

features of modern underwater vehicles. This is focused on the concept of energy awareness:

the analysis of on-board energy usage and its correlation to the vehicle’s effectiveness

while operating in the field. Such an energy-aware architecture complements existing

autonomy modules by improving the assessment of vehicle’s status, both in terms of

self-observation, assuring that internal components are working correctly, and analysis of

external factors, recognising the effects of mission’s environment, such as sea currents, on

a vehicle’s capabilities.

Internal assessment is achieved with the introduction of an automatic fault mitigation

framework. This is used for augmenting the vehicle’s fault-tolerant capabilities and for

detecting the presence of problems within the vehicle’s propulsion subsystem. Such

a component is especially useful in presence of partial failures, such as performance

degradations of on-board actuators, because of their subtle effects on vehicle’s control

capabilities. In those cases the platform’s reconfiguration or task adaptation strategies

can be proposed as valid alternatives to premature interruption of unmanned operations.

On the other hand, external interactions are evaluated using a runtime performance

estimation framework. Such a component monitors the effective vehicle’s performance

while operating in the field. Such a procedure is needed because assumptions taken before

starting a mission may be improved using information collected during execution. In

fact, as discussed in section 2.4.2, the operational experience [18] of long-term mission

suggests that external disturbances, such as sea currents, and, to some extent, changes in

the health status of on-board components are important sources of uncertainty during
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Figure 3.1: Overview of energy-aware architecture. Core elements are delimited by dashed lines.
Other modules represent a broader vehicle’s autonomy framework. Connections indicate the flow
of information within the schema. Energy-aware services are exposed to the autonomy framework
at multiple levels of its hierarchical structure.

field operations. Gathering knowledge about those aspects, while conducting a mission,

allows the autonomous vehicle to optimise its behaviour, for instance, selecting more

appropriate navigation paths or adjusting the sequence of mission’s tasks when considering

the limitations [88] of on-board resources.

Components of this architecture, when combined together, aim at extending the

capabilities of higher level autonomy modules1 by replacing initial assumptions with

correct and up-to-date information about the vehicle’s behaviour collected while operating

in the field. A possible use for the proposed work is shown in Figure 3.1. In such a schema

the energy-aware architecture is integrated in a broader autonomy framework, taken,

for example, from the PANDORA project [1] that served as test bench for most of the

experimental work shown in later chapters. The original schema uses a layered approach

to separate logical elements operating at execution, operational, strategic and tactical

1Those are task execution or mission planning modules that on-the-fly adjust the vehicle’s behaviour in
response to unexpected events or changes in the external environments.
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levels. Those are characterised by an increasing level of abstraction: transforming sensors

measurements into higher level concepts, for example, by employing reasoning modules.

Following a similar approach the energy-aware subsystem, shown within dashed lines,

is thus integrated in the vehicle’s architecture offering fault mitigation and performance

estimation services to existing control and execution modules.

In the following sections the main elements of the energy-aware architecture are

introduced together with description of their behaviour and the interaction with other

autonomy modules. Their design, while following the layered logical approach, also

separate fast and slow operations that are executed during the mission. On one hand,

fast operations are synchronous with the update rate of vehicle’s control architecture,

evaluating, for instance, the state of internal components multiple times during navigation.

On the other, slow ones are executed asynchronously according to the evolution of mission’s

tasks. These are, for example, logical evaluation about the effects of detected failures or

the research of optimal solutions for locomotion actions.

3.1 Automatic Fault Mitigation Framework

The introduced fault mitigation framework differs from past proposals seen in literature

[10], [19], [72] by employing energy consumption as the primary metric for underlying

diagnostic methodologies. Such an approach allows automatic runtime operations without

relying on a complex set of diagnostic signals. In fact, a small set of parameters, that

characterise the behaviour of on-board actuators, is identified through a short self-testing

procedure conducted after deploying the vehicle in its mission’s environment. Such a

framework utilises computational resources available on-board while avoiding the interac-

tion with remote operators and integrating seamlessly with existing vehicle’s operations.

It makes use of a generic representation for component’s health status and failure levels,

making it compatible with a broad range of possible vehicles’ designs, for instance, with

ones featuring control fins or rotatable thrusters for precise navigation or accurate station

keeping capabilities.

All those features represent a difference from other fault management systems that

often require extensive off-line training and detailed platform’s knowledge to be tuned

efficiently. Such a characteristic is proper of more complex architectures [10], [72]making

those less suitable for on-board implementation on low-cost underwater systems or in

cases that have frequent changes in payloads or vehicle’s configuration are expected

among consecutive missions.

3.1.1 Temporal Approach

Aiming at long-term operations the proposed system analyses the vehicle’s behaviour

over two different time frames: a short one that is related to the execution of a current

task, and a long one, related to the entire duration of the autonomous mission. If failures
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Figure 3.2: Overview of the fault mitigation system. Two feedback loops acts on the control
software. A slow loop operates asynchronously to propagate fault knowledge. A fast synchronous
one, instead, deals with short-term mitigation reactions.

are detected during normal operations a mitigation strategy is introduced over the short

time frame. This allows the vehicle to complete its current task. Concurrently effects of

detected failures are evaluated over the duration of a longer time frame. This is done, as

shown schematically in Figure 3.2, by propagating the fault’s information, collected at

runtime, in a knowledge graph that describes relationships among vehicle’s components.

Such an approach allows the analysis of detected failures together with the evaluation of

alternative capabilities that ensure the completion of remaining mission’s tasks.

A relevant component for this framework is the model-based diagnostic module. This

monitors the energy usage of vehicle’s actuators and it employs analytical redundancy in

order to assess their runtime behaviour. Modelling of these components is achieved with

the use of a state-of-the-art non-linear regression technique known as Locally Weighted

Projection Regression (LWPR) [109]. Such a methodology is used in this architecture

also for performance estimation purposes and it is described with more detail in section

3.3.1. Another relevant component is the fault mitigation module. This, upon detection

of failures, reconfigures the control software using the estimated actuator’s efficiency

calculated by the diagnostic module and adapting the vehicle’s behaviour to its remaining

capabilities. Reconfiguration is achieved with the use of a modified control schema that

allows runtime adjustments for the use of on-board actuators. In the case of reconfiguration

an optimization procedure is employed for calculating a valid thrust allocation solution

that takes into account the constraints of available actuators and prevents them to operate

beyond their saturation threshold.

Beside modelling and mitigation aspects, a specific feature of this approach is the

use of an energy-based diagnostic metric that is derived at runtime using measurements

provided by on-board monitoring sensors as further described in Chapter 4. Sensors able

of monitoring the vehicle’s energy usage are commonly found in existing designs as power
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system probes or in the form of more advanced Battery Management Systems2 (BMS).

Independently from their nature, existing sensors can be often re-purposed to be used

with the proposed energy-driven diagnostic approach used in this architecture.

3.2 Knowledge Representation Module

As previously mentioned, a knowledge base module is also introduced in the proposed

architecture. This is used for representing information gathered by low level modules

and propagates refined concepts using different levels of abstraction. Such a component

collects decisions taken by fault mitigation modules and estimations done at fault detection

level to evaluate the impact of failures on the vehicle’s effectiveness. This allows high-level

autonomy elements, like mission planner or task execution modules, to better adapt the

vehicle’s remaining activities if a more suitable execution strategy can be computed. This

behaviour is usually influenced by the severity of detected faults and, in extreme cases,

could require the use of different navigation modes, in terms of trajectory planning or

motion control, if normal capabilities are made unavailable.

An overview of this module is shown in Figure 3.3 where an example knowledge

graph is presented for a hover-capable vehicle in the context of inspection missions. The

proposed schema is a layered structure which connects and organises vehicle’s internal

beliefs at different abstraction levels. This isolates basic and measurable knowledge

elements from complex features that can be derived after a simple reasoning procedure.

3.2.1 Components and Capabilities

Concepts at component level represent a physical device, such as an actuator or a sensor,

together with its internal characteristics (e.g. health status or usage constraints). When

combined together those are represented by concepts at capabilities level. These are

introduced for propagating the effect of component’s availability on specific vehicle’s char-

acteristics. At this level navigation capabilities are modelled as a set of logical relationships,

for instance (3.1) and (3.2), among the control forces and lower level components.

Thr(x) ∧ Thr(y) ∧ Thr(z) ∧ . . . =⇒ Do f (k) (3.1)

Concepts at action level are used to represent elementary behaviours that can be executed

by the vehicle. Those make use of underlying concepts but are not necessarily aware of

all lower level relationships (3.3). Elements at this level can be seen as building blocks

that compose more complex items or tasks.

Do f (x) ∧ Do f (y) ∧ Do f (z) ∧ . . . =⇒ Cap(k) (3.2)

2The BMSs are usually integrated in electric vehicles to monitor the health status of on-board battery packs.
These manage the charge and discharge processes while evaluating the internal battery state (e.g. status
of charge) at any point during vehicle’s operations.
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Figure 3.3: Knowledge representation of vehicle’s status inside the knowledge base module. Re-
lationships between high level concepts such as tasks and low level parameters such as health
coefficients estimated by the fault mitigation modules are shown in terms of vehicle’s components,
capabilities and actions abstractions.

The sequence of tasks characterise the evolution of an autonomous mission. These

concepts are also made available in the planning domain, where elementary behaviours,

such following a trajectory or scanning a portion of seabed, are consider as atomic elements

that can be either complete successfully or fail in achieving their intended scope. A list of

principal logical relationships used in this framework is shown in Table 3.1.

(Cap(x) ∧ Cap(y)) ∨ (Cap(z) ∧ . . . ) =⇒ Action(k) (3.3)

The use of these abstractions allows the knowledge base module to correlate numerical

values, such as health status estimates, to qualitative effects characterising more and more

complex vehicle’s capabilities. Following the example of Figure 3.3 a typical behaviour is

detailed in the context of an inspection-type mission, for instance, like the ones conducted

during the PANDORA project. In this case a planning system [137] has been given the goal

of conducting a survey of mission’s area for detecting the presence of sunken objects. Such

a mission is composed by a sequence of simple tasks, for instance the inspection object one.

Each task is executed selecting the most appropriate action among the ones available at
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Level Type Relationship

components linear Thr(1)∧ Thr(2) =⇒ Sur ge
components linear Thr(3)∧ Thr(4) =⇒ Swa y
components linear Thr(5)∧ Thr(6) =⇒ Heave
components angular Thr(5)∧ Thr(6) =⇒ Pitch
components angular Thr(1)∧ Thr(2)∧ Thr(3)∧ Thr(4) =⇒ Yaw

capabilities navigation Yaw∧ Sur ge =⇒ Fnav
capabilities navigation Yaw∧ Swa y =⇒ Lnav
capabilities attitude Heave ∧ Pitch =⇒ V nav

actions inspection Fnav ∨ Lnav =⇒ Fast Insp
actions inspection Lnav ∨ V nav =⇒ SlowInsp
actions station-keeping V nav ∨ Lnav =⇒ Hover Insp

Table 3.1: List of principal logical relationships used in the knowledge base module.

the time of its execution. Actions are characterised by different execution costs derived by

evaluating the state of vehicle’s components and capabilities. In the event of failure, such

a thruster degradation, fault knowledge is propagated from lower layers (e.g. components)

to upper ones (e.g. actions). In this way execution costs and action’s availabilities are

updated to reflect the estimations done by diagnostic modules and influence the choices of

planning modules. This is done by translating the logical relationships shown in Table 3.1

into PDDL (Planning Domain Definition Language) statements that are used to describe

the planning problem for a given mission. Such a procedure is used at any stage of a

PANDORA mission that require the solution of the planning problem in response to a

mission event (e.g. completion of a task, detection of an object) or a vehicle event (e.g.

failures, loss of capability).

3.3 Performance Estimation Framework

Beside internal assessment and knowledge related aspects another relevant component

of the proposed energy-aware architecture is the introduction of a runtime performance

estimation framework. This, as described previously, is given the task of monitoring at

runtime the vehicle’s performance while operating in unknown environments or when

only limited information has been provided by operators. In this context performance is

evaluated using a set of metrics, such as the energy usage per unit distance εnav(ψ) and

effective locomotion speed νcruise(ψ) that are derived from sensors’ measurements taking

into account the vehicle’s heading ψ with respect to external disturbances, such as sea

currents. Metrics are formulated taking into account previous studies [81], [88], [98]
on performance evaluation and mission optimization in marine environments, and more

recent works [13], [15] focusing mission’s feasibility evaluation in the domain of ground

robots. Runtime knowledge of vehicle’s performance allows a better evaluation of the

current mission’s status and, when coupled with optimization procedures, to improve
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Figure 3.4: Overview of the runtime estimation system. Two feedback loops are implemented. A
fast loop estimate vehicle’s performance using sensors and navigation data. A slow one, instead,
optimizes the vehicle’s path while navigating in the mission’s area.

several aspects such as locomotion efficiency, total execution time or final mission’s

outcome.

As mentioned in section 2.6 modelling of environmental aspects is a difficult task

and many different approaches are found in literature. They focus mostly on the evalua-

tion of disturbances at ocean scale aiming at long-range scientific experiments such as

environmental surveys. In this context, however, the analysis is focused on operations

conducted in small areas, such as littoral environments, internal waters or areas around

human-made structures. Such operational scenarios are typical of small-size low-cost

survey-class or intervention-class vehicles equipped with a small sensors package. These

are often fitted with a Doppler Velocity Log (DVL) dedicated for navigation purposes but

not always with additional Acoustic Doppler Current Profilers (ADCPs) that can provide sea

current’s measurements. Behind these limitations is the need of reducing the operational

costs and, at the same time, extending their operating range by reducing the on-board

payloads to strictly cover the mission’s requirements (e.g. acquisition of imaging data).

With these considerations in mind a data-driven approach is followed in this work to

derive environmental knowledge from samples collected at runtime by on-board sensors.

Data is analysed incorporating knowledge of different operating modes (e.g. navigation

strategies, manoeuvring constraints) followed by the vehicle while executing a specific

task.

An overview of the proposed runtime estimation framework is shown in Figure 3.4.

A few modules are added to the vehicle’s software architecture to collect motion data,

identify trajectory segments and estimate the runtime metrics over a short time scale

related to the current task execution. Concurrently derived metrics are used in a route

optimization procedure that aims at improving the vehicle’s efficiency if changes in the
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Figure 3.5: Schematic representation of LWPR algorithm. Adapted from [109].

operating conditions are detected. Those are, for instance, deviations from the initial

assumptions [88] done at mission’s planning stage about vehicle’s navigation capabilities,

execution time and energy consumption. Runtime estimations rely, even in this context,

on the use of a regression analysis procedure implemented using the LWPR method and

already employed for modelling internal aspects of vehicle’s actuators. Such an approach

allows, on the one hand, the characterisation of the behaviour of external disturbances,

where changes in intensity and direction are not necessarily represented using simple

linear models, and, on the other, the reuse of existing components already available in

the vehicle’s software architecture.

3.3.1 Regression Analysis

As mentioned in previous sections, the regression analyses presented in this architecture

rely on the Locally Weighted Projection Regression (LWPR) algorithm [109]. This is a

state-of-the-art non-linear regression technique that employs multiple linear models to

approximate, on a smaller domain, high dimensional non-linear functions. This approach

allows efficient capture and representation of complex models where often only their

approximations are known in linear form. Such a method finds many applications in

the robotics domain. In the underwater context it has been recently applied [110] to

improved motion modelling, introducing a corrective term learnt during field operations

to existing motion models (e.g. derived with classical identification procedures) or as

non-linear model adaptation term [111] that aims at adjusting the vehicle’s model in case

of actuator failures.

This algorithm allows for incremental on-line learning through the introduction of

a forgetting factor, which adjusts the learnt model as fresh input samples are provided.

This method is best featured when a good number of starting samples (Nt ≥ 2000) are
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available, making its application ideal for the use of cases presented in this work, for

instance, the extraction of thruster’s characteristics and, as will be introduced in a later

chapter, the identification of vehicle’s performance metrics. In the context of thruster

modelling the incremental learning capabilities are employed in updating the extracted

models among vehicle’s deployments. This aims at compensating for ageing effects of

marine actuators by proving fresh input samples using the thruster’s testing procedure

previously introduced.

The LWPR algorithm, shown schematically in Figure 3.5, applies a dimensionality

reduction to identify the most important directions in the input space. The domain in

which each local model is activated is known as receptive field (RF) and it is defined using

a Gaussian kernel. In each receptive field the function is locally approximated using a

lower dimensional linear model as fitted with Partial Least Squares (PLS). LWPR produces

the final result ŷ for the target function as the weighted sum of all the predictions of local

models. The weights wk are taken from the kernel of each receptive field:

ŷ =

∑K
k=1 wk ŷk
∑K

k=1 wk

(3.4)

wk = exp
�

−1
2
(x− ck)

T Dk(x− ck)
�

(3.5)

where ck represents the centre of k-th receptive field, Dk the inverse covariance that

specifies the receptive field’s width, K is the total number of fields, ŷk their local prediction

and x the input query point. The receptive fields are adjusted on-line as more data is

provided to the algorithm with no other intervention required.

Parameter Description

ini t_D Initial width of a receptive field (rf)
ini t_alpha Step of the stochastic gradient descent
update_D On-line adaptation of width (on/off)
w_gen Generation threshold for receptive field
penal t y Penalization for introducing a new receptive field

Table 3.2: Principal LWPR hyperparameters.

The identification of algorithm’s parameters is an autonomous procedure known as

training. A few hyperparameters control this behaviour. The most important are shown

in Table 3.2. These are tuned to a problem’s dynamics and their ranges are selected

as a trade-off between under and over-fitting resulting models calculated on the initial

experimental data. During this stage combinations of input parameters are use to generate

different output models. These are evaluated using a k-fold cross-validation technique.

After model training their predictions xpred are calculated and a Mean Squared Error

(MSE) metric is computed using samples xval from cross-validation datasets. Analytically
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this is expressed as:

MSE =
1
Ns

√

√

√

√

Ns
∑

i=1

(x (i)pred − x (i)val)2 (3.6)

where Ns is the total number of samples used during training. The model that minimise

the MSE metric is then chosen as output of the regression procedure.

3.4 Summary

This chapter is focused on the description of a novel energy-aware architecture that aims

at improving the underwater vehicle’s effectiveness when operating away from human

supervision. First, a high level overview of this proposal has been presented. This describes

the main architectural elements and shows how the proposed work is integrated within

a more complex autonomy framework used for real underwater missions. Later, two of

principal components, focusing respectively on automatic fault mitigation and runtime

performance estimation, have been discussed. Those are both built around the analysis of

energy usage while the underwater platform is operating in the field. Measurements are

collected at runtime and are further employed to evaluate the status of the vehicle using a

set of logical relationships among the derived metrics. Abstract concepts and relationships

are contained in a knowledge base component. This refines lower level elements into

higher level logical aspects providing other modules, such as mission planners and task

executors, with up-to-date estimations of the vehicle’s current capabilities.

Finally, a relevant non-linear regression technique has been introduced. This, used

in both components, it allows the representation of the behaviour of vehicle’s actuators

and the modelling of the effect of external disturbances while relying on self-testing or

automatic training procedures implemented on the vehicle itself. Internal details for the

automatic fault mitigation framework are presented in Chapter 4. The runtime performance

estimation framework is detailed in Chapter 5. Experimental validations, done in real

environments for both components, are presented in Chapter 7.
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Chapter 4

Fault Mitigation Framework

Failures are not something to be avoided.

You want to have them happen as quickly as

you can so you can make progress rapidly.

Gordon E. Moore

As outlined in previous sections the automated fault mitigation framework, introduced

by the energy-aware architecture, relies on different components that combined together

are used to model, detect and react to the presence of unexpected failures in the vehicle’s

propulsion subsystem. This is achieved with the support of a modified control schema that

allows other modules to adjust at runtime the use of remaining healthy actuators. Such a

schema, presented with more details in Figure 4.1, describes how estimations done at the

diagnostic level are used to adjust the behaviour of the control subsystem in the event of

actuators’ failures.

4.1 Thruster Model

A first relevant module of this schema is the Thrusters element. This models the runtime

behaviour of actuators when operating in standard conditions. Such a module is trained

with samples collected using on-board sensors by means of a self-testing procedure. In

this framework it used to represent the runtime power consumption of modelled actuators

calculating their output currents given input commands taken from control modules.

Analytically the internal behaviour of such a component is represented as:

I(t) = gm(u(t)) (4.1)

where I(t) is the actuator’s current draw, u(t) is its throttle input command at time t

and gm(.) is a non-linear function that represent the throttle-to-current characteristic for

given actuator. The latter, described with more details in section 6.4, is identified using a
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Figure 4.1: Schema of the fault-tolerant control architecture for Nessie AUV. The fault mitigation
algorithm estimates at runtime the thruster efficiencies ηT and the allowed cruise speed for the
actual configuration vallowed . This influences the control law which takes into account any limits
on the navigation speed when computing the control forces τ to move the vehicle. Moreover the
fault-mitigation algorithm calculates an updated version of the thruster configuration matrix (TCM)
used for allocating the control forces on the available actuators.

LWPR regression analysis executed on a training dataset. Knowledge of (4.1) allows a

straightforward calculation of the actuator’s instantaneous power:

P(t) = V (t) · I(t) ≈ Vbus · I(t) (4.2)

where V (t) is the measured actuator’s bus voltage, approximated as a constant Vbus for

the experimental platform used in this work, and, by integration, to the evaluation of its

energy consumption:

e(t) =

∫ t

0

P(t) d t =

∫ t

0

V (t) · I(t) d t (4.3)

The use of a non-linear regression procedure, such as LWPR, allows representing each

device with a precise actuator model that takes into account minor differences in their

underlying characteristics.

e(t)≈ Vbus ·
∫ t

0

I(t) d t (4.4)

4.2 Thruster Diagnostics

A second relevant module is the Diagnostics component. This combines samples generated

at the actuator’s model level with measurements collected at runtime. It calculates a

diagnostic metric that highlights deviations from standard behaviours. Such a metric is

then used to detect the presence of failures in a following fault detection module.

As mentioned in previous sections while developing this work a model-based diagnostic

approach is employed. This, described by the schema shown in Figure 4.2, consists of

a real-time residual generator that produces a zero output metric if vehicle’s actuators
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Figure 4.2: Thruster diagnostic schema. The u signal represents actuator’s commands sent by
control modules. A thruster model estimates the current usage Im given its control input. Dedicated
sensors measure the actual current Ir for the real device. Two integrators extract STE features
Em, Er and a comparator calculates the diagnostic metric m used for detecting the presence of
faults.

are operating like their analytical counterparts (e.g. following nominal characteristics)

in presence of known control commands. The metric m is derived from a feature called

short-term energy (STE). This is calculated by integrating the energy usage e(t) ≥ 0

of a given actuator over a short time window We. This choice has been suggested by

initial results of early experiments [50], [112] with an integrated energy measurement

framework. The STE can be written in discrete time for both the real actuator and its

model as:

E j[n] =
We
∑

k=0

Vbus Ts I j[k] j ∈ {r, m} (4.5)

where Vbus is the thruster nominal voltage, Ts the sampling time, Ir the measured current

and Im the current calculated using the thruster model derived in the previous section.

The diagnostic metric m is calculated as sum of residuals ∆r of short-term energy

features normalized and filtered using an exponential smoothing over a temporal window

Wf >We.

∆r[n] = Er[n]− Em[n] (4.6)

In this expression Er represent the measured short-time energy and Em the same feature

derived from the thruster model’s output. The metric m is thus given by:

m=
Wf
∑

l=0

wl

�

∆r[l]
∆rmax

�

m ∈ [−1, 1] (4.7)

wl =
e−αl

∑Wf

j e−α j

Wf
∑

l=0

wl = 1 (4.8)

where wl are exponential weights given the parameter α, which controls the smoothing

(e.g. α= 0.1), and ∆rmax is the maximum value of the short-term energy residual. This

is derived taking into account the characteristics of underlying actuators assuming one
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4.3. Thruster Failures

term of (4.6) as maximum and the other as zero. Analytically this is written as:

∆rmax =We Vbus Ts Imax (4.9)

where Imax represent the maximum designed current usage of the device and We is the

length of the integration window. Quantities We and Wf are chosen with the trade-

off between accuracy and latency. They are considered as parameters for tuning the

Parameter Value

We 2.0 s
Wf 20.0 s
Ts 0.1 s

Vbus 28.0 V
Imax 7.5 A
∆rmax 42.0 J

Table 4.1: List of parameters for the thruster diagnostic module.

responsiveness of the proposed diagnostics module. In evaluating this work those values

have been chosen using operational experience from indoor trials and are reported in

Table 4.1.

4.3 Thruster Failures

In the marine environment thruster failures can be related to several causes [113], for

instance, the presence of objects blocking the propeller, tangled ropes or water leaks that

disrupt the functionality of the actuator itself. In these cases previous field experience

[18], [73], [74] as well as modelling studies [54] suggest that the performance degradation

failure, as well as the complete loss of the actuator, is also a relevant problem that should

be addressed during real sea operations. This failure mode, as the name implies, is related

to a loss of efficiency for the faulty component, which operating at reduced capacity

produces a different effect on the vehicle’s navigation to what is expected by its control

architecture. This fault, often difficult to detect in presence of feedback control loops, can

be modelled as an actuator that presents a thrust efficiency ηT lower than one.

ηT =
Treal

Tnominal
0≤ ηT ≤ 1 (4.10)

Efficiency is defined as the ratio between effective thrust Treal (e.g. the one produced

during real operations) and the design thrust Tnominal (e.g. the one achievable in ideal

conditions). The parameter ηT can thus be used to represent the health status of the

actuator. In this framework the severity of a degradation is controlled by adjusting ηT :

from the complete loss of efficiency (ηT = 0) to standard operating conditions (ηT = 1).
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Figure 4.3: Example of thruster’s fault characteristics. In this first case the thruster is operating
with a limit on its maximum power, capping its effort above 50% of the input command. In the
second case a reduced thrust efficiency (ηT = 0.8) is introduced. In the last case a combined effect
of the previous modes is shown with ηT = 0.9 and capping above 68%.

This work focuses more on the effect of degradation failures ηT > 0 rather than on the

complete loss of actuators. In such a case the vehicle is still capable of controlling a degraded

thruster without necessarily excluding it from the thrust allocation problem. This approach

is followed until higher level autonomy modules identify which long-term adaptation

needs to be implemented. A total failure ηT = 0, while still relevant, can generally lead to

the loss of a DOF if no redundancy is available in the vehicle’s design (e.g. few actuators

are available). This is the case for the heave DOF of the experimental platform considered

in the rest of this work. Because of these aspects experiments involving vertical thrusters

are not taken into account. In case of actuator’s loss an alternative solution, which does

not rely solely on the remapping of control forces, can be researched, for instance, by

adapting the vehicle’s motion or its navigation trajectory [84], [85] to compensate for the

lack of control along a specific axis. Implementation of similar strategies is outside the

scope of this work as those rely more on reinforcement leaning and experience driven

techniques.

Another relevant aspect is that the resulting characteristic of a degradation fault is

often unknown and only a qualitative description can be estimated. Figure 4.3 shows

some of the possible models that can be used to represent degradation scenarios. In all of

those cases the actuator’s behaviour is disrupted and the nominal thruster characteristic

is not followed along the full range of input commands. From a low-level point of view

the degradation fault can be seen, for instance, as the effect of a damaged ball-bearing,

propeller or nozzle which affect the flow of water around an actuator and thus its output

performance. Analytically this characteristic can be represented as:

Ti(u) = ηTi
Gmi
(u) i ∈ {0, 1, . . . , N} (4.11)

where Gmi
is the throttle-to-thrust relationship for the i-th thruster, ηTi

its efficiency and N

the number of thrusters. The Gm(u)∝ gm(u) term is derived from the throttle-to-current
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4.3. Thruster Failures

characteristic (4.1) using the relationship between electrical power and output thrust1.

This work considers explicitly the first degradation failure mode as shown also in

Figure 4.3. Its effects are reproduced by limiting the maximum power output of a target

actuator. In the experimental platform this is achieved by manipulating on-the-fly the

input commands to reduce its output thrust. This procedure is known as fault injection

and it is described in details in section 6.6.1. Once such a modification is in place the

actuator’s characteristic deviates from its standard condition triggering, then, detections

in the diagnostic system. This behaviour has been observed also in presence of a real

failure (e.g. the loss of a propeller blade) as reported in section 7.1.1. Despite this focus,

other failure modes could be handled by the proposed framework. This feature is given

by the use of a diagnostic metric that highlights the presence of a unexpected behaviour

as long as a change in the energy usage is detected.

ηTi
[n] =







ηTi
[n− 1]−δηT

if fault detected

ηTi
[n− 1] if nominal

(4.12)

The severity of detected failures is represented using a qualitative approach. This

allows other modules, such as fault mitigation ones, to react to generic fault conditions and

yet implement a possible correction over a short time horizon. For this reason a counting

procedure has been also introduced in the proposed framework. This translates the series

of diagnostic decisions for each actuator into an estimation of their thrust efficiency. This

is assumed to be optimal at the beginning of a mission and, in presence of a sequence

of positive detections for t f consecutive time instants, it is gradually decreased until the

actuator’s functionality is restored (e.g. the metric falls below the λd threshold) or its use

is declared not feasible by an higher level reasoning module.

ηTi
[n] =















ηTi
[n− 1]−δηT

if fault detected

ηTi
[n− 1] if nominal

ηTi
[n− 1] + γηT

if fault cleared

(4.13)

A recovery capability is also modelled in such a procedure. This relies on another

coefficient γηT
� δηT

that allows the system to restore the use of a given actuator if no

further mismatch is found after a specific time t r � t f during normal navigation and its

actual efficiency is above a certain threshold ηT ≥ 0.2. This choice allows the system to

cope with transient faults, such as the ingestion of sea weed in tunnel thrusters or larger

debris in open actuators. The settling time t r is specific to a particular type of thruster

and it is usually identified experimentally at design time. Nonetheless, in case of severe

failures (e.g. ηTi
[n]< 0.2) the faulty actuator is first excluded from the system (e.g. to

prevent further damage) and a notification is escalated from low level diagnostic modules

1For commercial thrusters, like the ones used in this work, the relationship between electrical power and
output thrust is provided by the manufacturer. Alternatively, it can be calculated experimentally with any
of the methods discussed in Section 2.3.

53



4.4. Fault Detection

to the higher level knowledge representation components.

4.4 Fault Detection

A third module is the Fault Detection component. This analyses the energy-based metric

provided by the diagnostics module and detects the presence of faults. The output is a

sequence of decisions d that signal the detection of an underlying problem with a specific

actuator. Moreover, this module keeps track, as introduced in the previous section, of

efficiency estimations for the thruster subsystem, allowing other modules (e.g. mitigation,

knowledge base) to reason and adapt in presence of specific fault conditions.

One common method to detect the presence of a fault given the computed metric is the

use of a single threshold. Such an approach relies on the detection theory and it relates the

threshold’s value, used to generate binary decisions, with given a detection performance

expressed, for instance, in terms of probability of false alarm Pf a (i.e. assuming the

presence of faulty condition in a fault free case).

d =







0 if |m|< λd

1 if |m| ≥ λd

(4.14)

Different strategies can be used for deriving the λd threshold. One approach is to assume

the metric as a random variable and to express the generic λd threshold as:

λd = µm + kσm = kσm k = 1, 2, 3, . . . (4.15)

where k is a scaling parameter, µm and σm the metric’s mean and standard deviation. In

a fault free case the mean is assumed to be zero while the term σm takes into account

the residual uncertainty from real-time measurements noise σsens and the precision of the

extracted LWPR model σmodel .

σ2
m∝ σ2

sens +σ
2
model (4.16)

If the metric m is assumed to be following a normal distribution N(µm,σ2
m) the probability

of false alarm is given by:

Pf a =

∫ ∞

λd

1
Æ

2πσ2
m

e
− x

2σ2
m d x (4.17)

This suggests a straightforward procedure to calculate the value of threshold λd as function

of the chosen Pf a and the uncertainty of the diagnostic metric σm. While developing this

work the performance of detection system has been tuned to allow a probability of false

alarm of 1% or Pf a = 0.01. This choice while conservative, allows the system to reject

outliers (e.g. given for instance by synchronization errors in the ROS framework) without
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reducing the system’s responsiveness when in presence of the degradation faults as shown

in the experimental section.

Under these assumptions the residual term ∆r can be seen as difference between two

normal distributions, respectively, N(µsens,σ
2
sens) and N(µmodel ,σ

2
model) generated from

the measurement and model process of a given actuator. In an ideal case, neglecting

the model bias and assuming a fault free scenario, their means can be assumed to equal

µsens = µmodel . This lets the ∆r term be represented with a normal distribution of zero

mean and known variance: N(0,σ2
sens +σ

2
model). Taking into account these aspects the

(4.7) can be rewritten as:

m=
Wf
∑

l=0

wl X l (4.18)

where X l = ∆r[l]/∆rmax . Under the assumption of independence between residual

samples the variance of the metric can be expressed as:

σ2
m = Var

 

Wf
∑

l=0

wl X l

!

=
Wf
∑

l=0

Var(wl X l) =
Wf
∑

l=0

w2
l Var(X l)

= σ2
x

Wf
∑

l=0

w2
l =

σ2
sens +σ

2
model

∆rmax
Kw (4.19)

where Kw represents the scaling term given by the wl coefficients. The terms σsens and

σmodel are numerically estimated from (4.5) using the training dataset employed to extract

the actuator’s model:

σ2
sens∝We Vbus Ts σ

2
i (4.20)

σ2
model ∝We Vbus Ts σ

2
lwpr (4.21)

whereσ2
i represents the precision of current measurements (e.g. ±0.05 A for the validation

platform) and σ2
lwpr is given by the confidence intervals of the specific LWPR model for

the actuator under consideration. Such an approach is motivated by the availability of a

single fault hypothesis (e.g. healthy/faulty actuator) which allows a probabilistic analysis

of the metric and by the operational experience collected on the experimental platform

during field trials. In fact, as presented in the experimental sections, this strategy, despite

its simplicity, allows satisfactory levels of performance when implementing the diagnostic

system on a real underwater vehicle with limited2 computational capabilities.

Beside the use of a single threshold other fault detection techniques have been success-

fully applied in the context of fault detection such as the use of Artificial Neural Networks

(ANN) [61] or the use of Fuzzy Decision Making (FDM) methods [114]. The FDM ap-

2A relevant aspect of AUVs built around the ROS framework is their characteristic of sharing computational
resources among different elements of the vehicle’s control architecture. Often real-time modules are
given only a small portion of CPU time and for this reason complex algorithms can be only evaluated using
batch processing over larger time frames.
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proach represents a relevant technique as it allows the detection and isolation of multiple

faults using the same type of residuals presented in this section. Fuzzy methods are useful

in the presence of noisy or imprecise measurements and when interpretation is highly

dependent on human experience. In the case of FDM the use of simplified membership

functions, aggregation operators supports a detection system using a common threshold

for multiple fault hypothesis. The use of FDM is considered for the future work related to

the proposed energy-aware architecture.

4.5 Fault Mitigation

A fourth module is the Fault Mitigation component. This is composed of smaller elements,

such as Thrust Allocation, TCM Mapper and Speed Estimation also shown in Figure 4.1, that

analyse the output of previous modules (e.g. estimated efficiencies and binary decisions)

and introduce at runtime a short-term reaction to unexpected failures. At this level, a set of

estimated quantities (e.g. allowed speed, available forces) is shared with the higher level

knowledge base module and, concurrently, these are used to adjust the internal behaviour

of the control subsystem. In more severe cases (e.g. when degradation disrupts the

actuator’s behaviour) a different allocation procedure is selected to maintain satisfactory

navigation capabilities.

The proposed system implements mitigation strategies by adjusting the use of available

actuators proportionally to their estimated efficiencies ηTi
. A well-known approach to

achieve this is to modify the thrust allocation policy, for example, manipulating the Thruster

Configuration Matrix (TCM) generally used in the control schema of underwater vehicles.

The TCM matrix, also indicated as B, is defined as:

B(6×N) =





















ex1
. . . exN

ey1
. . . eyN

ez1
. . . ezN

(r1 × e1)x . . . (rN × eN )x
(r1 × e1)y . . . (rN × eN )y

(r1 × e1)z . . . (rN × eN )z





















(4.22)

where ei = [ex i
eyi

ezi
] and ri = [rx i

ryi
rzi
] are, respectively, the orientation and positions

of each thruster with respect to vehicle’s centre of mass, c = [xc yc zc]. This matrix

is used to distribute generalised force requests τ(1×6) = [x y z k m n], expressed with

respect to the centre of mass, in forces f(1×N) = [ f0 . . . fN] specific to individual actuators.

Analytically the relationship between thruster configuration matrix B and actuator’s forces

f is expressed as:

f = B−1τ (4.23)

On the other hand, the thrust request τ can be derived, at least from a general point of
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view, by taking into account the equation of motions [69] that describe the behaviour of a

generic underwater vehicle. These are written as:

M ν̇+ C(ν)ν+ D(ν)ν+ g(η) = τ (4.24)

η̇= J(η)ν (4.25)

where M is the inertia matrix of the underwater vehicle, including rigid-body and added

mass effects, C is the matrix of centrifugal and Coriolis terms, D is the matrix of damping

terms, g is the vector of restoring forces (gravity and buoyancy) and ν(1×6) = [u v w p q r]
is the vector of linear and angular velocities in vehicle’s body-fixed frame. Using this

approach the generalized force vector τ represents the forces acting on the underwater

vehicle with respect to the vehicle’s body-fixed frame.

In this case the thrust efficiency coefficients ηT can be introduced in the solution of

the allocation problem (4.23). These modify the matrix B−1 weighting the contribution

of individual thrusters proportionally to their estimated capabilities, reducing thus the

efforts on damaged actuators and redistributing it on the healthy thrusters [78]. Such

an approach has the ability to maintain standard navigation capabilities at least for less

severe failure scenarios.

4.5.1 Thruster Remapping

This approach, also known as weighted generalized inverse, makes use of a weighting

matrix W where the coefficients (wi = ηTi
and 0≤ wi ≤ 1) along its diagonal represent

the estimated thrust efficiency for the platform’s thrusters.

W(N×N) =







w0 0 0

0
... 0

0 0 wN






(4.26)

In standard conditions each coefficient is assumed equal to 1, meaning that the specific

thruster is healthy and fully available for generating the requested thrust. In the case of a

complete failure (i.e. wi = 0) the use of this technique guarantees that a faulty actuator

is excluded from the allocation problem’s solution. With the introduction of matrix W the

(4.23) can thus be rewritten as:

f = B−1
w τ (4.27)

where the B−1
w is known as weighted generalized pseudo-inverse of the thrust configuration

matrix:

B−1
w =W−1BT

�

BW−1BT
�−1

(4.28)

The use of a generalized inverse [69], [77] avoids the presence of singularities (e.g.

when more thrusters are excluded from the allocation problem) and is general enough

to deal with non-square thruster configuration matrices (e.g. when thrusters are greater
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Figure 4.4: Thrust allocation in Nessie AUV. The diagram on left shows the reference case where
a given amount of force has been requested along the surge axis. The middle case shows the
effect of the degradation of the port-side actuator without any compensation. An extra torque is
produced by the unbalance between thrusters and the total force request is not met. The right
shows the effect of the thruster allocation algorithm where other actuators are used to compensate
for the faulty thruster.

than the controlled degrees of freedom). It can be efficiently computed with the use of

singular value decomposition (SVD) [115]. An example of thruster remapping is shown in

Figure 4.4 where a standard allocation is compared to a faulty behaviour for a generic AUV

with four actuators on the surge-sway plane. In this example the port-side forward thruster

is affected by degradation. Under these conditions an additional torque is generated by

the unbalanced operation of forward thrusters. By remapping the use of actuators the

remaining thrusters are used to compensate this unwanted behaviour. If allowed the

starboard-side thruster may increases its effort to match the original force request.

4.5.2 Thruster Saturation

Despite its flexibility the introduced approach can not guarantee that the allocated force

vector f is within the saturation limit of each thruster in every fault scenario. In fact,

the presence of a degradation failure introduces extra effort on the remaining actuators

to compensate for the lack of thrust in the failed component. Such an aspect may push

the requested forces above the capability limits of other actuators which under standard

conditions are guaranteed to stay within the capability limits.

A solution for this problem has been proposed [76] in literature but it requires modifi-

cations of the controller architecture by introducing extra integrators at the input channels

of the underlying controller system. On the other hand, while developing this work it

has been decided to leave the low level controller unmodified and to follow a different

approach. This does not increase the complexity at lower levels, allowing the reuse of

existing implementations, but it optimises the force allocation policy, preventing the effect

of saturations, by introducing a dynamic programming procedure that researches a valid
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Figure 4.5: Optimal thrust allocation schema. The control law calculates a desired thrust vector
τd . The solver, initialised with a solution calculated using the classical approach fini t , calculates
the optimal allocation f and slack variable s. Subsequent iterations include the previous solutions
fpre = f (t −∆T ) to take into account the actuator’s dynamics.

solution given the actuator’s limits. A similar method has been explored in previous

works [116] and applied in the context of marine vessels. This relies on the use of a

quadratic programming (QP) formulation that derives a solution for the allocation prob-

lem. Other techniques [77] have been also used in the past, such as the S-approximation

or T-approximation. Those are focused on mitigating the effect of force unbalance after

allocation and for this reason those are not discussed in this work.

The approach followed in this work relies on a customized variant of the original

QP formulation [116], implemented with the use of CVXPY [117], a Python-embedded

modelling language for convex optimization problems, and the state-of-the-art ECOS

[118] solver as Mixed Integer Quadratic Programming (MIQP) problem. These provide

an efficient way of implementing a real-time optimization method that can be integrated

in the software architecture of existing AUVs. An overview of this allocation schema is

shown in Figure 4.5. The optimization problem, instead, is defined as:

min
f , s

f T P f + sTQs+ β f̄ + ξ (4.29)

subject to:

s = τd − Bw f (4.30)

− fact ≤ f ≤ fact (4.31)

−∆ f ≤ f − fpre ≤∆ f (4.32)

where the first term f T P f takes into account the power consumption of actuators, with

the use of a matrix P, the second sTQs penalizes the error s between thrust request τd

and allocated generalized force Bw f . The slack variable s is required to always allow a

feasible solution to be found in the optimization problem.
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The matrix Q is chosen as Q � P > 0 so that solutions are found with s ≈ 0. The

matrix P is built approximating the thruster characteristics as quadratic functions h( fi) =
a f 2

i + b fi + c. This, differing from the original formulation, allows the analyses conducted

on the real actuators to be taken into account. Quadratic approximations are used to

simplify the optimization problem and to improve the time needed to research a valid

solution. Furthermore, the term fact is the available thrust for a given actuator and f̄ is

the maximum component of the f vector. These are defined as:

fact i
= ηTi

fmax i
i ∈ {0, 1, . . . , N} (4.33)

f̄ =max
i
| fi| f̄ > 0 (4.34)

where fmax i
is the maximum thrust for the i-th thruster. These quantities are used in the

above formulation to bound the actuator forces using the estimated thrust efficiency (4.31)

and to penalize solutions where a single thruster is working at its maximum capacity

(4.29) by introducing a coefficient β > 0. At the same time, actuator dynamics are

enforced using (4.32), where fpre is the solution found during the previous step and

∆ f represents the maximum rate of change for the actuators’ output. The use of such

constraint allows solutions that abruptly modify the throttle commands to be discarded.

Lastly, ξ is a relaxation term that groups coefficients needed to avoid singularities and

numerical errors.

Stable navigation in the presence of different failures is enforced by introducing a

customised force prioritization policy. This allows the control schema to allocate forces

in an ordered way, satisfying first thrust requests for high priority degrees of freedom

(DOFs). An example of a possible policy ω for an inspection task is heave > pitch >

yaw > swa y > sur ge > rol l. This prioritises adjustments of depth and orientation to

maintain the alignment of on-board sensors while relaxing the control on forward and

lateral displacements. This is implemented by adjusting the coefficients qi of the diagonal

matrix Q such as:

qi > q j if ω(i)>ω( j) i 6= j ∧ i, j ∈ {0,1, . . . , N} (4.35)

still under the condition Q� P > 0. Such an approach makes the solver selecting solutions

where the error term s is lower for higher priority DOFs.

4.5.3 Vehicle Speed Adjustments

Beside saturation prevention the proposed mitigation strategy also introduces an ad-

justment to vehicle’s cruise speed in case a moderate failure is detected. This aims at

keeping the controller’s requests closer to actuator’s capabilities and to limit the over-

all compensation of unbalanced forces. Such a procedure, beside providing short-term

adjustments, allows the fault mitigation framework to share its knowledge with other
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autonomy modules about the recommended navigation speed (or allowed ranges) along

each vehicle’s principal axis. This information is then used at mission planning or task

execution level where knowledge about vehicle’s capabilities is used to estimate execution

times or resource requirements for the current mission.

The adjusted navigation speed is calculated by estimating the available force on

each DOF. This is derived from the remaining force of each thruster fact i
, the estimated

efficiencies ηTi
and the thruster configuration matrix B, which provides the relationship

between actuators and degree of freedoms. In other words the available generalized force

for a specific DOF can be written as:

τavail(do f ) =
∑

i

fact i
=
∑

i

ηTi
fmax i

with i ∈ DT (do f ) (4.36)

where DT (.) is the set of thrusters controlling a specific degree of freedom do f . After

calculating (4.36) for all the controlled degrees of freedom the calculated navigation

speed can be expressed using the heuristic:

vallowed = vcruise

√

√ τavail

τnominal
0≤ vallowed ≤ vcruise (4.37)

where vallowed = [u v w p q r] is the adjusted cruise speed vector, vcruise is the initial speed

set at deployment time under the constraint vcruise ≤ vmax (where vmax is the maximum

vehicle’s speed) and τnominal is the force available in standard conditions without any

fault.

The use of such an expression is explained by physical effects of individual terms in

the motion’s equation (6.15). In particular for underwater vehicles, the damping term

D is often approximated with the use only of quadratic drag coefficients [69]. Such an

approximation assumes the drag force proportional to the square root of speed. In this

case drag force represents one of the stronger contributions to forces acting against the

vehicle’s motion. Therefore by introducing a smaller navigation speed the requested force,

calculated by the controller for cruise navigation phases, is also decreased accordingly

thus limiting the effects of thrust unbalance and saturation limits.

4.6 Summary

In this chapter the automatic fault mitigation framework has been introduced. This is one

relevant component of the proposed energy-aware architecture that deals with survivability

aspects focused around the propulsion subsystem. Initially the actuator’s model used

in this work is discussed. This relies on a compact analytical representation for the

thrust-to-throttle characteristic, extracted using a hardware-in-the-loop (HIL) self-testing

procedure and LWPR regressions. After discussing the underlying component’s models

the use of an energy-based diagnostic procedure has been discussed. This is built around
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the concept of analysing the short-term energy (STE) usage of real actuators with respect

to their analytical counterparts. Such an approach takes the form of a model-based

diagnostic schema where a fault detection procedure is implemented on output residuals.

Together with diagnostic details, an analytical representation for marine thrusters’ failure

is briefly discussed. This is used in the proposal to model the effect of faulty actuators

when in presence of degradation failures. These do not disrupt completely the actuator’s

functionality but, on the other hand, they affect the navigation capabilities of the vehicle

in a subtle manner.

Beside those aspects another relevant element of the proposed framework is the

presence of a mitigation feedback. This is implemented by introducing a modified control

schema for the underwater vehicle that deals with thrust allocation when in presence

of faulty actuators. Such an approach is based on the concept of thrust efficiency, also

discussed in this chapter, that it is estimated during field operations using the output

metrics of the introduced fault detection subsystem. Runtime knowledge of actuator’s

state allows the proposed system to proportionally adjust their use in order to maintain,

within achievable limits, the control capabilities and to allow the current task to be

completed. As mentioned in this chapter, classical approaches that rely only on weighting

coefficients may not guarantee saturation-free operations when in presence of failures.

For those reasons the proposed solution implements an optimization procedure that deals

with the allocation problem while taking into account actuator’s constraints. These are

adjusted at runtime using the information collected during the diagnostic analysis and

complemented with operational ones tailored to the vehicle’s navigation modes. After

solving the allocation problem new speed limitations are calculated using the estimated

health status of on-board actuators. These are used to keep the vehicle’s behaviour close

to its effective capabilities, for instance, reducing the unbalancing effect of unhealthy

actuators.

Along with this short-term mitigation other evaluations are conducted at higher levels

to introduce a more suitable mitigation strategy on a longer term. Those are conducted

with the support of a knowledge base, introduced in the previous chapter, where metrics

calculated at diagnostic and mitigation levels, such as estimated efficiencies and speed

limits, are transformed into high-level concepts that can be used to adjust the remaining

part of a complex mission. Experimental validation for the proposed automatic fault

mitigation framework is discussed in Chapter 7. Real sea and controlled environment

experiments analyse the capability of such a proposal implemented on a real hover-capable

AUV.
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Chapter 5

Runtime Performance Estimation

If we have an atom that is in an excited

state and so is going to emit a photon, we

cannot say when it will emit the photon. It

has a certain amplitude to emit the photon

at any time, and we can predict only a

probability for emission; we cannot predict

the future exactly.

Richard P. Feynman

After discussing the energy-based mitigation aspects another relevant component of

the proposed energy-aware architecture is the runtime performance estimation framework.

This focuses on the runtime analysis of vehicle’s operations when navigating in environ-

ments where external disturbances are known to affect its capabilities. As mentioned in

previous chapters such a framework employs measurements with a non-linear regression

procedure, built around the LWPR algorithm, and it evaluates the feasibility of missions

using performance metrics calculated on-the-fly. The concept of feasibility, introduced

in section 2.6.2, can be modelled using the Probability of Mission Completion (PoMC).

Such an approach requires a probabilistic analysis of the sequence of tasks that compose

missions conducted in unknown environments.

This work focuses on AUVs conducting inspection-type missions in areas where sea

currents can be assumed slowly varying for large portions of the environment, for instance,

as in the PANDORA project’s scenarios. This assumption allows the modelling of sea

current’s behaviour as a stochastic process where only limited variations in terms of speed

(e.g. ∆vc ≤ 0.1 m/s) and direction (e.g. ∆ψc ≤ 10◦) are taken into account. Furthermore,

it is assumed that the underwater vehicle is given the goal of surveying a limited area

where multiple inspection points (IPs) are provided together with a set of constraints

on execution time and resource usage. No a priori information is available other than

what has been recorded by the vehicle during previous operations in the same operational

environment. Finally, the availability of a contingency plan (e.g. return to the recovery
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point) defined, for instance, before deployment is taken into account as alternative in

case of mission failure.

The random variables taken into account for this analysis are the execution time and

energy usage of mission’s task when in presence of external disturbances. These variables

are often objectives of interest for other works on mission planning, for instance, where

great importance is given to the temporal domain [82], the energy consumption [88] or

their application [81] in the evaluation of large-scale survey scenarios. In this proposal,

on the other hand, more importance is given to the concept of mission’s feasibility and

probability of completion. Those are used as a criteria for evaluating the opportunity of

interrupting, adapting or restructuring the current mission and to estimate the feasibility of

possible alternative plans that are calculated on-the-fly by the unmanned platform. Those

efforts aim at improving the vehicle’s reliability allowing a certain degree of adjustments

to be made in order to guarantee a satisfactory development of unsupervised operations.

A proposed methodology for evaluating variations with respect to original plans is

to employ an energy-constrained route optimization problem that re-calculates at runtime

alternative sequences of inspection procedures. Such an approach has the goals of adapting

the vehicle’s navigation, by incorporating knowledge collected from the environment, and,

concurrently, evaluating the possibility of discarding less favourable tasks if the vehicle is

operating in presence of resource scarcity [88]. The proposed route optimization algorithm

is derived from the Orienteering Problem (OP) [119], an optimization procedure that

allows specific constraints, budgets and rewards to be considered in the set of solutions.

The OP can be seen as combination of the Travelling Salesman Problem (TSP) [120]
and the Knapsack Problem (KP). In this work the original problem’s constraints are

customized for AUV scenarios, allowing vehicles to navigate along non-cyclic paths (tours).

This approach is similar to the Open Vehicle Routing Problem (OVRP) [121], where each

vehicle is not required to return to its starting point after visiting its intermediate targets.

A detailed description of the OP is found in [119]. On the other hand, a new variation

of the original problem has been presented recently as Correlated Orienteering Problem

(COP) [122]. This takes also into account the capability of gathering information about

neighbouring targets when conducting inspections. Such an approach is relevant for

robotics and unmanned vehicle applications and it also taken into account in this work.

5.1 Mission Model

An inspection mission is defined by a series of consecutive tasks (or actions) that must be

achieved without failures or exhaustion of resources in order to reach a final goal.

M = {A0, A1, . . . An} (5.1)

Actions are of different kinds and are affected by uncertainty of the environment. In

this type of mission these are mainly navigation and inspection tasks. The first regulates
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trajectory following, path generation and general navigation among different inspection

points. The second, instead, allows the vehicle to turn on its sensors while in proximity

of an inspection point and to acquire relevant data using the vehicle’s sensor payload.

In the case of hover-capable AUVs an alternative navigation mode may be employed for

this type of task. This, for instance, can hold the vehicle’s position fixed while close to

an inspection area and control its orientation to identify possible objects of interest in

the surrounding environment. Such an approach is often needed to steer and focus the

vehicle’s on-board sensors (e.g. stereo cameras, narrow view imaging sonars, etc.) in

order to conduct accurate data acquisition procedures.

The mission is also characterized by constraints that are often defined at the planning

stage or are derived by platform specifications. These are, for instance, restrictions

on resource usage during navigation (e.g. maximum battery discharge rate, optimal

speed, depth of discharge, etc.) or the introduction of a contingency energy reserve. The

latter is often required for safety purposes, for example, when the vehicle is operating

in environments where recovery operations are not available. Constraints are generally

introduced on the mission duration and total energy usage, two quantities unknown before

execution and objectives for the probabilistic analysis. These are affected by uncertainty of

the environment and by the non-deterministic development of tasks. For those reasons the

quantities above are well represented by stochastic processes associated with the overall

mission’s uncertainty.

Under these considerations the probability of mission completion (PoMC) can be

represented by writing the probability of exceeding constraints on resource usage:

R= 1− P(tm > tT , em > eT ) (5.2)

The right-hand term, also known as probability of failure, it is expressed in integral form

for the mission process M as:

P(tm > tT , em > eT ) =

∫ ∞

tT

∫ ∞

eT

fM(tm, em) d tmdem (5.3)

where tm and em are the mission time and energy random variables, tT and eT are mission

constraints on duration and energy usage and fM(tm, em) is the probability density function

relating duration and energy usage of the mission process M . This formulation introduces

a simplification over the real mission process, where other sources of uncertainty (marine

traffic, obstacles) and abrupt changes in the environment are ignored. Nonetheless, it

provides a quantitative representation when dealing with stochastic environments.

5.1.1 Task Models

With such a mission model in mind the two stochastic quantities, taken into account

when assessing the mission’s feasibility, can be modelled analytically for a generic mission
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process M as:

tm =
NA
∑

i=0

tAi
(5.4)

em =
NA
∑

i=0

eAi
(5.5)

where tm, em are, respectively, the total mission time and total energy usage, NA is the

number of tasks and tAi
, eAi

the expected duration and energy usage for the i-th task. These

quantities, from a general point of view, are unknown before completing the mission and

their value can only be evaluated using the knowledge available during execution. In

this formulation each task is modelled according to its class (or type) considering the

individual realisations independent from others ones.

Repeatable Task

For a generic task, with the exception of navigation type, the expected duration and energy

usage are assumed to follow a normal distribution. This is a reasonable assumption for all

repeatable tasks that are executed during a survey-like mission. These are tasks where

the vehicle is executing a fixed action, for instance, adjusting its position with a constant

displacement, that do not depend on the actual mission’s state. These are still affected

by external disturbances but their duration and/or energy usage is determined mainly

by deterministic factors (e.g. fixed time durations, sensor constraints) rather than the

environment itself. In those cases the expected duration and energy usage quantities are

written as:

tCi
∼ N(µtC

,σ2
tC
) (5.6)

eCi
∼ N(µeC

,σ2
eC
) (5.7)

where the parameters (µtC
,σ2

tC
), (µeC

,σ2
eC

) describe, respectively, the expected values and

variances for duration and energy usage of a generic task for the C class. In this case the

knowledge of these parameters, for instance derived from previous experience, allows an

efficient representation of the uncertainty associated with the execution of tasks.

Locomotion Task

Locomotion tasks, on the other hand, are more sensitive to environmental disturbances

that affect both their energy consumption and execution time during navigation. Such

tasks are thus better described by models that take into account the effective locomotion

speed and navigation performance, estimated at runtime using measurements collected

on-board, combined with an additional term that represents higher order effects. This

approach allows the non-deterministic behaviour of the underlying control software to be
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taken into account when in presence of external disturbances. These, in fact, may affect

localization algorithms or trajectory following procedures by increasing the position errors

or by perturbing the vehicle’s navigation. Analytically locomotion tasks are written as:

t legi
∼ f (dnav, vcruise) + N(µT ,σ2

T ) (5.8)

elegi
∼ f (εnav, vcruise) + N(µE,σ2

E) (5.9)

where the travel time t legi
is derived from dnav, which represents the travel distance among

IPs, and vcruise that estimates the effective locomotion speed. This travel time is updated

during the mission’s execution if any corrective action (collision avoidance, trajectory

adjustments) is taken during navigation by recalculating the dnav term. The energy usage

elegi
, instead, is derived by taking into account the effective locomotion performance εnav,

also known as energy usage per unit distance, when navigating in presence of disturbances.

Even for this type of task, those additional quantities are only partially known when

starting a mission.

General Formulation

Given the above assumptions about mission’s tasks the original equations (5.4) and (5.5)

can, thus, be rewritten as:

tm(t) = t(t)m +
L
∑

i=0

t legi
+

K
∑

i=0

t insi
(5.10)

em(t) = e(t)m +
L
∑

i=0

elegi
+

K
∑

i=0

einsi
(5.11)

where t(t)m and e(t)m are the measured mission duration and energy usage at time t, L and

K are the remaining navigation and inspection tasks, t legi
and t insi

the expected duration,

elegi
and einsi

the expected energy usage for the i-th task. The (5.10) and (5.11) describe

the estimated duration and estimated energy usage for a generic time t during execution.

These quantities are used to evaluate the mission feasibility (5.3) with respect to the

user’s constraints. Such a procedure is executed multiple times over the course of a single

mission, for instance, after completing a pair of navigation and inspection tasks.

More in detail, by taking into account the introduced models for locomotion and

inspection tasks, the equations (5.10) and (5.11) can be further expressed by calculating

the expected values E[X ] and variances E[(X − E[X ])2] for the estimated duration and

energy usage variables. These are written, respectively, as:

µ̂tm
= t(t)m + µ̂tnav

+ K · µ̂t ins
(5.12)

σ̂2
tm
= σ̂2

tnav
+ K2 · σ̂2

t ins
(5.13)
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and:

µ̂em
= e(t)m + µ̂enav

+ K · µ̂eins
(5.14)

σ̂2
em
= σ̂2

enav
+ K2 · σ̂2

eins
(5.15)

where (µeins
,σ2

eins
) describe the inspection-class tasks and the pairs (µ̂tnav

, σ̂2
tnav
), (µ̂enav

, σ̂2
enav
)

describe the navigation-class task. The first two parameters are derived from experience

of repeated tasks and usually known once the task has been defined. The last four, instead,

are estimated at runtime and their formulation is derived in the following sections.

5.1.2 Task Tracking

After introducing the modelling aspects another relevant aspect is the use of a task tracking

procedure. This allows the framework to update intermediate estimations for repeatable

tasks using the experience collected at runtime while the vehicle is conducting its mission.

Such an approach improves the initial beliefs used to characterise the mission’s feasibility

at early stages. In fact, once a sequence of tasks is defined (5.10) and (5.11) can be

evaluated for the current mission. Expected tm and em are thus recorded together with

estimations t̂Ai
and êAi

for all the remaining actions. This evaluation of mission time and

energy consumption is repeated after each task is achieved. Upon completion of the task

An the proposed framework stores its measured duration tAn
and energy usage eAn

. The

actual travel distance dlegn
is also recorded if the task is of navigation type. These values

are compared with estimations done at a previous stage. If significant variations from the

former plan are detected a mission assessment process is started. In a positive case (5.10)

and (5.11) are evaluated taking into account the full mission process M including the

completed tasks where a complete knowledge about their performance is now available.

Besides incorporating the latest available runtime estimates this recursive procedure also

allows the residual uncertainty estimations to be periodically updated. This is done by

using the stored knowledge about recently completed tasks. Analytically those are written,

respectively, as:

µ̂T ≈ 1
NA− L

NA−L
∑

i=0

t̂Ai
− tAplani

(5.16)

µ̂E ≈ 1
NA− L

NA−L
∑

i=0

êAi
− eAplani

(5.17)

and:

σ̂2
T ≈ 1

NA− L

NA−L
∑

i=0

�

∆tAi
− µ̂T

�2
(5.18)

σ̂2
E ≈ 1

NA− L

NA−L
∑

i=0

�

∆eAi
− µ̂E

�2
(5.19)
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where ∆tAi
= t̂Ai

− tAplani
, ∆eAi

= êAi
− eAplani

, NA is the total number of tasks, L the tasks

not yet achieved and tAplani
, eAplani

are the estimated performance metrics for the i-th task.

This tracking procedure is used to combine the observed behaviour (or execution

experience) with the sequence of actions calculated for a given mission plan. It provides

an up-to-date estimation of the total duration and energy usage while developing the

mission without relying on outdated assumptions made at planning time. The use of

(5.16) and (5.17) allows the removal of any systematic errors (e.g. offsets) from previous

calculations. After evaluating a new pair of tm and em values the probability of mission

completion (5.3) is also updated. If a plan exceeds the required constraints or if the (5.3)

falls below a given threshold the current sequence of tasks is declared infeasible and an

optimization process is started to derive a more suitable execution plan.

5.2 Runtime Estimates

As mentioned in the previous sections this framework relies on two runtime estimations

to improve the assessment of a generic mission process. The first is the energy cost per

unit distance associated with vehicle’s navigation. This, introduced initially in [81], is

estimated as function of the vehicle’s absolute heading εnav(ψ) rather than globally for a

single survey. The second is the average cruise speed vcruise(ψ) still as function of absolute

heading. The vcruise(ψ) term is measured with the aid of a DVL sensor as speed over

ground (SOG) during navigation. These two functions are periodically re-evaluated at

runtime in order to incorporate small changes of external environment. The effect of

disturbances, like sea currents, is to change the two functions proportionally to their

intensity and the prevalent directions.

In order to compute εnav(ψ) and vcruise(ψ) features such as the average speed v̄, the

absolute navigation heading ψ̄, the cumulative travel distance∆d and energy consumption

∆e for the current trajectory are collected at runtime over a time window of Nw samples.

Together with these features, speed σ2
v and heading σ2

ψ
variances are also computed over

the same time window. Features with similar properties are grouped together in sets of

M elements. The conditions (5.23), (5.24), (5.25) are used for the grouping procedure.

Once a group is collected a single measure ψ̂ is derived for the navigation heading. This is

then used to identify the value of the two functions given the group’s features. Analytically

this is expressed as:

ψ̂ =
1
M

M
∑

i=0

ψ̄i (5.20)

εnav(ψ̂) =
1
M

M
∑

i=0

pi
∆ei

∆di
(5.21)

vcruise(ψ̂) =
1
M

M
∑

i=0

pi vi (5.22)
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Figure 5.1: Segmentation result for a partial smooth trajectory used for inspection. Segments are
isolated by limiting variations on their prevalent headingψ and speed v. These cover approximately
the same distance if the navigation is continuous and with small heading changes.

where M is the number of elements in the current group, ψ̄i are the recorded headings,

pi are scaling weights, ∆ei and ∆di are the energy usage and the travel distance for the

i-th sample that satisfies the σv and σψ conditions for the current group:

σψ ≤ ∆ψ≤ 10 deg (5.23)

σv ≤ ∆v ≤ 0.1 m/s (5.24)

|v − vcruise| ≤ vthr ≤ 0.1 (5.25)

The condition (5.23) allows the proposed procedure to operate even in the presence

of curved trajectories. This happens without loss of detail by splitting a large trajectory

in multiple small segments. An example of this behaviour is shown in Figure 5.1 where

smaller segments are employed as soon as the vehicle adjust its navigation heading. Such

an approach allows the use of a finer resolution while in presence of smooth manoeuvres.

The conditions (5.24) and (5.25) ensure that samples are collected during cruise navigation

while filtering out any data related to acceleration or deceleration phases.

M
∑

i=0

pi = 1 with pi =
e−λi

∑M
j e−λ j

(5.26)

The coefficients pi are chosen to weight the contribution of consecutive samples

and decay with an exponential forgetting factor λ as defined in (5.26). The value M is

bound between Mlow and Mhigh limits. Features are collected in a single group as long

as conditions (5.23), (5.24), (5.25) are met for all elements within the current group.

If a group exceeds Mhigh samples a new group is created. If less than Mlow samples are

collected the group is discarded. Given these conditions each group identifies a single

trajectory segment with homogeneous properties and the upper-bound Mhigh sets a limit

for the length of segments to used in this procedure.
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Figure 5.2: Example of LWPR regression with real data. Disturbances and measurement noise af-
fects samples collected runtime. Nonetheless the LWPR algorithm extracts a smooth representation
from noisy data. Dashed lines show the 95% prediction intervals associated with the computed
model.

5.2.1 Data Pruning

Samples collected with the introduced procedure are stored in a dataset that is used to

derive models for the εnav(ψ) and vcruise(ψ) functions. As more data is made available

during the course of an autonomous mission such a dataset is further expanded. On

the other hand, to promptly capture variations of operating environments and to exploit

temporal dependencies, older samples need to be progressively filtered out as they may

not be representative from the current environment’s state. Samples filtering is done using

a binning procedure. These are efficiently grouped together in Nh bins representative for

a range of possible headings. For each bin the latest Kh samples are kept. This retains

the latest available estimations without discarding too many samples for less frequent

navigation directions. Parameters Nh and Kh control the complexity of the resulting data

pruning procedure and define the amount of output data available for further processing.

The number of bins Nh is calculated taking into account the precision of heading sensors,

with special interest for their accuracy and drift stability over long trajectory legs. In fact,

assuming bins 12 to 4 degrees wide, operational values for the Nh parameter are found in

the range from 30 to 90. This allows the procedure to work with bins large enough to

include navigation errors when initiating or completing small heading adjustments (e.g.

during hovering operations). The number Kh, instead, has been empirically chosen. This

is because a minimum number of samples Ns = Kh · Nh ≥ 1000 is required for applying

correctly a regression analysis on the derived dataset.

After obtaining a pruned dataset εnav(ψ) and vcruise(ψ) functions are learnt using the

Locally Weighted Projection Regression (LWPR) [109]. This method has been previously

introduced in Section 3.3.1 and applied successfully also in the context of actuator’s

modelling. In the case of performance metrics few modifications are taken into account. A

k-fold cross-validation (CV) technique is yet again employed during this phase, however,

the number of folds is reduced to account for the presence of a lower input samples count

71



5.2. Runtime Estimates

for the early stages of the estimation procedures. After training models are evaluated

using a Mean Squared Error (MSE) metric, this is expressed as:

MSE =
1
Ns

√

√

√

√

Ns
∑

i=1

(x (i)pred − x (i)val)2 (5.27)

where Ns ∼ Kh ·Nh is the total number of samples used during training, xpred is the model

prediction and xval the corresponding samples from the CV dataset.

A relevant aspect of the LWPR algorithm is its capability of calculating confidence

intervals given a generic query point x within the learnt function domain. These identify

a range in which future observations will fall with a given probability according to what

has been observed already. Confidence intervals are generically defined as:

Pr
Θ
(hl(X )< Y < hu(X )) = γh Θ = {θ0, θ1, . . . } (5.28)

where X is a random sample from a probability distribution defined using parameters in

Θ, Y is a variable related to X , (hl(X ), hu(X )) the lower and upper bounds, respectively,

of observable values Y and γh is a value close but not equal to 1 that define the intervals.

Knowledge of these allow a better characterisation of the residual uncertainty of εnav(ψ)
and vcruise(ψ) values calculated using the LWPR model. In fact, beside obtaining their

expected values, also a range of other probable values is made available at runtime for

further improving any subsequent analysis. Such an approach takes into account the

uncertainty given by measurement noise and by the interaction of the vehicle’s control

subsystem with external disturbances. An example model for εnav(ψ) is shown in Figure 5.2

Parameter Value

ini t_D 0.01 – 1.0
ini t_alpha 1.0 – 10.0
update_D on

w_gen 0.01
penal t y 0.0001

Table 5.1: LWPR hyperparameters used for performance estimations.

together with its training samples and confidence intervals. This is extracted with the

introduced procedure using the hyperparameters reported in Table 5.1.

5.2.2 Model of Trajectory Dynamics

Vehicle locomotion, together with previous estimations, is also represented using a sim-

plified model. This describes the forward navigation using time-delayed third-order

exponential functions to approximate the trapezoidal velocity profile, typical of a point-

to-point navigation. This model is often used in trajectory generation problems [123] and
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Figure 5.3: Nessie AUV’s velocity profile. The exponential model (dashed line, αnav = 0.15) is
overlaid on navigation data (solid line) taken from an inspection mission in real sea conditions.
This represents the vehicle’s behaviour during a navigation task between two inspection points
while in presence of external disturbances.

guarantees the computed path has continuous derivatives up to the third order. Figure 5.3

shows how this approximates well the experimental vehicle’s behaviour when operating

in real environments, for instance, in presence of tidal currents.

Such a model assumes the normalized velocity profile to be described by the equation:

v(x) =
v(t)
vmax

= 1− e−x3
with x = αnav t (5.29)

where vmax represents the vehicle cruise speed for point-to-point navigation, αnav is a

time-scaling parameters that controls the slope of the exponential functions and depends

on the acceleration limits of the platform. This profile is used during planning stage as it

provides time estimates for vehicle navigation. In fact, assuming a mission in which distant

waypoints are visited one after the other, the time needed for an individual trajectory leg

can be approximated as:

t leg = tacc + tcruise + tdec (5.30)

where tcruise is cruising time, tacc the time needed to reach the cruise speed and tdec the

one to stop at the end of the trajectory leg. For reasonable sized legs (e.g. dleg ≥ 10 m)

tacc and tdec represent a small percentage of the cumulative navigation time and can be

assumed constant for all the intermediate legs. Given the platform’s acceleration limits, the

mission’s navigation speed vcruise and the configuration of underlying motion controllers

tacc and tdec can be derived for a specific vehicle’s configuration. A possible approach is

measuring the time needed to increase the AUV’s speed from 5% to 95% of the requested

vcruise. In the case of experimental platform considered in this work, the tacc and tdec are

both estimated to be approximately 15 seconds each.

Under these assumptions only the tcruise term needs to be periodically re-evaluated

to take into account the effects of operating environments. In fact, assuming a uniform
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motion for the cruise phase, this can be written as:

tcruise =
dleg − dacc − ddec

vcruise
(5.31)

where dleg is the total length of the trajectory leg, dacc and ddec the navigation distance

covered during acceleration and deceleration phases. These last values are calculated

numerically by integration of the velocity profile (5.29), respectively, in the [0, tacc] and

[tbrk, t leg] domains, where tbrk = t leg − tdec.

dacc =
∫ tacc

0
v(t) d t (5.32)

ddec =
∫ t leg

tbrk
v(t) d t (5.33)

This allows representing the leg navigation time t leg as function of the navigation

distance dleg and the average cruise speed vcruise according to the estimations calculated

at runtime:

t leg =
dleg − dacc − ddec

vcruise(ψ)
+ tacc + tdec (5.34)

where ψ is the line-of-sight angle between two consecutive waypoints that identify the

given trajectory leg. A similar approach is followed to derive the required energy. This is

done under the assumption that navigation among waypoints is conducted in a point-to-

point fashion, typical of an inspection mission. In this case the energy requirement eleg

for a single trajectory leg is given by:

eleg = dleg · εnav(ψ) + ξe (5.35)

where εnav(ψ) represent the energy cost for unit distance while navigating with heading ψ.

The ξ term represents residual costs not taken into account by this formulation, like the

initial acceleration effort or other second-order effects.

tnav =
∑L

i=0 t legi
(5.36)

enav =
∑L

i=0 elegi
(5.37)

Using the introduced formulation cumulative locomotion (5.36) time and energy usage

(5.37) for the navigation tasks are, thus, expressed as the summation of known terms.

On the other hand, under the assumption of Gaussian uncertainty the equations (5.34)

and (5.35) allow expressing with more detail the variables (5.8) and (5.9). Analytically
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these are described using their expected values and variances:

µ̂tnav
=

L
∑

i=0

µ̂t legi
+

L
∑

i=0

µ̂T (5.38)

µ̂enav
=

L
∑

i=0

µ̂elegi
+

L
∑

i=0

µ̂E (5.39)

σ̂2
tnav

=
L
∑

i=0

σ̂2
t legi
+

L
∑

i=0

σ̂2
T (5.40)

σ̂2
enav

=
L
∑

i=0

d2
legi
· σ̂εnav

(ψi)
2 +

L
∑

i=0

σ̂2
E (5.41)

where σ̂εnav
(ψi)2 is calculated from the confidence interval of the underlying regression

model for the data point ψi and σ̂2
t legi

is the numerically estimated variance for the

navigation time of the i-th trajectory leg. The pairs (µ̂T , σ̂2
T ), (µ̂E, σ̂2

E) are, instead, the

estimated values for the residual uncertainty term of the two random variables (5.8) and

(5.9).

5.3 Route Optimization

Along with estimation aspects the proposed framework implements a route optimization

procedure based on the Orienteering Problem (OP). This technique, well-known in liter-

ature [119], allows an agent to optimize its travel path when visiting several points of

interest while respecting constraints of budgets, duration and, at the same time, while

maximising the final outcome. Many approaches have been proposed by researchers

when applying the orienteering problem to autonomous sensing under the presence of

constraints. A sub-modular OP formulation, solved with an approximation algorithm, is

used to maximise information gathering in [124]. On the other hand, a similar formu-

lation has been paired with a recursive greedy algorithm in [125] for maximising the

additional information gain in a sensor network. For real-time use in large graphs the

use of a linear approximation has been proposed in [126] for area coverage with a micro

aerial vehicle while a sampling method has been presented in [127] to maximise the

exploration of uncertain areas using genetic algorithms. A multi-robot sensing system

has been introduced for agriculture applications in [128]. This solves the OP using a

4-approximation algorithm that guarantees at least a quarter of the points to be included

in the problem’s solution.

In this work the Orienteering Problem (OP) is tailored to the underwater mission’s

context employing the runtime estimations with a derived algorithm known as Energy-

aware Orienteering Problem (EA-OP). This has the aim of maximizing the execution

performance in presence of stochastic environments and to improve the utilization of

on-board resources. Concurrently it allows the vehicle to calculate on-the-fly alternative
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execution plans if assumptions made before deployment are invalidated by the perfor-

mance metrics collected at runtime. For an inspection mission this algorithm provides

an optimal sequence of tasks that aims at visiting a maximum number of inspection

points while taking into account the task’s models introduced in the previous sections.

The resulting travel sequence characterizes an instance of the mission process M . Such

an algorithm is first used at the beginning of a new mission when only an initial belief

about the vehicle’s performance, described in terms of (5.38) and (5.39), is available.

This technique provides a provisional plan that does not yet include knowledge from the

operating environment. Later, during execution, the plan is further refined as additional

runtime measurements are collected.

5.3.1 Energy-Aware Orienteering Problem

As mentioned previously this framework employs a variant of the OP with the introduction

of additional constraints and runtime estimations. This uses an open version for the routing

problem that allows solutions to be non-cyclical paths (or tours) where user-defined

starting and ending points are enforced. Such a characteristic is typical of inspection

missions at sea where starting and recovery areas are distinct and delimited by operational

constraints (e.g. presence of planned marine traffic or the use of a moving support vessel).

This non-cyclical behaviour is more common of OVRP [121] formulations, where valid

solutions are optimal routes that explore the full mission space. Later in this work, the

proposed variant is compared to an existing OVRP formulation, used in the past with the

same experimental platform to conduct field missions.

The EA-OP algorithm is described with a Mixed Integer Linear Programming (MILP)

formulation where the navigation cost and time for exploring the mission space are

derived, respectively, from (5.35) and (5.34). The aim of this is to maximise the objective

function:
∑

i∈V

∑

j∈V

ri x i j (5.42)

subject to the following constraints:

s.t.
∑

i∈Vs

x is =
∑

i∈Vf

x f i = 0 (5.43)

∑

i∈Vs

xsi =
∑

i∈Vf

x i f = 1 (5.44)

∑

i∈Vm

x ik ≤ 1 ∀k ∈ Vm (5.45)

∑

i∈Vm

xki ≤ 1 ∀k ∈ Vm (5.46)
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considering the navigation path, and:

∑

i∈Vf

x ik =
∑

i∈Vs

xki ∀k ∈ Vm (5.47)

∑

i∈V

∑

j∈V

ci j x i j ≤ emax (5.48)

where V is the set of inspection points, with s being the starting point and f being the

ending point, ri is the reward (or profit) of visiting the i-th point and x i j is a binary

variable denoting the existence of a path between two inspection points included in a

proposed solution. Equation (5.42) represents the total number of IPs to be visited while

maximizing the vehicle’s profit along the proposed navigation path.

ui − u j + 1≤ (n− 1)(1− x i j) ∀i, j ∈ V (5.49)

0≤ ui ≤ n ∀i ∈ V (5.50)

x i j ∈ {0, 1} ∀i, j ∈ V (5.51)

Derivation of navigable paths is outside of the scope of this work and they are assumed to be

known using geographic information about the mission area. The rest of the formulation is

given by the additional constraints (5.43) to (5.51) where n is the total number of points,

Vs is the set of inspection points excluding the starting s, Vf the set of points excluding

the ending f , Vm the set of inspection points excluding both s and f . Furthermore, (5.52)

denotes the energy-cost for the trajectory leg going from i to j, characterised by its length

di j and its navigation heading ψi j. Altogether this term is derived using the runtime

energy estimations introduced in the previous sections.

ci j = di j · εnav(ψi j) + ξe (5.52)

In this formulation constraint (5.48) ensures that the maximum available energy emax

is not exceeded. Equation (5.43) ensures that there is no entry path to the starting point

s and no exit path from the ending point f . This makes them, respectively, the first and

the last point of the navigation route. Equation (5.44) enforces their presence in the

solution. Constraints (5.45), (5.46), (5.47) allow the omission of inspections points from

the solution. Equation (5.49) is a sub-tour elimination constraint forcing all the points to

be visited by one path. Finally, constraint (5.50) bound the values of problem variables.

The use of those constraints allow enforcing the existence of a known ending point

in the solution. This is chosen by end users, for instance, in an area suitable for the

recovery of the vehicle. Furthermore, a solution is considered valid only if enough energy

is available to complete inspections along the proposed route. If the full exploration of

the mission space is not possible solutions with fewer inspection points are considered.
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Energy and Time Constraints

The maximum allowed energy (5.53) is calculated at runtime before running this pro-

cedure. It includes the residual battery energy ebat , derived using a battery model and

energy measurements as discussed in section 6.3, some contingency reserve eres, defined

by operators, and a worst-case estimation (β ≥ 3) for the remaining non-navigation tasks.

emax = ebat −
∑K

i=0 einsi
− eres (5.53)

einsi
≈ µ̂ins + β · σ̂ins (5.54)

Along with this energy constraint the total navigation time can be derived using a similar

approach. This is expressed analytically as:

tnav =
∑

i∈V

∑

j∈V

t i j x i j (5.55)

t i j =
di j − dacc − ddec

vcruise(ψi j)
+ tacc + tdec (5.56)

Knowledge of this quantity allows users to optionally introduce an additional constraint

on the expected navigation time given a possible solution. Analytically this is written as:

∑

i∈V

∑

j∈V

t i j x i j ≤ tmax (5.57)

where tmax is the allowed navigation time for the current mission.

5.3.2 Energy-Aware Correlated Orienteering Problem

Along with a formulation derived from the standard OP this framework introduces also

another variant based on the more sophisticated Correlated Orienteering Problem (COP).

This introduces a term that models the capability of gathering information about neigh-

bouring points of interest while conducting the navigation allowing, thus, to further

optimize the resulting travel sequence. Incorporating such an aspect with energy estima-

tions done at runtime leads to the implementation of another algorithm known, in this

context, as Energy-aware Correlated Orienteering Problem (EA-COP).

The correlated problem is described with a MIQP formulation that tries to maximise

the following objective function:

∑

i∈V

(ri x i +
∑

j∈VNi

r jn ji x i(x i − x j)) (5.58)

Equation (5.58) represents the sum over the rewards of all visited points where V is set

of all IPs, ri the reward of visiting the point i and x i is a binary variable denoting that

the element i is visited in a solution. As mentioned previously this formulation takes into
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account a number of points in the neighbourhood of i. These are represented with the set

VNi
. The utility gained from this spatial relationship is calculated as the sum of the rewards

for visiting each point j in the neighbourhood multiplied by a weight n ji and a quadratic

term x i(x i − x j). The latter term ensures that extra reward, produced by correlation, is

only added for vertices that are not visited in the current solution. This extra utility is

then added to what is obtained by visiting the original point i. The coefficient n ji, instead,

regulates how much reward from j is gathered when observing j from i. These coefficients

are calculated taking into account a sensor model that describes the capabilities of on-

board payload. On the other hand, these can be also described incorporating knowledge

of a specific inspection mode (e.g. long-range sensing versus short-range one). In this

framework n ji coefficients are defined using an exponential fading model:

n ji =
e−αn·d ji

∑

k∈VNi
e−αn·dki

(5.59)

This takes into consideration the distance d ji between point j and i and a parameter αn

which include the maximum sensing range dsens.

αn = −
ln(0.01)

dsens
(5.60)

Moreover, coefficients n ji are normalised to balance the reward gained from a single

neighbour with respect to one gained over the full set of point VNi
.

In this variant of the COP the vehicle is assumed to start and finish its mission in points

defined before deployment. This, as shown for the EA-OP, is enforced by extra constraints

(5.61) and (5.62):

∑

i∈Vs

x is =
∑

i∈Vf
x f i = 0 (5.61)

∑

i∈Vs

xsi =
∑

i∈Vf
x i f = xs = x f = 1 (5.62)

where the binary variable xsi denotes the visit of i after the starting point s and x i f enforces

that the finishing point is visited after i. From a general point of view, the binary variable

x i j describes the existence of a valid path between i and j. For the remaining points,

instead, the constraints (5.63), (5.64) and (5.65) are considered:

∑

i∈Vm

x ik = x i ≤ 1 ∀k ∈ Vm (5.63)

∑

i∈Vm

xki = x i ≤ 1 ∀k ∈ Vm (5.64)

∑

i∈Vf

x ik =
∑

i∈Vs
xki ∀k ∈ Vm (5.65)
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Constraints (5.63) and (5.64) allow points to be left out from a possible solution, enforcing

also that a inspection point is visited at most once. Constraint (5.65) guarantee that after

visiting an IP navigation should continue towards another point, unless the finish location

has been reached or other constraints are violated. Constraint (5.66) introduces an

upper-bound for the vehicle’s energy usage:

∑

i∈V

x ici +
∑

i∈V

∑

j∈V

ci j x i j ≤ emax (5.66)

this, similarly for what described in the EA-OP case (5.53), guarantees to keep resource

usage under control. In (5.66) the previous energy constraint is further extended: the

term x ici takes into account the fixed cost of completing the inspection task for the point

i and the term ci j x i j, instead, the cost of travelling between i and j as shown previously

in (5.52). Fixed costs are not added for the initial and final points.

ui − u j + 1≤ (|V | − 1)(1− x i j) ∀i, j ∈ V, i 6= j (5.67)

0≤ ui ≤ |V | ∀i ∈ V (5.68)

Finally, constraints (5.67) and (5.68) are introduced to allow only the evaluation of a

single path solutions, preventing smaller disjoint tours from being considered.

5.3.3 Open Vehicle Routing Problem

Beside the Orienteering Problem (OP) and the Correlated Orienteering Problem (COP)

formulations a simple Open Vehicle Routing Problem (OVRP) is also introduced with

selected starting and exiting points. This tries to minimise the cost of travel through all

inspection points as defined in the following objective function:

∑

i∈V

∑

j∈V

ci j x i j (5.69)

s.t.
n
∑

j=1

x js = 0 (5.70)

n
∑

i=1

x i j = 1 j = {1, ..., n} and j 6= s (5.71)

n
∑

j=1

x f j = 0 (5.72)

n
∑

j=1

x i j = 1 i = {1, ..., n} and i 6= f (5.73)

ui − u j + n · x i, j ≤ n− 1 ∀(i, j) ∈ A and i 6= j (5.74)

where ci j is the cost of travelling from point i to point j, x i j is a binary variable denoting

the existence of a path between the two points in a proposed solution and V is the set of n
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points. Equation (5.69), from a general point of view, describes the total cost of traversing

all the inspection points. Constraint (5.70) ensures that there is no entry path to the

start point, (5.71) enforces a single entry point to each of the other points and (5.72)

ensures that there is no exit path from the extraction point, making it the final point of

the route. Constraint (5.73), on the other hand, allows only one exit path from all the

other points. Finally, the constraint (5.74), eliminates the presence of any sub-tours from

valid solutions.

The OVRP formulation is used, in this framework, as a comparison term for the

introduced energy-aware variants of the OP and COP methodologies. The OVRP relies

only on few constraints and takes only into account a generic cost coefficient related to

locomotion among inspection points. This can be seen as a first technique to identify a

possible inspection route for a generic mission that does not take into account any other

environmental effects. Results for problem’s comparison are presented in section 7.3 in

the case of inspection-class missions conducted with a simulated AUV where its energy

model has been derived using field experiments.

5.4 Summary

In this chapter a runtime performance estimation framework has been introduced. This

monitors the vehicle’s behaviour while operating in unknown environments. A few relevant

features are collected during navigation and a non-linear regression procedure is used to

correlate measurements with performance metrics that takes into account the presence of

external disturbances, such as sea currents. Runtime knowledge of the energy usage per unit

distance and average cruise speed are then used to analyse the feasibility of missions. These

are described using a discrete model where individual tasks are assumed independent

and are represented using a stochastic approach. In this work inspection missions are

focused explicitly. Those are characterised by two main types of tasks: navigation and

inspection. The former deals with locomotion operations and it is mainly affected by

external disturbances. The latter, instead, represents all the operations conducted when

gathering information about the environment. This is described as a repeatable task or, in

other words, as an action that shows the same behaviour every time is conducted. As such,

inspection tasks are represented using a simplified model that describes their expected

execution time and energy usage.

Beside modelling aspects further details have been discussed regarding the procedures

followed in derived runtime estimations. Relevant is the use of a pruning procedure before

conducting the regression analysis. Such an approach allows the derivation of a dataset of

collected features that gives more priority to newer measurements while discarding older

ones. Samples are collected during navigation using a trajectory segmentation procedure.

This guarantees that features are grouped together only when they belong to a segment

that has small variations in terms of heading and speed. Such an approach prevents
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measurements taken during acceleration, deceleration or manoeuvring phases from being

included in the presented estimations. Those phases, while still relevant, represent a small

percentage of navigation time and are represented as higher-order effects. Experimental

validation of the proposed procedure is presented in section 7.2 with the use of two real

AUVs conducting field missions.

After introducing the runtime estimations these are employed in the context of route

optimisation. This has been discussed in the final sections of this chapter. Route optimi-

sation is used in this framework to improve the use of resources, allowing to adjust at

runtime the sequence of tasks conducted by the vehicle. This is implemented using algo-

rithms derived from the Orienteering Problem that includes estimations done at runtime.

These are the Energy-aware Orienteering Problem (EA-OP) and Energy-aware Correlated

Orienteering Problem (EA-COP) that are compared with a classical Open Vehicle Routing

Problem in a set of simulation experiments discussed later in section 7.3. The introduced

EA-OP includes a set of constraints customised for the underwater mission’s context. Those

allow end users to enforce the existence of an initial and a final point (e.g. for recovery

purposes) in the calculated solutions. Moreover, a maximum energy budget and the

concept of reward gathered when conducting an inspection task are taken into account

when evaluating possible solutions. The EA-COP, instead, extends such an algorithm

considering the capability of collecting information also from neighbouring points. This

aspect, while not necessarily applicable for large scale inspection, becomes more important

when considering inspections of underwater structures [129] where multiple observations

of targets are taken into account. This variant modifies some of the original constraints,

replacing them with a more expressive, yet computational intensive, condition. The EAOP

is implemented using a MILP formulation, the EACOP, instead, with a MIQP one.
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Chapter 6

Experimental Platform

“I’m very sorry”, the drone said, without a

trace of contrition.

Iain M. Banks – The Player of Games

The main experimental platform used in this work is the Nessie VII AUV, a research

prototype originally developed in the Ocean System Laboratory [25]. This underwater

platform is a torpedo-shaped vehicle with hover capabilities designed with inspection and

intervention missions in mind. This platform has been upgraded over the last few years

while being involved in several research projects [1], [2], [130] and European competitions

[131] (e.g. SAUC-E and Eurathlon). Such a vehicle represents an ideal candidate for

the practical implementation of an energy-aware architecture where dedicated hardware

components and software modules are validated in the context of real field missions.

Together with the Nessie AUV another underwater vehicle has been involved in the

experimental validation of the proposed architecture. This is the IVER3 AUV [32], a

commercial platform used for oceanographic surveys recently acquired by the Ocean

(a) (b)

Figure 6.1: Nessie AUV during indoor field trials (a) and during laboratory testing (b) with an
external imaging sensor (multi-beam sonar) with pan and tilt capabilities.
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Systems Laboratory. The availability of such a vehicle allowed the further analysis of the

use of an energy-aware framework with an off-the-shelf platform designed for specific

uses in the marine domain. In the following sections a detailed analysis of the Nessie

AUV platform is introduced. First, its principal design features are discussed. Second,

the experimental work done on this platform is described together with modelling and

experimental validations. Finally, the existing vehicle’s software architecture is analysed

together with the integration of additional modules required by the proposed energy-aware

architecture.

6.1 Vehicle Design

The Nessie AUV is a torpedo-shaped vehicle with hover capabilities designed with inspec-

tion and intervention missions in mind. This has a 0.30 m diameter, it is 1.75 m long and

it weights almost 60 kg. An anodized aluminium hull allows a maximum operating depth

of about 70 m to 100 m. A plastic outer shell provides protection for an internal frame

and improves the vehicle’s dynamic efficiency (e.g. reduced drag effects). The use of

an internal hard plastic frame supports the attachment of wet-side components, such as

actuators and external sensors, to the main pressure hull. The vehicle is powered by a

set of four high-energy LiPo batteries, each with 25.9 V nominal voltage, 21 A h (about

543.9 W h) of stored charge and rated for 18 A maximum discharge current. This gives

a total available energy of about 2.2 kWh, enough for conducting missions in a harsh

environment for 6 h to 8 h with external payloads attached without the need of recharging.

Spec Value

Length 1.75 m
Diameter 0.30 m
Weight 60.0 kg

Maximum Depth 70 m
Maximum Speed 2.0 m/s (3.8 kn)
Maximum Duration 6 – 8 h

Stored Energy 2.2 kWh
Operating Voltage 24 – 28 V

Table 6.1: Principal characteristics of Nessie VII AUV.

Propulsion is given by six brushless DC marine thrusters, Seabotix HPDC1502, each

capable of about 4.5 kg of output thrust in ideal conditions while using 250 W of power.

These thrusters are aligned with the principal axes of the platform, two for the longitudinal,

two for the lateral and two for the vertical axes, and allow the control of five degrees

of freedom (DOFs): surge, sway, heave, pitch and yaw. This configuration is a trade-off

between operational requirements (e.g. hovering capabilities, lateral motion, precise

station-keeping) and design constraints. Figure 6.1 shows Nessie AUV in its configuration
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MAIN BUS

28V

DC/DC
24V - 24V

DVL SONAR FW SONAR MB

DC/DC
24V - 12V

CPU 1 CPU 2 PRESSURE

DC/DC
24V - 5V

GYRO COMPASS EXTRA

Figure 6.2: Overview of Nessie AUV’s sensor and payload configuration.

for the EU FP7 PANDORA project. During field trials this vehicle has been fitted with an

addition imaging sonar with pan and tilt capabilities attached to its bottom side. Such

an addition allows the vehicle to carry out detailed analysis of underwater objects or

structures with the capability of focusing [132] the imaging sensor on specific portions

of the environment. This vehicle also supports tethered operations where end users can

monitor or control specific aspects of the platform operating in the field. Tethers are

mostly used for providing high bandwidth telemetry data during autonomous missions

and are not required for standard operations.

6.1.1 On-board Sensors

This platform includes several navigation sensors, such as a Fiber Optic Gyroscope (FOG),

a Doppler Velocity Log (DVL), a pressure sensor, a GPS unit and a 3-axis digital compass, as

well as communication devices, such an acoustic underwater modem and Wi-Fi capabilities

to allow remote on-surface operations. These are listed in Table 6.2, where their electrical

specifications are also reported. These aspects are useful to quantify their impact on the

platform’s energy consumption during field operations. On the other hand, operational

experience in the Scottish sea has shown that their effective performance is affected

by environmental effects (e.g. temperature, humidity, etc.) other than by configuration

parameters used for a specific type of mission (e.g. DVL ping delays, sonar refresh rate).

Sensors are connected to the main electrical bus using DC-DC converters with thermal

Sensor Voltage (V) Current (A) Power (W)

Teledyne Explorer DVL 24 0.20 - 1.50 4
Blueview P900 24 0.60 - 0.80 15
Blueview MB2200 24 0.85 - 1.05 25
KVH DSP-3000 FOG 5 0.40 - 0.60 2
PNI TCM Compass 5 0.20 - 0.22 1
Keller 33X Pressure 12 0.10 - 0.20 1.25
Embedded GPS Unit 5 0.08 - 0.12 0.75

Table 6.2: Overview of Nessie AUV main on-board sensors. Average power is calculated by taking
into account sensors’ duty cycles during normal operations.
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Figure 6.3: Overview of Nessie AUV’s electrical schema. Highlighted are the current sensors used
for monitoring individual batteries and other relevant electrical buses. Parallel diodes allow safe
operations even in presence of unbalanced battery voltages.

protection. These adjust the supply voltages to power group of devices sharing a common

power rail. An outline of device connections is shown in Figure 6.2. Navigation sensors

are a requirement for correct operations and, for this reason, are considered part of the

platform’s baseline power consumption. On the other hand, external sensors, such as an

imaging sonar or extra scientific payload, are considered additional loads that will be

analysed in the context of mission’s tasks.

6.1.2 Electrical Schema

A relevant design aspect of the Nessie AUV platform is its electrical system. In this design

four batteries are connected to the main bus using protection fuses and low voltage drop

diodes. This approach allows feeding the thruster subsystem with an unregulated supply

of about 28 V, well within the operating range of on-board actuators. At the same time,

DC-DC converters are used to derive regulated supply for vehicle’s sensors and control or

on-board payload computers.

Such an approach, shown schematically in Figure 6.3, has been proven robust during

several years of field operations and no severe failures have been traced back to this system.

On the other hand, given the electrical bus design it can be seen that few metering points

are effectively required to monitor the platform’s overall energy consumption and the one

of its subsystems. In fact, with Figure 6.3 in mind, one can notice that the IM represents

the overall current flow within the platform. This is given as a linear combination of

currents IBx
drawn from batteries and as combination of on-board loads:

IM = IB1
+ IB2

+ IB3
+ IB4

(6.1)

IM = Ithr + Ip1
+ Ip2

+ Ip3
(6.2)
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(a) (b)

Figure 6.4: Overview of Nessie AUV’s dry section electronics (a) and on-board current sensor
prototype integration (b). The sensing device is covered with heat shrink tubing to isolate its
exposed high current connections.

where Ithr represents the current drawn from the propulsion subsystem and Ip1
, Ip2

, Ip3

the current from other on-board devices. Knowledge of such currents allows the energy

consumption to be derived for each subsystem using, for instance, a Coulomb-counting

(CC) procedure [44]. This calculates the energy usage by integrating voltage and current

measurement taken on a specific electrical bus. Analytically this is written as:

e[t] =
t
∑

k=0

∆e[k] =
t
∑

k=0

V [k] · I[k] (6.3)

where e[t] represents the overall energy usage at time t and V [k], I[k] the bus voltage

and current, respectively, at the instant k.

6.2 Energy Monitor

With those aspects in mind a dedicated energy monitoring system has been introduced in

the Nessie AUV’s design. This, known as low-cost energy monitor (LEM), is built around the

use of an off-the-self microcontroller board (i.e. Arduino Uno) and few external current

sensors placed on relevant sections of the vehicle’s electrical bus. Current sensing devices

are able to convert the current’s flow into an output voltages proportional to its intensity.

These are acquired together with bus voltage measurements using the microcontroller’s

internal ADC. Current values are later derived by applying the sensor’s model (e.g. ideally

a linear relationship between output voltage and sensed current) to collected samples. The

LEM is connected to on-board control computers thus providing runtime measurements to

the vehicle’s software architecture1. Figure 6.4 shows the integration of a LEM prototype

inside the dry section of Nessie AUV, where a current sensor, within its protective shielding,

1In this case a dedicated software module has been integrated to analyse and track collected samples such
as voltages, currents and energy usage of vehicle’s subsystems.
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(a) (b)

Figure 6.5: Schematic (a) and manufactured prototype (b) for low-level data acquisition platform
beside an Arduino board used for control purposes.

is connected in series with the main power bus. Figure 6.5 shows instead the LEM

prototype manufactured as expansion board (i.e. shield) to be stacked on the existing

microcontroller platform.

After an initial study of available current sensing technologies [47], also mentioned in

Section 2.2.5, an automotive-grade Hall-effect linear current sensor (Allegro’s ACS715 /
ACS714) is chosen. This provides good isolation [48] between the high-current monitored

bus and low-voltage instrumentation side, good sensing quality and it is manufactured

in surface integrable package (i.e. 8-lead SOIC) and also available as small standalone

board (i.e. 30× 30 mm). The ACS715 component is rated for maximum 30 A and it has

Section Label Current (A)

avg. max.

Main Bus IM 16.0 30.0
Thruster Bus Ithr 10.0 24.0
Battery Bus IBx

4.0 18.0
Payload Bus Ipx

2.0 7.0

Table 6.3: Nessie AUV’s electrical bus currents. Average values are measured during low-speed
operations in controlled environments. Maximum values are derived from loads specifications.

a 135 mV/A sensitivity. The ACS714, instead, is rated for maximum 7 A, a 188 mV/A
sensitivity and it supports bidirectional measurements. The first sensor is employed to

measure high currents, such as IM and Ithr , while the second one is used on lower current

buses as suggested by early measurements reported in Table 6.3. Sensors are used with

a 10-bit ADC allowing resolutions of about 72 mA and 52 mA, respectively, after noise

filtering. To further improve the precision of the CC procedure a trapezoidal integration

is implemented with measurements taken at fixed sampling rate Fs of 10 Hz. Analytically

this is written as:

e[n] =
n
∑

k=1

V [k]
I[k] + I[k− 1]

2
Ts (6.4)
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Figure 6.6: Energy and current measurements of Nessie AUV. Plot (a) shows the main bus current
IM . Plot (b) shows the calculated energy consumption. Both plots highlight the effect of platform’s
base loads with respect to the overall trends.

where V is the bus voltage, I the sensed current and Ts = 1/Fs is the sampling time.

Such an approach is implemented inside the MCU and aggregated measurements (e.g.

energy usage, average voltages and currents) are reported back to the vehicle’s main

control computer. Figure 6.6 shows measurements collected during a real sea experiment

while the vehicle is navigating at low speed in presence of tidal currents. In this case the

current IM is measured and it is characterised by a constant load of about 2.6 A. Such an

offset is given by the platform’s navigation sensors, sonar and on-board computers. This

characterise the idle behaviour of Nessie AUV, where a constant usage of about 80 W to

operate the sensors is needed during autonomous missions.

6.3 Battery Model

The introduction of a standalone energy monitor, while providing useful information about

vehicle’s subsystems, allows better characterisation of the state of on-board batteries. In

fact, once runtime measurements, such as bus voltages and currents, are collected for

individual batteries they can be combined together with analytical models to obtain a

robust estimation of their SOC. Such a behaviour represents an important feature for

the energy-aware architecture because it allows autonomy software modules to evaluate

the vehicle’s behaviour in presence of accurate estimations of the availability of on-board

resources.

With those aspects in mind after integrating the LEM inside the vehicle’s architecture

an identification procedure has been conducted for the vehicle’s batteries. Figure 6.7

and 6.8 shows, respectively, an excerpt of the charge and discharge profiles collected

during identification experiments with the Nessie AUV. These are conducted in a con-

trolled environment using a HIL configuration and involving the full vehicle in the testing.

Batteries are charged individually using an off-the-shelf Li-ion battery charger limited

at 6 A, the same used for field operations. After reaching a charged state the vehicle’s
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Figure 6.7: Nessie AUV’s battery charging profile. Shown is the final or top-up phase covering from
75% to 100% of battery packs’ capacity. Batteries behave differently according to their effective
health status and internal resistance.
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Figure 6.8: Nessie AUV’s battery discharge profile. A constant load of about 3 A is applied to the
battery system. The transition between linear and non-linear profile is clearly captured by the
experiment.

is deployed in an indoor testing tank and left hovering at a fixed depth, simulating the

submerged operations with all navigation and imaging sensors turned on. Concurrently,

measurements are collected by the LEM and stored within the on-board computers.

Consequently a model fitting procedure is conducted on collected samples using an

existing battery model adjusted for the vehicle’s specification. As previously mentioned in

Section 2.2.1 several models are available in literature, however many of those are focused

on the analysis of a single cell battery and require the estimation of many parameters. In

the case of Nessie AUV individual batteries are built by combining multiple cells together,

specifically, in a 7S configuration (e.g. seven cells in series). This required the use of a

battery model that can equally be applied in presence of multi-cell configurations and

Element Voltage (V) Capacity (A h) Energy (W h)

min nominal max

Single Cell 2.75 3.7 4.2 21.0 77.0
Battery Pack (7S) 19.25 25.9 29.4 21.0 543.9

Table 6.4: Nessie AUV’s battery specifications.
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Figure 6.9: Validation of Nessie’s AUV battery model. Plot (a) shows the measured voltage together
with estimations done with a Kalman Filter (KF). Plot (b) shows the estimated state of charge (SOC)
together with offline model simulations. Noisy measurements increase the residual uncertainty in
SOC estimations. Furthermore, the tuned model allows the representation of the battery system’s
behaviour with convenient accuracy also in simulated scenarios.

it can be identified only in presence of few2 measured variables, such as open-circuit

voltages, bus currents and voltages.

For those reasons the NREL battery model [37] is chosen to characterise the vehicle’s

batteries. This model, already presented in Figure 2.2, is extended to an 7S configuration

and an equivalent lumped-parameters schema is assumed for an individual full pack.

Table 6.4 shows single cell’s characteristics together with the ones for the derived battery

pack. Parameters of the resulting battery model are reported in Table 6.5. These are found

using optimization procedures that minimise the resulting Mean Squared Error (MSE)

for the output voltage. Using these parameters the model’s average error is kept within a

0.5 V range.

Parameter Value

Rc 0.40 mΩ
Re 105.00 mΩ
Rt 98.00 mΩ
Cc 203.69 F
Cb 9309.59 F

Table 6.5: Nessie AUV’s battery model parameters.

After obtaining a valid battery model a SOC estimation procedure is also implemented

in the vehicle. This, as discussed previously in Section 2.2.2, is based on the use of a

Kalman filter (KF) to combine the lumped parameters models with LEM measurements

collected on-board during field operations. Figure 6.9 shows an experimental validation

of the proposed procedure on Nessie AUV during a data collection mission. Chart 6.9a

shows the filter’s estimated battery output voltage together with real measurements taken

2Some models rely on internal variables that can not be directly measured when the battery is integrated in
the vehicle and can only be estimated using dedicated experiments in laboratory conditions.
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∆T LPF
RATE

LIMIT
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Figure 6.10: Thruster model schema. The throttle to current characteristic (u→ i) is applied after
introducing the communication delay (∆T) and non-linear effects of internal speed controllers for
a generic brushless DC motor.

by the LEM device. Chart 6.9b shows, instead, the runtime estimated SOC comparing it

with an off-line simulation done with recorded data using only the lumped parameters

model.

6.4 Thruster Model

Following the identification of battery models further attention is given to the propulsion

subsystem. As mentioned in previous sections, such a domain represents one source of

operational uncertainty for autonomous underwater vehicles and detailed knowledge

of component’s characteristics is required to properly assess the vehicle’s behaviour and

effectiveness when outside in the field. For these reasons an accurate actuator’s model

has been also identified for the Nessie AUV. As discussed in Section 2.3 several techniques

are known in literature to provide analytical representations for marine thrusters. Most

assume correct knowledge of internal parameters (e.g. motor’s resistance, inductance,

etc.) for the actual components and do not include any operational considerations that

arise from the use of integrated motor controllers. In the case of Nessie AUV oil-filled

off-the-shelf thrusters are used in the vehicle. Those are built with an embedded ESC

controller that provides advanced features like stall and ventilation protection. Being in

presence of commercial components internal parameters are assumed unknown3 and a

black-box identification approach is followed.

In developing this work a data-driven strategy has been integrated in the vehicle’s

software architecture. This employs a short self-testing procedure that extracts actuator’s

models from the data collected by the platform itself. Such a procedure is also employed

for calibration purposes, for instance before starting a long-term mission, and allows

adjusting the analytical models in accordance to the actual health status4 of the actuator

under test. The built-in identification procedure relies on a discrete elements thruster

model, also shown in Figure 6.10. This includes a time delay term (∆T), representing the

communication latency between vehicle’s computers and motor controllers, a low-pass

filter (LPF) followed by a rate limiter, reproducing the effects of ESC’s control logic,

and a throttle to current characteristic (u→ i). Actuators are controlled using a throttle

3Those are often not disclosed by the manufacturer or are of difficult characterization, for instance, requiring
invasive procedures and laboratory testing on the actuator’s internal components.

4Operational experience has suggested that oil-filled actuators, like the ones available on Nessie AUV,
degrade sightly their performance within the maintenance’s interval of their oil reservoirs.
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Figure 6.11: Nessie AUV’s thruster identification. The plot shows a triangular command signal
(blue) together with the current’s feedback (red) from the motor controller.

command while their embedded motor controllers provide feedback signals regarding

the actuator’s behaviour, such as actual throttle (or relative speed), motor currents and

temperatures.

A set of known input signals is used to stimulate the on-board thrusters and, at the

same time, the vehicle’s computers collect these feedback. Such an approach generates a

calibration dataset that is later employed to derive the analytical model used to represent

each actuator. The input command u is varied across the allowed range a with a repetition

period p.

ustep(t) = a step(t − T ) (6.5)

ut r i g(t) =
2a
π

arcsin
�

sin
�

2π
p

t
��

(6.6)

usin(t) = a sin
�

2π
p

t
�

(6.7)

Each command is held steady for a small time interval (e.g. 3 s). This allows the actuator’s

under test to reach its requested throttle command and transient effects to settle. The input

signals used in this procedure are: a step function (6.5), a triangular signal (6.6) sweeping

between full-forward and full-reverse commands and a slowly changing sinusoidal one

(6.7) with full range amplitude and period comparable to the update rate of the control

architecture used in the vehicle. Figure 6.11 shows an example of such a training procedure.

In this case the forward port-side actuator of Nessie AUV is commanded using a triangular

signal while the vehicle is held submerged inside a test tank. The plot shows how forward

and reverse operations slightly differ in terms of current usage while in presence of same

operating conditions. Such a behaviour is explained by the mechanical design of the

actuator itself and it is taken into account during the identification procedure.

93



6.4. Thruster Model

6.4.1 Non-linear Model

After collecting a dataset for all actuators a regression analysis is employed to extract

their throttle to current characteristics. This is conducted using the LWPR algorithm,

previously introduced in section 3.3.1, and it allows capturing even small differences

between vehicle’s actuators without requiring a manual curve fitting procedure. Together

with this base characteristic other parameters, such as communication delay or actuator’s

latency, are estimated at this stage using a time analysis [133] done on signals (6.5) and

(6.7). Table 6.6 shows, instead, the set of LWPR hyperparameters used during thruster

models identifications.

Parameter Value

ini t_D 5.173
ini t_alpha 1.450
penal t y 0.0001

Table 6.6: LWPR hyperparameters used for thruster models.

Using the LWPR approach a thruster characteristic is represented as:

I(t) = gm(ul im(t)) (6.8)

where i is the current used by the thruster, ul im the input throttle and gm(.) is the extracted

LWPR model. The ul im term is derived from the original control input u by taking into

account the effect of communication delay ∆T and actuator’s dynamics. First a control

delayed signal ud is defined:

ud(t) = u(t −∆T ) =⇒ ∆u= ud(t)− ud(t − 1) (6.9)

such a term helps in the characterization of parameter ∆u that represents the maximum

allowed difference between two consecutive input commands. ∆u is related to internal

dynamics of the real actuator which in the presence of fluid friction requires some time

to react to commanded throttle requests. Real operations are further influenced by the

presence of internal ESC circuits. Their non-linear effects are modelled in this context

using the concept of rate limiter, a hard filter that limits the variation of input signals.

Given those aspects the ul im term is analytically defined as:

ul im(t) =















ud(t) if Λlow ≤∆u≤ Λhigh

ud(t) +Λhigh if ∆u> Λhigh

ud(t)−Λlow if ∆u< Λlow

(6.10)

where Λlow and Λhigh represent the maximum rate of change for the original input com-

mand u, respectively when increasing or decreasing the thruster output power. Such
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Figure 6.12: Thruster model evaluation with user input commands through the joystick interface.
The dashed line represents the user input command, the green solid one represent the model
predictions and the red one the delayed feedback from the real actuator.

parameters are numerically estimated during the thruster’s testing procedure by using the

command signal (6.5). In this case throttle feedback from embedded motor controllers is

employed to calculate the average rate of change (RC) of ud .

Parameter Value

Λhigh 3.250
Λlow 4.125

Table 6.7: Average rate of change normalised parameters used in thruster models.

The RC term is defined as:

RC =
ud(t + Th)− ud(t)

Th
(6.11)

where Th is the measured time needed to correctly change the throttle setting between

5% and 95% of the allowed ranges (0, a] or [−a, 0) when characterising, respectively,

forward and reverse thruster’s operations. Estimated parameters for the actuators used in

this vehicle are shown in Table 6.7 while an example of input command analysis is shown

by Figure 6.12 in presence of discrete user control commands.

The estimated characteristic and its calculated LWPR model is shown in Figure 6.13 for one

of the Seabotix HPDC1502 thrusters used in Nessie AUV. The LWPR model is calculated

by collecting training samples with the vehicle operating fully submerged in a controlled

environment thus simulating stable environmental conditions. Raw measurements are

characterised by a quantization error, given by finite precision of on-board sensors, and

by a low noise figure. Despite this the collected data allows the extraction of good quality

models, with a small mean error, for the most used device’s operating range5.

5In this vehicle the Seabotix HPDC1502 thrusters are limited to 7.5 A as suggested by manufacturer’s
recommendations. This aspect bounds the maximum throttle command to about 85% of its input range.
Short bursts above 85% are possible but are not used for general navigation in Nessie AUV.
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Figure 6.13: Seabotix HPDC1502 current characteristic (i→ u) for the port-side forward actuator
of Nessie AUV. Behaviour is non-linear with most of the power being developed at high throttle
requests (u≥ 60%).
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Figure 6.14: Seabotix HPDC1502 throttle to thrust characteristic derived from the LWPR model.

6.4.2 Force Linearization

After identifying models for the six actuators available on this vehicle a throttle-to-thrust

characteristic is calculated using the LWPR models and the current-to-thrust relationship

provided by the actuator’s manufacturer. Knowledge of this derived characteristic, shown

in Figure 6.14, allows a force linearization term to be calculated. This is further employed

in the vehicle’s control subsystem, briefly outlined in Figure 6.15, to improve the mapping

between actuator’s force requests and output throttle commands. This takes into account

the real behaviour of each actuator.

As shown in the Figure 6.15 schema, a PILIM controller [112] calculates the general-

ized thrust vector τ that needs to be applied on the vehicle. Later a mapping procedure

(known also as thrust allocation) distributes the generalized vector τ to individual actua-

tor’s requests f still in the force domain. Only after this stage the derived linearization

term is employed, converting the forces f into throttle commands u adjusted for each

thrusters. Such a strategy is employed because real components deviate from their ideal

characteristic once they are used in the field. Experimental evidence shows, in fact, that
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Figure 6.15: Overview of Nessie AUV’s control schema implemented using a PILIM controller
and linearization terms derived from LWPR models. Coefficients are empirically tuned using
experiments conducted in a controlled environment like an indoor tank.
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Figure 6.16: Measured current deviation for Nessie AUV’s thrusters with respect to a new Seabotix
HPDC1502 thruster used as a reference in controlled environment experiments.

Nessie AUV’s actuators, almost 4 years old, behave differently with respect to their brand

new counterpart taken, for instance, from the vehicle’s spares pool. Figure 6.16 highlights

this behaviour by showing the effective difference in current draw among vehicle’s actua-

tors while running the thruster testing procedure in a controlled environment. As shown

in this figure deviations become more evident at high throttle requests where actuators

are working close to their recommended current limits of about 7.5 A.
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6.4.3 Thrust Allocation

As shown in Figure 6.15, a thrust allocation procedure is employed in the control schema

to distribute body-fixed frame forces τ into individual actuator’s forces. A well-known

approach is the use of a thruster configuration matrix B derived from geometrical infor-

mation about relative positions of actuators and the vehicle’s centre of mass [77]. This

matrix is generally defined, in the case of non-rotatable fixed actuators, as:

B(6×N) =





















ex1
. . . exN

ey1
. . . eyN

ez1
. . . ezN

(r1 × e1)x . . . (rN × eN )x
(r1 × e1)y . . . (rN × eN )y

(r1 × e1)z . . . (rN × eN )z





















(6.12)

where ei = [ex i
eyi

ezi
] and ri = [rx i

ryi
rzi
] are, respectively, the orientations and position

of vehicle’s actuators with respect its centre of mass c = [xc yc zc]. Once defined the B

matrix identifies the relationship between actuator’s forces f(1×N) = [ f0 . . . fN] and the

generalized thrust vector τ as:

f = B−1τ (6.13)

where B−1 represent the inverse of matrix, calculated, for instance, using the Moore-
Penrose pseudoinverse for a generic m-by-n configuration matrix [115]. For the Nessie
AUV this B matrix is defined considering the six actuators as:

B =





















1.0 1.0 0 0 0 0

0 0 1.0 1.0 0 0

0 0 0 0 1.0 1.0

0 0 0 0 0 0

0 0 0 0 0.625 −0.435

0.185 −0.185 −0.730 0.530 0 0





















(6.14)

In this case redundancy is used for controlling the yaw degree of freedom. In this

configuration forward and lateral thrusters are used together to improve the direction

keeping capabilities of the vehicle used, for instance, when collecting data using the

on-board imaging sensors. Such operations are conducted at low speed or when the

vehicle is holding its position in the mission’s environment. For general navigation the

allocation is reconfigured on-the-fly preventing the use of lateral thrusters for yaw control

and relying only on the differential actuation of the forward ones.
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6.5 Motion Model

Another relevant aspect of the Nessie AUV platform is the availability of a motion model

that has been characterised during previous experimental campaigns. This type of model

is usually derived from motion’s equations [69] and its coefficients are obtained through

dedicated identification procedures. For a generic underwater vehicle the motion model

is often expressed as:

M ν̇+ C(ν)ν+ D(ν)ν+ g(η) = τ (6.15)

η̇= J(η)ν (6.16)

M = MRB +MA (6.17)

C = CRB + CA (6.18)

where M is the inertia matrix of the underwater vehicle, including rigid-body MRB and

added mass MA effects, C is the matrix of centrifugal and Coriolis terms, again both for

rigid-body CRB and added mass CA effects, D is the matrix of damping terms. The term g

represents the vector of restoring forces (gravity and buoyancy). The term ν is the vector

of linear and angular velocities in vehicle’s body-fixed frame (i.e. ν(1×6) = [u v w p q r]).
The generalized force vector τ represents, instead, the forces acting on the underwater

vehicle with respect to the vehicle’s body-fixed frame (i.e. τ(1×6) = [x y z k m n]).

Precise knowledge of such a model allows designers to improve the underlying vehicle’s

control architecture by integrating an inverse dynamic term. On the other hand, the motion

model also gives information about drag forces that affect the vehicle’s performance during

navigation. In this vehicle those are modelled using a damping matrix D formulated with

linear (Xu, Yv, . . . ) and quadratic (xuu, yvv, . . . ) drag coefficients:

D = −





















Xu + xuu|u| 0 0 0 0 0

0 Yv + yvv |v| 0 0 0 0

0 0 Zw + zww|w| 0 0 0

0 0 0 Kp + kpp|p| 0 0

0 0 0 0 Mq +mqq|q| 0

0 0 0 0 0 Nr + nr r |r|





















(6.19)

Linear terms are calculated using geometrical approximations. Quadratic ones, on the

other hand, are estimated experimentally and reported in Table 6.8. The last set of

coefficients represent a major contribution to the drag effects acting during vehicle’s

navigation. Such a modelling approach, widely used in literature, represents a rough

approximation [69], [134] of real hydrodynamic damping terms that affect AUVs. More

accurate methodologies are also found in research, some of those involve the use of

machine learning approaches to improve the quality of motion models and state estimation

techniques. An example is the work developed by Fagogenis et al. [110]where a correction
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Parameter Value

xuu 31.808
yvv 222.896
zww 263.422
mqq 40.526
nr r 40.526

Table 6.8: Quadratic drag coefficients for Nessie AUV.

term, representing non-linear behaviours and derived with a LWPR model, is added to

the motion model found in classical approaches.
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Figure 6.17: Example of simulated sea current with an upper speed limit of about 0.35 m/s.

6.5.1 Sea Current Model

Together with the motion model of the vehicle this work employs a sea current model [69]
that is used for simulation purposes. The model is defined as first-order Gauss-Markov

(GM) process:

v̇c(t) +µv0
vc(t) = N(0,σ2

vc
) with µv0

≥ 0 (6.20)

where vc is the sea current’s speed, µv0
and σ2

vc
are parameters that adjust respectively

the dependency from the previous state and the variance of a Gaussian sequence. Those

characterise the behaviour of simulated sea current. Figure 6.17 shows an example for a

moderate sea current generated with the GM model and used for simulation experiments.

A similar model is used for sea current’s direction:

ψ̇c(t) +µψ0
ψc(t) = N(0,σ2

ψc
) with µψ0

≥ 0 (6.21)

where ψc is direction, µψ0
and σ2

ψc
define the mean and variance of the Gaussian se-

quence. Altogether random variables vc(t) and ψc(t) describe the behaviour of external

disturbances acting on the vehicle during simulated experiments. Parameters (µv0
,σ2

vc
)

and (µψ0
,σ2

ψc
) are thus chosen to introduce slow variations of speed and direction in the
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Figure 6.18: Overview of Nessie AUV’s software design. Highlighted are the main ROS nodes and
data topics that control the vehicle’s functionality for a generic mission.

simulated environments when evaluating the vehicle’s performance in the presence of

external disturbances.

6.6 Software Architecture

One further relevant aspect for the Nessie AUV platform is the availability of a software

architecture build on top of the ROS framework [135]. This is characterised by a few

principal elements or nodes that deal with vehicle’s navigation, control and interfacing with

hardware components (e.g. low level drivers). Communication among nodes happens

with the exchange of messages on dedicated data communication channels or topics. Most

of the relevant information is related to navigation, propulsion subsystem and energy

monitoring topics that provide base measurements for the proposed architecture at an

approximately constant rate of 10 Hz.

An overview of the software nodes composing the Nessie AUV’s architecture is shown

Figure 6.18. The Navigation node collects measurements from on-board sensors (e.g. DVL,
GPS, IMU) and it estimates the vehicle’s navigation state sharing it with other relevant

nodes using the /nav/status topic. Those are the Mission Manager, Task Executor and

Control System nodes. The higher level node is tasked with the supervision of mission

execution, starting and controlling the development of actions (or tasks) needed to

reach the current mission’s goal. Information is exchanged with the task executor using

the /action/request and /action/status topics. At intermediate level, this second

node monitors the execution of a single task, calculating trajectories, managing the
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navigation and controlling the data acquisition processes. Exchange with the control

system happens using the /path/request and /path/status topics. The third node,

instead, takes care of platform’s control, generating actuator commands (advertised on

the /thrusters/commands topic and later used by actuators driver) and producing the

necessary feedback for the upper nodes.

Two main abstractions are used in such a design: the concept of action (or task)

and of path. The former is used to describe an atomic part of a longer mission and it

is characterised by few values (e.g. numerical id, action name, list of parameters) that

universally identify a specific task that the vehicle is requested to execute. Action feedback,

instead, contains information about outcome (e.g. success or failure) and duration for a

given action. Such a formulation is the result of experience collected during the PANDORA

project, leading to further studies [136], [137] in interfacing higher level planning systems

with the ROS framework as in case of the ROSPlan [137] system. The path concept, on

the other hand, is used to represent the vehicle’s navigation trajectories by specifying a

set of intermediate waypoints, an interpolation mode (e.g. linear, quadratic, piecewise)

and a locomotion strategy (e.g. smooth, stop and hover, etc.) that fully characterise the

final AUV’s behaviour. In the case of the Nessie AUV such an abstraction is needed to

take into account the different navigation capabilities derived by the specific actuator’s

configuration. Even for this concept a feedback message is provided, including information

about path completion, average speed and duration used to better analyse the actual

platform’s behaviour.

With all these aspects in mind, the energy-aware architecture is implemented as a

collection of additional software nodes that consume and share information with the

existing vehicle’s architecture and as a small Hardware Abstraction Layer (HAL) that

interfaces with the energy monitoring components. The choice of using the ROS framework

simplifies the integration with modern vehicle’s designs and, at the same time, it allows

the distribution of heavy computations, for instance large regression analyses, among

different on-board computers such as the ones available on the Nessie AUV.

In this section two relevant implementations are introduced to describe the software

elements integrated in the vehicle’s architecture for conducting field experiments with

the Nessie AUV’s platform. Those are related, respectively, with the fault mitigation

and the performance estimation frameworks described in previous chapters. The first

implementation deals with fault injection procedures, used for simulating the presence

of faults in real hardware. The second, instead, deals with monitoring of the vehicle’s

navigation path monitoring. This is used to extract performance metrics while navigating

in the field and calculating runtime estimations used for the improving the navigation.

6.6.1 Fault Injection

A relevant implementation for the Nessie AUV is a dedicated fault injection layer that allows

the introduction of actuator failures to the vehicle without reconfiguring low level drivers,
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Figure 6.19: Software schema for fault injection in the thruster subsystem. Highlighted are the
main ROS nodes and data topics that control the propulsion subsystem’s functionality at runtime.

the control subsystem or, more in general, without changing the platform’s behaviour.

Introduction of failures is controlled at runtime by remote operators during field testing

and it prevents the AUV from operating correctly if no further action is taken. Figure 6.19

shows an overview of the software nodes used in the proposed system. The central node

is the Fault Injector module. This receives its configuration from the /thrusters/faults

topic and it manipulates the actuator’s commands on the /thrusters/commands one

by adjusting the equivalent thruster characteristics as detailed in section 4.3. Another

node is the Thrusters Monitor. This receives the control input, generated by Control
System upon requests from the autonomy software on the /pilot/request topic, and

the measured thruster’s response from the /thrusters/feedback topic. At the same it

calculates internally the diagnostic metric using the schema introduced in section 4.2

sharing it on the /thrusters/diagnostics topic for logging purposes. After calculating

the metric the actuator’s health status is estimated and published together with the

analytical thruster models output on the /thrusters/efficiency and /thrusters/model

topics.

6.6.2 Performance Monitor

Another relevant implementation is the navigation’s path monitoring system built around

the concept of performance estimation. This calculates at runtime the performance’s

metrics introduced in Chapter 5 and it provides samples for the non-linear regressions

used to characterise the expected vehicle’s behaviour in presence of disturbances. An

overview of the software nodes for this implementation is shown in Figure 6.20.

The central component is the PathMonitor node. This analyses the vehicle’s navigation

using the concept of path (i.e. a sequence of waypoints through which the locomotion

trajectory is calculated) and of trajectory segmentation as introduced in section 5.2.

Paths are advertised by the Task Executor node on the /path/request topic. This node

handles the execution of all tasks that compose a longer mission. Navigation data is
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Figure 6.20: Software schema for performance estimation. Highlighted are the main ROS nodes
and data topics that estimate the vehicle’s navigation performance at runtime.

provided instead by the Navigation System node on the /nav/status topic. Finally, low

level measurements are provided by the Energy Monitor node (e.g. acting as HAL for the

introduced LEM) using the /vehicle/energy topic.

Path messages include a list of waypoints (e.g. geometric points in the 3D world

space) and a set of ancillary parameters such as requested navigation speed, interpolation

modes, initial and final poses (e.g. geometric points and orientation vectors) that fully

characterise the vehicle’s behaviour. Using those values the monitor node calculates the

performance metrics and it exchanges data with the Regression Mapper node on the

/path/metrics topics. This last node is responsible for the data pruning and regression

processes, as detailed in section 5.2. Function evaluations happen at a slower rate (≤
1 Hz) than standard vehicle’s data exchange. This is because navigation among waypoints,

hence collection of performance samples, happens over a longer time frame, for instance

minutes instead of seconds for inspection missions in small areas. After conducting

regression analyses the mapper node advertises its estimations on the /perf/speed and

/perf/energy topics, respectively, for the effective navigation speed and energy usage per

unit distance when in presence of external disturbances.

6.7 Summary

In this chapter the experimental platform used in this work has been introduced. An

overview of its main features has been presented together with relevant details about

the electrical schema, battery and propulsion subsystem. Beside existing components a

small low-cost energy monitoring solution has been developed and integrated within the

Nessie AUV to augment its capabilities. This required the manufacturing of a standalone

board employing integrated Hall effect current sensors. Furthermore, modelling and

identification work, done on the vehicle’s actuators and on-board batteries has been

detailed to better describe the behaviour of those components. Finally, details about the

existing software design and the implementation of modules related to the energy-aware

architecture has been discussed.
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Chapter 7

Experimental Validation

For a successful technology, reality must

take precedence over public relations, for

nature cannot be fooled.

Richard P. Feynman

After introducing the energy-aware architecture in Chapter 3, the automatic miti-

gation framework in Chapter 4 and the runtime performance estimation in Chapter 5,

experimental validations and operational experience collected with real sea trials are

presented. Field operations have been conducted in the context of the EU FP7 PANDORA

[1] and EU FP7 ARROWS [2] projects. The mitigation framework is analysed first in

section 7.1. Controlled environment experiments and real sea conditions field trials are

used to evaluate the effectiveness of the proposed approach when implementing the

energy-aware architecture on the hover-capable Nessie AUV. This platform, introduced

in the Chapter 6, is employed for inspection missions conducted around human-made

structures in shallow water.

After discussing mitigation results the experiments related to runtime performance

estimation techniques are presented in section 7.2. Those, beside the Nessie AUV, involve

the use of another underwater platform, the IVER3 AUV, a commercial vehicle acquired

by the Ocean System Laboratory. This platform is used to conduct archaeological surveys

in the context of the EU FP7 ARROWS project. Comparison between the two platforms

allows a deeper analysis of the capabilities offered by the proposed runtime estimation

procedures. Finally, experiments with route optimisation procedures are addressed in

section 7.3. These are conducted with the use of simulated environments where different

type of external disturbances are introduced in inspection missions. A simulated Nessie

AUV is used for this purpose. The introduced EA-OP and EA-COP algorithms are analysed

with respect to an OVRP strategy already in use for the Nessie AUV.
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7.1. Fault Mitigation Experiments

Figure 7.1: Side view of Fort William’s mission area. Missions are conducted along both sides
of a marine pier with the vehicle going under it when changing inspection side. Combination of
high-tides and marine currents on the west side characterise this operating environment.

7.1 Fault Mitigation Experiments

The automatic mitigation framework is evaluated through a series of experiments con-

ducted using the Nessie AUV. First, the operational experience collected during sea trials is

reported. In this context the vehicle is deployed in a shallow water environment while in

presence of tidal currents. The main goal of such field testing is the performance analysis

in presence of external disturbances and longer execution times. Second, a series of

detailed tests, including injected failures, are conducted both in a controlled environment

and during real sea operations using a hardware-in-the-loop set-up. The vehicle is tasked

with an inspection mission, where a set of waypoints are visited to gather sensor readings

while respecting user-provided constraints. The controlled environment is used to identify

a baseline for the framework’s capabilities on-board the experimental platform. Real

environment experiments highlight how the effects of a more uncertain scenario impact

on the vehicle’s survival capabilities and, thus, on the outcome of assigned missions.

7.1.1 Operational Experience

The PANDORA project’s sea trials experience gave the opportunity of validating the

proposed architecture in the context of a real autonomous mission. The Nessie AUV is

assigned several tasks to be executed in a partially known scenario. The experimental site

is at The Underwater Centre’s facilities located in Fort William, Scotland (N 56°49′25′′,

W 5°6′30′′). There were five days of operations. This environment is characterized by

the presence of a marine pier, which can be seen in Figure 7.2a, that extends in the Loch

Linnhe waters, a sea inlet in the north-western Scotland.

This inlet extends for about 50 km south-west to the Firth of Lorn running to the

top of Great Glen Fault. Despite its relative dimensions this area is characterized by the

presence of strong tidal currents with tides low enough to make part of the sea floor around

the pier emerge during their lowest period. The operational scenario involves the pier
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(a) (b)

Figure 7.2: Satellite and detailed view of Fort William’s mission area. A pier structure stretches
from the shore into Loch Linnhe waters. In the satellite view mission (yellow) and restricted (red)
areas are marked to highlight the operational constraints.

structure and its surrounding waters giving the vehicle approximately 0.1 km2 of navigable

area. The presence of other activities, mostly related to diving training, ROV testing and

small ship traffic, at the operational site required the definition of some restricted zones

during the trials where autonomous operations were not allowed. Those can be seen in

Figure 7.2a. The mission area is characterized by the presence of high tides which modify

the perceived environment disturbances multiple times during a single day. Operations

have been carried out at spring tides time (i.e. when the effect of tides is strongest)

in order to evaluate the AUV platform when operating in harsh conditions with strong

tidal currents but still remaining in shallow waters. Concurrently with the main project’s

trials some of the proposed architecture components have been evaluated. Dedicated

experiments have been conducted during the last 3 days of the original experimental

campaign.

Dataset Duration (s) Distance (m) Energy (Wh) NRMSE (%)

day3-1 2040 246 63.74 7.28
day3-2 608 104 23.42 7.49
day3-3 1156 186 28.09 8.99
day3-4 2417 709 143.77 8.44
day4-1 3432 1258 197.46 10.46
day5-1 2440 736 130.03 2.84
day5-2 890 433 47.15 2.77
day5-3 1513 512 67.07 2.91

Table 7.1: Sea trial campaign’s results of Nessie AUV. The vehicle conducted several inspection
experiments around sunken marine structures in Fort William’s waters.

First, an analysis of the proposed thruster model, introduced in section 6.4, as an

on-board energy estimator has been taken into account. In this case the energy usage

of the modelled thrusters Em has been recorded during field experiments and compared

to the real measurements Er at the end of each mission. Results are shown in Table 7.1
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Figure 7.3: Energy usage estimation during a long inspection task (day4-1) in real sea conditions
while in presence of strong tidal currents. Highlighted are the 95% predictions boundaries from
the energy model.

where multiple missions have been conducted on the same day without recovering the

vehicle.

Evaluation of model performance is done by calculating the Normalised Mean Root-

mean-squared Error (NRMSE) metric for the vehicle operating in real conditions.

NRMSE(Em) =
RMSE(Em)
∆rmax

(7.1)

Such a metric is defined as the ratio between Root-mean-squared Error (RMSE) and the

maximum value for the short-term energy ∆rmax as defined in (4.9). The RMSE, instead,

is calculated as:

RMSE(Em) =

√

√

√

∑Ns

k (Em[k]− Er[k])2

Ns
(7.2)

where Em values are the model predictions, Er the real measurements and Ns is the number

of samples used to calculate this metric.

Considering the results shown in Table 7.1 and the trend line in Figure 7.3 it can be

observed that using the proposed thruster model together the low-cost energy monitor,

also introduced in section 6.2, as resource estimator allows the energy usage to be tracked

with an error of 10% (e.g. in a worst case scenario) without involving more sophisticated

navigation models. This performance is achieved when executing missions of up to one

hour of duration and more than one kilometre of navigation around marine structures.

A relevant case is the day4-1 mission, later shown in Figure 7.13, where a number of

correction manoeuvres (mostly involving vertical navigation due to trimming issues)

reduced the final accuracy a bit. Nonetheless, such a preliminary result provides a good

confidence level in using the data-driven model in simulated environments for further

evaluating the vehicle’s expected performance and for improving the planning of outdoor

missions.
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Figure 7.4: Detailed view of Nessie AUV’s lateral thrusters. On the left a broken actuator where
propeller’s blades are missing. Such a condition may have been caused by the ingestion of seaweed
inside the thruster’s duct leading to the structural failure of the propeller itself.

The overall results, on the other hand, show also that energy usage metrics are good

candidates for evaluating the runtime behaviour of the vehicle. They can provide a

qualitative indicator of the vehicle’s status not only from a diagnostic point of view but

also about its performance across a longer time window.

Second, the fault model and robustness of the diagnostic system have been tested.

During the last day of the sea trial campaign Nessie AUV experienced a real failure in

one of its thrusters. The fault, discovered at the end of the day, affected the lateral front

actuator with the loss of the propeller’s blades. After initial assessment the fault has been

classified as ingestion of sea weed in the thruster’s tunnel, causing detachment of blades

as shown in Figure 7.4. The diagnostic system was able to track the failure for all the

remaining part of the daily operations, including during some experiments involving the

injection of faults in other actuators. Such an opportunity provided a way of comparing

the behaviour of both a real failure and an injected one. For this specific type of fault the

damaged component shows a trend similar to an injected fault with a high degradation

profile (ηT = 0.4), as detailed in Figure 7.5. Such a behaviour is explained by observing

how the current usage pattern for the broken thruster deviates from its predicted trend by

the thruster model, as shown in Figure 7.6. Beside the numerical difference a damaged

actuator also presents a highly variable trend possibly caused by the effect of internal

speed controller with respect to stall protection procedures.

The failure experienced in the real operations motivates the use of a tracking algorithm

for the thruster efficiency (ηT ) parameter within the proposed system. This is because

in presence of complex failure scenarios, such as a broken propeller, the system is able

to rely on the short-term energy feature to reduce the estimated efficiency even without

introducing a dedicated estimation procedure1. In this case the efficiency parameter is

adjusted when a mismatch is found between the nominal characteristic and the measured

1In an ideal scenario this requires the vehicle to interrupt its current task, execute a specific set of actions
and compute an accurate estimation of the thrust efficiency (ηT ) increasing even more the mission duration.
Such a procedure should be trigged, instead, by a planning framework at an higher level.
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Figure 7.5: Comparison of runtime diagnostic metrics during a navigation task between an injected
fault (red) on the forward starboard thruster (ηT = 0.4) and a real failure (blue) in lateral front
thruster (broken propeller).
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Figure 7.6: Analysis of electrical current’s usage pattern for the lateral front failed thruster. The
plot shows a difference between real measurements (blue) and expected behaviour (red) according
to the specific thruster model.

feature or when the lower efficiency threshold is reached removing the actuator from

the thrust allocation problem. In the latter case the knowledge base component is notified

about such a removal and its internal belief about the degrees of freedom’s availability is

updated.

The presence of a real failure is also shown analysing the difference between model

estimation and real energy usage for the faulty thruster, as shown in Figure 7.7. In such

a case, despite residual uncertainty in the model, the real energy usage falls below the

modelled expectation. This is explained by the fact that when a broken actuator is working

outside its nominal range this kind of failure is detected even with a qualitative analysis

on energy usage trends.

7.1.2 Fault Analysis

Together with the operational experience further testing has been conducted to evaluate

the performance of the proposed architecture under the effect of faults. With this in
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Figure 7.7: Energy usage estimation for a faulty thruster during long inspection task (day5-2). In
this case the real energy usage falls below what estimated by the model. This confirms that the
lateral front thruster is not operating correctly.

mind more experiments are conducted in different scenarios: an indoor test tank in

steady environmental conditions, and in real sea environment, again, in the context

of the PANDORA’s project field trials. They benchmark the proposed architecture by

injecting different levels of failures. These focus on the forward and lateral thrusters of

ηT Max Thrust (N) Description

1.0 39.24 nominal conditions
0.8 31.39 low degradation
0.6 23.54 medium degradation
0.4 15.70 high degradation
0.2 7.85 severe degradation
0.0 0.00 complete loss

Table 7.2: Thruster degradation levels used in experiments with Nessie AUV. The thrust values
are calculated with respect to their nominal characteristic.

the Nessie AUV. These actuators are used for controlling the surge, sway and yaw degrees

of freedom. The vertical plane has not been included in those experiments because of the

lack of redundancy in the vehicle’s design and the poor operational performance when in

presence of a single vertical actuator. Nonetheless, while running such experiments the

execution time and the energy usage of each inspection task is measured. This enables the

comparison of the effects of the proposed mitigation technique with the normal behaviour

of the platform when no failure is present. To better represent the severity of injected

faults a simple fault classification, shown in Table 7.2, is introduced. Six different fault

levels are thus taken into account.

As described in section 4.3 different degradation modes can be handled with the

proposed system. In this first set of experiments the maximum available thrust has been

limited according to the injected level of degradation. This assumes a failure mode of type

one where a change in the thrust characteristic, similar to the one shown in Figure 4.3 in

the case of the low degradation fault, is introduced.
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Figure 7.8: Nessie AUV inside an indoor tank before conducting experiments. The vehicle is
hovering at fixed depth while executing inspection tasks in presence of injected faults.

7.1.3 Controlled Environment

The first set of experiments takes place in a 12× 9m indoor tank, shown in Figure 7.8,

with steady environmental conditions across different runs. The vehicle is given the task

of inspecting the pool’s corners looking for the presence of submerged objects. This task

is executed several times in presence of the different fault configurations, as described in

Table 7.2, introducing, in the first instance, the failure in a forward thruster and later in a

lateral one.

In the case of the Nessie AUV forward thrusters are mostly used for the surge degree of

freedom with a small contribution to the yaw only when navigating above manoeuvring

speeds while the lateral ones are mainly used for the sway and yaw degrees of freedom

especially when navigating at lower speeds, for instance during the hovering phase of

an inspection task. Vertical thrusters are not consider in these experiments as the lack of

redundancy on the heave DOF prevents this vehicle from maintaining efficiently attitude

during navigation in the presence of vertical thruster faults.
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Figure 7.9: Trajectory comparison for controlled environment experiments with forward thruster
degradation faults (ηT = 0.2). Dashed blue line shows the navigation path under nominal
conditions. Solid red line shows the path in presence of fault condition using the proposed system.
Double dashed orange line shows the path taken by the vehicle without mitigation.

With these considerations in mind the effect of thruster degradations is shown, for
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Figure 7.10: Experimental results for high degradation (ηT = 0.40) experiment of port-side
forward thruster. In this context the mitigation framework manages to estimate a thrust efficiency
(ηTest

= 0.46) close to the injected one.
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Figure 7.11: Available thruster’s forces and adjusted vehicle’s navigation speed during high
degradation (ηT = 0.40) fault injection experiment.

a relevant case, in Figure 7.9. In such a case deviations from planned trajectories are

explained with the presence of an additional torque generated by the unbalanced thrust

allocation among forward actuators. In these charts the vehicle’s navigation is reported

for both nominal and faulty scenarios to better analyse the effect on the trajectory tracking

capabilities of the Nessie AUV. After detecting a mismatch in the faulty actuator along

the first trajectory segment AB the proposed framework adjusts the underlying control

system resuming a standard navigation for subsequent segments BC , C D, DA. Navigation,

in this type of experiments, is conducted in point-to-point mode with 360-degree rotations

around points A, B, C , D needed to acquire more sonar images. The right-hand side of

Figure 7.9, on the other hand, shows with more detail the effect of an uncompensated

failure when conducting an inspection in the same scenario. Navigation is disrupted and

the platform exceeds limits on trajectory tracking tolerances (e.g. more than one metre

for lateral separation) resulting in a premature termination of the inspection task.

Figures 7.10 and 7.11 highlight the temporal evolution of calculated metrics showing

how the use of a mitigation framework allows the vehicle to recover and correct its

navigation while still executing its current task. Figure 7.10a shows the estimated thruster
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efficiency during the experiment. After injecting the fault at t = 38.0 s the mitigation

algorithm starts adjusting the weighting coefficients (wi) to mitigate the effect of detected

degradation. Figure 7.10b shows the calculated diagnostic metric. The two horizontal lines

represent the threshold used in the fault detection algorithm. These prevent false alarms

from triggering the mitigation algorithm while limiting its responsiveness. Figure 7.11a

shows the estimated available forces and Figure 7.11b the speed adjustments enforced at

runtime as upper-bound limits for the navigation speeds on selected degrees of freedom.

Numerical results are presented in Table 7.3 and Table 7.4, respectively, for the forward

degradation and lateral degradation scenarios. The tables show how different degradation

levels affect the execution of the inspection task. In both cases the vehicle managed to

complete the assigned task. Differences, instead, are more evident when in presence of

medium or severe degradations.

ηT Duration (s) Energy (Wh) Relative Dur. (%) Relative Ene. (%)

1.0 126.11 3.60 – –
0.8 140.99 4.19 11.80 16.30
0.6 148.92 4.62 18.08 28.37
0.4 176.68 5.80 40.09 61.03
0.2 203.77 6.96 61.57 93.11
0.0 204.31 7.02 62.00 94.94

Table 7.3: Experimental results for port-side forward thruster degradations. The vehicle completes
the inspection tasks with success for all the different levels of degradation.

For the Nessie AUV an increase of 60% and of 100% in the use of time and energy

resources during the execution of a single tasks are considered, respectively, as warning

and critical thresholds. These are used in the mission execution module to trigger an

adaptation of the current mission. This, for instance, may result in the interruption

of current task if the remaining resources are allocated on a more important task (e.g.

navigating towards a safe area). At the same time a replanning procedure is started taking

into account the updated state of the platform.

ηT Duration (s) Energy (Wh) Relative Dur. (%) Relative Ene. (%)

1.0 126.11 3.60 – –
0.8 137.68 4.16 9.18 15.52
0.6 137.30 4.68 8.88 29.87
0.4 197.36 8.03 56.50 123.14
0.2 203.27 8.49 61.18 135.75
0.0 205.95 8.62 63.31 139.37

Table 7.4: Experimental results for front lateral thruster degradations. For ηT > 0.6 vehicle’s
efficiency is severely reduced and the use of resources is sensibly increased.

One key aspect that needs to be considered when looking at these results is that

the goal of the fault mitigation algorithm is to strictly provide an appropriate allocation

strategy that enables the vehicle to continue its current task. This, as shown in the tables,
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Figure 7.12: Typical weekly tides for the Fort William’s mission area. The variation of water level
reaches about 3 meters during the highest cycle. Strong currents characterise the shallow water
environment where the vehicle is conducting its operations.

is done at the expense of two mission resources, available energy and remaining time.

These, while of lesser importance from a pure control point of view, play an important

role in supporting the calculations done at the planning system level when evaluating the

vehicle’s effectiveness for the current sequence of tasks. With this in mind an survivability

range, defined in terms of an acceptable loss of performance, can be identified for the

underwater vehicle used in these tests. The proposed approach allows the platform to

survive up to a 60% loss or high degradation (ηT = 0.4) in its forward actuators and up

to 40% loss or medium degradation (ηT = 0.6) in its lateral ones without disrupting the

assumptions usually taken at the planning level. This behaviour matches what was initially

observed in simulation studies. Furthermore, this suggests that for severe degradation

faults an additional mitigation strategy is needed to achieve reasonable performance in

the context of a long running mission.

7.1.4 Real Sea Environment

Together with the controlled conditions further testing has been conducted with the context

of PANDORA project’s sea trials. A set of navigation tasks similar to what has been tested in

simulated and controlled environments has been assigned to the vehicle operating next to

a human-made structure in shallow waters, as shown in Figure 7.2a. In this case additional

restrictions have been applied to the mission area and to the vehicle’s trajectory in order

to control the effects of tidal currents and allow safe operations. The results of these fault

analysis experiments are shown in Table 7.5. These show a similar trend with what has

been experienced in the controlled environment. Also for this case, the mitigation system

has been able to provide assistance in case of medium-high degradations. In the case of

more severe failures the vehicle was not able to keep up with the rising tidal currents,

shown in Figure 7.12. After the injection of a complete loss failure, the experiments have

been suspended due to the vehicle drifting considerably far from the assigned trajectory.
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ηT Duration (s) Energy (Wh) Relative Dur. (%) Relative Ene. (%)

1.0 80.96 4.29 – –
0.8 85.52 4.62 5.63 7.72
0.6 88.01 5.81 8.71 35.54
0.4 134.41 7.32 66.02 70.81
0.2 139.24 8.82 71.99 105.72
0.0 – – – –

Table 7.5: Experimental results for navigation tasks in presence of tidal currents. The case for
ηT = 0.0 resulted in a mission abort to due violation of trajectory tracking constraints.

On the other hand, the real scenario allowed it to conduct a long-range inspection, shown

in Figure 7.13, when in presence of injected failures. These experiments highlight the

differences between controlled environments and sea operations, where the presence of

currents, wind and waves can affect by great amount the vehicle’s performance if severe

failures are experienced.
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Figure 7.13: Uncompensated navigation data for a long running inspection task. The vehicle
uses its GPS unit to acquire the initial position before diving and starting the inspection task. The
injection of low and medium faults does not prevent the vehicle to continue its current task even
though its navigation accuracy is affected (as shown in top right part of this chart).

7.1.5 Discussion

The advantage of the proposed approach lies in the use of energy consumption measure-

ments to assess the status of the vehicle and to drive an automatic fault mitigation system.

Energy consumption measurements are often already available in existing vehicle’s designs

for monitoring purposes (i.e. battery management systems, etc.). The choice of analysing

such a quantity at runtime helps to reduce complexity of the system design as multiple

features can be derived from an homogeneous set of measurements. This allows the

proposed architecture to be implemented on several autonomous underwater vehicles

without requiring big modifications rather using a small addition of some sensors if an

energy metering device is not present.

116



7.2. Runtime Performance Experiments

The experimental results provide an insight on the achievable performance with the

proposed architecture. They show that the use of a data-driven approach for extracting

the thruster model that allows quick characterisation of the behaviour of such components.

This is done with a good accuracy and without the need for dedicated test equipment other

than the vehicle itself. Furthermore, the use of the extracted model as an energy usage

estimator has been validated in real sea conditions. This offers satisfactory estimation

confidence for tasks lasting up to one hour even in presence of tidal currents. These affect

the system with strong external disturbances that can reduce the accuracy of a short-term

fault detection in presence of low degradation faults. Such a behaviour is explained with

the use of adjusted detection thresholds that reject an increased disturbance’s level without

affect the system’s capabilities of detecting more severe faults. On the other hand by

looking at the long-term energy usage analysis the system is capable of qualitatively

detecting deviations from the expected behaviour suggesting the presence of a possible

failure even under the effect of strong external disturbances.

The effectiveness of the proposed energy-based diagnostic system is also analysed

by comparing its behaviour under the effect of synthetic and real failures. The presence

of a broken propeller is shown as a substantial change in the energy usage pattern of

the damaged actuator. This, despite the presence of residual uncertainty and external

disturbances, is detected and propagated to the output diagnostic metric in a similar way

to the synthetic faults. This validates the proposed approach for handling different types

of failures under a unified representation for the state of faulty actuators.

The overall performance of the proposed automatic fault mitigation framework has

then been analysed. The role of such a system is to provide an automatic response to

an unexpected event allowing the autonomous system to continue with its mission. The

results, shown in the previous sections, while specific to the underwater platform used

during the experiments suggest that by employing this framework the vehicle’s survivability

is improved. Moreover, the experimental campaign suggests a procedure to evaluate the

operational limits of a similar framework. This analyses the changes in energy usage and

execution time while in presence of incremental levels of degradation failures. Such an

approach can be used with a generic fault mitigation system and therefore characterise its

effectiveness when considering a long-term autonomy mission conducted in the presence

of unknown environments.

7.2 Runtime Performance Experiments

In this section, instead, experiments with the runtime performance estimation framework

are presented. These show the use of proposed system on two different autonomous

underwater vehicles operating in real conditions. The first is IVER3 AUV [32], a commercial

platform used for oceanographic surveys. This vehicle took part in the experimental

campaign for the EU FP7 ARROWS project [2]. Sea trials involved archaeological sites
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Figure 7.14: IVER3 AUV before deployment during the field trials of the EU FP7 ARROWS project
in Trapani, Italy.

in Trapani, Italy and Tallinn, Estonia. The IVER3 AUV is a lightweight torpedo-shaped

autonomous vehicle equipped with a side-scan sonar for sea bottom inspection, as shown

in Figure 7.14. It has a single large tail thruster together with four control surfaces to

maintain its attitude during navigation. It has a 560 W h LiPo battery pack for 8 to 14

hours operations while operating at 2.5 knots cruise speed. The second is Nessie AUV, a

prototype vehicle used for inspection surveys in shallow waters, introduced in Chapter 6.

This platform was involved in the field trials of the EU FP7 PANDORA project [1] in Fort

William, Scotland, UK.

7.2.1 Field Missions

In this analysis two real missions are considered. One is conducted with the IVER3 AUV

executing a survey task in an unexplored area. Another conducted is with the Nessie AUV

as an initial field navigation test before executing a longer term experiment. In the IVER3

case an ARROWS’s project mission is considered. This requires a survey vehicle to conduct

an initial sampling of the environment with the goal of detecting underwater objects.

After discovering artefacts a different type of vehicle, such as the hover-capable Nessie

AUV, may be dispatched towards object locations for further inspections. An example

of the IVER3 survey is shown in Figure 7.15, where archaeological artefacts and other

human-made objects are detected using side-scan sonar images.

The first mission is shown with more detail in Figure 7.16a. This employs a lawnmower

navigation pattern to quickly survey a large archaeological site. Figure 7.16b shows the

computed values of the performance metric εnav(ψ) while the vehicle navigates along its

planned trajectory. The sequence of peaks and troughs is explained with the presence

of an east-bound sea current that affects the AUV’s navigation. Upstream legs require

more effort to overcome environmental effects while downstream ones are more efficient.
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Figure 7.15: Side-scan images acquired by IVER3 AUV during the field trials of the EU FP7
ARROWS project in Rummu, Estonia.

Figure 7.16c shows the distribution of εnav(ψ) values for downstream legs with a Gaussian

fit overlaid on raw samples. This highlights the effect of uncertainty and residual noise on

the calculated metric, spreading measurements away from a mean value and following

an approximate Gaussian trend as introduced in the previous sections.

Similar results are obtained with the Nessie AUV both in presence of regular and

complex trajectories. A detailed example is shown in Figure 7.17a. The vehicle executes

a two leg navigation in coastal waters while in the presence of strong tidal currents. This

task is part of a PANDORA’s project field mission that employs this AUV for inspection

of human-made structures. In this case two different navigation costs are detected as

shown in Figure 7.17b. Navigating downstream requires a εnav of about 220 J/m while

the upstream counterpart about 325 J/m. Figure 7.17c shows the distribution of εnav(ψ)
values for an upstream leg. The overlaid fitting line shows a partial Gaussian trend.

This non-ideal behaviour is explained with the presence of higher noise in the energy

measurements collected on-board of Nessie AUV. Despite this behaviour the proposed

framework provides a satisfactory capability for characterising the operating environment

when used in both vehicles.

7.2.2 Navigation Patterns

Early experimental results suggest that navigation patterns including few principal direc-

tions (e.g. less than eight) are not well suited for obtaining a complete estimation of the

quantities that depends on the vehicle’s heading. For this reason a few other sampling

strategies have been tested in the field to quickly obtain performance estimates. Two

examples are shown in Figure 7.18 along with their effects on regression’s results.

The first is a radial pattern executed by the IVER3 vehicle. This trajectory is commonly

used with this type of platform when performing a detailed (on the spot) sonar acquisition

or for on-board sensor calibration. Figure 7.18a and Figure 7.18c shows the resulting

energy cost for unit distance estimation for a 10 legs radial pattern. The polar chart shows
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Figure 7.16: IVER3 AUV performance analysis in presence of an east-bound sea current. Chart
(a) shows the path followed by the vehicle. Chart (b) shows the raw value for the instantaneous
εnav(ψ) performance metric over the course of navigation. Sequence of peaks and throats is given
by change of heading after each leg. Chart (c) shows the distribution of samples for east-bound
legs.

120



7.2. Runtime Performance Experiments

−200 −150 −100 −50 0 50
X (m)

0

20

40

60

80

Y
 (

m
)

Nessie AUV Navigation

(a)

0 50 100 150 200 250 300 350 400 450
Samples

180

200

220

240

260

280

300

320

340

360

E
n
e
rg
y
 M
e
tr
ic
 (
J/
m
)

Nessie AUV Energy Metric

raw metric

(b)

290 300 310 320 330 340 350 360
Energy Metric (J/m)

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

p
(m

e
tr
ic

)

Nessie AUV Energy Metric

gaussian fit

average metric

raw data

(c)

Figure 7.17: Nessie AUV performance analysis in presence of tidal currents. Chart (a) shows the
vehicle’s forward speed along a two-leg navigation pattern. Chart (b) shows the instantaneous
εnav(ψ) value over the course of navigation and highlights the difference between legs. Chart (c)
shows the samples distribution for the higher cost leg.
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Figure 7.18: Analysis of field performance estimation experiments. Charts (a) and (b) show
an example of inspection missions for the IVER3 vehicle and the Nessie AUV operating in real
environments. In both the forecasted sea current is shown by an arrow. Polar charts (c) and
(d) show the estimated energy cost for unit of distance εnav(ψ) (J/m) for each vehicle. Dashed
lines represents the initial belief at planning stage while solid lines show the estimated cost using
runtime measurements during navigation.

how the initial belief (i.e. a uniform navigation cost) is modified by the effect of external

disturbances. In the specific case an increase of 20% in energy usage is detected for

directions close to the forecasted current. In this example downstream legs require about

80 J/m while upstream ones about 100 J/m. The second is a smooth pattern conducted

with the Nessie AUV. Figure 7.18b shows a more complex trajectory followed during

an inspection around human-made structures. The environment is characterized by the

presence of moderate tidal currents. The resulting estimation is shown in Figure 7.18d.

This vehicle navigates at lower speed and operates several manoeuvres while in hovering

mode. During this experiment energy measurements are heavily filtered by conditions

(5.23), (5.24), (5.25) resulting in a longer sampling time (needed to collect enough

samples) to build a detailed estimation of the environment.
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7.2.3 Discussion

A relevant aspect of IVER3 AUV and Nessie AUV results is the smoothness of the estimated

function εnav(ψ). This is explained by several factors. One is the domain partition

capability of the underlying regression algorithm that allows the modelling of changes

in the non-linear function with an increased number of kernels in the underlying model.

Another is the availability of several measurements along the function domain, this

allows for a better representation of the full heading range with smoother results. An

example of this effect is shown in Figure 5.2 where clusters of samples, related to multiple

measurements during a single trajectory leg, allows the characterisation of the underlying

function along its [−π,π] domain. In the case of IVER3 AUV, on the other hand, fewer

navigation directions have been explored. This is given by the use of regular patterns (e.g.

star, cloverleaf, lawnmower, etc.) when conducting field missions. Under this condition the

proposed procedure generates a less smooth estimation of the εnav(ψ) function. Despite

this limitation the resulting estimation is still considered satisfactory because it can further

improved, with respect to other headings, by conducting a small training pattern before

starting new missions.

Another relevant aspect is the presence of noise in the measurements. This is better

shown for the Nessie AUV case where a reduced sensor accuracy, with respect to the other

vehicle, affects the estimation. This is shown, for instance, in Figure 7.18d where the

absolute direction (i.e. identified with the absolute maximum of the εnav(ψ) function)

is estimated with some error. More generally, when taking into account the presence

of noise, an increased sampling time is needed to provide a complete estimation of the

external environment.

On the other hand, quantitative differences for the εnav(ψ) functions of the two

vehicles are explained by taking into account their specific designs. The Nessie AUV

features multiple actuators allocated for forward and lateral navigation, that, together

with the use of hover capabilities, is the source for an increased energy consumption. The

IVER3 AUV platform, instead, features a single thruster with actuated fins that control its

navigation. When executing comparable navigation tasks the IVER3 platform results in a

less energy usage. Despite these differences the proposed framework produces satisfactory

results both with the commercial vehicle, sampling data at lower rates (≈ 1 Hz), and

with a more complex prototype, sampling at faster rates (≈ 10 Hz), without introducing

any significant change in their existing software architectures. This aspect suggests how

the use of runtime energy measurements is applicable to a broad range of underwater

vehicles with different level of autonomy and with an accuracy proportional to the quality

of on-board sensors.
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7.3 Route Optimization Experiments

After discussing the runtime estimations, simulation experiments are presented in the

context of route optimization procedures. These analyse the performance of energy-aware

route planning algorithms, introduced in Chapter 5, when employing the previous energy

estimations as metrics to adjust the vehicle’s mission while operating in presence of

unknown disturbances. The algorithms, EA-OP and EA-COP, are evaluated with respect

to a standard OVRP formulation that does not incorporate any energy-derived metric or

constraint. The MILP/MIQP solver used for evaluating routing problems is Gurobi [138],
a commercial solution optimised for fast calculation often used in real vehicles. All

computations are performed on a computer with an Intel Celeron J1900 CPU and 8GB of

RAM. This configuration is similar to the payload computers integrated in IVER3 AUV and

Nessie AUV. In the following experiments a torpedo-shaped underwater vehicle is taken

in account. Its behaviour is described using an AUV motion model formulated according

to [69]. Model parameters, taken from Nessie AUV, are derived from early identifications

and geometrical calculations, as detailed already in section 6.5.

Simulated experiments are conducted for a typical inspection scenario that PANDORA’s

or ARROWS’s vehicles used in their real life applications. These missions require the

vehicle to visit a number of inspection points (IPs) where a potential object of interest

can be located. Limits on energy usage and execution time are also defined to emulate

operational constraints often experienced in real deployments. Points are randomly

distributed in a known area following a grid pattern. These are, for instance, identified

during a previous survey (e.g. performing a fast and less accurate scan of the environment)

or generated using a randomised inspection algorithm [139] usually employed when

small a priori knowledge is available.

The goal of these experiments is to evaluate the improvements that energy-aware

algorithms can introduce in the execution of missions. First, a brief introduction of initial

training procedures is presented. These aims at collecting preliminary environmental data

for the runtime estimation framework, improving the internal belief of routing procedures

and characterising the initial performance metrics. After dealing with those aspects, a

comparison between OVRP and EA-OP is introduced. A pair of simulated inspections

are conducted in presence of consistent environmental conditions (e.g. point location,

state of currents) and of resource scarcity using the two algorithms. In this context it

is assumed that the energy budget given to the vehicle is not enough to complete the

inspection of all IPs. Results are calculated measuring the mission outcome, the number

of successfully inspected points while respecting the requested constraints, while taking

into account different configurations for the external disturbances. Finally, a comparison

between EA-OP and EA-COP is discussed. This, following a similar approach to the previous

simulation, evaluates the two algorithms taking into account another the utility metric also

known as information gain. This measures the amount of potential knowledge collected
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Figure 7.19: Circular training pattern. This is derived from a 16 edges regular polygon and allows
the collection of initial measurements for the runtime performance estimation algorithms described
in the previous sections. This charts shows the vehicle’s behaviour in presence of southbound sea
current.

during survey taking into account the sensor model and the spatial relationships between

neighbouring inspection points. Both algorithms include energy-aware implementations

therefore the EA-COP is employed when clusters of points are expected in the mission

scenario.

7.3.1 Training Strategy

Before conducting each experiment the initial performance metrics are derived from the

simulated environment using a training procedure. This is devised to be conducted while

carrying out initial navigation tests and to assure that transitory effects of the underlying

on-line algorithms are not taken into account in the results. This training procedure

requires the vehicle to follow a regular pattern after being deployed in the designated

mission area. The pattern is generated from a regular convex polygon of nb ≥ 8 edges. This

assures the collection of measurements along at least nb principal directions. An example

result is shown in Figure 7.19 and 7.20, where a 16 edges polygonal pattern is used in

presence of a variable current. This is generated using the model (6.20) with direction

ψc = 0 and an upper speed limit of 0.40 m/s. As shown in the navigation chart strong

sea currents affect also the accuracy trajectory following procedures. This is more evident

when the vehicle is navigating orthogonally to the current direction. For the rest of this

section a similar training procedure is assumed for the simulated vehicle. Environmental

knowledge is cleared between experiments to make sure estimation algorithms do not

include any residual sample for previous simulations.
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Figure 7.20: Results of the regular polygon training procedure in presence of a varying sea current.
Chart shows the estimated performance model (solid line) using the LWPR regression in presence
of 16 different clusters of measurements. Dashed lines show the prediction intervals of the resulting
model.

7.3.2 Simulated Missions

The simulated inspection scenario assumes an underwater vehicle is given a set of ran-

domized inspection points to be visited in an optimal way within specific energy and

time constraints. These are chosen to analyse the proposed framework in the presence of

resource scarcity, for instance, allocating less energy resources than the amount needed

to cover all the inspection points. The environment is characterized by the presence of

an unknown varying current with a given upper-bound vcmax
. Each inspection is repeated

twice, first using a standard OVRP approach and second using the EA-OP formulation

introduced in section 5.3.1.

An example scenario is shown in Figure 7.21, where a 5 × 10 inspection grid is

surveyed in presence of a moderate current with an upper-bound of 0.60 m/s. In this

experiment the OVRP inspection depletes the allocated energy resources before reaching

the designated ending point. This results in the activation of a contingency plan while

still inside the mission area. On the other hand, the EA-OP inspection completes in the

expected recovery zone (e.g. the top-right corner’s point of the map) while discarding

intermediate inspections and selecting more favourable navigation legs during navigation.

A comparative outcome, in terms of energy usage, is shown in Figure 7.22. In this chart

the simulated energy usage is analysed for the two strategies. In the EA-OP case a better

use of on-board constrained resources allows the vehicle to visit more points than the

classic OVRP strategy while still employing the same amount of allocated energy. This

effect is explained by the selection of appropriate navigation legs that are more favourable

from a locomotion point of view according the estimated performance metrics.

In order to avoid biased results, given, for instance, by a specific configuration, multiple

simulations are conducted varying parameters like the sea current directionψc, the upper-

bound of simulated current vcmax
and the assigned energy budget emax . For the ψc term 20

different directions are considered, segmenting the direction domain [−π,π] in steps of
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Figure 7.21: Comparison of route planning algorithms for an inspection mission with limited
energy resources. Chart (a) shows the route calculated with the standard OVRP formulation. Chart
(b) shows instead the proposed EA-OP algorithm in presence of the same simulated environment.
The EA-OP visits more IPs improving thus the vehicle’s effectiveness in this scenario.
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Figure 7.22: Energy usage comparison of simulated inspection missions. Squares represent the
OVRP algorithm, circles the EA-OP and diamonds the EA-COP one. The dashed line represent the
energy threshold emax calculated for the simulated mission scenario.

18 degrees each. For the vcmax
, instead, 5 configurations are taken into account, varying the

maximum allowed current speed from 0.00 m/s to 0.80 m/s, simulating thus each iteration

a stronger external disturbance. Regarding the energy budget 4 profiles are considered in

the [100%, 40%] range. These, beside an initial baseline case, model scenarios where a

vehicle starts the inspection mission with less resources available that the one needed to

conduct a complete inspection of the mission area. This budget is derived with respect to

the OVRP solution as:

emax = eOVRP · γb (7.3)

where emax represent the allocated mission energy, γb is a scaling coefficient and eOVRP

is the estimated energy requirement calculated using the reference OVRP algorithm for

the current environmental configuration (i.e. disturbance speed and direction). Finally,

10 variations of the inspection points positions are also taken into account. These all

generate a randomized 5× 10 inspection grid like the one shown in Figure 7.21. In total

4000 experiments are conducted using the combination of above parameters.

Results are presented in Table 7.6, where, for each sea current vcmax
and energy budget

configuration γb, and the mission improvement∆EAOP are reported along with the average

number of inspected points n̄ovrp and n̄eaop, respectively, for the two strategies. Individual

results are averaged for the different sea current directions ψc and grid configurations

generated at runtime. From a general point of view, averaged results show how the pro-

posed EA-OP formulation allows for a better mission execution than what was achievable

with a standard OVRP approach. Such a behaviour highlights how the introduction of an

energy-aware model improves the mission efficiency proportionally with the intensity of

external disturbances. Furthermore, it is shown also that the EA-OP strategy maximises

the inspection activities when operating with scarce resources, visiting on average more

locations than the reference approach while still employing the same energy resources.

After analysing the improvements in terms of mission’s outcome, another set of experi-

ments is conducted considering the concept of utility or information gain. This metric
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7.3. Route Optimization Experiments

vcmax
(m/s) γb nOVRP nEAOP ∆EAOP (%)

0.00

0.4 14.67 16.48 12.34
0.6 22.52 24.57 9.09
0.8 29.48 31.62 7.27
1.0 36.90 38.10 3.23

0.20

0.4 14.24 16.05 12.71
0.6 21.76 23.90 9.85
0.8 28.48 30.52 7.19
1.0 35.52 37.19 4.69

0.40

0.4 14.00 16.43 17.35
0.6 21.33 24.24 13.62
0.8 28.19 30.95 9.80
1.0 35.00 37.33 6.67

0.60

0.4 13.38 16.05 19.93
0.6 20.05 23.95 19.48
0.8 25.95 30.76 18.53
1.0 32.05 36.48 13.82

0.80

0.4 12.55 16.00 27.49
0.6 18.43 23.90 29.72
0.8 23.33 30.95 32.65
1.0 28.38 36.29 27.85

Table 7.6: Averaged results for the simulation experiments. Different energy budgets are employed
when conducting the inspection tasks. Values less than 40% are not used as they prevent the
vehicle to reach the recovery point using both algorithms.

represents the amount of environmental knowledge that is collected during the simulated

mission considering the spatial relationships among neighbouring inspection points. Such

an approach takes into account a simulated AUV fitted with a side-scan sonar. The sonar

has 200 m sensing range and it is modelled after the device used on IVER3 AUV during

ARROWS project’s trials. Experiments compare the OVRP, EA-OP and EA-COP formula-

tions in terms of utility collected while conducting simulated inspection missions. The

utility metric, defined previously in section 5.3.2, is calculated according (5.58) by char-

acterising the exponential fading model with a distance threshold dsens = 200m. Having

Figure 7.21 in mind, it is shown that few IPs are spaced less than dsens metres apart yet

the inclusion of extra constraints in the correlated problem variant aims at improving

further the vehicle’s effectiveness in the field. The experimental set-up follows what has

been described for the previous analysis. Even in this context energy budget limitations

are considered and intermediate results are averaged over multiple configurations of

the external disturbances ψc. Aggregated results are reported in Table 7.7. These show

how the use of EA-COP strategy allows the maximisation of the resulting utility (IEACOP)

with respect to the ones (IOVRP , IEAOP) obtained employing the other formulations. It

is also shown that higher differences in the utility (∆EAOP , ∆EACOP) are obtained with

respect to the classic OVRP approach when introducing lower energy budgets. Such a
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7.3. Route Optimization Experiments

vcmax
(m/s) γb IOVRP IEAOP ∆EAOP (%) IEACOP ∆EACOP (%)

0.00

0.4 14.47 18.22 25.95 19.31 33.48
0.6 22.56 26.67 18.24 27.70 22.77
0.8 30.35 33.49 10.32 35.03 15.40
1.0 36.74 40.32 9.76 41.60 13.24

0.20

0.4 13.99 17.90 27.91 18.84 34.65
0.6 21.82 26.27 20.38 26.85 23.04
0.8 29.59 32.39 9.47 34.07 15.12
1.0 35.50 38.50 8.46 40.91 15.24

0.40

0.4 13.75 18.16 32.05 18.83 36.96
0.6 21.33 25.89 21.37 26.99 26.53
0.8 29.08 32.23 10.81 34.06 17.12
1.0 34.99 38.46 9.92 40.28 15.14

0.60

0.4 13.08 17.73 35.59 18.20 39.14
0.6 20.04 25.57 27.60 26.49 32.20
0.8 26.63 31.60 18.67 33.06 24.16
1.0 32.44 37.07 14.28 38.34 18.18

0.80

0.4 12.11 17.37 43.38 18.07 49.14
0.6 18.37 25.39 38.22 26.36 43.51
0.8 23.87 31.49 31.95 32.48 36.06
1.0 28.65 36.47 27.28 37.47 30.76

Table 7.7: Averaged results for information gathering experiments. These compare EA-OP and
EA-COP strategies when considering the amount of environmental knowledge collected during
the inspection task.

behaviour is explained considering that the OVRP formulation produces routes that visit

a low number of inspection points. In fact, by referring to the expression (5.58), the

utility is proportional to the length (e.g. number of IPs) of the calculated route and to

the presence of neighbouring points around the visited areas. Still referring to the same

expression, the collected reward (ri) for each point is assumed equal to 1, making the

inspection of each point equally profitable. Detailed results are shown also in Figure 7.23

and Figure 7.24. The former shows how a different route is introduced by the EA-COP

and it highlights the IPs covered by sensing areas. The latter, instead, shows the temporal

behaviour of simulated mission. In this specific case the EA-COP collects more utility than

the EA-OP solution and conducts a shorter mission without reducing the overall outcome.

After discussing the mission’s improvements, an analysis of the computation time for

the proposed formulations is presented in Table 7.8. In this context different grid sizes

are taken into account to evaluate the effort required in solving the formulated problems.

These are defined using the same setting as for the previous inspection experiments.

Results show how the EA-OP and EA-COP approaches require more time than the standard

OVRP to obtain an optimal solution after increasing the dimensionality. This behaviour is

explained by the presence of more constraints in the MILP and MIQP formulation for the

energy-aware approach.
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Figure 7.23: EA-COP inspection route. This chart shows the solution calculated with the EA-COP
formulation taking into account the spatial relationships among IPs. Circles identify the useful
sensing zone centred around the visited points. EA-COP solutions gather more environmental
information respect to the EA-OP ones.

On the other hand, despite being in presence of NP-hard problems the availability of

powerful hardware in modern AUVs makes it suitable to handle moderate sized optimiza-

tion tasks when operating in the field without relying on external interactions or off-line

calculations. Furthermore, it is also shown that the EA-COP requires the maximum effort.

This is given by the introduction of quadratic terms in its formulation. Nonetheless, this

algorithm provides the best overall results in terms of collected utility.

7.3.3 Discussion

This work introduces a runtime energy estimation framework that allows AUVs to derive

their navigation performance in presence of external disturbances, such as sea currents.

This is done using measurements available on-board and without the support of external

Grid Size tOVRP (s) tEAOP (s) tEACOP (s)

3× 4 0.04 0.51 0.31
4× 8 0.12 1.52 1.77

5× 10 1.94 4.62 5.02
6× 12 7.18 36.27 47.21

Table 7.8: Averaged execution time for route optimisation experiments using different grid sizes.
Solutions are calculated considering a 5% optimality gap (or MIP-gap) and employing a large
energy budget. Environmental conditions are kept consistent for all simulated scenarios.
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Figure 7.24: Utility comparison of simulated inspection missions. Squares represent the OVRP
algorithm, circles the EA-OP and diamonds the EA-COP one. The dashed line represent the
lower-bound Ωlow for utility collected in the simulated scenario.

sensors. Beside monitoring aspects, the availability of runtime estimations allows the

introduction of an energy-aware route optimization procedure that improves the use of on-

board resources and the mission’s outcome when in presence of resource scarcity. Results

show an average improvement from 5% to 20% of the mission’s outcome when employing

the introduced EA-OP methodology. Experiments are conducted with a simulated vehicle,

modelled after the Nessie AUV, operating in the presence of external disturbances and

different configurations of sea currents. Simulated scenarios require the vehicle to inspect

a unknown area where several inspection points are provided along a randomised grid.

Different energy budgets are also taken into account. These simulate vehicle’s operations

in presence of resource scarcity: when the stored energy does not allow conducting an

exhaustive search over the overall mission’s area. In those conditions the benefits of

the proposed energy-aware strategies are more evident, especially when in presence of

moderate disturbances.

After discussing the results of a first comparison, the energy-aware algorithms, intro-

duced in section 5.3, are compared using the concept of mission utility. This measures

the environmental information gathered during the simulated inspections taking into

account also the spatial relationships among neighbouring inspection points. In this case

the introduced EA-COP strategy allows the maximisation of the overall outcome, even

if the number of inspections is not the same of the other strategies. Using the EA-COP

approach, simulated experiments show an improvement from 15% to 35% with respect to

a reference OVRP strategy. The correlated variant also improves the overall outcome with

respect to the non-correlated EA-OP approach. Both strategies demonstrate the capability

of improving the energy usage, optimising the vehicle’s navigation path and enforcing

the constraint of terminating the inspections in the user-defined recovery point without

depleting the on-board resources.

Beside dealing with mission’s results the computational effort for the introduced

algorithms has been evaluated on a platform similar to what is available inside the Nessie

AUV and IVER3 AUV. The EA-COP, given its quadratic formulation, results as the more
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demanding strategy. Nonetheless, for reasonable sized problems (e.g. about 75 inspection

points), its application does not require more than one minute of computational time.

Given the experimental results the EA-COP and EA-OP represent ideal strategies for

adjusting the vehicle’s behaviour using the performance estimations conducted with the

proposed architecture. Choice of one specific strategy instead of the other should be done

according to the available sensors and specific mission requirements.

7.4 Summary

In this chapter the experimental validation of the proposed energy-aware architecture has

been presented. This involved the Nessie AUV platform for the analysis of survivability

aspects in presence of actuator failures. In this case, the automated fault mitigation

framework, introduced in Chapter 4, has been evaluated in both controlled and real sea

environments. The operational experience, gathered during the field trials of the PANDORA

project, allowed the system to be evaluated in presence of a real failure. Ingestion of

seaweed disrupted the correct behaviour of a lateral actuator, leading to the loss of its

propeller’s blades, and allowing the comparison of the quality of the proposed diagnostic

metric with a real event and injected failures. Beside discussion of a real event, the effect

of progressively increased degradations has been further analysed with a series of tests

involving the forward and lateral actuators of the AUV. This allows comparing the actual

platform’s behaviour in presence of reduced capabilities and assessing the robustness of

mitigation strategies between controlled environment experiments and real life scenarios.

In the forward actuator case, a great level of recovery is experienced taking into account

the redundancy in the propulsion system. In the lateral one, instead, the effect of external

disturbances and unknown conditions reduces the survival capabilities to only medium

and low degradation failures. Nonetheless, the proposed framework generally improves

the vehicle’s effectiveness by offering runtime detection capabilities even when in presence

of more critical fault conditions.

After discussing survivability issues the use of a runtime performance estimations

framework, introduced in Chapter 5, has been analysed in the context of real sea exper-

iments. In this case, two vehicles, Nessie AUV and IVER3 AUV, are deployed with the

proposed framework when conducting PANDORA and ARROWS projects’ field experiments.

The AUVs were tasked, respectively, with an inspection mission and a more classical survey

while estimating at runtime their navigation performance. The operational environments

were affected by tidal and sea currents. The introduced system is able to detect differences

in their runtime energy consumption according to the relative orientations with respect

to external disturbances. Operational results show how the proposed approach allows

the characterisation of the vehicle’s behaviour in unknown mission’s environments when

operating on two different platforms.

Finally, other experiments have been discussed in the context of route optimization
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problems. These, introduced at the end of Chapter 5, are employed within the proposed

architecture to optimize the vehicle’s behaviour at runtime when operating in presence

of external disturbances. In this case multiple simulation experiments are conducted

to evaluate the effect of optimization procedures on the mission outcome. Inspection

scenarios, inspired from PANDORA and ARROWS projects’ tasks, are simulated when

considering different configurations for external disturbances. Algorithms are evaluated

with respect to a standard OVRP route optimisation procedure that does not include run-

time constraints. Different energy budgets are also introduced in the simulated scenarios.

These model the vehicle’s capability of operating in presence of resource scarcity.

The proposed EA-OP and EA-COP formulations improve, in most of the scenarios

under test, the overall mission’s outcome. The first strategy is more suited for achieving

the maximum number of inspections. The second, instead, maximises the information

gain when introducing a model for the on-board sensor’s payload. Both approaches allows

the improvement of energy usage, the termination of navigation within user-defined safe

areas, without depleting the on-board resources, and, more in general, the increase of

vehicle’s effectiveness in the field.
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Chapter 8

Conclusion and Future Work

The worthwhile problems are the ones you

can really solve or help solve, the ones you

can really contribute something to. No

problem is too small or too trivial if we can

really do something about it.

Richard P. Feynman

A novel energy-aware architecture for autonomous underwater vehicles has been built

around the concept of runtime energy usage monitoring. This extends existing autonomy

software solutions by providing additional capabilities that improve the vehicle’s reliability

and survivability when operating away from human supervision. Such capabilities are

delivered by fault mitigation and detection modules that assess the availability of mission

critical subsystems, such as the battery and propulsion ones, and by a runtime sampling

procedure that estimates the effective vehicle’s performance when operating in presence

of external disturbances, such as sea currents.

A practical implementation of the proposed architecture has been shown for an existing

underwater vehicle, the Nessie AUV, used for inspection missions. The results presented

in this thesis validate the use of the energy-aware architecture, highlighting the benefits

introduced for field operations and showing how vehicle’s effectiveness is improved when

taking into account failures and harsh environments. In fact, a vehicle using the energy-

aware architecture is able to operate in presence of soft-failures or degradations in its

actuators without interrupting task execution, to evaluate its navigation performance when

operating in disturbed environments and to adjust accordingly its sequence of task for

maximising the mission’s outcome. Less severe failures are automatically mitigated upon

their detection, more serious conditions instead require a proper mission’s restructuring

done taking into account the vehicle’s health status.

The energy-aware architecture addresses the two main questions introduced at the

beginning of this work. These aims at evaluating the use of energy consumption as a

source of information:
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• Is it possible to assess the internal qualitative state of an underwater vehicle by moni-

toring the energy usage of its internal components?

• Is it possible to estimate the effect of external disturbances on future mission’s perfor-

mance by monitoring the energy consumption of an underwater vehicle?

In the first case, self-assessment aspects have been investigated for the case of failures

in the propulsion subsystem. In the second one, the effect of sea currents have been

evaluated together with route optimisation procedures that employ metrics derived at

runtime. These procedures aim at improving the vehicle’s effectiveness while operating

in the field especially when partially known or variable environments are encountered

during long-term deployments.

With these objectives in mind the proposed architecture has been practically developed

on a hover-capable AUV used for real sea operations. Two main systems have been intro-

duced in its design: a fault mitigation framework and a runtime performance estimation

one. These are discussed in Chapter 4 and 5. Frameworks are built around the low-cost

energy monitor (LEM): an optional cost-constrained hardware solution designed for un-

derwater vehicles that do not offer detailed energy monitoring capabilities. This has been

introduced into the experimental platform and it has been discussed in Chapter 6. Using

measurements collected by this component, analytical models of relevant subsystems

have been extracted on the experimental platform following a data-driven approach. This

strategy relies on few a priori parameters and on a training procedure that operators can

conduct periodically before deploying the underwater vehicle in the field.

The fault mitigation framework employs the analytical redundancy in a model-based

diagnostic subsystem. This allows the detection of anomalies at runtime if changes

in the energy usage are discovered comparing the modelled components with sensor

measurements. Upon the detection of failures thrust efficiency coefficients are re-evaluated

according to the last known state of the propulsion subsystem. Estimated values are then

used to adjust the lower-level control architecture and its force allocation strategy to

provide a first reaction to the detected anomalies. Such an approach allows the vehicle

to quickly react to unexpected events without interrupting its current task. In order

to prevent the occurrence of thruster saturation an optimisation procedure is further

introduced in the control chain. This redistributes the thrust vector among the available

actuators, taking into account the a priori constraints for these components together with

their estimated health status. Beside short-term reactions the diagnostic information,

gathered at a lower level, is propagated into a knowledge base. This allows high-level

reasoning to be conducted and a better awareness about the vehicle’s internal state to be

obtained by combining elementary concepts, such as the actuators, with more complex

capabilities, such as navigation modes. After reasoning this knowledge is made available to

planning modules that can re-adapt the vehicle’s mission according to its latest operating

status. Results have been presented for experiments conducted in controlled and real

sea conditions. In the latter case a real unplanned failure, the loss of a lateral propeller,
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validated the diagnostic system while in presence of real disturbances. On the other hand,

the use of synthetic faults, injected at runtime, allowed the evaluation of the proposed

framework with gradually increasing fault conditions.

The runtime performance estimation framework, on the other hand, employs energy

measurements to derive performance metrics using a state-of-the-art non-linear regression

algorithm, known as LWPR. This is done without modifying the tasks assigned to vehicles

during their sea operations. The choice of this specific algorithm allows the capture of

any non-linear behaviour of the external disturbances without requiring a complex or

computational-heavy model of the environment. This feature shows its advantages when in

presence of residual noise and outliers in the collected samples, for instance, as experienced

during real sea operations. Experimental results, collected with the hover-capable AUV

and with a commercial underwater vehicle, have shown the framework capability of

providing performance estimates when in presence external disturbances. Control of the

vehicle against sea currents have been correctly identified as more energy demanding

with respect to less disturbed scenarios and the initial vehicle’s belief. Furthermore, the

computed runtime metrics have been successfully employed to evaluate the feasibility

of underwater missions. These have been modelled as a sequence of tasks, each with

planned resource usage and execution uncertainty, in the proposed framework. Such

a procedure makes use of the energy-aware route optimization problems (EA-OP and

EA-COP) also introduced in this work.

The EA-OP is derived from an Orienteering Problem and combines the runtime esti-

mations with additional operational constraints to select an optimal sequence of tasks

that maximise the mission’s outcome. Results show how this approach improves the

vehicle’s navigation as more energy-efficient routes are preferred soon after sampling data

from the environment. In case of resource scarcity less favourable (and not achievable)

intermediate goals are also discarded avoiding resource exhaustion while operating in

the field. Simulated missions, conducted in small areas and littoral environments, show

overall improvements on the missions’ execution proportional to the intensity of external

disturbances when comparing the proposed optimisations with a more classic approach,

such as an OVRP strategy.

Overall, it has been shown that the introduction of such an architecture provides

improvements to the autonomy capabilities of modern underwater platforms. These

allow the vehicle to overcome unexpected events, such as degradations of subsystems, to

evaluate its effective performance and to adapt its navigation when operating in unknown

environments. Such features are supported with the use of metrics derived by the runtime

analysis of vehicle’s energy consumption.
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8.1 Major Findings

In detail the experimental validations and the operational experience collected during sea

trials allows the highlighting of the relevant benefits from the proposed architecture.

1. The use of data-driven procedures together with a state-of-the-art non-linear regres-

sion algorithm allows system designers to rely on hardware-in-the-loop procedures

to train and adjust redundancy models used for diagnostic purposes. The derived

models have shown enough accuracy for identifying unexpected behaviours in the

propulsion subsystem, when considering the most common types of failures, such as

degradations or complete loss of thrust. This feature relieves some of the calibration

burden from operators to allow them to focus their attention on more relevant tasks

such as a detailed planning of field missions.

2. The use of a mitigation procedure in presence of limited hardware redundancy

has been validated on a real AUV. This allowed the vehicle to maintain navigation

capabilities in presence of less severe degradation failures. Such a characteristic

gives an autonomous platform the opportunity of completing its current task without

interrupting a mission upon detection of minor failures. This is relevant for vehicles

operating around human-made structures where an emergency stop could position

the vehicle in an area difficult to access.

3. The experience with a real fault shows how different failure modes can be covered

with the proposed methodology, even if not addressed during the design phases.

In fact, providing a reasonable indication of the health status even in presence

of unexpected failures allows other software components to become aware that

the vehicle’s behaviour has changed and full capabilities may be not available as

originally planned.

4. The capability of estimating navigation performance while in presence of external

disturbances unlocked the possibility to further optimise the vehicle’s behaviour. This

feature allows a better use of on-board resources while still reusing the infrastructure

developed to deliver fault mitigation and diagnostic capabilities.

Given what has been demonstrated in this work the concept of energy-awareness rep-

resents a fundamental characteristic for preparing future vehicle designs for the challenges

of persistent and long-term autonomy scenarios. Furthermore, while having focused this

work around underwater vehicles, the author also believes that such a characteristic is

generally relevant for other autonomous robotic platforms, either on the surface or operat-

ing above the ground. There is evidence that the combined use of runtime estimations and

energy-aware optimizations will enable improved effectiveness of autonomous vehicles

operating in partially known environments. Such a combination generally increases the

platform’s self-awareness when operating in field conditions.
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8.2 Future Work

Along with the major findings several aspects have been also identified as possible ex-

tensions for the proposed energy-aware architecture. These are related both to the

self-observation capabilities of the autonomous platform and to the analysis of external

factors affecting the vehicle’s effectiveness during field operations. More generally, a

deeper integration between those two domains is expected to further improve the vehicle’s

autonomy capabilities when facing a broad range of unexpected situations.

1. Firstly, an opportunity is seen in the extension of self-assessment capabilities to

other relevant internal components of underwater platforms. This, while still relying

on a runtime analysis of energy consumption, allows for an even more detailed

characterisation of vehicle’s behaviour when operating in the field. Energy usage

models can, in fact, be derived for remaining sensors or actuators and introduced in

the diagnostic modules for improving the built-in fault detection capabilities. These

can be further expanded with the inclusion of more sophisticated fault detection

algorithms, such as fuzzy decision making methods, hybrid or machine learning

approaches, where multiple failures modes can be related to the entire vehicle’s

hierarchical internal model. Such an extension is envisioned in the fault mitigation

framework, improving the methodology that has been introduced in section 4.4

using a more classic approach for a limited range of failures.

2. Secondly, looking at secondary components, such as acoustic modems, imaging

sensors and other scientific payloads, that could be further represented in the opti-

misation procedures introduced in section 5.3. This extension relies on the fact that

those types of components could often be switched off selectively if not required

for all mission’s tasks without disrupting the overall operations. Such an approach,

known in the aviation industry as load shedding, is expected to introduce an even

better use of on-board resources, especially if sensors are used only for short periods

of time compared to a long-term deployment. Such an approach could lead to an

extension of execution times (e.g. by introducing energy savings) and, at the same

time, it could maximise the chances completing a mission if more resources are

needed while conducting field operations against strong sea currents.

3. Thirdly, developing the extension of the diagnostic system with prognostic and health-

management capabilities. These are already of interest to researchers studying

reliability and maintainability aspects, represent a milestone to allow autonomy

architecture to become even more self-aware about the platform’s health status,

predicting, for instance, the remaining useful life (RUL) of a degraded marine

thruster or battery system. Such predictions can be further integrated in the proposed

architecture and improve the mission planning aspects, for example, preventing
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the platform from conducting complex tasks if components may not guarantee safe

operation.

4. Fourthly, the introduction of a heuristic in place of the MILP/MIQP solver used for

calculating runtime optimisations of the vehicle’s behaviour. The heuristic can be

introduced using a genetic algorithm (GA) formulation for the optimisation problems.

These can then further extended to be calculated on a many-core architecture,

such as a GP-GPU device, given their intrinsic parallel nature [140]. As shown

in section 7.3, the classical solver requires long computation times if the size of

the optimisation problem grows above a given dimension. This is related to the

amount detail (e.g. number of intermediate navigation points, presence of obstacles,

etc.) used in representing the vehicle’s mission. On the other hand, relying on the

speed-ups offered by the heuristic, optimisations procedures can be executed more

frequently while conducting autonomous missions, unlocking even faster reactions

to changes of the environments, from one side, and allowing the vehicle to adjust

its sequence of tasks even if the mission is characterised by many short elementary

actions, such a motion primitives in the case of intervention tasks when close to

underwater structures.

8.3 Summary

The work presented in this thesis has both proposed and shown the implementation of a

novel energy-aware architecture for autonomous underwater vehicles. This analyses the

vehicle’s runtime energy consumption and it provides autonomy capabilities that improve

reliability and survivability aspects of unmanned operations, such as robustness to dynamic

environmental conditions and resilience in presence of soft-failures or degradations. The

results presented have highlighted the performance of this novel approach identifying

its contribution to common field operations conducted with inspection-class underwater

vehicles. The novel architecture is now in use on the experimental vehicles used for field

validation. This work has also identified areas where the energy-aware approach can be

extended to gather further benefits. These are, for instance, the inclusion of other relevant

subsystem in the energy monitoring procedures, with the aim of improving diagnostic and

prognostic capabilities, and the introduction of more powerful optimisation strategies that

can support on-the-fly mission evolution as envisioned in persistent autonomy scenarios.
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