481 research outputs found

    Torque Control

    Get PDF
    This book is the result of inspirations and contributions from many researchers, a collection of 9 works, which are, in majority, focalised around the Direct Torque Control and may be comprised of three sections: different techniques for the control of asynchronous motors and double feed or double star induction machines, oriented approach of recent developments relating to the control of the Permanent Magnet Synchronous Motors, and special controller design and torque control of switched reluctance machine

    New Modulation Technique to Mitigate Common Mode Voltage Effects in Star-Connected Five-Phase AC Drives

    Get PDF
    Star-connected multiphase AC drives are being considered for electromovility applications such as electromechanical actuators (EMA), where high power density and fault tolerance is demanded. As for three-phase systems, common-mode voltage (CMV) is an issue for multiphase drives. CMV leads to shaft voltages between rotor and stator windings, generating bearing currents which accelerate bearing degradation and produce high electromagnetic interferences (EMI). CMV effects can be mitigated by using appropriate modulation techniques. Thus, this work proposes a new Hybrid PWM algorithm that effectively reduces CMV in five-phase AC electric drives, improving their reliability. All the mathematical background required to understand the proposal, i.e., vector transformations, vector sequences and calculation of analytical expressions for duty cycle determination are detailed. Additionally, practical details that simplify the implementation of the proposal in an FPGA are also included. This technique, HAZSL5M5-PWM, extends the linear range of the AZSL5M5-PWM modulation, providing a full linear range. Simulation results obtained in an accurate multiphase EMA model are provided, showing the validity of the proposed modulation approach.This work has been supported in part by the Government of the Basque Country within the fund for research groups of the Basque University system IT978-16 and in part by the Government of the Basque Country within the research program ELKARTEK as the project ENSOL (KK-2018/00040)

    Control Strategies for Open-End Winding Drives Operating in the Flux-Weakening Region

    Get PDF
    This paper presents and compares control strategies for three-phase open-end winding drives operating in the flux-weakening region. A six-leg inverter with a single dc-link is associated with the machine in order to use a single energy source. With this topology, the zero-sequence circuit has to be considered since the zero-sequence current can circulate in the windings. Therefore, conventional over-modulation strategies are not appropriate when the machine enters in the flux-weakening region. A few solutions dealing with the zero-sequence circuit have been proposed in literature. They use a modified space vector modulation or a conventional modulation with additional voltage limitations. The paper describes the aforementioned strategies and then a new strategy is proposed. This new strategy takes into account the magnitudes and phase angles of the voltage harmonic components. This yields better voltage utilization in the dq frame. Furthermore, inverter saturation is avoided in the zero-sequence frame and therefore zero-sequence current control is maintained. Three methods are implemented on a test bed composed of a three-phase permanent-magnet synchronous machine, a six-leg inverter and a hybrid DSP/FPGA controller. Experimental results are presented and compared for all strategies. A performance analysis is conducted as regards the region of operation and the machine parameters.Projet SOFRACI/FU

    Modulated model predictive control with optimized overmodulation

    Get PDF
    Finite Set Model Predictive Control (FS-MPC) has many advantages, such as a fast dynamic response and an intuitive implementation. For these reasons, it has been thoroughly researched during the last decade. However, the wave form produced by FS-MPC has a switching component whose spread spectrum remains a major disadvantage of the strategy. This paper discusses a modulated model predictive control that guarantees a spectrum switching frequency in the linear modulation range and extends its optimized response to the overmodulation region. Due to the equivalent high gain of the predictive control, and to the limit on the voltage actuation of the power converter, it is expected that the actuation voltage will enter the overmodulation region during large reference changes or in response to load impacts. An optimized overmodulation strategy that converges towards FS-MPC’s response for large tracking errors is proposed for this situation. This technique seamlessly combines PWM’s good steadystate switching performance with FS-MPC’s high dynamic response during large transients. The constant switching frequency is achieved by incorporating modulation of the predicted current vectors in the model predictive control of the currents in a similar fashion as conventional Space-Vector Pulse Width Modulation (SV-PWM) is used to synthesize an arbitrary voltage reference. Experimental results showing the proposed strategy’s good steady-state switching performance, its FS-MPC-like transient response and the seamless transition between modes of operation are presented for a permanent magnet synchronous machine drive

    New Optimal High Efficiency Dsp-based Digital Controller Design For Super High-speed Permanent Magnet Synchronous Motor

    Get PDF
    This dissertation investigates digital controller and switch mode power supply design for super high-speed permanent magnet synchronous motors (PMSM). The PMSMs are a key component for the miniaturic cryocooler that is currently under development at the University of Central Florida with support from NASA Kennedy Space Center and the Florida Solar Energy Center. Advanced motor design methods, control strategies, and rapid progress in semiconductor technology enables production of a highly efficient digital controller. However, there are still challenges for such super high-speed controller design because of its stability, high-speed, variable speed operation, and required efficiency over a wide speed range. Currently, limited research, and no commercial experimental analysis, is available concerning such motors and their control system design. The stability of a super high-speed PMSM is an important issue particularly for open-loop control, given that PMSM are unstable after exceeding a certain applied frequency. In this dissertation, the stability of super high-speed PMSM is analyzed and some design suggestions are given to maximize this parameter. For ordinary motors, the V/f control curve is a straight line with a boost voltage because the stator resistance is negligible and only has a significant effect around the DC frequency. However, for the proposed super high-speed PMSM the situation is quite different because of the motor\u27s size. The stator resistance is quite large compared with the stator reactive impedance and cannot be neglected when employing constant a V/f control method. The challenge is to design an optimal constant V/f control scheme to raise efficiency with constant V/f control. In the development, test systems and prototype boards were built and experimental results confirmed the effectiveness of the dissertation system

    Control solutions for multiphase permanent magnet synchronous machine drives applied to electric vehicles

    Get PDF
    207 p.En esta tesis se estudia la utilización de un accionamiento eléctrico basado en una máquina simétrica dual trifásica aplicada al sistema de propulsión de un vehículo eléctrico. Dicho accionamiento está basado en una máquina síncrona de imanes permanentes interiores. Además, dispone de un bus CC con una configuración en cascada. Por otra parte, se incorpora un convertidor CC/CC entre el módulo de baterías y el inversor de seis fases para proveer el vehículo con capacidades de carga rápida, y evitando al mismo tiempo la utilización de semiconductores de potencia con altas tensiones nominales. En este escenario, el algoritmo de control debe hacer frente a las no linealidades de la máquina, proporcionando un comando de consigna preciso para todo el rango de par y velocidad del convertidor. Por lo tanto, deben tenerse en cuenta los efectos de acoplamiento cruzado entre los devanados, y la tensión de los condensadores de enlace en cascada debe controlarse y equilibrarse activamente. En vista de ello, los autores proponen un novedoso enfoque de control que proporciona todas estas funcionalidades. La propuesta se ha validado experimentalmente en un prototipo a escala real de accionamiento eléctrico de 70 kW, probado en un laboratorio y en un vehículo eléctrico en condiciones reales de conducción.Tecnali

    Advances in Rotating Electric Machines

    Get PDF
    It is difficult to imagine a modern society without rotating electric machines. Their use has been increasing not only in the traditional fields of application but also in more contemporary fields, including renewable energy conversion systems, electric aircraft, aerospace, electric vehicles, unmanned propulsion systems, robotics, etc. This has contributed to advances in the materials, design methodologies, modeling tools, and manufacturing processes of current electric machines, which are characterized by high compactness, low weight, high power density, high torque density, and high reliability. On the other hand, the growing use of electric machines and drives in more critical applications has pushed forward the research in the area of condition monitoring and fault tolerance, leading to the development of more reliable diagnostic techniques and more fault-tolerant machines. This book presents and disseminates the most recent advances related to the theory, design, modeling, application, control, and condition monitoring of all types of rotating electric machines

    Advances in the Field of Electrical Machines and Drives

    Get PDF
    Electrical machines and drives dominate our everyday lives. This is due to their numerous applications in industry, power production, home appliances, and transportation systems such as electric and hybrid electric vehicles, ships, and aircrafts. Their development follows rapid advances in science, engineering, and technology. Researchers around the world are extensively investigating electrical machines and drives because of their reliability, efficiency, performance, and fault-tolerant structure. In particular, there is a focus on the importance of utilizing these new trends in technology for energy saving and reducing greenhouse gas emissions. This Special Issue will provide the platform for researchers to present their recent work on advances in the field of electrical machines and drives, including special machines and their applications; new materials, including the insulation of electrical machines; new trends in diagnostics and condition monitoring; power electronics, control schemes, and algorithms for electrical drives; new topologies; and innovative applications

    NOVEL MODELING, TESTING AND CONTROL APPROACHES TOWARDS ENERGY EFFICIENCY IMPROVEMENT IN PERMANENT MAGNET SYNCHRONOUS MOTOR AND DRIVE SYSTEMS

    Get PDF
    This thesis investigates energy efficiency improvement in permanent magnet synchronous motor (PMSM) and drive system to achieve high–performance drive for practical industrial and primarily, traction applications. In achieving improved energy efficiency from a system level, this thesis proposes: (1) Accurate modeling and testing of loss components in PMSM considering inverter harmonics; (2) Easy–to–implement, accurate parameter determination techniques to understand variations in motor parameters due to saturation, cross–saturation and temperature; and (3) Control methodologies to improve system level efficiency considering improved loss models and parameter variations. An improved loss model to incorporate the influence of motor–drive interaction on the motor losses is developed by taking time and space harmonics into account. An improved winding function theory incorporating armature reaction fields due to fundamental and harmonic stator magnetic fields is proposed to calculate the additional harmonic losses in the PMSM. Once all contributing losses in the motor are modelled accurately, an investigation into control variables that affect the losses in the motor and inverter is performed. Three major control variables such as DC link voltage, switching frequency and current angle are chosen and the individual losses in the motor and inverter as well as the system losses are studied under varying control variables and wide operating conditions. Since the proposed loss as well as efficiency modeling involves machine operation dependent parameters, the effects of parameter variation on PMSM due to saturation and temperature variation are investigated. A recursive least square (RLS) based multi–parameter estimation is proposed to identify all the varying parameters of the PMSM to improve the accuracy and validity of the proposed model. The impact of losses on these parameters as well as the correct output torque considering the losses are studied. Based on the proposed loss models, parameter variations and the investigation into control variables, an off–line loss minimization procedure is developed to take into account the effects of parameter variations. The search–based procedure generates optimal current angles at varying operating conditions by considering maximization of system efficiency as the objective. In order to further simplify the consideration of parameter variations in real–time conditions, an on–line loss minimization procedure using DC power measurement and loss models solved on–line using terminal measurements in a PMSM drive is proposed. A gradient descent search–based algorithm is used to calculate the optimal current angle corresponding to maximum system efficiency from the input DC power measurement and output power based on the loss models. During the thesis investigations, the proposed models and control techniques are extensively evaluated on a laboratory PMSM drive system under different speeds, load conditions, and temperatures

    Analysis of extended Constant Power Speed Range of the Permanent Magnet Synchronous Machine driven by Dual Mode Inverter Control

    Get PDF
    The scope of this work is the Permanent Magnet Synchronous Machine (PMSM) operating at Constant Power Speed Range (CPSR). The proposed technique to drive the PMSM at CPSR is the Dual Mode Inverter Control (DMIC) The mam idea behind DMIC is to change the three-phase operation of the PMSM below base speed to hybrid, single-phase and three-phase, operation above the base speed This technique allows driving the PMSM in a wide CPSR The DMIC uses three facts to achieve wide CPSR First, it introduces the idea of the advance angle, which allows driving current into the machine while the back-emf is smaller than the DC link voltage Second, the blanking angle is used to maximize the electrical to mechanical power conversion by increasing the on time of the transistors of the Voltage-Fed Inverter (VFI) and therefore slowing down the decreasing voltage m the outgoing phase Finally, this technique avoids regeneration through the bypass diodes by introducing an ac-voltage controller interfacing the VFI and the PMSM. The analysis of DMIC/PMSM drive system shows that it uses the same principle of Vector Control with Field Weakening (VCFW) i e., the armature current is controlled to have a field component that weakens the air gap field, and therefore opposes the back emf However, the armature current vector must satisfy the voltage and current constraints, which are the maximum current and armature voltage. In VCFW, the voltage limit circle shrinks fast as speed increases because the maximum armature voltage is the maximum output voltage of the VFI, which is limited by the DC link voltage In DMIC, on the other hand, the voltage limit circle shrinks slower, since after the commutation period the machine is operating in single-phase mode The total armature voltage is the contribution of the DC link voltage, the back emf, and the induced voltage provided by the derivative of the on-phase currents In fact, this operation eliminates the voltage constraint, and the machine can operate at any speed, and then the only constraint is the current limit Therefore, it is shown in this work that theoretically there is no speed limit for DMIC driving PMSM over constant power operation rang
    corecore