10 research outputs found

    DWT/ MFCC Feature Extraction for Tile Tapping Sound Classification

    Get PDF
    Tile tapping sound inspection is a process of construction quality control. Hollow sound, for instance, indicate low quality tessellation and thus voids underneath that could lead to future broken tiles. Hollow-sounding inspection was often carried out by construction specialists, whose skills and judgment may vary across individual. This paper elevates this issue and presents a Deep Learning (DL) classification method for computerized sounding tile inspection. Unlike other existing works in the area, where structural details were assessed, this study acquired tapping sound signals and analyzed them in a spectral domain by using Discrete Wavelet Transform (DWT) and Mel-frequency Cepstral Coefficients (MFCC). The dull versus hollow sounding tile were then classified based on these features by means of a Convolutional Neural Network (CNN). The experiments carried out in a laboratory tessellation indicated that the proposed method could differentiate dull from hollow-sounding tiles with very high accuracy up to 93.67%. The developed prototype can be used as guideline for devising a tiling inspection standard

    Optimization of Applied Detection Rate in the Simple Evolving Connectionist System Method for Classification of Images Containing Protein

    Get PDF
    Digital image processing in general to makes images that appear converted to a function of light intensity represented in a two-dimensional plane. The function is a value that will be processed for classification so that the computer is able to recognize the image. Besides classification requires training and testing to produce a small error value and optimal algorithm. The problem of optimization is closely related to the principles and findings of science. Getting the smallest error value by calculating using MAPE for that MAPE calculation is done by using the Detection Rate formula to generalize knowledge in order to find the optimal model. Thus, the application of ANN is very suitable for optimizing classification using the Simple Evolving Connectionist System Method and as the result, the classification of images containing protein with test data is that the eggs work with optimal proof of achieving MAPE without modification of 0.1947% and MAPE which has been modified with the formula detection rate of 0.05554633%

    Phonocardiogram Signal Analysis Based Premature Cardiac Influence Detection using Resnet50 CNN for Public Health Protection

    Get PDF
    Phonocardiogram (PCG) signal analysis plays a crucial role in the early detection of cardiac abnormalities, which is essential for public health protection. The premature disease prediction is tedious because the feature analysis takes place dimensionality problems which leads poor accuracy. The prevailing ensemble learning models’ methods doesn’t concentrate disease margin facts and properties during classification produce higher false rate because for adjusting feature margins gets lower accuracy.  To resolve this problem, we propose a efficient Fuzzy c-means feature modality based Resnet50-RNN to detect premature cardiac influence detection for improving public health. The research proposes a method for premature cardiac influence detection using a ResNet50 Convolutional Neural Network (CNN) model for early prediction of heart disease. To address the issue of imbalanced data, Synthetic Minority Oversampling Technique (SMOTE) is employed for preprocessing. The Cardiac Disease Influence Rate (CDIR) is then used to identify the maximum deficiency-affected feature margins. Fuzzy c-means is utilized to select the mutual features associated with the heart disease influence rate. The ResNet50 CNN model is employed for classification, enabling the prediction of disease margins by risk category. The proposed system effectively identifies the disease based on the disease-affected scaling margin, leading to early disease impact prediction with higher accuracy, specificity, F1-measure, and lower false rates compared to other existing systems. The implementation also demonstrates reduced time complexity

    Optimization of Applied Detection Rate in the Simple Evolving Connectionist System Method for Classification of Images Containing Protein

    Get PDF
    Digital image processing in general to makes images that appear converted to a function of light intensity represented in a two-dimensional plane. The function is a value that will be processed for classification so that the computer is able to recognize the image. Besides classification requires training and testing to produce a small error value and optimal algorithm. The problem of optimization is closely related to the principles and findings of science. Getting the smallest error value by calculating using MAPE for that MAPE calculation is done by using the Detection Rate formula to generalize knowledge in order to find the optimal model. Thus, the application of ANN is very suitable for optimizing classification using the Simple Evolving Connectionist System Method and as the result, the classification of images containing protein with test data is that the eggs work with optimal proof of achieving MAPE without modification of 0.1947% and MAPE which has been modified with the formula detection rate of 0.05554633%

    Deep learning of heart-sound signals for efficient prediction of obstructive coronary artery disease

    Get PDF
    Background Due to the limitations of current methods for detecting obstructive coronary artery disease (CAD), many individuals are mistakenly or unnecessarily referred for coronary angiography (CAG). Objectives Our goal is to create a comprehensive database of heart sounds in CAD and develop accurate deep learning algorithms to efficiently detect obstructive CAD based on heart sound signals. This will enable effective screening before undergoing CAG. Methods We included 320 subjects suspected of CAD who underwent CAG. We employed advanced filtering techniques and state-of-the-art deep learning models (VGG-16, 1D CNN, and ResNet18) to analyze the heart sound signals and identify obstructive CAD (defined as at least one ≥50 % stenosis). To assess the performance of our models, we prospectively recruited an additional 80 subjects for testing. Results In the test set, VGG-16 exhibited the highest performance with an area under the ROC curve (AUC) of 0.834 (95 % CI, 0.736–0.930), while ResNet-18 and CNN-7 achieved AUCs of only 0.755 (95 % CI, 0.614–0.819) and 0.652 (95 % CI, 0.554–0.770) respectively. VGG-16 demonstrated a sensitivity of 80.4 % and specificity of 86.2 % in the test set. The combined diagnostic model of VGG and DF scores achieved an AUC of 0.915 (95 % CI: 0.855–0.974), and the AUC for VGG combined with PTP scores was 0.908 (95 % CI: 0.845–0.971). The sensitivity and specificity of VGG-16 exceeded 0.85 in patients with coronary artery occlusion and those with 3 vascular lesions. Conclusions Our deep learning model, based on heart sounds, offers a non-invasive and efficient screening method for obstructive CAD. It is expected to significantly reduce the number of unnecessary referrals for downstream screening

    Contribuciones de las técnicas machine learning a la cardiología. Predicción de reestenosis tras implante de stent coronario

    Get PDF
    [ES]Antecedentes: Existen pocos temas de actualidad equiparables a la posibilidad de la tecnología actual para desarrollar las mismas capacidades que el ser humano, incluso en medicina. Esta capacidad de simular los procesos de inteligencia humana por parte de máquinas o sistemas informáticos es lo que conocemos hoy en día como inteligencia artificial. Uno de los campos de la inteligencia artificial con mayor aplicación a día de hoy en medicina es el de la predicción, recomendación o diagnóstico, donde se aplican las técnicas machine learning. Asimismo, existe un creciente interés en las técnicas de medicina de precisión, donde las técnicas machine learning pueden ofrecer atención médica individualizada a cada paciente. El intervencionismo coronario percutáneo (ICP) con stent se ha convertido en una práctica habitual en la revascularización de los vasos coronarios con enfermedad aterosclerótica obstructiva significativa. El ICP es asimismo patrón oro de tratamiento en pacientes con infarto agudo de miocardio; reduciendo las tasas de muerte e isquemia recurrente en comparación con el tratamiento médico. El éxito a largo plazo del procedimiento está limitado por la reestenosis del stent, un proceso patológico que provoca un estrechamiento arterial recurrente en el sitio de la ICP. Identificar qué pacientes harán reestenosis es un desafío clínico importante; ya que puede manifestarse como un nuevo infarto agudo de miocardio o forzar una nueva resvascularización del vaso afectado, y que en casos de reestenosis recurrente representa un reto terapéutico. Objetivos: Después de realizar una revisión de las técnicas de inteligencia artificial aplicadas a la medicina y con mayor profundidad, de las técnicas machine learning aplicadas a la cardiología, el objetivo principal de esta tesis doctoral ha sido desarrollar un modelo machine learning para predecir la aparición de reestenosis en pacientes con infarto agudo de miocardio sometidos a ICP con implante de un stent. Asimismo, han sido objetivos secundarios comparar el modelo desarrollado con machine learning con los scores clásicos de riesgo de reestenosis utilizados hasta la fecha; y desarrollar un software que permita trasladar esta contribución a la práctica clínica diaria de forma sencilla. Para desarrollar un modelo fácilmente aplicable, realizamos nuestras predicciones sin variables adicionales a las obtenidas en la práctica rutinaria. Material: El conjunto de datos, obtenido del ensayo GRACIA-3, consistió en 263 pacientes con características demográficas, clínicas y angiográficas; 23 de ellos presentaron reestenosis a los 12 meses después de la implantación del stent. Todos los desarrollos llevados a cabo se han hecho en Python y se ha utilizado computación en la nube, en concreto AWS (Amazon Web Services). Metodología: Se ha utilizado una metodología para trabajar con conjuntos de datos pequeños y no balanceados, siendo importante el esquema de validación cruzada anidada utilizado, así como la utilización de las curvas PR (precision-recall, exhaustividad-sensibilidad), además de las curvas ROC, para la interpretación de los modelos. Se han entrenado los algoritmos más habituales en la literatura para elegir el que mejor comportamiento ha presentado. Resultados: El modelo con mejores resultados ha sido el desarrollado con un clasificador extremely randomized trees; que superó significativamente (0,77; área bajo la curva ROC a los tres scores clínicos clásicos; PRESTO-1 (0,58), PRESTO-2 (0,58) y TLR (0,62). Las curvas exhaustividad sensibilidad ofrecieron una imagen más precisa del rendimiento del modelo extremely randomized trees que muestra un algoritmo eficiente (0,96) para no reestenosis, con alta exhaustividad y alta sensibilidad. Para un umbral considerado óptimo, de 1,000 pacientes sometidos a implante de stent, nuestro modelo machine learning predeciría correctamente 181 (18%) más casos en comparación con el mejor score de riesgo clásico (TLR). Las variables más importantes clasificadas según su contribución a las predicciones fueron diabetes, enfermedad coronaria en 2 ó más vasos, flujo TIMI post-ICP, plaquetas anormales, trombo post-ICP y colesterol anormal. Finalmente, se ha desarrollado una calculadora para trasladar el modelo a la práctica clínica. La calculadora permite estimar el riesgo individual de cada paciente y situarlo en una zona de riesgo, facilitando la toma de decisión al médico en cuanto al seguimiento adecuado para el mismo. Conclusiones: Aplicado inmediatamente después de la implantación del stent, un modelo machine learning diferencia mejor a aquellos pacientes que presentarán o no reestenosis respecto a los discriminadores clásicos actuales
    corecore