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1. Introduction 

The growth rate of real estate business in Thailand has recently been escalating drastically, and as such contributed 

to great expansion in construction work of all tier contractors. Architectural work for building aesthetics such as tiling 

is one of the main components in residential building. Not only beauteous aspect of this work that concern the involved 

parties such as owner, contractor, and inspector, but its functional one is also of equally importance. However, limited 

supply of skilled craftsmen and experienced inspectors in the construction industry has so far led to numerous defect 

occurrences being reported. Especially for tiling quality inspection, inspectors normally examine tiling surface, layout 

pattern, tile spacing and leveling, as well as floor-tile bonding. Amongst these elements, the latter is the most important 

because inadequate bonding between tiles and floor may result in cracked and flaked off tiles. Eventually, these defects 

could lead to personal injury to those utilizing the affected area. In order to inspect the floor-tile bonding integrity, non-

destructive evaluation such as the impact-acoustic method by tapping the tile surface with a small metal object such as 

a coin or a steel rod, is frequently implemented. Normally, an inspector would carefully listen to the tapping sound and 

identify the defect if they hear the lower-pitched sound, or hollow sound. This sound can indicate that there are some 

problems underneath the tessellation surface. For example, the tiles may have debonded from mortar bed. However, 

this acoustic assessment is rather subjective and much depends on experiences, skills, and judgments of an individual. 

Moreover, their proficiency differs, resulting in uncalibrated, non-standardized and unreliable quality inspection. 

Abstract: Tile tapping sound inspection is a process of construction quality control. Hollow sound, for instance, 

indicate low quality tessellation and thus voids underneath that could lead to future broken tiles. Hollow-sounding 

inspection was often carried out by construction specialists, whose skills and judgment may vary across individual. 

This paper elevates this issue and presents a Deep Learning (DL) classification method for computerized sounding 

tile inspection. Unlike other existing works in the area, where structural details were assessed, this study acquired 

tapping sound signals and analyzed them in a spectral domain by using Discrete Wavelet Transform (DWT) and 

Mel-frequency Cepstral Coefficients (MFCC). The dull versus hollow sounding tile were then classified based on 

these features by means of a Convolutional Neural Network (CNN). The experiments carried out in a laboratory 

tessellation indicated that the proposed method could differentiate dull from hollow-sounding tiles with very high 

accuracy up to 93.67%. The developed prototype can be used as guideline for devising a tiling inspection standard. 
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Existing works that studied nondestructive methods for debonded tiles inspection, for instances, include using 

ultrasonic echo and impact echo [1-2]. Nevertheless, both methods were not extensively implemented due to that fact 

that specific sensors must be suitably installed on the tile surface, which is difficult for large or high inspection area. 

Alternatively, Huang [3] presented a shearography method but it was expensive and highly prone to sensitivity in actual 

construction sites. Hung [4] has written extensive reviews on and comparison between the shearography and the active 

thermography methods. The latter was a surface thermal radiation measuring technique which required a controlled 

thermal radiation excitation to change the surface temperature. Besides the previously mentioned techniques, impact 

acoustics inspection was also investigated in bonding integrity of tessellation. With this approach, characteristics of 

acoustic signals from an examined surface tapped by a small metal object were analyzed. They were proved convenient 

and cost effectiveness for tile-wall bonding integrity assessment. Nonetheless, there were a few studies actually 

implementing such inspection system and elucidating the usefulness of this method [5-7]. 

MFCC has been successfully applied in both audio and speech recognition applications [8-9]. Norali [10] used 

MFCC for the feature extraction of EMG signal. Some other studies also combined MFCC with another signal analysis. 

Abdalla [11], for example, presented a speech recognition by using combined DWT and MFCC. Similarly, Mulimani 

[12] presented acoustic scene classification based on combined MFCC and Matching Pursuit (MP) features. Apart from 

sound analysis, MFCC was also applied to medical image [13]. Artificial and more recently Convolutional Neural 

Networks are machine learning (ML) algorithms. To date, there have been a number of studies that applied Neural 

Networks for general classification problems [11, 14] and especially in acoustic analysis [15-16]. Bozkurt [15], for 

example, proposed time-frequency features for CNN-based automatic heart sound classification. Hershey [16] 

presented an application of CNN architectures for large-scale audio classification. 

In order to elevate the dependency on individual expertise and judgement, while resolving the standardized tiling 

quality inspection issue, advanced information technology (IT) could be adopted in implementing a computerized and 

automated tile inspection system. Therefore, this study proposes a novel approach for analyzing the acoustic signal of 

tile bonding integrity based on tapping sound by using DWT/MFCC feature and CNN classifier. The remaining of this 

paper is organized as follow. Section 2 discusses the characteristics of acoustic signal, and the detailed description of 

the proposed scheme. In Section 3, the experimental results and validations are reported and discussed. Finally, the 

concluding remark is made in Section 4. 

 

2. Material and Method 

This paper proposed a novel method for tile tapping classification based on DWT/ MFCC feature extraction of 

acoustic signal and CNN classifier. The aim of this study was to differentiate between dull versus hollow sounding 

tiles. The tile tapping signals used in this study were acquired from tiling area at our laboratory. The proposed scheme 

consisted of 3 steps, which are (1) data preparation, (2) discrete wavelet transform (DWT) and Mel-frequency cepstral 

coefficients (MFCCs) based feature extraction, and (3) signal classification using convolutional neural network (CNN). 

Diagram in Fig. 1 outlines the proposed scheme, whose detailed descriptions are provided in the following subsections. 

  
Fig. 1 - Diagram of proposed scheme. 

 

2.1 Data Preparation 

The tapping sound signals involved in the following experiments were acquired from the tiling area in our 

laboratory, as shown in Fig. 2 (a). In Fig. 2(b), depicted the tile tapping device, whose speed (10 times per 30 seconds) 

was controlled by an electric motor, tapping at 9 predefined points per one tile. A total of 79 signals were sampled and 
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stored in .wav format. They were divided into 2 classes, namely (a) dull and (b) hollow sounding, each consisting of 46 

and 33 signals, respectively. Examples of dull and hollow sounding tiles are illustrated in Fig. 3.  

 

  

(a) (b) 

Fig. 2 - (a) Tiling area in our laboratory; (b) Motorized control tile tapping device. 

 

Fig. 3 –Time domain representation of dull (top) and hollow (bottom) sounding tiles. 

 

2.2 Discrete Wavelet Transform 
 

Discrete Wavelet Transform (DWT) is a linear signal transformation that operates on vectorized data. It separates 
signal into different frequency components. Fig. 5 shows 1-level wavelet decomposition. The 1-level DWT of input 
signal (x) was computed by cascading filters. Firstly, a sampled signal was passed through a low pass filter (LPF) with 
impulse response (g) and the resultant signal (y) was defined by a convolution: 

( ) ( ) ( )
k

y n x k g n k


=−

=  −       (1) 
  

The signal x was decomposed simultaneously using a high-pass filter (h). As a result, the convoluted (filtered) 
signals contained both the approximation and detail coefficients given by low-pass and high-pass filters, respectively. 
Half of the frequency spectrum had however been removed from the signals. The output signals were thus subsampled 
by a factor of 2, as given by Eq. (2) and (3). 
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( ) ( ) ( )2high
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y n x k h n k

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=  −      (3) 

 
 

Fig. 4 - 1-level wavelet decomposition of a signal. 

 

2.3 MFCC Feature Extraction 
 

The detailed analyses and description MFCC process were provided in [13], and summarized as follows:  
Step 1: An input signal x(n) was first transformed into frequency domain by means of Fast Fourier Transform (FFT), 
given as follows: 

( ) ( )
1
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where 
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j
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
−

= = − , ( )kx was the spectrum of the signal and  N  was signal length 
 
Step 2: The resultant frequency spectrum was filtered by using Mel-filter banks. 

Step 3: The filter spectrum was then non-linear mapped onto a logarithmic scale as shown in Fig. 5.  
Step 4: The mapped spectrum was finally transformed by Discrete Cosine Transform (DCT), as follows: 

( ) ( ) ( )( )
0 1

2 1
cos 2 1 1

21

N

n k

y k x n n k
N N



=

 
=   − − 

+  
     (5) 

Where ( )y k  is the output signal or energy spectra and 1k  is the Kronecker delta. 

 

 
Fig. 5 - Example of log filter bank energy (top) and Mel-frequency cepstrum (bottom) of a hollow sound signal. 

 
The amplitudes of the resultant spectral, also called cepstral coefficients, were used to compose a feature vector for 

the CNN classification. However, higher order MFCCs coefficients were truncated, leaving only the first thirteen ones 
in this scheme. Moreover, to eliminate sample variations in each MFCC coefficient, mean and standard deviation (SD) 
of cepstral coefficients were calculated and used as their representatives. 
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2.4 Classification 
 

Convolutional Neural Network (CNN) is one of renowned models in deep learning paradigm. The CNN learns to 
perform classification tasks from raw data, e.g., images, video, text, or sound, etc. Its primary favourable characteristic 
is an ability to directly ‘learn’ the underlying pattern without relying on any manual feature extraction. In summary, the 
CNN for deep learning has become increasingly popular due to three important reasons [17]:  

- It eliminates the need for manual feature extraction, the features are instead learned directly by the CNN. 

- It yields state-of-the-art recognition results. 

- It can be retrained for new recognition tasks, if new samples become available, enabling one to build on pre-

existing networks.  
A typical CNN consists of multiple layers as shown in Fig. 6. The most common layers implemented in many 

studies are convolution (or CONV), rectified linear unit (or RELU), pooling (or POOL) and fully connected (or FC). 

 

 
 

Fig. 6 - Layers configuration in a typical CNN. 

 

Functionalities of these constituting layers are given as follow: 

  
• Convolution puts the input signal through a set of convolutional filters, each of which activates certain features 

from the signal. 
• Rectified linear unit allows for faster and more effective training by clamping, i.e., mapping negative values to 

zero and maintaining positive values. 
• Pooling simplifies the output signal by performing nonlinear down-sampling, hence reducing the number of 

parameters that the network needs to learn. 
• Fully Connected (FC) layer connects every neuron in one layer to every neuron in another layer. It is in 

principle the same as the traditional multi-layer perceptron neural network.  
 

In the proposed scheme, CNN was employed to classify hollow and dull sounding tile based on derived MFCC 
feature vectors, i.e., mean and standard deviations of extracted cepstral coefficients. In our experiment, 5 layers of CNN 
was configured as follows: Image Input Layer, ReLU Layer, Fully Connected Layer, Softmax Layer and Classification 
Output Layer. 

 

3. Results and Discussion 
 

This section provided a detailed description of experimental setup and performance evaluation. The classification 
results derived from the proposed DWT/MFCC was benchmarked against those from MFCC [13]. Relevant discussions 
on the results are also provided. 

 

3.1 Objective Evaluation 
 

Firstly, for the numerical reports, three performance metrics were evaluated, i.e., 
 

• Accuracy (Ac) of the classification was defined as a ratio between the numbers signals being correctly 
classified (as dull and hollow) and the total signals. It was defined by, 

c
nA

N
=                 (6) 

where n  is the number of correctly classified sample and N is the total number of samples. 
 
• Specificity (also called true negative rate) measures the proportion of actual negatives that are correctly 

identified as such. In this study, it was defined as the percentage of hollow-sounding tile that were correctly 
identified. 
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• Sensitivity (also called true positive rate or probability of detection) measures the proportion of actual positives 
that are correctly identified as such. Likewise, it was defined as the percentage of dull-sounding tile that were 
correctly identified. 

 

3.2 Experimental Setup 
 

The experiments reported herein were based on the model implemented on MATLAB. The acoustic signals used in 
the experiment were recorded from the tiling area at our laboratory. In this tessellation, bonding was intentionally made 
such that dull and hollow points were consisting with the tile mapping as shown in Fig 7. For each tile, the tapping was 
made nine times at predefined points. In this study, CNN was preferred as it is known for being reliable and not prone 
to overfitting. Since limited samples were tested, to objectively confirm its validity, the Leave-one-out cross-validation 
was carried out. The performance of different models that constructed features from mean, SD. and mean and SD, were 
assessed base on standard classifier evaluation metrics, i.e., accuracy (Acc.), sensitivity (Sen.) and specificity (Spec.). 

 

 
 

Fig. 7 - Tiling area map. 

 

It is worth noting here that the flooring tessellation depicted in Fig. 7 experiment was restricted to single dimension 
(60×60 cm2). However, there are other but only limited variations sold in the market, e.g., 20×20, 30×30, and 40×40 
cm2. It is therefore recommended that for each tile size, different acoustic model should be trained separately. 

 

3.3 Benchmarking 
 

This paper proposed a novel feature extraction from acoustic tapping signal, by using combined DWT and MFCC. 
To validate the proposed method, the feature extraction results were compared against those obtained by using only 
MFCC as shown in Table 1. The experiment was completed by employing 1-level Haar wavelet decomposition. The 
results clearly indicated that the DWT/ MFCC feature gave higher classification accuracy than the MFCC one. 
 

Table 1 Comparison between MFCC and DWT/MFCC in terms of accuracy, sensitivity and specificity 

 

Feature Vectors 
Acc. (%) 

Spec.  

(%) 

Sen.  

(%) 

MFCC 

Mean 70.8861 67.86 72.55 

SD 84.8101 95.65 80.36 

Mean + SD 79.7468 77.42 81.25 

DWT/ MFCC 
(1 Level) 

Mean 91.1392 90.63 91.49 

SD 82.2785 88.00 79.63 

Mean + SD 91.1392 90.63 91.49 
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Fig. 8 shows the effect of different levels of wavelet decomposition on classification accuracy. It is evident from 
the graph that as the decomposition level increased, the accuracy decreased. Therefore, it was implied that the proposed 
one-level decomposition was the most optimal. In the literature, different basis functions, also known as wavelet 
families, were found implemented. They were Daubechies (dbN), Discrete Meyer (dmey), Biorthogonal (biorNr.Nd), 
Symlets (symN) and Coiflets (coifN). In these acronyms, N indicated the orders. Biorthogonal family had different 
decomposition (Nd) and reconstruction (Nr) order. Table 2 shows comparison of classification accuracy between 
different wavelet families. In this table, the classification accuracy was calculated using 1-level decomposition. It can 
be noted that the Daubechies, Coiflets or Discrete Meyer families performed better than the other wavelet families. 

 

 
Fig. 8 - Comparison of the classification accuracy among different levels of wavelet decomposition. 

 

Table 2 Comparison of the classification accuracy among different wavelet families (mothers wavelet) 

 

Wavelet Family Feature Vector Acc. (%) 

Haar 

Mean 91.1392 

SD 82.2785 

Mean and SD 91.1392 

db5 

Mean 93.6709 

SD 82.2785 

Mean and SD 92.4051 

db10 

Mean 93.6709 

SD 82.2785 
Mean and SD 93.6709 

dmey 
Mean 92.4051 
SD 82.2785 

Mean and SD 93.6709 

bior2.4 

Mean 79.7468 

SD 82.2785 

Mean and SD 81.0127 

sym5 

Mean 92.4051 

SD 82.2785 

Mean and SD 92.4051 

coif3 

Mean 93.6709 

SD 82.2785 
Mean and SD 93.6709 

 

The confusion matrix of the proposed method using 1-level decomposition of Daubechies10 family wavelet is 
shown in Fig .9. Fig 10 shows the corresponding tiling map, recognized by the respective classification. In this figure, 
the red and grey points indicated incorrect assessments. 

 

 
Actual class 

Dull Hollow 

Predicted 

class 

Dull 44  2 

Hollow 3  30 

 

Fig. 9 - Confusion matrix obtained by Daubechies10 family wavelet 
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4. Summary 
 

A novel computerized tapping sound classification scheme for computerized tile inspection was proposed. Inspired 
by the preceding success on classification based on MFCC features [13], an enhancement by incorporating DWT into 
feature extraction, i.e., DWT/ MFCC, were used. In addition, a recently emerging deep learning paradigm, called CNN 
was also employed as a classifier. The experiments reported herein demonstrates that the implemented system was able 
to classify dull and hollow sounding tile at high accuracy, sensitivity and specificity rates of 93.67%, 93.75% and 
93.63%, respectively. It was also found that the wavelet families (bases) suitable for such application were Daubechies, 
Coiflets or Discrete Meyer. It was therefore anticipated that the proposed system could serve as a guideline for devising 
a standard for automated tiling inspection in future. Future investigation worth considered encompass investigation on 
model variations given different tile dimensions, thicknesses and materials, considering GridSearch to optimize 
hyperparameter, noise removal strategies, exhaustive comparison between different CNN realizations as well as other 
non-deep learning machines (e.g., SOM, SVM, K-Mean, etc.), and comparative experiments different combination of 
feature extraction and machine learning against the proposed DWT/ MFCC and CNN. 

 

Fig. 10 - Tile map recognized by the proposed method with Daubechies10. 
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