261,488 research outputs found

    Additional Investigations of Ice Shape Sensitivity to Parameter Variations

    Get PDF
    A second parameter sensitivity study was conducted at the NASA Glenn Research Center's Icing Research Tunnel (IRT) using a 36 in. chord (0.91 m) NACA-0012 airfoil. The objective of this work was to further investigate the feasibility of using ice shape feature changes to define requirements for the simulation and measurement of SLD and appendix C icing conditions. A previous study concluded that it was feasible to use changes in ice shape features (e.g., ice horn angle, ice horn thickness, and ice shape mass) to detect relatively small variations in icing spray condition parameters (LWC, MVD, and temperature). The subject of this current investigation extends the scope of this previous work, by also examining the effect of icing tunnel spray-bar parameter variations (water pressure, air pressure) on ice shape feature changes. The approach was to vary spray-bar water pressure and air pressure, and then evaluate the effects of these parameter changes on the resulting ice shapes. This paper will provide a description of the experimental method, present selected experimental results, and conclude with an evaluation of these results

    Thermo-Hydraulic Characteristics of Inclined Louvered Fins

    Get PDF

    Critical Susceptibility Exponent Measured from Fe/W(110) Bilayers

    Full text link
    The critical phase transition in ferromagnetic ultrathin Fe/W(110) films has been studied using the magnetic ac susceptibility. A statistically objective, unconstrained fitting of the susceptibility is used to extract values for the critical exponent (gamma), the critical temperature Tc, the critical amplitude (chi_o) and the range of temperature that exhibits power-law behaviour. A fitting algorithm was used to simultaneously minimize the statistical variance of a power law fit to individual experimental measurements of chi(T). This avoids systematic errors and generates objective fitting results. An ensemble of 25 measurements on many different films are analyzed. Those which permit an extended fitting range in reduced temperature lower than approximately .00475 give an average value gamma=1.76+-0.01. Bilayer films give a weighted average value of gamma = 1.75+-0.02. These results are in agreement with the -dimensional Ising exponent gamma= 7/4. Measurements that do not exhibit power-law scaling as close to Tc (especially films of thickness 1.75ML) show a value of gamma higher than the Ising value. Several possibilities are considered to account for this behaviour.Comment: -Submitted to Phys. Rev. B -Revtex4 Format -6 postscript figure

    Producing High Concentrations of Hydrogen in Palladium via Electrochemical Insertion from Aqueous and Solid Electrolytes

    Full text link
    Metal hydrides are critical materials in numerous technologies including hydrogen storage, gas separation, and electrocatalysis. Here, using Pd-H as a model metal hydride, we perform electrochemical insertion studies of hydrogen via liquid and solid state electrolytes at 1 atm ambient pressure, and achieve H:Pd ratios near unity, the theoretical solubility limit. We show that the compositions achieved result from a dynamic balance between the rate of hydrogen insertion and evolution from the Pd lattice, the combined kinetics of which are sufficiently rapid that operando experiments are necessary to characterize instantaneous PdHx composition. We use simultaneous electrochemical insertion and X-ray diffraction measurements, combined with a new calibration of lattice parameter versus hydrogen concentration, to enable accurate quantification of the composition of electrochemically synthesized PdHx. Furthermore, we show that the achievable hydrogen concentration is severely limited by electrochemomechanical damage to the palladium and/or substrate. The understanding embodied in these results helps to establish new design rules for achieving high hydrogen concentrations in metal hydrides.Comment: 38 page

    Formation of Structure in Snowfields: Penitentes, Suncups, and Dirt Cones

    Get PDF
    Penitentes and suncups are structures formed as snow melts, typically high in the mountains. When the snow is dirty, dirt cones and other structures can form instead. Building on previous field observations and experiments, this work presents a theory of ablation morphologies, and the role of surface dirt in determining the structures formed. The glaciological literature indicates that sunlight, heating from air, and dirt all play a role in the formation of structure on an ablating snow surface. The present work formulates a mathematical model for the formation of ablation morphologies as a function of measurable parameters. The dependence of ablation morphologies on weather conditions and initial dirt thickness are studied, focusing on the initial growth of perturbations away from a flat surface. We derive a single-parameter expression for the melting rate as a function of dirt thickness, which agrees well with a set of measurements by Driedger. An interesting result is the prediction of a dirt-induced travelling instability for a range of parameters.Comment: 28 pages, 13 figure

    Zeeman-limited Superconductivity in Crystalline Al Films

    Get PDF
    We report the evolution of the Zeeman-mediated superconducting phase diagram (PD) in ultra-thin crystalline Al films. Parallel critical field measurements, down to 50 mK, were made across the superconducting tricritical point of films ranging in thickness from 7 ML to 30 ML. The resulting phase boundaries were compared with the quasi-classical theory of a Zeeman-mediated transition between a homogeneous BCS condensate and a spin polarized Fermi liquid. Films thicker than \sim20 ML showed good agreement with theory, but thinner films exhibited an anomalous PD that cannot be reconciled within a homogeneous BCS framework.Comment: 8 pages, 9 figure

    Effect of annealing on the superconducting properties of a-Nb(x)Si(1-x) thin films

    Full text link
    a-Nb(x)Si(1-x) thin films with thicknesses down to 25 {\AA} have been structurally characterized by TEM (Transmission Electron Microscopy) measurements. As-deposited or annealed films are shown to be continuous and homogeneous in composition and thickness, up to an annealing temperature of 500{\deg}C. We have carried out low temperature transport measurements on these films close to the superconductor-to-insulator transition (SIT), and shown a qualitative difference between the effect of annealing or composition, and a reduction of the film thickness on the superconducting properties of a-NbSi. These results question the pertinence of the sheet resistance R_square as the relevant parameter to describe the SIT.Comment: 9 pages, 12 figure
    corecore