127,162 research outputs found

    Experimental evidence of ageing and slow restoration of the weak-contact configuration in tilted 3D granular packings

    Full text link
    Granular packings slowly driven towards their instability threshold are studied using a digital imaging technique as well as a nonlinear acoustic method. The former method allows us to study grain rearrangements on the surface during the tilting and the latter enables to selectively probe the modifications of the weak-contact fraction in the material bulk. Gradual ageing of both the surface activity and the weak-contact reconfigurations is observed as a result of repeated tilt cycles up to a given angle smaller than the angle of avalanche. For an aged configuration reached after several consecutive tilt cycles, abrupt resumption of the on-surface activity and of the weak-contact rearrangements occurs when the packing is subsequently inclined beyond the previous maximal tilting angle. This behavior is compared with literature results from numerical simulations of inclined 2D packings. It is also found that the aged weak-contact configurations exhibit spontaneous restoration towards the initial state if the packing remains at rest for tens of minutes. When the packing is titled forth and back between zero and near-critical angles, instead of ageing, the weak-contact configuration exhibits "internal weak-contact avalanches" in the vicinity of both the near-critical and zero angles. By contrast, the stronger-contact skeleton remains stable

    Understanding Android Obfuscation Techniques: A Large-Scale Investigation in the Wild

    Get PDF
    In this paper, we seek to better understand Android obfuscation and depict a holistic view of the usage of obfuscation through a large-scale investigation in the wild. In particular, we focus on four popular obfuscation approaches: identifier renaming, string encryption, Java reflection, and packing. To obtain the meaningful statistical results, we designed efficient and lightweight detection models for each obfuscation technique and applied them to our massive APK datasets (collected from Google Play, multiple third-party markets, and malware databases). We have learned several interesting facts from the result. For example, malware authors use string encryption more frequently, and more apps on third-party markets than Google Play are packed. We are also interested in the explanation of each finding. Therefore we carry out in-depth code analysis on some Android apps after sampling. We believe our study will help developers select the most suitable obfuscation approach, and in the meantime help researchers improve code analysis systems in the right direction

    Certified Computation from Unreliable Datasets

    Full text link
    A wide range of learning tasks require human input in labeling massive data. The collected data though are usually low quality and contain inaccuracies and errors. As a result, modern science and business face the problem of learning from unreliable data sets. In this work, we provide a generic approach that is based on \textit{verification} of only few records of the data set to guarantee high quality learning outcomes for various optimization objectives. Our method, identifies small sets of critical records and verifies their validity. We show that many problems only need poly(1/ε)\text{poly}(1/\varepsilon) verifications, to ensure that the output of the computation is at most a factor of (1±ε)(1 \pm \varepsilon) away from the truth. For any given instance, we provide an \textit{instance optimal} solution that verifies the minimum possible number of records to approximately certify correctness. Then using this instance optimal formulation of the problem we prove our main result: "every function that satisfies some Lipschitz continuity condition can be certified with a small number of verifications". We show that the required Lipschitz continuity condition is satisfied even by some NP-complete problems, which illustrates the generality and importance of this theorem. In case this certification step fails, an invalid record will be identified. Removing these records and repeating until success, guarantees that the result will be accurate and will depend only on the verified records. Surprisingly, as we show, for several computation tasks more efficient methods are possible. These methods always guarantee that the produced result is not affected by the invalid records, since any invalid record that affects the output will be detected and verified

    Rain water transport and storage in a model sandy soil with hydrogel particle additives

    Full text link
    We study rain water infiltration and drainage in a dry model sandy soil with superabsorbent hydrogel particle additives by measuring the mass of retained water for non-ponding rainfall using a self-built 3D laboratory set-up. In the pure model sandy soil, the retained water curve measurements indicate that instead of a stable horizontal wetting front that grows downward uniformly, a narrow fingered flow forms under the top layer of water-saturated soil. This rain water channelization phenomenon not only further reduces the available rain water in the plant root zone, but also affects the efficiency of soil additives, such as superabsorbent hydrogel particles. Our studies show that the shape of the retained water curve for a soil packing with hydrogel particle additives strongly depends on the location and the concentration of the hydrogel particles in the model sandy soil. By carefully choosing the particle size and distribution methods, we may use the swollen hydrogel particles to modify the soil pore structure, to clog or extend the water channels in sandy soils, or to build water reservoirs in the plant root zone

    Effects of grain shape on packing and dilatancy of sheared granular materials

    Get PDF
    Granular material exposed to shear shows a variety of unique phenomena: Reynolds dilatancy, positional order and orientational order effects may compete in the shear zone. We study granular packings consisting of macroscopic prolate, oblate and spherical grains and compare their behaviour. X-ray tomography is used to determine the particle positions and orientations in a cylindrical split bottom shear cell. Packing densities and the arrangements of individual particles in the shear zone are evaluated. For anisometric particles, we observe the competition of two opposite effects. One the one hand, the sheared granulate is dilated, but on the other hand the particles reorient and align with respect to the streamlines. Even though aligned cylinders in principle may achieve higher packing densities, this alignment compensates for the effect of dilatancy only partially. The complex rearrangements lead to a depression of the surface above the well oriented region while neigbouring parts still show the effect of dilation in the form of heaps. For grains with isotropic shapes, the surface remains rather flat. Perfect monodisperse spheres crystallize in the shear zone, whereby positional order partially overcompensates dilatancy effects. However, already slight deviations from the ideal monodisperse sphere shape inhibit crystallization.Comment: 12 pages, 13 figures, accepted in Soft Matte

    Unjamming due to local perturbations in granular packings with and without gravity

    Full text link
    We investigate the unjamming response of disordered packings of frictional hard disks with the help of computer simulations. First, we generate jammed configurations of the disks and then force them to move again by local perturbations. We study the spatial distribution of the stress and displacement response and find long range effects of the perturbation in both cases. We record the penetration depth of the displacements and the critical force that is needed to make the system yield. These quantities are tested in two types of systems: in ideal homogeneous packings in zero gravity and in packings settled under gravity. The penetration depth and the critical force are sensitive to the interparticle friction coefficient. Qualitatively, the same nonmonotonic friction dependence is found both with and without gravity, however the location of the extrema are at different friction values. We discuss the role of the connectivity of the contact network and of the pressure gradient in the unjamming response.Comment: 12 pages, 13 figure

    Causes of accidents on construction sites: the case of a large construction contractor in Great Britain

    Get PDF
    In the construction industry in Great Britain, it is estimated that workplace accidents and work-related ill-health cost society £3 billion – this is equivalent to 4% of the construction industry revenue of about £75 billion. Thus, the need to study, understand and effectively manage health and safety (H&S) on construction sites cannot be overemphasised. This paper presents an analysis of accident data recorded by a large construction contractor in Great Britain. The data cover a period of 36 months from April 2004 to March 2007. Pareto analysis was used to determine the relative importance of the causes of accidents on the basis of number of workdays lost. Differences between the four sectors (highways, infrastructure, rail and utilities) in which the company operates were investigated. The case study suggests that the main causes of accidents on construction sites relate to individual attitudes towards H&S. Ability and willingness to implement safe approaches to working and an awareness of their own and others’ H&S can contribute to safe performances. It is suggested that the company could increase awareness of H&S issues among the workforce. This should be done on a regular basis through effective training, briefing and debriefing
    • …
    corecore