161 research outputs found

    A Survey on Array Storage, Query Languages, and Systems

    Full text link
    Since scientific investigation is one of the most important providers of massive amounts of ordered data, there is a renewed interest in array data processing in the context of Big Data. To the best of our knowledge, a unified resource that summarizes and analyzes array processing research over its long existence is currently missing. In this survey, we provide a guide for past, present, and future research in array processing. The survey is organized along three main topics. Array storage discusses all the aspects related to array partitioning into chunks. The identification of a reduced set of array operators to form the foundation for an array query language is analyzed across multiple such proposals. Lastly, we survey real systems for array processing. The result is a thorough survey on array data storage and processing that should be consulted by anyone interested in this research topic, independent of experience level. The survey is not complete though. We greatly appreciate pointers towards any work we might have forgotten to mention.Comment: 44 page

    Parallelizing Windowed Stream Joins in a Shared-Nothing Cluster

    Full text link
    The availability of large number of processing nodes in a parallel and distributed computing environment enables sophisticated real time processing over high speed data streams, as required by many emerging applications. Sliding window stream joins are among the most important operators in a stream processing system. In this paper, we consider the issue of parallelizing a sliding window stream join operator over a shared nothing cluster. We propose a framework, based on fixed or predefined communication pattern, to distribute the join processing loads over the shared-nothing cluster. We consider various overheads while scaling over a large number of nodes, and propose solution methodologies to cope with the issues. We implement the algorithm over a cluster using a message passing system, and present the experimental results showing the effectiveness of the join processing algorithm.Comment: 11 page

    MPI-Vector-IO: Parallel I/O and Partitioning for Geospatial Vector Data

    Get PDF
    In recent times, geospatial datasets are growing in terms of size, complexity and heterogeneity. High performance systems are needed to analyze such data to produce actionable insights in an efficient manner. For polygonal a.k.a vector datasets, operations such as I/O, data partitioning, communication, and load balancing becomes challenging in a cluster environment. In this work, we present MPI-Vector-IO 1 , a parallel I/O library that we have designed using MPI-IO specifically for partitioning and reading irregular vector data formats such as Well Known Text. It makes MPI aware of spatial data, spatial primitives and provides support for spatial data types embedded within collective computation and communication using MPI message-passing library. These abstractions along with parallel I/O support are useful for parallel Geographic Information System (GIS) application development on HPC platforms

    Aggregation of Data by Using Top -K Spatial Query Preferences

    Get PDF
    A spatial database is a database that is optimized to store and query data that represents objects defined in a geometric space. A spatial preference query ranks objects based on the qualities of features in their spatial neighborhood. For example, using a real estate agency database of flats for lease, a customer may want to rank the flats with respect to the appropriateness of their location, defined after aggregating the qualities of other features (e.g., restaurants, cafes, hospital, market, etc.) within their spatial neighborhood. Such a neighborhood concept can be specified by the user via different functions. It can be an explicit circular region within a given distance from the flat. Another intuitive definition is to assign higher weights to the features based on their proximity to the flat. In this paper, we formally define spatial preference queries and propose appropriate indexing techniques and search algorithms for them. Extensive evaluation of our methods on both real and synthetic data reveals that an optimized branch-and-bound solution is efficient and robust with respect to different parameters. Index Terms: Query processing, spatial databases

    Load Balancing Algorithms for Parallel Spatial Join on HPC Platforms

    Get PDF
    Geospatial datasets are growing in volume, complexity, and heterogeneity. For efficient execution of geospatial computations and analytics on large scale datasets, parallel processing is necessary. To exploit fine-grained parallel processing on large scale compute clusters, partitioning of skewed datasets in a load-balanced way is challenging. The workload in spatial join is data dependent and highly irregular. Moreover, wide variation in the size and density of geometries from one region of the map to another, further exacerbates the load imbalance. This dissertation focuses on spatial join operation used in Geographic Information Systems (GIS) and spatial databases, where the inputs are two layers of geospatial data, and the output is a combination of the two layers according to join predicate.This dissertation introduces a novel spatial data partitioning algorithm geared towards load balancing the parallel spatial join processing. Unlike existing partitioning techniques, the proposed partitioning algorithm divides the spatial join workload instead of partitioning the individual datasets separately to provide better load-balancing. This workload partitioning algorithm has been evaluated on a high-performance computing system using real-world datasets. An intermediate output-sensitive duplication avoidance technique is proposed that decreases the external memory space requirement for storing spatial join candidates across the partitions. GPU acceleration is used to further reduce the spatial partitioning runtime. For dynamic load balancing in spatial join, a novel framework for fine-grained work stealing is presented. This framework is efficient and NUMA-aware. Performance improvements are demonstrated on shared and distributed memory architectures using threads and message passing. Experimental results show effective mitigation of data skew. The framework supports a variety of spatial join predicates and spatial overlay using partitioned and un-partitioned datasets

    Partial Replica Location And Selection For Spatial Datasets

    Get PDF
    As the size of scientific datasets continues to grow, we will not be able to store enormous datasets on a single grid node, but must distribute them across many grid nodes. The implementation of partial or incomplete replicas, which represent only a subset of a larger dataset, has been an active topic of research. Partial Spatial Replicas extend this functionality to spatial data, allowing us to distribute a spatial dataset in pieces over several locations. We investigate solutions to the partial spatial replica selection problems. First, we describe and develop two designs for an Spatial Replica Location Service (SRLS), which must return the set of replicas that intersect with a query region. Integrating a relational database, a spatial data structure and grid computing software, we build a scalable solution that works well even for several million replicas. In our SRLS, we have improved performance by designing a R-tree structure in the backend database, and by aggregating several queries into one larger query, which reduces overhead. We also use the Morton Space-filling Curve during R-tree construction, which improves spatial locality. In addition, we describe R-tree Prefetching(RTP), which effectively utilizes the modern multi-processor architecture. Second, we present and implement a fast replica selection algorithm in which a set of partial replicas is chosen from a set of candidates so that retrieval performance is maximized. Using an R-tree based heuristic algorithm, we achieve O(n log n) complexity for this NP-complete problem. We describe a model for disk access performance that takes filesystem prefetching into account and is sufficiently accurate for spatial replica selection. Making a few simplifying assumptions, we present a fast replica selection algorithm for partial spatial replicas. The algorithm uses a greedy approach that attempts to maximize performance by choosing a collection of replica subsets that allow fast data retrieval by a client machine. Experiments show that the performance of the solution found by our algorithm is on average always at least 91% and 93.4% of the performance of the optimal solution in 4-node and 8-node tests respectively

    Scalable Storage for Digital Libraries

    Get PDF
    I propose a storage system optimised for digital libraries. Its key features are its heterogeneous scalability; its integration and exploitation of rich semantic metadata associated with digital objects; its use of a name space; and its aggressive performance optimisation in the digital library domain

    DISTRIBUTED MULTIDIMENSIONAL INDEXING FOR SCIENTIFIC DATA ANALYSIS APPLICATIONS

    Get PDF
    Scientific data analysis applications require large scale computing power to effectively service client queries and also require large storage repositories for datasets that are generated continually from sensors and simulations. These scientific datasets are growing in size every day, and are becoming truly enormous. The goal of this dissertation is to provide efficient multidimensional indexing techniques that aid in navigating distributed scientific datasets. In this dissertation, we show significant improvements in accessing distributed large scientific datasets. The first approach we took to improve access to subsets of large multidimensional scientific datasets, was data chunking. The contents of scientific data files typically are a collection of multidimensional arrays, along with the corresponding metadata. Data chunking groups data elements into small chunks of a fixed, but data-specific, size to take advantage of spatio-temporal locality since it is not efficient to index individual data elements of large scientific datasets. The second approach was the design of an efficient multidimensional index for scientific datasets. This work investigates how existing multidimensional indexing structures perform on chunked scientific datasets, and compares their performance with that of our own indexing structure, SH-trees. Since R-trees were proposed, various multidimensional indexing structures have been proposed. However, there are a relatively small number of studies focused on improving the performance of indexing geographically distributed datasets, especially across heterogeneous machines. As a third approach, in an attempt to accelerate indexing performance for distributed datasets, we proposed several distributed multidimensional indexing schemes: replicated centralized indexing, hierarchical two level indexing, and decentralized two level indexing. Our experimental results show that great performance improvements are gained from distribution of multidimensional index. However, the design choices for distributed indexing, such as replication, partitioning, and decentralization, must be carefully considered since they may decrease the overall performance in certain situations. Therefore, this work provides performance guidelines to aid in selecting the best distributed multidimensional indexing scheme for various systems and applications. Finally, we describe how a distributed multidimensional indexing scheme can be used by a distributed multiple query optimization middleware as a case-study application to generate better query plans by leveraging information about the contents of remote caches

    Achieving High Reliability and Efficiency in Maintaining Large-Scale Storage Systems through Optimal Resource Provisioning and Data Placement

    Get PDF
    With the explosive increase in the amount of data being generated by various applications, large-scale distributed and parallel storage systems have become common data storage solutions and been widely deployed and utilized in both industry and academia. While these high performance storage systems significantly accelerate the data storage and retrieval, they also bring some critical issues in system maintenance and management. In this dissertation, I propose three methodologies to address three of these critical issues. First, I develop an optimal resource management and spare provisioning model to minimize the impact brought by component failures and ensure a highly operational experience in maintaining large-scale storage systems. Second, in order to cost-effectively integrate solid-state drives (SSD) into large-scale storage systems, I design a holistic algorithm which can adaptively predict the popularity of data objects by leveraging temporal locality in their access pattern and adjust their placement among solid-state drives and regular hard disk drives so that the data access throughput as well as the storage space efficiency of the large-scale heterogeneous storage systems can be improved. Finally, I propose a new checkpoint placement optimization model which can maximize the computation efficiency of large-scale scientific applications while guarantee the endurance requirements of the SSD-based burst buffer in high performance hierarchical storage systems. All these models and algorithms are validated through extensive evaluation using data collected from deployed large-scale storage systems and the evaluation results demonstrate our models and algorithms can significantly improve the reliability and efficiency of large-scale distributed and parallel storage systems
    • …
    corecore