
University of Tennessee, Knoxville University of Tennessee, Knoxville

TRACE: Tennessee Research and Creative TRACE: Tennessee Research and Creative

Exchange Exchange

Doctoral Dissertations Graduate School

8-2016

Achieving High Reliability and Efficiency in Maintaining Large-Achieving High Reliability and Efficiency in Maintaining Large-

Scale Storage Systems through Optimal Resource Provisioning Scale Storage Systems through Optimal Resource Provisioning

and Data Placement and Data Placement

Lipeng Wan
University of Tennessee, Knoxville, lwan1@vols.utk.edu

Follow this and additional works at: https://trace.tennessee.edu/utk_graddiss

 Part of the Computer and Systems Architecture Commons, Data Storage Systems Commons, and the

Systems Architecture Commons

Recommended Citation Recommended Citation
Wan, Lipeng, "Achieving High Reliability and Efficiency in Maintaining Large-Scale Storage Systems
through Optimal Resource Provisioning and Data Placement. " PhD diss., University of Tennessee, 2016.
https://trace.tennessee.edu/utk_graddiss/3972

This Dissertation is brought to you for free and open access by the Graduate School at TRACE: Tennessee
Research and Creative Exchange. It has been accepted for inclusion in Doctoral Dissertations by an authorized
administrator of TRACE: Tennessee Research and Creative Exchange. For more information, please contact
trace@utk.edu.

https://trace.tennessee.edu/
https://trace.tennessee.edu/
https://trace.tennessee.edu/utk_graddiss
https://trace.tennessee.edu/utk-grad
https://trace.tennessee.edu/utk_graddiss?utm_source=trace.tennessee.edu%2Futk_graddiss%2F3972&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/259?utm_source=trace.tennessee.edu%2Futk_graddiss%2F3972&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/261?utm_source=trace.tennessee.edu%2Futk_graddiss%2F3972&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/144?utm_source=trace.tennessee.edu%2Futk_graddiss%2F3972&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:trace@utk.edu

To the Graduate Council:

I am submitting herewith a dissertation written by Lipeng Wan entitled "Achieving High

Reliability and Efficiency in Maintaining Large-Scale Storage Systems through Optimal Resource

Provisioning and Data Placement." I have examined the final electronic copy of this dissertation

for form and content and recommend that it be accepted in partial fulfillment of the

requirements for the degree of Doctor of Philosophy, with a major in Computer Science.

Qing Cao, Major Professor

We have read this dissertation and recommend its acceptance:

Feiyi Wang, Michael W. Berry, Asad J. Khattak

Accepted for the Council:

Carolyn R. Hodges

Vice Provost and Dean of the Graduate School

(Original signatures are on file with official student records.)

Achieving High Reliability and

Efficiency in Maintaining

Large-Scale Storage Systems

through Optimal Resource

Provisioning and Data Placement

A Dissertation Presented for the

Doctor of Philosophy

Degree

The University of Tennessee, Knoxville

Lipeng Wan

August 2016

c© by Lipeng Wan, 2016

All Rights Reserved.

ii

This work is dedicated to my parents

iii

Acknowledgements

First of all, I would like to thank Dr. Qing Cao, for serving as my major advisor during

my Ph.D. studies. Over the past five years, he continuously provided me support and

guidance for my research. Whenever I encountered a difficulty in research, he always

encouraged me to face the challenge and helped me understand what would be the

best way to solve the problem with great patience. Moreover, Dr. Cao gave me lots

of flexibility in choosing my research topic, and I was allowed to work on any research

projects I was interested in. With such flexibility, I was able to explore more potential

research directions and find the one that I really love to devote myself to.

Second, I would like to thank Dr. Feiyi Wang, who was my mentor when I worked

as an intern at the Oak Ridge National Laboratory. During my internship at ORNL,

Dr. Wang treated me like a colleague rather than a student. He always encouraged

me to come up with my own idea and be confident to talk about it in front of other

people. With such encouragement, I eventually became an independent thinker and

a qualified researcher in computer science.

Third, I would like to thank Dr. Michael W. Berry, and Dr. Asad J. Khattak for

serving on my committee. I really appreciate the insightful comments and suggestions

they gave me for helping me revise and refine my dissertation.

Finally, I would like to thank all my colleagues at the University of Tennessee,

Knoxville and the Oak Ridge National Laboratory. It was a great pleasure and honor

for me to have had the opportunity to work with you.

iv

All of science is nothing more than the refinement of everyday thinking.

— Albert Einstein

v

Abstract

With the explosive increase in the amount of data being generated by various

applications, large-scale distributed and parallel storage systems have become

common data storage solutions and been widely deployed and utilized in both

industry and academia. While these high performance storage systems significantly

accelerate the data storage and retrieval, they also bring some critical issues in system

maintenance and management. In this dissertation, I propose three methodologies to

address three of these critical issues.

First, I develop an optimal resource management and spare provisioning model to

minimize the impact brought by component failures and ensure a highly operational

experience in maintaining large-scale storage systems. Second, in order to cost-

effectively integrate solid-state drives (SSD) into large-scale storage systems, I design

a holistic algorithm which can adaptively predict the popularity of data objects by

leveraging the temporal locality in their access patterns and adjust their placement

among solid-state drives and regular hard disk drives so that the data access

throughput as well as the storage space efficiency of the large-scale heterogeneous

storage systems can be improved. Finally, I propose a new checkpoint placement

optimization model which can maximize the computation efficiency of large-scale

scientific applications while guarantee the endurance requirements of the SSD-based

burst buffer in high performance hierarchical storage systems. All these models

and algorithms are validated through extensive evaluation using data collected from

deployed large-scale storage systems and the evaluation results demonstrate our

vi

models and algorithms can significantly improve the reliability and efficiency of large-

scale distributed and parallel storage systems.

vii

Table of Contents

1 Introduction 1

2 Related Work 5

3 Optimal Resource Management and Spare Provisioning 11

3.1 The Overview . 11

3.2 Factors Affecting the Reliability of Large-Scale Storage Systems . . . 13

3.2.1 System architectures . 13

3.2.2 Device failures . 15

3.2.3 Failure dependencies and propagation 18

3.3 Initial Provisioning . 24

3.3.1 Optimizing for performance 24

3.3.2 Impact of number of disks and disk capacity 25

3.3.3 Effect of increasing disks/SSU on system reliability 27

3.4 Continuous Provisioning . 28

3.4.1 Ad hoc provisioning . 28

3.4.2 Dynamic spare provisioning model 30

3.4.3 Continuous provisioning evaluation 35

4 Optimal Workload-Adaptive Data Placement 40

4.1 Problem Formulation . 40

4.2 System Model . 41

viii

4.3 Algorithm Design . 42

4.3.1 Temporal locality in data objects access 43

4.3.2 Markov chain prediction model 44

4.3.3 Optimal data placement for maximizing data access throughput 46

4.3.4 Adaptive data replication for increasing the storage space

efficiency . 48

4.4 Evaluation . 49

4.4.1 I/O trace analysis and preprocess 49

4.4.2 Evaluation on optimal data placement model 50

4.4.3 Evaluation on adaptive data replication 52

5 Optimal Checkpoint Placement with Guaranteed Burst Buffer En-

durance 55

5.1 The Overview . 55

5.2 Background . 59

5.2.1 Optimal checkpoint interval 59

5.2.2 Identifying checkpoint intervals by exploiting the temporal

locality of failures . 61

5.2.3 Identifying checkpoint intervals for a fixed burst buffer capacity 62

5.3 Checkpoint Placement Optimization with Guaranteed Burst Buffer

Endurance . 63

5.4 Adaptive Checkpoint Placement for Optimal HPC System and Burst

Buffer Usage . 66

5.4.1 Runtime characteristics of HPC systems and scientific applica-

tions . 67

5.4.2 Effect of dynamic runtime characteristics on checkpoint place-

ment optimization . 68

5.4.3 Adaptive checkpoint placement optimization algorithm 72

5.5 Evaluation . 75

ix

5.5.1 Evaluation setup . 75

5.5.2 Evaluation results . 79

6 Conclusion 87

Bibliography 89

Vita 102

x

Chapter 1

Introduction

With the explosive increase in the amount of data being generated by various

applications, large-scale distributed and parallel storage systems have become

common data storage solutions and been widely deployed and utilized in both

industry and academia. Some examples of such storage systems include Google

File System Ghemawat et al. (2003a), Facebook’s Haystack object-based storage

system Beaver et al. (2010), the Oak Ridge Leadership Computing Facility’s (OLCF)

Spider I and II storage systems Shipman et al. (2009); Oral et al. (2013), Livermore

Computing Center’s Sequoia storage system Behlendorf (2012) and Riken Advanced

Institute for Computational Science’s K-Computer storage system Sakai et al. (2012),

etc. While these high performance storage systems significantly accelerate the data

storage and retrieval, they also bring some critical issues in system maintenance and

management.

First, in order to achieve large capacity and high I/O performance, these large-

scale storage systems are usually composed of tens of thousands of physical devices,

such as hard disk drives (HDDs), controllers, switches, I/O servers, etc. However,

the increase of physical components also leads to high vulnerability, as the failure

of any of these components might make partial or entire storage system be out of

service. Even worse is that some important data might get lost due to the system

1

failures. Therefore, the reliability issue of large-scale storage systems is always the

most critical concern of both system administrators and users. Since the device

failures are inevitable, we need to design effective resource management and spare

provisioning strategies to minimize the impact brought by failures.

Second, with the development of storage technologies, flash-based storage devices,

such as solid-state drives (SSDs), have eventually been exploited by large-scale storage

systems SDSC (2015). Though these storage devices can provide much higher I/O

performance, they are also much more expensive than traditional hard disk drives

of the same capacity. In fact, it is not yet practical to use SSDs to completely

replace conventional hard disks drives in large-scale storage systems, which also means

only partial of the data can be stored on SSDs. Therefore, how to cost-effectively

integrate SSDs into large-scale storage systems and design efficient data placement

and replication mechanisms in such heterogeneous storage environments to improve

the data access throughput as well as the storage space efficiency is also a challenging

task.

Moreover, in some scenarios, the write workloads issued to large-scale storage

systems can be extremely intensive. For instance, the large-scale storage systems used

in high performance computing (HPC) environments often need to store checkpoint

data generated by scientific applications running on supercomputers. Due to the high

bandwidth required by such checkpointing operations, SSDs are often used as the

burst buffers to absorb the checkpoint workloads. However, the amount of data that

can be written to SSDs is limited since only a finite number of program-erase (P/E)

cycles are possible before the bit error of SSD becomes unacceptable high. Such

intensive write workloads generated by high-frequency checkpointing operations of

scientific applications will dramatically consume the allowed P/E cycles of each SSD

and wear out the devices quickly. Therefore, how to efficiently utilize SSDs while

guarantee their endurance requirements under intensive write workloads is another

common issue needs to be solved in large-scale storage systems, especially in HPC

storage environments.

2

In fact, the above issues cover three critical aspects of maintaining large-scale

storage systems, including how to fulfill system construction and provisioning, how to

improve system performance and how to prolong system lifespan. In this dissertation,

I plan to address these issues through the following methodologies:

• Optimal resource management and spare provisioning: Designing and

Building a large-scale storage system needs to manage all kinds of hardware

resources by factoring in a variety of goals such as capacity, performance and

availability, while adhering to a fixed price point. In my research, I propose

a two-phased design approach, namely initial and continuous provisioning that

can help alleviate this situation. Initial provisioning addresses the early stage of

the procurement, and explores the optimal tradeoffs between cost, performance

and availability. Continuous provisioning provides an optimal spare part

provisioning model to ensure a highly available system operational experience.

Both approaches leverage the insights gained from a detailed analysis of field-

collected operational data (including device replacement logs, vendor-provided

failure rates, etc.) and a well-designed system-agnostic simulation tool.

• Optimal workload-adaptive data placement: Existing solutions to build a

heterogeneous storage system utilizing both HDDs and SSDs are largely based

on heuristic algorithms that are either developed in isolation with the runtime

workload, or are based on static assumptions on the workload patterns, making

them unsuitable when the underlying workloads and demands change over time.

In my research, I propose a holistic optimization algorithm which can adaptively

predict the popularity of data objects by leveraging temporal locality in their

access pattern, and adjust their placement and replication among storage tiers

to improve the data access throughput and the storage space efficiency.

• Optimal checkpoint placement with guaranteed burst buffer endurance:

In order to provide large-scale scientific applications running on HPC systems

enough bandwidth and IOPS to write checkpoints, SSDs are often used to build

3

a burst buffer layer between the compute nodes and parallel file systems so that

the checkpoint data can be temporarily written into the burst buffer first and

then drained to the underlying parallel file systems asynchronously. In existing

large-scale storage systems, the burst buffers were designed to absorb all I/O

workloads. However, in reality the intensive write workloads generated by large-

scale long-running scientific applications through checkpointing could degrade

the endurance of SSD devices and the reliability of the burst buffer significantly.

In my research, I propose a new checkpoint placement optimization model which

can maximize the computation efficiency of large-scale scientific applications

while guarantee the endurance requirements of the SSD-based burst buffer in

HPC storage environments.

4

Chapter 2

Related Work

According to the three methodologies I proposed in this dissertation, I summarize the

related work into the following three aspects:

• Reliability and spare provisioning of storage systems: Storage system

reliability and data availability have been studied on several fronts. Analytical

modeling, coupled with field data analysis and fitting are among the most

common approaches. A large body of existing work focusses on building

probability models for failures of disk drives and data loss in RAID groups

Gibson and Patterson (1993); Chen et al. (1994); Schulze et al. (1989); Patterson

et al. (1988); Xin et al. (2003); Rao et al. (2006). A few existing studies have also

tried to estimate the reliability of a storage system through simulation Greenan

(2009); Elerath and Pecht (2007); Elerath and Schindler (2014). In particular,

Elerath and Pecht Elerath and Pecht (2007) have implemented a Monte Carlo

simulation for RAID 4 groups to evaluate how time dependent failure and repair

rates impact the average number of data loss events that could occur during

a given mission time. Greenan developed a high-fidelity reliability simulator

for erasure-coded storage systems Greenan (2009). All of the simulation-based

approaches focus at the component-level, i.e., disk or RAID group failures. None

5

of them takes an end-to-end approach to study reliability and its impact on the

provisioning of a large-scale storage system.

Spare provisioning optimization has been extensively studied in the industrial

engineering area. Different optimization models have been proposed by a

number of researchers. For instance, in order to guarantee a specific availability

metric for the system, queuing theory based approaches have been frequently

used to determine the number of spare parts that should be prepared Jardine

and Tsang (2005); Mani and Sarma (1984); Alam and Mani (1988); Lewis

and Cochran (1995). Besides queuing theory, some optimization-based models

Vaughan (2005); Ghodrati et al. (2012) were also proposed in the operations

research (OR) area. However, due to the complexity of the extreme-scale

distributed storage system, existing OR related spare provisioning models

cannot be directly applied or non-trivially extended.

• Data placement optimization in heterogeneous storage systems: As

large-scale distributed storage systems have been widely used in both industry

and academia, the problem of distributing several petabytes of data among

hundreds or thousands of storage devices becomes more and more critical. To

address this problem, many data placement algorithms have been proposed. For

instance, Distributed Hash Tables (DHTs) have been used to place and locate

the data objects in P2P systems Stoica et al. (2001); Ratnasamy et al. (2001);

Cai et al. (2004). Another replica placement scheme called chain placement was

also proposed and applied to some P2P and LAN storage systems Rowstron and

Druschel (2001); Lee and Thekkath (1996); MacCormick et al. (2004). Honicky

and Miller presented a family of algorithms named RUSH Honicky and Miller

(2004) that utilizes a mapping function to evenly map replicated objects to a

scalable collection of storage devices, so that it can support efficient additions

and removals of weighted devices.

6

To address the reliability and replication issues of the RUSH algorithm, Weil

et al. proposed a scalable pseudo-random data distribution algorithm named

CRUSH Weil et al. (2006b). Besides optimally distributing data to available

resources and efficiently reorganizing data after adding or removing storage

devices, CRUSH exploits flexible constraints on replica placement to maximize

data safety in the case of hardware failures. Specifically, CRUSH allows

the administrator to assign different weights to storage devices so that the

administrator can control the relative share of data each device is responsible

for. However, the device weights used in the CRUSH algorithm only reflect

the capacities of storage devices, therefore, the CRUSH algorithm may not

be effective anymore for hybrid storage systems consisting of both SSD and

HDD devices, as these two kinds of storage devices have completely different

performance characteristics.

Recently, efforts have been made to combine SSD and HDD drives together to

construct hybrid storage systems. In such systems, SSDs are either used for

caching purposes, or used as more independent storage devices. For example,

Srinivasan et al. designed a block-level cache named Flashcache Srinivasan et al.

(2015) between DRAM and hard disks using SSD devices. Zhang et al. proposed

iTransformer Zhang et al. (2012) which exploits a small SSD to schedule requests

for the data on disks so that high disk efficiency can be achieved. SieveStore

Pritchett and Thottethodi (2010) adopts a selective caching approach in which

the accesses of each block are tracked and the most popular block is cached in

SSD device. In the second approach, SSDs are more independently used. Chen

et al. designed and implemented a high performance hybrid storage system

named Hystor Chen et al. (2011a), which identifies data blocks that either can

result in long latencies or are semantically critical on hard disks, and store them

in SSDs for future accesses. In order to prolong the service life of SSDs devices,

Ren et al. proposed I CASH Yang and Ren (2011) to reduce random write

7

traffic to SSDs. Specifically, I CASH is an approach that exploits the spacial

locality of data accesses, and only store those seldom-changed data blocks on

SSDs. Finally, ComboDrive Payer et al. (2009) concatenates SSD and HDD

into one address space via a hardware-based solution, so that certain data on

HDD can be moved into the faster SSD space.

There are two major drawbacks in existing studies: first, most existing studies

on hybrid storage systems only consider how to improve the utilization of SSD

drives, but they have ignored the reliability and replication issues; second,

existing studies have not considered the dynamic nature of the I/O workloads,

a nature that makes continuous training and learning necessary.

• Checkpoint placement and SSD lifetime optimization: The idea of

utilizing SSD devices to build a burst buffer layer between HPC systems and

parallel file systems to temporarily absorb checkpoint I/O workloads has been

researched over the last few yearsLiu et al. (2012); Sato et al. (2012); Bent

et al. (2012). In fact, several recent high performance computing system

deployments have already included burst buffer layers Xu et al. (2014); Sato

et al. (2014). Existing studies in this area mainly focus on how to maximize

the I/O performance of the checkpointing operations through the burst buffer.

For example, Scalable Checkpoint/Restart library (SCR) Moody et al. (2010)

provides an interface that allows scientific applications to periodically do

checkpointing to SSDs, and asynchronously flush these checkpoints from SSDs

to the underlying parallel file systems without interfering with applications’

computation phase. In Wang et al. (2014), a new design of the burst buffer

system named BurstMem is proposed which implements functionalities similar

to SCR but provides better I/O performance through efficient storage and

communication management strategies. Park and Shen (2009a) presents a trace-

driven performance evaluation of scientific I/O workloads on SSDs, which shows

the concurrent I/O might significantly affect the SSD performance. However,

8

none of these studies considered the endurance issue of the burst buffer under

scientific I/O workloads, though such issue has emerged and will become

extremely critical in next-generation HPC computing and storage systems.

For single SSD device under common I/O workload, its endurance and reliability

have been extensively studied. The existing body of work in this area can

be classified into three categories. The first category focuses on improving

the internal design of SSD devices Agrawal et al. (2008); Chen et al. (2011b);

Wu and He (2012), including designing better flash translation layers (FTL),

more efficient wear-leveling and garbage collection algorithms. The second

category mainly concentrates on OS-level optimizations Wu et al. (2009); Lu

et al. (2013), including utilizing TRIM commands from OS, designing filesystem-

aware garbage collection algorithms. Finally, the third category reshapes the

I/O workloads Soundararajan et al. (2010); Chen et al. (2011a); Yang and

Ren (2011), including reducing the write workloads and the randomness of

the access pattern, so that the write-amplification can be reduced. All of

these techniques are effective if the amount of data written to SSDs is within

some boundaries. However, for I/O workloads generated by large-scale long-

running scientific applications, these techniques might not be efficient, given

the checkpoint frequency and amount of data written at each checkpoint step,

consuming the allowed program-erase (P/E) cycles of underlying burst buffer

SSDs and quickly wearing them out.

In order to better utilize SSD devices under scientific I/O workloads, Fang and

Chien (2015) presents a checkpoint interval optimization model for large-scale

scientific applications. This model is essentially same as those developed by

Young (1974); Vaidya (1997); Daly (2006) whose objective is to maximize the

computational efficiency of HPC systems, but it also puts the constraint of

burst buffer capacity into consideration. By using this model, optimal SSD

capacity allocation among all scientific applications can be determined. Since

9

the SSD-based burst buffers of the HPC systems are assumed to absorb all

checkpoint data of the scientific applications, this model intends to reduce the

checkpoint frequency of some write-heavy jobs if a rigorous constraint of burst

buffer capacity is given. However, such reduction in checkpoint frequency also

significantly increases the potential wasted computation time caused by system

failures, especially for large computation jobs.

10

Chapter 3

Optimal Resource Management

and Spare Provisioning

3.1 The Overview

The design and procurement of large-scale storage systems are complex in nature.

When faced with multi-faceted considerations, system designers usually cope with the

challenges by adopting an ad hoc process that is a combination of back of the envelope

calculations and the reliance on past experiences. The end result may make sense, but

they are difficult to reason, with little or no quantifiable justification. Therefore, we

take a more systematic approach by focusing on three key issues in designing such a

system, namely availability, capability (performance) and capacity, under a fixed cost

constraint. In particular, we divide the provisioning process into two phases, namely

initial provisioning and continuous provisioning. The operational experience

from system administrators suggests that designing for the second phase should

receive equal, if not more attention since the shelf life of an extreme-scale storage

system tends to be five years or even longer. As can be seen in Table 3.1, the two

phases also place different emphasis regarding the aforementioned key characteristics

11

(Check marks indicate the metrics that will be optimized in each phase, while “fixed”

indicates the constraints during each phase).

Table 3.1: Provisioning approaches

Performance Capacity Availability Spare Parts

Initial Provisioning � � � Fixed
Continuous Provisioning Fixed Fixed � �

The provisioning of the initial system deployment is primarily based on the

understanding of the trade-offs among cost, performance and capacity. While cost

remains the primary constraint, it is not the case that simply buying faster disks

will yield the best performance for a given budget. This is because of the complex

building structures of an HPC storage system, as well as how different components

affect the performance, cost and reliability of the whole system.

Since the component characteristics in storage systems change over time, achieving

high data availability requires continuous provisioning and deployment. For instance,

when an extreme-scale storage system is initially deployed, all components are new,

but as time goes by, some components fail and get replaced, which changes their

performance or reliability characteristics. If spare parts have been provisioned,

and readily available before the failure, the replacement and repair of these faulty

parts could be completed quickly, significantly reducing the possibility of data

unavailability. Moreover, as failed components are replaced by spare parts, the

system contains both new and aging components. Thus, the reliability status of the

system during operations is different from the one at the time of initial deployment.

Therefore, the spare provisioning policies for continuous operations should also be

different.

In this chapter, I concentrate on these resource provisioning problems during

the construction and maintenance of large-scale storage systems. My study are

primarily intended for storage system architects, administrators and procurement

teams, and can help them answer the following critical questions: How many units

12

should be purchased for each type of hardware component in order to achieve the

desired capacity and performance under a fixed price envelope? What kind of disk

drive should be purchased? What is the impact on cost, performance, and footprint,

assuming a smaller sized drive can achieve the desired capacity? How will the drive

size impact availability and rebuild times of the RAID group, and consequently, the

performance of the RAID array? What are the expected failure rates of the storage

subsystem components, and how do they impact data availability? How to take

advantage of the above fact to better provision spares to improve data availability,

rather than blindly allocating funds? The answers to these questions will be used to

make better procurement plans and provisioning policies.

3.2 Factors Affecting the Reliability of Large-Scale

Storage Systems

In order to design optimal initial and continuous resource management and provision-

ing policies, we need to have a comprehensive understanding on system architectures,

device failures, failure dependencies and propagation. These are the factors that have

most significant impact on reliability of large-scale storage systems.

3.2.1 System architectures

System architecture plays an important role in the reliability of large-scale storage

systems. For the convenience of replacing failed components in the system, hardware

devices are usually encapsulated as field replaceable unit (FRU). A set of FRUs that

implement a particular functionality will be further integrated as an scalable system

unit (SSU). Large-scale storage systems are built using SSU for ease of design,

procurement, deployment, management and maintenance. An SSU consists of all

required components to build a stand alone file system. In order to reach the design

targets, multiple SSUs are acquired and deployed. SSU examples include block-level

13

storage systems (e.g. DDN SFA series DataDirect Networks, Inc. (2014), IBM DS

series IBM DS8000 Series (2014), NetApp FAS series NetApp, Inc. (2014)) or file-

system level appliances (e.g. Seagate ClusterStor9000 Seagate Technology (2014) or

Panasas ActiveStor Panasas, Inc. (2014)).

The architecture of OLCF’s Spider I is presented here as an example of a large-

scale storage system. The design targets and specifications of Spider I are well

documented Shipman et al. (2009). Spider I was deployed in 2008, and remained

operational until 2013, serving the Jaguar supercomputer which was No. 1 on the

Top500 list of machines in June 2010. At the time of deployment, Spider I was

announced as the fastest and largest known Lustre parallel file system in the world.

Spider I offered an aggregate system performance of 240 GB/s, and provided over

10 PB of RAID 6 formatted capacity, using 13,440 SATA disks and 192 file system

servers. It served more than 26,000 file system clients from several clusters and the

Jaguar supercomputer.

Spider I was built using 48 SSUs, each one consisted of a DDN S2A9900 controller

couplet DataDirect Networks, Inc. (2011), with 280 1 TB SATA disks configured in

5 disk enclosures. Each Spider I DDN couplet was composed of two singlets and

connected to 4 file system servers. Host-side interfaces in each singlet was populated

with two dual-port 4x DDR IB HCAs. The back-end disks were connected via ten

SAS links on each singlet. For a SATA based system, these SAS links connected to

expander modules within each disk shelf. The expanders then connected to SAS-to-

SATA adapters on each drive. All components had redundant paths. Each singlet

and disk tray had dual power-supplies where one power supply was powered by the

house power and the other by the UPS. Figure 3.1 illustrates the internal architecture

of a Spider I DDN S2A9900 couplet.

In the following sections, Spider I is used as a case study since its field failure data

is publicly available Wan et al. (2014b, 2015).

14

D1 D14

Disk Enclosure 1

DEM

D15 D28... DEM

D29 D42... DEM

D56... DEM

DEM

DEM

DEM

DEM

A1

B1

C1

D1

E1

F1

G1

H1

P1

S1

A1

B1

A2

B2

C2

D2

E2

F2

G2

H2

P2

S2

A2

B2

Controller2

...

Disk Enclosure 2

Disk Enclosure 5

Controller1

...

D43

IO

Module

IO

Module

IO

Module

IO

Module

IO

Module

IO

Module

IO

Module

IO

Module

IO

Module

IO

Module

Power Supply
(House)

Power Supply
(UPS)

Power Supply
(House)

Power Supply
(UPS)

Power Supply
(House)

Power Supply
(UPS)

Figure 3.1: Spider I S2A 9900 architecture

3.2.2 Device failures

Different types of FRUs have different failure patterns, some devices might fail more

often than others during the operations. Therefore it is critical to understand the

reliability characteristics of each type of FRU. Usually, such information can be

obtained from vendor-provided reliability metrics and field-collected failure data.

Vendor-provided reliability metrics

System vendors often provide AFR (annualized failure rate) or MTTF (mean time to

failure) of each type of FRU. As stated earlier, Spider I consists of 48 SSUs in total,

and each SSU is built with 9 types of FRUs. The vendor-provided AFRs of all types of

15

Table 3.2: FRUs in one scalable storage unit

Number Total Unit Vendor Actual
FRU Type per SSU Number Cost ($) AFR AFR

Controller 2 96 10,000 4.64% 16.25%
House Power Supply
(Controller)

2 96 2,000 0.83% 4.38%

Disk Enclosure 5 240 15,000 0.23% 1.17%
House Power Supply
(Disk Enclosure)

5 240 2,000 0.08% 8.50%

UPS Power Supply* 7 336 1,000 3.85% NA
I/O Module 10 480 1,500 0.38% 0.92%
Disk Expansion Module
(DEM)

40 1,920 500 0.23% 0.29%

Baseboard* 20 960 800 0.23% NA
Disk Drive 280 13,440 100 0.88% 0.39%
*Field data missing, actual AFR is unavailable.

FRUs are listed in Table 3.2. Vendor-provided reliability metrics can be used to derive

a coarse-grained estimation of a storage subsystem’s reliability. As an example, one

model that has been widely used to estimate the data availability of disk redundancy

groups is continuous Markov chain, which has an underlying assumption that the

failure rates of disk drives are constant (time independent) Gibson and Patterson

(1993); Chen et al. (1994); Schulze et al. (1989); Patterson et al. (1988). With such a

model, the vendor-provided metrics, AFRs and MTTF, can be used to establish the

failure model of each disk drive, which assumes that the time to failure of disk drives

is an exponential distribution.

Field-collected failure data

Besides the vendor-provided metrics, system administrators typically maintain field-

gathered failure and replacement data. Such information is much closer to the reality

than vendor provided reliability metrics. In fact, by analyzing the field-gathered

failure data of storage systems, several existing studies have shown that the failure

rates of disk drives and other hardware components can vary over time Greenan

(2009); Pinheiro et al. (2007).

16

The failure and replacement data for Spider I was collected from all of the 48

SSUs during its 5-year operational period. The dataset contains timestamps when

device replacement was needed. We first calculate the actual AFR for each type of

FRU using the following formula and the calculation results are also listed in Table

3.2.

A type of FRU’s actual AFR =
Total # of replacement of such FRU

Total # of such FRU× Years
× 100% (3.1)

The key findings from the actual AFR calculation can be summarized as follows:

• The actual annualized failure rate (AFR) of Spider I disks is only 0.39% – much

smaller than what has been reported in previous studies Schroeder and Gibson

(2007). It is hard to generalize this as the environment, testing conditions and

vendors are quite different. Efficient facilities support, e.g., better power and

cooling infrastructure, might be a factor here. However, it is not possible to

quantitatively establish a causal relationship between operating conditions and

disk drive failure rate.

• Aggressive burn-out tests at the time of system deployment help eliminate

potential problematic or slower disks early on, which improves the overall

aggregate parallel performance. It also keeps the disk AFR low by removing

potential problematic disks from the population. There is no community

standard for stress testing and slow disk identification. The method adopted

by OLCF involved individually stressing each SSU, and identifying the slowest

disk RAID groups. Then, those groups were exercised separately, and latency

statistics on the disks were collected individually. This process should be

performed during initial deployment, and repeated periodically to keep a healthy

and uniformly performing disk population. OLCF’s records indicate that the

AFR before the acceptance of the Spider I system was much higher (2.2%).

17

Their early testing helped remove close to 200 slow or bad disks. This resulted

in a much lower AFR during production (0.39%).

• Non-disk components of Spider I have higher AFRs than vendor provided

metrics. While this comes as a surprise, it also suggests that future studies

should carefully model and account for the reliability of non-disk components as

they contribute heavily towards the overall reliability of the system.

With the failure dataset, we also derive the empirical, cumulative distribution

function (CDF) of the time between device replacements for different types of FRUs

(Figure 3.2). An interesting fact that needs to note is the failures of disk drives can

be more accurately modeled by joining two different distributions. For example, as

shown in Figure 3.2(d), when the time between disk replacements is relatively small,

a Weibull distribution with decreasing failure rate is a better fit; with increasing time

between disk replacements, the failure rate is stable, and an exponential distribution

is a better fit. This observation indicates that in reality the failure rate of disk drives

could be neither constant nor monotonically increasing or decreasing, which differs

from what is usually assumed by many existing studies Schwarz et al. (2004); Elerath

and Pecht (2007); Greenan (2009); Elerath and Schindler (2014).

Time spent on FRU replacement in Spider I have not been recorded or shared with

the public. However, it was stated that most of these replacements were completed

within 24 hours, if spare parts were available on-site. If there was no spare part

on-site, a replacement was awaited, and usually took at least 7 days Hill (2014).

3.2.3 Failure dependencies and propagation

A large-scale storage system is often composed of thousands of FRUs, and the

failure dependencies between them are complex. Specifically, one FRU’s failure might

have a cascading effect on other FRUs, as there is often a correlation between the

failures of closely-coupled hardware components in a storage system. For example, a

disk enclosure’s failure might lead to the unavailability of hundreds of disk drives.

18

0 1000 2000 3000 4000 5000
0

0.2

0.4

0.6

0.8

1

Time between Replacements (hour)

P
(X

<
=

x)

Empirical CDF

Empirical
Exponential
Weibull
Gamma
Lognormal

(a) Controllers

0 1000 2000 3000 4000 5000
0

0.2

0.4

0.6

0.8

1

Time between Replacements (hour)

P
(X

<
=

x)

Empirical CDF

Empirical
Exponential
Weibull
Gamma
Lognormal

(b) Disk Expansion Modules

0 5000 10000 15000
0

0.2

0.4

0.6

0.8

1

Time between Replacements (hour)

P
(X

<
=

x)

Empirical CDF

Empirical
Exponential
Weibull
Gamma
Lognormal

(c) Disk Enclosures

0 500 1000 1500 2000
0

0.2

0.4

0.6

0.8

1

Time between Replacements (hour)

P
(X

<
=

x)

Empirical CDF

Empirical
Exponential
Weibull
Gamma
Lognormal

(d) Disk Drives

0 1000 2000 3000 4000 5000 6000
0

0.2

0.4

0.6

0.8

1

Time between Replacements (hour)

P
(X

<
=

x)

Empirical CDF

Empirical
Exponential
Weibull
Gamma
Lognormal

(e) House Power Supply

0 1000 2000 3000 4000 5000
0

0.2

0.4

0.6

0.8

1

Time between Replacements (hour)

P
(X

<
=

x)

Empirical CDF

Empirical
Exponential
Weibull
Gamma
Lognormal

(f) I/O Modules

Figure 3.2: Distribution of time between device replacements for different types of
FRUs in Spider I

19

Therefore, the failure dependencies between FRUs, or more specifically, how the

failures propagate in the system, is another important factor needs to be considered

in maintaining large-scale storage systems.

Based on the understanding of the architecture of large-scale storage systems

and failure data obtained from the field and vendors for Spider I, we built a

generic simulation tool to study how failure dependencies and propagation affect the

reliability of the entire storage system. This tool will also be further used to evaluate

different provisioning policies in next two sections.

Design considerations

The design of the simulation tool was inspired by a conventional diagrammatic method

for modeling the reliability of complex systems called the reliability block diagram

(RBD) Rausand and Hoyland (2003). It can estimate not only the number of failures

during a certain period of operation for each type of FRU, but also the system-level

reliability by analyzing the failure propagation.

As shown in Figure 3.3, in phase 1, the failure events of each type of FRU are

randomly generated based on the reliability characteristics, which are determined by

vendor-provided metrics, historical failure data and the provisioning policies used.

Thereafter, the failure events are randomly allocated to FRUs that belong to the

same type, and logged throughout each FRU’s life cycle.

In phase 2, the tool extracts the failure dependencies from all FRUs, and builds

an RBD based on the topology of the storage system. For example, the RBD of the

SSU in Table 3.2 is shown in Figure 3.4, where each block is assigned a unique ID

to represent an FRU (for the convenience of using graph algorithms, a dummy block

is created that does not represent any real FRU as the root (block 0) of all blocks

in the RBD). In the RBD, the reliability of each block depends on its parents, while

determining that of its children. Given all such extracted failure dependencies, the

simulation tool synthesizes the results across all components, and provides detailed

information on the estimates of the various metrics of interest, e.g., the average

20

FRU 2

FRU 1

...

FRU Type 1

... Failure Dependency
Analysis

Failure Events Synthesis

System-level
Reliability

Reliability
Characteristics

for each Type of
FRU

Phase 1 Phase 2

Failure
Generation

FRU n

FRU n-1

FRU Type N ...
Failure

Generation

Physical Components
Topology Information

Figure 3.3: Framework of the provisioning tool

...

0

15

17 18 19 20 21

16

22 23 24 25 26

32

27 28 ...

33 34 35 36 37 38 39 ...

72 73 74 75

92 105... ...

1 8 2 9

3 10 4 11

...

House Power Supply
(Controller)

UPS Power Supply
(Controller)

Controller

I/O Module

House Power Supply
(Disk Enclosure)

Disk Enclosure

DEM

Baseboard

Disk Drive

UPS Power Supply
(Disk Enclosure)

Figure 3.4: RBD of a scalable storage unit

number of failed FRUs, events leading to data unavailability or data loss and for

how long.

21

Table 3.3: Parameter settings of the simulation tool

FRU Type
Time between Failure Time to Repair Time to Repair (no spare part)

Distribution Parameters Distribution Parameters Distribution Parameters

Controller Exponential rate = 0.0018289 Exponential rate = 0.04167
Shifted

exponential
rate = 0.04167,

offset = 168
House Power Supply

(Controller)
Weibull

shape = 0.2982,
scale = 267.7910

Exponential rate = 0.04167
Shifted

exponential
rate = 0.04167,

offset = 168

Disk Enclosure Weibull
shape = 0.5328,
scale = 1373.2

Exponential rate = 0.04167
Shifted

exponential
rate = 0.04167,

offset = 168
House Power Supply

(Disk Enclosure)
Exponential rate = 0.0024351 Exponential rate = 0.04167

Shifted
exponential

rate = 0.04167,
offset = 168

UPS Power Supply * Exponential rate = 0.001469 Exponential rate = 0.04167
Shifted

exponential
rate = 0.04167,

offset = 168

I/O Module Weibull
shape=0.3604,

scale =523.8064
Exponential rate = 0.04167

Shifted
exponential

rate = 0.04167,
offset = 168

Disk Expansion
Module (DEM)

Exponential rate = 0.000979 Exponential rate = 0.04167
Shifted

exponential
rate = 0.04167,

offset = 168

Baseboard * Exponential rate = 0.000252 Exponential rate = 0.04167
Shifted

exponential
rate = 0.04167,

offset = 168

Disk Drive [0, 200], Weibull
shape = 0.4418,
scale = 76.1288

Exponential rate = 0.04167
Shifted

exponential
rate = 0.04167,

offset = 168
[200, ∞], Exponential rate = 0.006031

*Field data missing, vendor-provided AFRs are used.

Implementation and validation

As stated in Section 3.2.2, for each type of FRU, the empirical data of the time

between device replacements in Spider I is fitted to four different distributions.

In order to choose the best parameter settings for the simulation tool, the Chi-

squared test Greenwood and Nikulin (1996) is adopted to determine the probability

distribution and corresponding parameters that are more realistic to generate the

failure events. To generate the repair time, the exponential distribution with two

different mean values, 24 hours for FRUs have a spare part and 168 hours (7 days) for

those that do not, is used. In certain cases, when the repair time is much longer, the

resource provisioning will be even more critical to improve the overall reliability, as an

unoptimized provisioning strategy could lead to a much longer window of vulnerability

and higher probability of data unavailability. The chosen distributions and parameters

are listed in Table 5.2.

An interesting fact worth noting in Table 5.2 is the distribution parameter settings

for generating disk drive failure events. As the analysis of disk failure data reveals (see

Figure 3.2(d)), when the time between disk replacements is relatively small (less than

200 hours), a Weibull distribution with decreasing failure rate is a better fit; with the

22

time between disk replacements increasing, the failure rate becomes stable, and an

exponential distribution fits the empirical data better. Therefore, we use a method

called inverse transform sampling Devroye (1986) to generate disk failure events so

that the time between failures fits a crafted distribution, which is actually a join of a

Weibull distribution with decreasing failure rate and an exponential distribution with

constant failure rate.

After a failure event of a specific FRU type is generated, it will be randomly

allocated to an attribute device belonging to that FRU type in the system, and logged

as a failure of that device. A random repair time will then be generated and logged

for that device so that we can derive all its failure time intervals for the operational

period. Once the failure logs of all devices for the operational period are obtained,

the tool will synthesize them based on the RBD to derive the duration of temporary

data unavailability and permanent data loss. For example, in the RBD shown in

Figure 3.4, if the execution results indicate all parents of an FRU are down during

a time period, the FRU is tagged as unavailable no matter what its own results are

during the same time interval.

During the 5-year operation of Spider I, OLCF only observed two data unavail-

ability events. The lack of empirical data makes it difficult to validate the simulation

tool on system-level data availability. However, the simulation results of each type of

FRU can be validated using the field-gathered failure data. As listed in Table 3.4, the

number of failures of each type of FRU observed in the empirical data are compared

against the results from the simulation tool during a 5-year period (the simulation

was run 10,000 times, and for each type of FRU the average number of failures were

calculated). We can observe that the simulation results approximates to the empirical

data, which demonstrates its accuracy.

23

Table 3.4: Validation on FRU failures estimation

of Total Empirical Estimated Estimation
FRU Type Units # of Failures # of Failures Error

Controller 96 78 79 1.04%
House Power Supply
(Controller)

96 21 27 6.25%

Disk Enclosure 240 14 20 2.5%
House Power Supply
(Disk Enclosure)

240 102 105 1.25%

I/O Module 480 22 24 0.42%
Disk Expansion Module
(DEM)

1,920 28 42 0.73%

Disk Drive 13,440 264 338 0.55%

3.3 Initial Provisioning

Provisioning an HPC storage system for initial deployment involves understanding

the tradeoffs between performance, cost, capacity and reliability. Often times,

system architects are provided with a fixed budget for an initial acquisition and

deployment, with an emphasis on optimizing for performance and capacity. Reliability

characteristics at the SSU-level or at the system-level are also factored in during

this phase, with vendor support and spare part pools as the primary vehicles for

maintaining system reliability. In this section, we attempt to reconcile these factors

for an initial deployment, and study their interplay.

3.3.1 Optimizing for performance

Each SSU can achieve a theoretical peak performance that is primarily determined

by the type of the I/O controller and the number of disks in each SSU. An SSU does

not necessarily have to be 100% populated (in terms of the number of disks it can

accommodate) in order to achieve its peak I/O performance. Therefore, the overall

performance of a storage system, consisting of multiple SSUs, can be expressed as:

Performance = NSSU ×min(SSUPerf , DSSU ×BWdisk), (3.2)

24

where NSSU is the number of SSUs in the system, SSUPerf is the peak performance

of one SSU, DSSU is the number of disks in one SSU and BWdisk is the bandwidth

achievable from one disk. Equation 3.2 can be optimized independently for sequential

or random I/O workloads. However, the selected workload should reflect the design

parameters of the storage system and represent the expected production environment.

The cost of the storage system is the sum of the cost of all components (as listed

in Table 3.2, with their respective price points per unit). The capacity of the whole

system can be expressed as:

Capacity = Cdisk ×DSSU ×NSSU , (3.3)

where Cdisk is the capacity of one disk.

3.3.2 Impact of number of disks and disk capacity

Since disks constitute only 15-20% of the cost of one SSU, the prices of disks do

not have the first order impact on provisioning a cost-effective or high-performance

storage system. Therefore, when designing a storage system with performance as the

primary objective, it is optimal to buy as many SSUs as possible before optimizing

or negotiating for disk price or capacity. Once the number of SSUs is fixed (i.e., the

peak achievable performance point is fixed), it remains unclear how the number of

disks and the storage capacity per disk affect the cost and capacity of the overall

system. To study that, next we present a case study where performance goals are

set as 200 GB/s and 1 TB/s respectively, and build a storage system with the SSU

as characterized by Table 3.2 and Figure 3.1. Note that, the results presented here

assume specific parameters for disks and other components of the SSUs, but the same

study can be carried out for other chosen parameters.

Let us assume each disk can provide 200 MB/s of bandwidth, therefore 200 such

disks are enough to saturate one SSU (assuming a 40 GB/s peak I/O bandwidth per

controller pair). Each SSU in our case can accommodate up to 300 disks, therefore

25

0 100 200 300

0
2

4
6

8

of disks per SSU

S
ys

te
m

 c
ap

ac
ity

 (
P

B
) 1TB drive

6TB drive

0 100 200 300

0
40

0
80

0
12

00

of disks per SSU

S
ys

te
m

 c
os

t (
1,

00
0

U
S

D
)

1TB drive
6TB drive

0 100 200 300

0
50

10
0

15
0

20
0

of disks per SSU

S
ys

te
m

 I/
O

 b
an

dw
id

th
 (

G
B

/s
)

1TB drive
6TB drive

(a) For 200 GB/s system-wide I/O bandwidth performance target

0 100 200 300

0
10

20
30

40

of disks per SSU

S
ys

te
m

 c
ap

ac
ity

 (
P

B
) 1TB drive

6TB drive

0 100 200 300

0
20

00
40

00
60

00

of disks per SSU

S
ys

te
m

 c
os

t (
1,

00
0

U
S

D
)

1TB drive
6TB drive

0 100 200 300

0
20

0
60

0
10

00

of disks per SSU

S
ys

te
m

 I/
O

 b
an

dw
id

th
 (

G
B

/s
)

1TB drive
6TB drive

(b) For 1 TB/s system-wide I/O bandwidth performance target

Figure 3.5: The cost and capacity trade-offs

buying any disks beyond 200 is equivalent to buying more capacity. Also, filling an

SSU with less than 200 disks (the number of disks that saturate our SSU) always

results in lower performance per unit price. The underlying reason is that other

components of an SSU significantly dominate the cost of the whole system compared

to the disks. Therefore, we should focus on how filling an SSU with 200 to 300

disks changes the capacity and cost of the system (Figure 3.5(a) and 3.5(b)). Let us

consider two types of disks (1TB and 6TB, with same I/O performance bandwidth

but different costs: 100 and 300 USD, respectively). As expected, the relationship

is linear in terms of capacity and cost. It is worth noting that the relative increase

in the cost of the system is very modest when going from 200 to 300 disks per SSU.

However, if we are going to saturate the performance target (at least 200 drives per

SSU), using 6TB drive costs much more money than using 1TB drive.

26

Also, if redundancy schemes such as RAID 6 is applied and multiple concurrent

disk failures in the same RAID group occur simultaneously, a rebuild process is

required. In such a scenario, 1TB disks are better than 6 TB disks as the rebuilding is

faster if the amount of disk space that needs to be reconstructed is less. This is because

the bandwidth usually does not change significantly across these disk types for a given

family of disks. Of course, there are technologies that can improve the dynamics

of disk redundancy or rebuild process. However, such new technologies are slow

to penetrate the storage market. Parity declustering, as an example, substantially

reduces the rebuild window by distributing data and redundancy stripes over a

number of disks Holland and Gibson (1992). It was first proposed more than two

decades ago, and today there are only two products in the HPC storage market that

support the parity declustering feature.

3.3.3 Effect of increasing disks/SSU on system reliability

One may also note that there are availability and reliability issues involved in

increasing the number of disks. Now let us study how the increase in extra capacity

affects the data availability of the system. Using the simulation tool introduced in

previous section, we can estimate the number of events when data becomes unavailable

in a 1 TB/s system (25 SSUs) for a period of 5 years if no provisioning policy is applied.

Based on the disk failure rate calculated from the failure data, the potential cost of

disk replacement for a 1 TB/s system during a 5-year period can also be estimated.

As can be seen in Figure 3.6, though very modest, the number of data unavailability

events and disk replacement cost increase with the number of disks per SSU.

Therefore, fixed initial provisioning can be optimal from cost efficiency and

capacity perspectives, but it alone is not sufficient for improving the reliability

dynamics. A well-designed, continuous provisioning policy is needed to maintain

the system’s data availability requirement under a fixed provisioning budget. This is

also true if we plan to increase the disks/SSU for extra capacity. In fact, if an optimal

27

200 220 240 260 280 300
1.2

1.3

1.4

1.5

1.6
25 SSUs, RAID6 Configuration

Number of Disks per SSU

N
um

be
r

of
 D

at
a

U
na

va
ila

bl
e

E
ve

nt
s

200 220 240 260 280 300
8

10

12

14

16

P
ot

en
tia

l C
os

t o
f D

is
k

R
ep

la
ce

m
en

t
(1

,0
00

 U
S

D
)

Unavailability
Cost

Figure 3.6: Number of data unavailable events and potential disk replacement cost
for 1 TB/s systems (25 SSUs)

continuous provisioning policy is adopted, the unavailability caused by increasing the

disks/SSU could be significantly mitigated.

3.4 Continuous Provisioning

Ideally, if we have an unlimited budget for spare provisioning, we can provide

unlimited spares for each component in the system. However, in reality the budget is

always limited, and we can only provision a limited number of spares. Therefore, the

goal of continuous provisioning policy is to explore such dynamics under constraints.

3.4.1 Ad hoc provisioning

Most of the provisioning policies used in large-scale HPC storage systems are ad

hoc, and are based on system administrators’ intuition and experiences. Here we

use Spider I to illustrate the ad hoc policies. As listed in Table 3.2, vendor-provided

statistics for Spider I indicate that controllers have the highest failure rate among all

FRUs, which can also be verified by the actual device replacement data. Thus, the

first intuitive provisioning policy would be to provision as many controller spares as

28

possible for a given provisioning budget. However, the controller-first provisioning

policy does not improve the system data availability significantly when compared

against not provisioning any budget for spares at all, as the two controllers in the

same SSU are configured as a fail-over pair in the Spider I architecture. Only when

both of them are down simultaneously does it lead to data unavailability, which is a

rare event in practice.

The deficiency of the controller-first provisioning policy suggests that the built-in

hardware redundancy might have more impact on data availability compared to the

component failure rates. In other words, if the hardware redundancies are not well-

designed, it could make the system more vulnerable to failures of some devices (also

observed in Spider I). As shown in figures 3.1 and 3.4, the failure of a disk enclosure

causes two disks in the same RAID group to become unavailable simultaneously.

On the other hand, all the other FRUs combined will lead to at most one disk

unavailability in each RAID group. This means that the storage system is more

vulnerable to disk enclosure failures (Actually, The 5-disk enclosure architecture of

Spider I was selected for minimizing the cost. However, this selection resulted in

lower data availability. This was a lesson learned from the Spider I experience, and

rectified in Spider II by switching to a 10-disk enclosure configuration.). Therefore,

a more effective ad hoc provisioning policy for Spider I is to provide spares for disk

enclosures first.

Based on the analysis of the system architecture and the redundancy character-

istics of Spider I, we realized that most potential data unavailability scenarios could

be caused by simultaneous failures of different types of FRUs (e.g., a disk enclosure

failure coupled with a double power supply failure on another enclosure). If the budget

is allocated for provisioning a specific type of FRU first, there might not be enough

left to maintain spares for other types of FRU, which could negatively impact the

data availability. Thus, neither controller-first nor enclosure-first provisioning policy

is optimal and an optimized dynamic spare provisioning model is needed.

29

Table 3.5: Notations of symbols

N Number of types of FRU in system
FRUi i-th type of FRU
fi(x) PDF of time between failures of FRUi

Fi(x) CDF of time between failures of FRUi

hi(x) Hazard rate of FRUi

MTBFi Mean time between failures of FRUi

MTTRi Mean time to repair of FRUi

τi Delay caused by waiting for a new FRUi to be delivered

tfaili Time point when last failure of FRUi occurred
tcur Current time when we need to update the spare pool
tnext Next time when we need to update the spare pool
mi Impact FRUi has on data unavailability
bi Unit price of FRUi

B Annual budget for spare provisioning

3.4.2 Dynamic spare provisioning model

This model aims to optimize the spare provisioning policy for large-scale storage

systems in order to achieve high data availability, given a limited provisioning budget.

The notations of all the symbols used in this section are listed in Table 3.5.

Intuition and assumption

The impact each FRU has on system availability is usually determined by two

factors: its own reliability (e.g., some FRUs fail less often than others, or can be

repaired more quickly) and the system architecture (e.g., in Spider I, as the lack of

hardware redundancy makes the system more vulnerable to disk enclosure failures,

disk enclosures have more impact on data availability). However, few existing ad hoc

provisioning policies focus on these two factors simultaneously. Therefore, the basic

idea behind this spare provisioning optimization model is to quantify both of these

factors, and allocate more budget towards provisioning spare parts for FRUs that

have more impact on the data availability of the storage system.

30

The assumption about the provisioning budget made here is simple but realistic.

Specifically, at the beginning of each year, system administrators get a fixed budget

that we call the annual budget, and use it to prepare spares for different FRUs

according to a specific provisioning policy.

Reliability characteristics of different FRUs

Since we already have the field-gathered failure data and vendor-provided AFR,

quantifying the reliability of each type of FRU is easy. We obtain the probability

density function (PDF) of the time between failures of each type of FRU by fitting

the failure data. Thereafter, we can estimate the number of failures that will occur

during a future period for each type of FRU. For example, if we use fi(x) to denote

the PDF of the time between failures of FRUi, then the CDF can be calculated as

Fi(x) =
∫ x

0
fi(t)dt. Based on this definition, the hazard rate of FRUi is given as:

hi(x) =
fi(x)

1− Fi(x)
(3.4)

Let us assume the last failure of FRUi occurred at time tfaili . We need to estimate

the number of failures, yi, of FRUi between the current time, tcur, when the spare

pool is being updated and the next time, tnext, the spare pool will need an update.

This is given as follows:

yi =

∫ tnext−tfaili

tcur−tfaili

hi(x)dx (3.5)

The above formula can estimate the expected number of failures between tcur and tnext

accurately if the time between the failures fits an exponential distribution, which has

a time-independent hazard rate. However, for a Weibull distribution, if the time

between updating the spare pool is relatively longer compared to the mean time

between failures, this formula cannot give an accurate estimation. This is because,

once a failure occurs between tcur and tnext, which is very possible because of the

short mean time between failures, the hazard rate should increase. Therefore, for a

31

Weibull distribution, if

tnext − tcur

MTBFi
>

∫ tnext−tfaili

tcur−tfaili

hi(x)dx, (3.6)

we can use

yi =
tnext − tcur

MTBFi
, (3.7)

instead of formula 3.5, where MTBFi is the mean time between failure of FRUi. Given

the PDF of the time between failures of FRUi, fi(x), MTBFi can be calculated by

solving
∫∞

0
xfi(x)dx.

In Spider I, if no spare part was available on-site, a device replacement could be

delayed by at least 7 days. If we use MTTRi to denote the mean time to repair of

FRUi when spare parts are available on-site, τi to denote the delay caused by waiting

for a new FRUi to be delivered, then the mean time spent on replacing FRUi is

MTTRi + τi, if there is no spare on-site when the replacement is required.

Impact of system architecture on availability

To quantify the impact of the system architecture on data availability, we need to

analyze the physical structure of the system, and derive the failure dependencies

between different FRUs. Here we consider one SSU of Spider I as an example. All

FRUs of this SSU are listed in Table 3.2.

The RBD illustrates the failure dependencies between different FRUs. By

analyzing the structure of the RBD, we can derive the impact each FRU has on

the data unavailability of the storage system. For instance, each RAID group in the

SSU in Figure 3.4 contains 10 disk drives, which are organized as RAID level 6, and

can tolerate 2 disk failures. Each leaf block represents a disk drive, and there are 16

different paths from one leaf block to the root. On each of these 16 paths, if one FRU

fails, that path will be unavailable. If and only if all of these 16 paths are unavailable,

the associated disk drive will become unavailable. If more than 2 disk drives in one

32

RAID group are unavailable, a data unavailability occurs. In fact, the more available

paths each RAID group has, the more reliable each RAID group is. Therefore, we

can quantify the impact of each FRU on data unavailability by counting the number

of paths that will become unavailable in one RAID group, if such an FRU has been

removed from the RBD.

Specifically, since triple-disk unavailability in one RAID 6 group leads to data

unavailability, we only count unavailable paths of each triple-disk combination in one

RAID group. For example, failure of one controller makes every disk in one RAID

group lose 8 paths, while the failure of one disk enclosure only makes two disks in

one RAID group completely unavailable (each loses 16 paths). Therefore, we use

8× 3 = 24 as the impact of a controller, while 16× 2 = 32 as that of a disk enclosure.

Table 3.6 shows the impact of each FRU quantified in this way.

Table 3.6: Quantified impact of each type of FRU

Quantified
FRU Type Impact

Controller 24
House Power Supply (Controller) 12
UPS Power Supply (Controller) 12
Disk Enclosure 32
House Power Supply (Disk Enclosure) 16
UPS Power Supply (Disk Enclosure) 16
I/O Module 16
Disk Expansion Module (DEM) 8
Baseboard 16
Disk Drive 16

Optimization model and dynamic provisioning algorithm

In order to maximize data availability, our optimization model tries to minimize

the total unavailable time of the end-to-end paths that belong to each triple-disk

combination of a RAID group in the RBD. For example, as mentioned above, one

disk enclosure failure makes a triple-disk combination in one RAID group lose 32 end-

to-end paths. If the disk enclosure has no spare part on-site and cannot be replaced

quickly, those 32 end-to-end paths will be unavailable for a longer duration, which

33

increases the probability that all end-to-end paths of the triple-disk combination

become unavailable within the same time interval.

We define a variable xi to denote how many spare parts are provided for FRUi.

Then, the total unavailable time of the end-to-end paths, caused by failures of FRUi

can be calculated as

∆tdowni = mixiMTTRi +mi(yi − xi)(MTTRi + τi), (3.8)

where mi is the number of unavailable end-to-end paths caused by failures of FRUi

(see Table 3.6) and yi is the estimated number of FRUi failures that would occur

before the next spare pool update.

Let us assume the unit price of FRUi is bi, the annual budget for spare provisioning

is B. Then, we can establish the following linear programming optimization model

to find out how many spares should be prepared for each type of FRU in the coming

year.

arg min
xi

N∑
i=1

miyi(MTTRi + τi)−mixiτi; (3.9)

s.t.
N∑
i=1

xibi ≤ B; (3.10)

xi ≤ yi,∀i ∈ {1 . . . N} (3.11)

In this linear programming model, the objective function is to minimize the total

unavailable time of the end-to-end paths that belong to each triple-disk combination

of a RAID group in the RBD. The two constraints are that the total provisioning cost

cannot exceed the annual budget and for each type of FRU, the number of provisioned

spares should not exceed the expected number of failures.

The pseudo-code of the spare provisioning algorithm is shown in Algorithm 1. At

the beginning of each of year, system administrators can first check the spare pool

and find out how many spare parts each type of FRU has. Then they can obtain all

34

Algorithm 1 Spare Provisioning Algorithm

Input: Current spare pool SP, replacement log of each type of FRU,
unit price of each type of FRU, annual budget for spare provisioning B.

Output: Spare provisioning results X = [x1, x2, . . . , xN].
Obtain number of spares in SP, n = [n1, n2, . . . , nN];
Calculate [m1,m2, . . . ,mN];
Calculate [MTTR1,MTTR2, . . . ,MTTRN]
for i = [1, 2, . . . , N] do

Calculate yi, the expected number of failures of FRUi;
Add yi into Y, and MTTRi into MTTR;
Add mi into m, and bi into b;

end for
X = ResolveOptimizationModel(Y,MTTR,m,b, B)
for i = [1, 2, . . . , N] do

if ni < xi then
Add (xi − ni) spares FRUi in to SP;

end if
end for

required parameters and resolve the optimization model to find out how many spare

parts should be provisioned for each type of FRU. Finally, based on the optimization

results, they add the needed spare parts into the spare pool.

3.4.3 Continuous provisioning evaluation

Now we compare the performance of the continuous provisioning model with the two

ad hoc provisioning policies introduced at the beginning of this section in terms of

data availability and provisioning cost by using the simulation tool. Spider I is still

the simulated large-scale storage system.

Evaluation of data availability

We first present the evaluation results of different provisioning policies to demonstrate

the effectiveness of our optimized provisioning policy in reducing data unavailability.

Note that besides the two ad hoc provisioning policies mentioned before, we also

include the evaluation result of the scenario when unlimited provisioning budget is

provided, which gives the lower bound for the data unavailability. Here, unlimited

35

0 10 20 30 40
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Annual Provision Budget (10,000 USD)

A
ve

ra
ge

 N
um

be
r

of
 D

at
a

U
na

va
ila

bl
e

E
ve

nt
s

in
 5

 Y
ea

rs

48 SSUs, RAID6 Configuration

Optimized
Controller−first
Enclosure−first
Unlimited Budget

(a) Number of data unavailability

0 10 20 30 40
20

40

60

80

100

120

Annual Provision Budget (10,000 USD)

A
ve

ra
ge

 A
m

ou
nt

 o
f U

na
va

ila
bl

e
D

at
a

in
 5

 Y
ea

rs
 (

T
B

)

48 SSUs, RAID6 Configuration

Optimized
Controller−first
Enclosure−first
Unlimited Budget

(b) Amount of unavailable data

0 10 20 30 40
0

20

40

60

80

100

120

140

Annual Provision Budget (10,000 USD)

A
ve

ra
ge

 U
na

va
ila

bl
e

D
ur

at
io

n
in

 5
 Y

ea
rs

 (
H

ou
rs

)

48 SSUs, RAID6 Configuration

Optimized
Controller−first
Enclosure−first
Unlimited Budget

(c) Average unavailable duration

Figure 3.7: Performance comparison between different provisioning policies

provisioning budget means every individual component in the system can have a spare

part on-site. For example, in Spider I there are 96 controllers, thus we can maintain

96 spare controllers in the spare pool if unlimited budget is provided.

First, we present the results of the average number of data unavailability events

during the 5-year operation of 48 SSUs using different provisioning policies in Figure

3.7(a). The results illustrate that at least one data unavailability event will occur

during 5 years if no provisioning policy is used (no provisioning budget is provided).

Further, the optimized provisioning policy can reduce the data unavailability more

36

significantly with increasing provisioning budget when compared to the ad hoc

policies.

Since one data unavailability event might cause multiple RAID groups to become

unavailable simultaneously, the volume of data that can become unavailable due

to even a single unavailability event can range in the tens of terabytes. For the

Spider I file system, each RAID level 6 group is composed of 10 1TB disks. Figure

3.7(b) shows the average amount of data that might become unavailable under

different provisioning policies during 5 years of operations. We calculate this with

the knowledge of how many RAID groups are affected by each data unavailability

event. Similar to the results shown in Figure 3.7(a), the optimized provisioning policy

can also reduce the amount of unavailable data significantly. For example, with an

annual spare provisioning budget of just $480K, the optimized provisioning policy

can protect as much as 90TB from becoming unavailable during the 5-year operation

of the storage system.

Moreover, the optimized provisioning policy also decreases the duration of data

unavailability as shown in Figure 3.7(c). For the same $480K annual provisioning

budget, the optimized provisioning policy reduces the duration of data unavailability

for the 48 SSUs in aggregate by as much as 52% (more than 20 hours) and 81%

(more than 80 hours) compared to the enclosure-first and controller-first provisioning

policies.

Evaluation of provisioning cost

First, we illustrate the total provisioning cost during 5 years using different

provisioning policies, given different annual budgets, in Figure 3.8. Different from

the two ad hoc policies, which try to squeeze every penny of the budget, the cost

of our optimized provisioning policy does not increase with the budget linearly.

The reason behind this is that the optimized provisioning policy allocates budget

based on accurate failure estimation and failure dependency analysis, which are more

economical and efficient compared to the ad hoc policies. Actually, by using the

37

optimal provisioning policy, the savings can be more than 10% of the total storage

system cost over the operational life of a large-scale storage system.

Optimized Controller−first Enclosure−first
0

5

10

15

20

25

Provisioning Policies

T
ot

al
 P

ro
vi

si
on

in
g

C
os

t i
n

5
Y

ea
rs

(1
00

,0
00

 U
S

D
)

48 SSUs, RAID6 Configuration

120,000 Annual Budget
240,000 Annual Budget
360,000 Annual Budget
480,000 Annual Budget

Figure 3.8: Total provisioning cost in 5 years using different provisioning policies.

1 2 3 4 5
0

5

10

15

20

25

30

35

Year

A
nn

ua
l C

os
t f

or
 O

pt
im

iz
ed

 P
ro

vi
si

on
in

g
(1

0,
00

0
U

S
D

)

48 SSUs, RAID6 Configuration

120,000 Annual Budget
240,000 Annual Budget
360,000 Annual Budget
480,000 Annual Budget

Figure 3.9: Annual cost for optimized provisioning policy.

Finally, we illustrate the cost for spare provisioning the 48 SSUs in each year

using the optimized provisioning policy, given different annual budget limits (Figure

3.9). Two interesting observations can be made from Figure 3.9. First, the annual

provisioning cost decreases year after year. This is because many FRUs in Spider

I have decreasing failure rates (see Figure 3.2). Second, increasing the annual

provisioning budget does not necessarily increase the annual provisioning cost. For

example, when the annual budget is increased to $480K, the provisioning cost is

38

almost the same as when the annual budget is $360K. This is because the optimized

provisioning policy attempts not to over-provision the spare parts, i.e., no more spare

part will be added if the number of existing ones is equal to the number of FRUs that

are expected to fail next year, resulting in cost savings.

39

Chapter 4

Optimal Workload-Adaptive Data

Placement

4.1 Problem Formulation

With the development of storage technologies, SSDs have been eventually exploited

by large-scale storage systems, as typically they can provide much higher I/O

performance compared to conventional hard drives Park and Shen (2009b). However,

SSDs are also limited in capacity and much more expensive than hard disk drives,

meaning that it is not yet practical to use them to completely replace conventional

hard disks. Therefore, how to cost-effectively integrate SSDs into large-scale storage

systems and design efficient data placement mechanisms for such heterogeneous

storage environments to maximize the I/O performance and improve the storage

space efficiency becomes a critical yet challenging task.

The core problem can be formulated as follows. Given a heterogeneous storage

system composed of both HDDs and SSDs, our task is to find a data placement

solution that 1) satisfies user polices on data placement, 2) maximizes the data access

throughput of a mixture of workloads produced by different user applications, and 3)

improves the storage space efficiency without degrading the data availability. This

40

problem is challenging due to 1) we do not have complete knowledge on future access

patterns of data objects as they could change dynamically, 2) user policies can be

highly heterogeneous and may change over time. Therefore, the feasible solution to

this problem must be able to adapt to the varying I/O workloads and dynamically

adjust the data placement to achieve the optimal performance.

4.2 System Model

The system model of our optimal workload-adaptive data placement is built upon

several assumptions. First, the I/O workloads from user applications include both

read and write operations, and the access pattern of these I/O operations could be

either sequential or random. This assumption is often true in realistic I/O workloads

collected from large-scale data centers, web server clusters and HPC environments.

Second, the modern large-scale storage systems are usually object-based, in which the

minimal data unit is called object. In practice, a large file can be divided into multiple

data objects which will be stored on single or multiple object-based storage devices

(OSDs). Different from the block-based storage, in object-based storage systems,

the access history of each data object can be tracked more easily, meaning that it is

possible to obtain the popularity of each data object. Third, the I/O workloads from

user applications may change over time, therefore, the solution should adapt to the

dynamic nature of the I/O workloads.

Figure 4.1 shows the overall system model, where the whole procedure works as

follows: the first core component, the classification model, is trained based on the

access history and access patterns of data objects. In our current work, we concentrate

on the historical access frequency of data objects, while we leave exploiting the access

pattern (sequential/random read or write) to improve data placement performance

as our future work Wan et al. (2014a). After training, it provides parameters for the

runtime prediction model which is used to predict the access popularity of data objects

in the near future. Specifically, the prediction results decide if an object is going to

41

Classification
Model

Training

Runtime
Precition

Access History
Analysis

I/O Access
Pattern
Analysis

Data
Placement

Engine

Incoming I/O
Workloads

Heterogeneous Storage System

User-defined
Storage Policies

Raw Traces
Collected

from Storage
Systems

Access
History

Access
Pattern

Model
Parameters

Predictions on
Popularity of
Data Objects

Data Placement
Solution

Figure 4.1: The system model

have “recurring” or “non-recurring” accesses, based on its history of accesses. Such

prediction results are then used, together with user-defined storage policies, as the

input of the data placement engine, whose goal is to generate an optimal placement

of data objects among heterogenous storage devices so that the overall data access

performance as well as the storage space efficiency can be improved.

4.3 Algorithm Design

Ideally, if we can record all access history of each data object, we can have the most

accurate prediction on future data access. However, in reality it may not be practical

to record even a relatively long access history for each data object since the trace

collection overhead could be huge in that case. Therefore, in our design we need to

42

achieve a reasonable tradeoff between the trace collection overhead and the prediction

accuracy. To accomplish this goal, we intend to only maintain recent access history

and utilize the temporal locality commonly existing in access history of data objects

to dynamically predict the future popularity of data objects.

4.3.1 Temporal locality in data objects access

Temporal locality commonly exists in data accesses and has been widely studied and

utilized in design of caching systems Megiddo and Modha (2003). Actually, many

existing studies have revealed that one data object that is being frequently accessed

is very likely to be accessed again in the near future. Here we use LASR traces

Kuenning (2005) as a case study. The LASR traces include I/O workloads produced

by different kinds of user applications running upon a network-based storage system.

As demonstrated in Figure 4.2, we extract the access frequency (here the “access”

could be either read or write operation) of a single data object during one month

from the LASR traces. The X axis of Figure 4.2 is the range of one month time

that has been divided into 720 time periods (each period is 1 hour). The Y axis

represents the number of times the data object has been accessed during each time

period. From the figure, we can observe that although the access frequency of such

data object eventually decreased overtime, during some short time period, it was still

heavily accessed. How to utilize such temporal locality will be introduced in next

section.

Since maintaining the entire access history of each data object is not cost-effective,

we only maintain recent access history for each data object. As shown in Figure 4.2,

only the access history in the dotted window is used to train the prediction model.

Moreover, such window will slide with time and the prediction model will be updated

based on the recent-collected access traces.

43

Window of Training Data Slides

State 1

State 0

State 2

Figure 4.2: Access frequency of one data object in LASR traces

4.3.2 Markov chain prediction model

With the access history of each data object, we build and train a Markov chain model

to predict the future access frequency of data objects. First, we need to determine

how many states the Markov chain should have and the range of access frequency each

state represents. Based on extensive analysis of the I/O traces, we find that three

states are often enough for a Markov model to capture the temporal locality and

produce fair prediction results. For example, as shown in Figure 4.2, if the maximum

number of access times during an observation period is 50, then, for example, we can

divide 50 evenly into two ranges, and build a Markov chain model that has three

states: 0, (0, 25], and (25, 50], respectively. If during a time period, there is no access

of the data object, then the Markov chain will stay in state 0. If the number of access

times is larger than 0 but less than 25, then the Markov chain will stay in state 1,

and so on. The transition diagram of the Markov chain is shown in Figure 4.3.

Second, we transform the access history to the state transition sequence of the

Markov chain based on the specific range each state represents. For example, after

transformation the state transition sequence of access history shown in Figure 4.2

is: 1, 1, 1, 1, 1, 0, 0 . . . Based on this state transition sequence, we can estimate the

44

1

20

p01 p12

p02

p20

p10 p21

p22

p11

p00

Figure 4.3: Transition diagram of Markov chain

transition probabilities between every two states and construct the transition matrix

of the Markov chain shown below:

T =


p00 p01 p02

p10 p11 p12

p20 p21 p22

 (4.1)

According to the properties of Markov chain, we have:

lim
n→∞

Tn =


π0 π1 π2

π0 π1 π2

π0 π1 π2

 (4.2)

in which π = [π0, π1, π2] is called the stationary distribution of the Markov chain. We

can simply calculate π through computing a normalized multiple of a left eigenvector

E of the transition matrix T with an eigenvalue of 1:

π =
E∑
i ei

(4.3)

45

where ei is the i-th element of eigenvector E. Since the stationary distribution π

reflects the probabilities that each state of Markov chain will be visited in the future,

which can be used as a prediction of the future access frequency of each data object.

Based on the prediction results, we rank the data objects so that we can determine

which data object should be placed or moved to SSD drives. Note that, however, even

if the calculated stationary distribution tells us state 1 will be visited with higher

probability than state 2, to rank the importance of the data object, we must consider

that state 2 represents a higher access frequency. Therefore, we use a weighted sum

of the stationary distribution to rank the importance of the data objects, where the

weights are defined by values that are proportional to the access frequency ranges

that the states represent. For example, if we obtain the stationary distribution of

the data object as π = [0.31, 0.56, 0.13], and we assign weights [0, 10, 20] to the

three different states, we can calculate the rank of the data object by rankobjx =

0.31× 0 + 0.56× 10 + 0.13× 20 = 8.2. The calculation results will then be fed to the

data placement engine to find an optimized data placement solution to improve the

data access performance and storage space efficiency.

4.3.3 Optimal data placement for maximizing data access

throughput

Let us introduce how to maximize the data access throughput of the heterogenous

storage system through optimal data placement first. In this aspect, we assume

that users’ requests will be parametric, meaning that all requests will be embedded

into equations or constraints. For example, by using the notations in Table 4.1, a

requirement on the number of replicas maintained for data object i stating that at

least three must be made can be expressed as ni ≥ 3. Now we can formulate the data

46

Table 4.1: Notations of symbols

M Total number of storage drives
N Total number of data objects
Cj Capacity of storage drive j
si Size of data object i

f̂i Future access frequency of data object i
thri Average throughput for storage drive j
eij Whether data object i is stored on storage drive j (0 or 1)
ni Number of replicas data object i has

placement problem as an optimization model like follows:

arg max
eij

N∑
i=1

f̂i ×max[thrj × eij,∀j ∈M]; (4.4)

s.t.
∑

∀i s.t. eij=1

si ≤ Cj,∀j ∈M ; (4.5)

M∑
j=1

eij = ni,∀i ∈ N (4.6)

In this optimization model, the objective function specifies that we aim to find a

way that assigns data objects to heterogeneous storage devices (HDDs and SSDs) so

that the average throughput of accessing each data object is maximized. Note that

we use the equation thrj×eij to filter those storage devices where the particular data

object i is stored on: if i is stored on device j, we know eij = 1, otherwise eij = 0.

Meanwhile, the constraints of our model specifies storage system requirements and

user policies. For instance, in our model here, the first constraint states that the

data objects stored on a storage device should not exceed the capacity of that device,

while the second constraint denotes how many replicas each data object should have.

In fact, more constraints can be integrated into this model. For example, in order to

mitigate resource contention and avoid the appearance of hotspot, we might need to

add a constraint to limit the I/O workloads each storage device handles in short time

period.

47

4.3.4 Adaptive data replication for increasing the storage

space efficiency

In order to reduce the data unavailability caused by device failures or system crashes,

thereby improve the user experiences, many modern large-scale storage systems have

introduced the data replication schemes into their functionalities. For example,

Google file system (GFS) Ghemawat et al. (2003b) intends to distribute replicas of

same data block to different physical locations (usually different racks), while Ceph file

system Weil et al. (2006a), which is based on CRUSH algorithm Weil et al. (2006b),

divides OSDs of a storage system into different failure domains based on the storage

system’s physical structure and places replicas of same data object on OSDs belong

to different failure domains, since the correlation between failures of OSDs in different

failure domains is small.

In both GFS and Ceph file system, the number of replicas created for each data

object is set to be a same constant value, which means all data objects are treated with

same priority through time. However, in reality, the pre-configured, constant number

of replicas adopted by most existing data replication and placement approaches is

not optimal, since not all data objects have the same popularity. Intuitively, if

the storage space is limited, more replicas should be created for those frequently-

accessed data objects, because requests for those popular data objects are more likely

to encounter simultaneous failures of large number of storage devices than those

unpopular ones. Moreover, as the popularity of data objects varies with time, the

number of replicas of each data object should also be changed dynamically. Therefore,

we propose an adaptive data placement algorithm which can dynamically adjust the

number of replicas for each data object based on their popularity. By using our

algorithm, we can guarantee the data availability while increase the storage space

efficiency significantly.

As shown in Algorithm 2, every time our data replication algorithm is triggered,

it utilizes the history I/O traces to train the Markov model and predict the future

48

Algorithm 2 Adaptive Data Replication Algorithm

1: Obtain I/O traces in previous 6 days for each data object di
2: Preprocess the traces and feed them to the Markov model to predict the future access

frequency f̂i for each data object di

3: Calculate how possible data object di could be unavailable in the future pi = f̂i∑
f̂i

4: Resolve the optimization model

arg max
ni

N∑
i=1

(1− pni
i)

s.t.
N∑
i=1

nisi ≤
M∑
j=1

Cj

5: Adjust the data replication based on the optimization result
6: Wait until next optimization is launched, go to step 1

popularity (access frequency) of each data object. The prediction results can be

used to indicate how possible the requests for each data object could fail in the near

future. Here our assumption is if the requests for a data object are issued more often,

these requests are more likely to encounter data unavailability caused by simultaneous

failures. Then our algorithm resolves the optimization model whose objective is to

maximize the likelihood that the requests for all data objects are successful. Finally,

the optimization results are applied to the adjustment of the number of replicas for

each data object.

4.4 Evaluation

In this section, we present the evaluation results of the proposed data placement and

replication algorithms.

4.4.1 I/O trace analysis and preprocess

We first present a study on the traces of data object accesses, based on which we

evaluate the performance of our data placement algorithms by replaying these traces.

49

We use a long-term I/O traces, LASR traces Kuenning (2005), which were collected at

system-call level. We track the access frequency of different files during their lifetime.

Specifically, we divide the time span into hundreds of time slots and each of which

has same length. We then count how many times each file was accessed during each

time slot. In the LASR traces, we eliminate those files which were accessed less than

10 times during their lifetime (the accesses of these files almost have no impact on

the performance of the storage system) and focus on the remaining ones (1,703 files)

which were more frequently accessed.

By analyzing the access history of these frequently accessed files, we find out

that these files can be roughly put into two categories according to their access

patterns. The first category contains files that have constant access patterns. Files in

this category were frequently accessed during their whole lifetime, without too much

difference between the maximum and minimum access periods. Figure 4.4(a) shows a

typical file falls into this category. The data popularity prediction model, especially

our Markov chain based approach can achieve a higher level of accuracy for this kind

of files. The second category contains files with a bursty access pattern. Files in

this category were only accessed during a few time slots, but within those time slots

the access counts could be very large. Figure 4.4(b) shows a typical file falling into

this category. For files belong to the second category, it is relatively difficult for

any prediction algorithm, including our Markov chain based approach, to accurately

predict their future access frequency.

4.4.2 Evaluation on optimal data placement model

Before every time the data placement optimization is launched, we use the traces

of previous 6 days as the training data to train our Markov prediction model while

use the traces of next 6 days as the testing data. Due to the space limits, here we

only illustrate the prediction results for 40 data objects (files) in the LASR dataset.

As illustrated in Figure 4.5, the bars represent the future access frequency of the

50

0 50 100 150 200
0

0.5

1

1.5

2

2.5

3

3.5 x 10
4

Time slots

A
cc

es
s

tim
es

(a) Data access type I

0 50 100 150 200
0

50

100

150

200

250

300

Time slots

A
cc

es
s

tim
es

(b) Data access type II

Figure 4.4: Illustration of different data access types

40 different files which are extracted from the testing dataset. Since we only have

limited SSD storage space, our goal is to store the files that will be most frequently

accessed in the future on SSD devices to improve the average data access throughput.

For example, if we can only put 10 of 40 files on SSDs, as shown in Figure 4.5, the

light-colored bars illustrate the files predicted by our Markov model that should be

placed on SSD devices. From the results we can observe that, 7 of 10 files that have

the highest future access frequency have been chosen by our prediction algorithm.

We next choose random selection approach as baseline and compare the average

read throughput achieved by our Markov-based model with that achieved by random

selection algorithm. Here the random object selection means that we randomly choose

several data objects and put them on SSD devices. The number of data objects that

can be placed on SSD devices is also limited. For example, in the simulation, we vary

the number of data objects that can be put on SSD devices from 2.5% to 50%. Besides,

we set the read throughput of SSD devices as 550 MB/s and that of HDD devices as

120 MB/s, consistent with typical datasheets provided by manufacturers of storage

devices Chen et al. (2009). As shown in Figure 4.6, our object selection approach

can achieve higher average read throughput than random selection, demonstrating

the effectiveness of our proposed approaches.

51

0 5 10 15 20 25 30 35 40 45
0

500

1000

1500

2000

2500

Object ID

F
ut

ur
e

ac
ce

ss
 ti

m
es

not chosen
chosen

Figure 4.5: Future access times of selected data objects

0 5 10 15 20 25 30 35 40 45 50
100

150

200

250

300

350

400

% of data objects that can be stored on SSDs

A
ve

ra
ge

 r
ea

d
th

ro
ug

hp
ut

 (
M

B
/s

)

Our data placement
Random data placement

Figure 4.6: Our data placement v.s. random data placement

4.4.3 Evaluation on adaptive data replication

We evaluate the impact of our adaptive data placement on storage space efficiency

and data availability through trace-driven event-based simulation. Both the failure

logs and I/O traces used in our simulation were collected from deployed large-scale

storage systems. Particularly, since we only have the hardware replacement logs

52

for the Spider I file system, we do not use the Spider I as the simulated storage

system in our evaluation since those software failures could also make data objects

unaccessible. Instead, we choose NERSC file system NERSC (2016) as the simulated

storage system, since it maintained both hardware and software failure logs for nearly

12 months during January to December in 2006 Petascale Data Storage Institute

(2016).

In 2006, NERSC file system had 24 I/O nodes which can be treated as the OSDs

in our simulation. The storage capacity attached to each I/O node is 5TB and the

annual failure rate of the entire system is around 350 failures per year. The average

time spent on recovering the system from failures is around 100 minutes. In our

simulation, we replay the LASR traces (in order to reduce time spent on running

the simulation, we randomly select 72,000 read/write requests that occurred within

1 month time frame from the LASR traces) to generate the I/O workloads and use

the failure logs collected from NERSC file system to trigger the failure events. Then

we compare our adaptive data replication algorithm with the static data replication

schemes in terms of storage space efficiency and data availability.

As shown in Figure 4.7(a), if constant number of replicas are created for each

data object, with the increase of the number of replicas each data object has, the

number of “data unavailable” errors reduces significantly. However, the storage space

consumed by these data objects also increases linearly with the number of each data

object’s replicas. On the other hand, as shown in Figure 4.7(b), if our adaptive data

replication algorithm is used, the storage system can achieve similar number of “data

unavailable” errors to the scenario when two replicas are created for each data object,

while the storage space consumed is similar to the scenario when each data object

has only one replica. In other words, our algorithm can almost double the storage

space efficiency without sacrificing the data availability.

Since our adaptive data replication algorithm needs to dynamically adjust the

number of replicas for each data object, such adjustment could incur data movement

overhead. For instance, if the optimization result indicates one of the data objects

53

1 replica 2 replicas 3 replicas AdaptiveA
ve

ra
ge

 #
 o

f "
da

ta
 u

na
va

ila
bl

e"

 e
rr

or
s

am
on

g
72

,0
00

 r
eq

ue
st

s
0

50
10

0
15

0
20

0
25

0

(a) Data availability

1 replica 2 replicas 3 replicas Adaptive

C
on

su
m

ed
 s

to
ra

ge
 s

pa
ce

 o

n
ea

ch
 O

S
D

 (
G

B
)

0
10

00
20

00
30

00
40

00

(b) Storage space usage

Figure 4.7: Data availability and storage space efficiency achieved by different data
replication schemes

should have three replicas while now it only has two, one more replica must be created

and distributed in the storage system, which consumes the bandwidth of both the

storage devices and the interconnect network.

1 replica 2 replicas 3 replicas Adaptive

A
ve

ra
ge

 w
rit

e
w

or
kl

oa
d

 e
ac

h
O

S
D

 b
ur

de
ns

 (
G

B
)

0
20

00
40

00
60

00

Figure 4.8: Average write workloads each OSD burdens with

In the simulation, our algorithm is triggered to re-optimize the data replication

once an hour. In Figure 4.8, we compare the average write workloads each OSD

burdens with when static and adaptive data replication are used. From this figure

we can observe that using our adaptive data replication algorithm increases the write

workloads each OSD handles, but we can control such overhead by reducing the

frequency of triggering the optimization algorithm to save the bandwidth if necessary.

54

Chapter 5

Optimal Checkpoint Placement

with Guaranteed Burst Buffer

Endurance

5.1 The Overview

Large-scale high performance computing (HPC) systems usually support running tens

of scientific simulations on hundreds of thousands of compute nodes simultaneously.

Due to the scale of both hardware and software components involved, failures are

common and a fact of life in large-scale HPC systems’ daily operation. Most

scalable scientific applications cope with potential failures using some form of

defensive programming technique – by periodically exporting their execution state

and intermediary results as a “checkpoint” to a persistent storage. In the event

of failures, they will be able to continue the execution (restart) without repeating

previous computation.

Checkpoints generated by scientific applications are written to the parallel file

systems (PFS) which are usually built using traditional storage servers and spinning

disk drivers for balanced cost, performance, and capacity. Parallel file systems provide

55

an efficient data access mechanism between various computation resources over high-

performance storage area networks. However, given the frequency of the checkpoints

and the amount of data written at each checkpoint step, the total checkpoint size

written in an application’s runtime can be daunting. Trying to absorb such large-

scale checkpoint I/O with traditional parallel file systems can be cost-prohibitive. On

the other hand, studies have shown that PFS has been underutilized in the sense that

it operates in much lower bandwidth spectrum most of the time which is nowhere near

the peak Liu et al. (2012). In order to resolve the dichotomy, the concept of “burst

buffer” was recently proposed and has been designed and prototyped in some large-

scale HPC systems Liu et al. (2012); Sato et al. (2012); Bent et al. (2012); Xu et al.

(2014); Sato et al. (2014). The basic idea behind the “burst buffer” is that we can

build an intermediate hardware and I/O middleware layer between compute nodes

and parallel file systems to better handle I/O workloads from scientific applications by

utilizing flash-based storage devices, such as solid-state drive (SSD). The checkpoint

data from scientific applications will be temporarily written into the burst buffer

layer first and then drained to the underlying parallel file systems asynchronously.

Since SSDs can provide much higher read and write bandwidth than regular hard

disk drives, with the help of the burst buffer layer, the I/O performance of scientific

applications will be improved significantly, which also means the checkpoints can be

written and read faster and more CPU time can be saved for computation.

Ideally, the burst buffer was designed to absorb all I/O workloads generated by

large-scale applications running on supercomputers. However, in reality we may have

to limit the amount of data written to the burst buffer if the endurance requirements

on SSD devices are to be considered. Specifically, each block in a SSD must be

erased before being rewritten and only a finite number of erasures are possible before

the bit error of SSD becomes unacceptably high. As an example, let us assume

designing a burst buffer layer for a hypothetical large-scale HPC platform with tens

of thousands of compute clients. If the building blocks are typical 256GB SSDs and

if we are targeting a relatively moderate sized burst buffer layer (e.g. 5PB aggregate

56

capacity), then the total number of SSDs required is about 20,000. According to

the datasheet Samsung (2015), the newest Samsung 850 Pro SSD (256GB) has a

warranty for maximum 150TB write. If the burst buffer is designed to serve 5 years,

the maximum amount of data that can be written to the entire burst buffer per day is

1,600TB. We further assume that the write amplification factor is around 1.3 Hu et al.

(2009), then the actual allowed write is about 1,200TB per day. On the other hand,

some common large-scale scientific applications often produce huge checkpoint data.

For example, the size of each checkpoint from CHIMERA application UCSF (2015)

running on ORNL’s Titan supercomputer OLCF (2012) is almost 160TB Tiwari et al.

(2014). If several such scientific applications run simultaneously, the total size of the

write workloads per day will be much larger than the SSD endurance requirements.

Therefore, without constraints, the intensive write workloads produced by large-

scale long-running scientific applications through checkpointing could degrade the

endurance of SSD devices and the reliability of the burst buffer significantly.

Many techniques and approaches Yang and Ren (2011); Lee et al. (2012); Kaiser

et al. (2013) have been proposed to optimize the endurance of SSD devices under

different I/O workloads, particularly the kinds of workloads produced by personal

computers, web servers, database systems, etc. Few of them tackles SSD endurance

issues in HPC environment, because the HPC I/O workloads usually consist of

extremely intensive write operations which can quickly wear out the SSD devices

even when cutting-edge endurance optimization techniques are used. In fact, the

HPC community does not have a full understanding in how to effectively maintain

sustainable cost-to-performance and cost-to-capacity ratios for SSD devices under

such write-heavy I/O workloads. One possible solution might be replacing the worn-

out SSDs often to maintain a given capacity level, however, this solution is not feasible

or cost-effective. The system-exclusive burst buffer can be built either by using node-

local SSDs (i.e, an SSD device on every compute node) or can be shared (i.e, a set

of pool of SSDs serving all compute nodes in a given HPC system). In the node-

local case, the number of SSDs required grows linearly with the number of compute

57

nodes. For the shared case, the required number of SSDs will grow linearly with the

total memory size to absorb and flush the output data burst. In either case, we end

up with thousand or tens of thousands of SSDs for a large-scale HPC system. To

maintain the wear-out levels of this number of SSDs in a large-scale HPC facility will

require extensive resources (i.e., man power to monitor and physically replace the

worn-out devices on regular basis). Also, this approach will incur additional costs

of the replaced devices. As an example, a modest size SSD can easily cost a few

hundred U.S. dollars today and the replacing just the half of a 5,000 SSD population

will amount to a few million U.S. dollars. Moreover, this approach requires compute

node downtimes and interruptions to replace the worn-out devices from otherwise

a “healthy” node (in terms of remaining components, such as CPU and memory),

which is also an additional but hidden cost for the total cost of ownership (TCO) of a

large-scale HPC system. For all these reasons combined, solely relaying on physically

replacing worn-out SSDs to maintain a set of required capacity and endurance targets

is not cost-effective and practical.

Besides frequently replacing worn-out SSD devices, another possible solution

would be reducing the amount of data written to the burst buffer. In Fang and

Chien (2015), the authors proposed a checkpoint interval optimization model for large-

scale scientific applications which takes the constraint of burst buffer capacity into

consideration. In such model, SSD-based burst buffers of supercomputers are used to

absorb all checkpoint data of the scientific applications. Therefore, in order to satisfy

the capacity constraint, the model intends to reduce the checkpointing frequency of

some write-heavy jobs so that the amount of data written to the burst buffer can be

reduced. However, a direct effect caused by such reduction in checkpointing frequency

is that the potential wasted computation time due to system failures also increases

significantly, especially for large computation jobs.

In order to solve the problems mentioned above, we propose a new checkpoint

placement optimization model which collaboratively utilizes both the burst buffer and

the parallel file system in a large-scale storage system to store the checkpoint data

58

generated by scientific applications. Specifically, our model guarantees the endurance

requirements of the SSD-based burst buffer layers without sacrificing too much of

the computational efficiency. Moreover, in order to make the model feasible to real

HPC systems, we also design an adaptive algorithm which can dynamically adjust

the checkpoint placement based on the changing runtime characteristics of the HPC

system and continuously optimize the usage of the burst buffer. The results from

intensive evaluation demonstrate the effectiveness of our checkpoint placement model

and our adaptive checkpoint placement algorithm. Particularly, using our adaptive

checkpoint placement algorithm can guarantee the endurance of the burst buffer

without degrading the performance of each job by more than 5%. Even better is

that the degradation of the system computation efficiency is less than 3% if this

adaptive algorithm is used.

5.2 Background

Before we discuss our checkpoint placement optimization model with guaranteed

burst buffer endurance, we first briefly introduce existing studies on determining the

optimal checkpoint interval and how to adjust the checkpoint intervals when different

constraints are taken into consideration. The notations of all the symbols used in the

following sections are listed in TABLE 5.1.

5.2.1 Optimal checkpoint interval

Most existing studies on finding optimal checkpoint interval model the execution of

each large-scale scientific application as a sequence of activities alternating between

the computation and checkpoint phases. Here we use ∆tcmpt,i to denote the

computation time period between two consecutive checkpoint activities of the i-th

job, which is also referred to as the checkpoint interval of the i-th job. We use ∆twrckpt,i

59

Table 5.1: Notations of symbols

M Total number of scientific application jobs
running on the HPC system

N Total number of compute nodes in the HPC system
λ Failure rate per compute node in the HPC system
lmax Daily write limits of the burst buffer
ni Number of compute nodes assigned to execute the i-th job
Tcmpt,i Total computation time required to finish the i-th job
∆tcmpt,i Checkpoint interval of the i-th job
Si Data size of one checkpoint from the i-th job
αi Percentage of checkpoints from the i-th job

that should be written to the burst buffer

thrptwr,bbi Throughput when the i-th job writes checkpoints to
the burst buffer

thrptwr,pfsi Throughput when the i-th job writes checkpoints to
the parallel file systems

∆twr,bbckpt,i Time required to write one checkpoint of the

i-th job to the burst buffer

∆twr,pfsckpt,i Time required to write one checkpoint of the

i-th job to the parallel file systems

to denote the time spent on writing one checkpoint of the i-th job to the storage

system.

Both hardware and software failures of compute nodes could interrupt the

computation or checkpoint activities and trigger a restart phase (reading the latest

checkpoint from the storage system to re-launch the job from the last correct state).

As shown in Figure 5.1, If we assume ε percent of computation and checkpoint

activities are wasted on average due to failures, we can then calculate the overhead

caused by one failure of the i-th job as ∆toverhead,i = ε(∆tcmpt,i + ∆twrckpt,i) + ∆trdckpt,i,

where ∆trdckpt,i is the time required to read one checkpoint of the i-th job from the

storage system (usually ∆trdckpt,i can be ignored since ∆trdckpt,i � ∆tcmpt,i + ∆twrckpt,i).

Most existing studies assume the arrival of system failures follows a Poisson

distribution and on average half of the work after last checkpoint is wasted if a

failure occurs (ε = 0.5) Young (1974); Vaidya (1997); Daly (2006); Fang and Chien

60

computation checkpoint computation checkpoint waste restart computation checkpoint

computation checkpoint waste restart computation checkpoint computation

computation checkpoint computation checkpoint waste restartcomputation checkpoint

Job 1

Job i

Job n

...

...

...

...

failure

failure

failure

Figure 5.1: Checkpoint/restart for scientific applications running on HPC systems

(2015). If the failure rate per compute node in the HPC system is λ and the number

of compute nodes occupied by the i-th job is ni, the total execution time of the i-th

job can be denoted as:

Ttotal,i = Tcmpt,i(1 +
∆twrckpt,i
∆tcmpt,i

+
1

2
λni∆tcmpt,i), (5.1)

where Tcmpt,i is the total computation time required to finish the i-th job,
∆twr

ckpt,i

∆tcmpt,i
Tcmpt,i

is the total time spent on checkpointing, and 1
2
λni∆tcmpt,iTcmpt,i is the total overhead

caused by the failures. According to Young (1974); Vaidya (1997); Daly (2006), Ttotal,i

can be minimized when the following value is used as the checkpoint interval:

∆tcmpt,i =

√
2∆twrckpt,i
λni

(5.2)

5.2.2 Identifying checkpoint intervals by exploiting the tem-

poral locality of failures

In Tiwari et al. (2014), the failure datasets collected from several launched HPC

systems are analyzed. The analysis results show that the time between failures in

HPC systems follows a Weibull distribution and the failure rate decreases over time

since the last failure (and until the next failure). Therefore, Tiwari et al. (2014)

proposes an adaptive checkpoint model called “lazy checkpointing”, which increases

61

the checkpoint interval until the next failure. The incrementally increasing checkpoint

interval is given by the following formula:

∆tlazycmpt,i = ∆tcmpt,i(
t

∆tcmpt,i
)1−β, (5.3)

where β is the shape parameter of the Weibull distribution, t is the present time and

∆tcmpt,i is the optimal checkpoint interval derived using formula 5.2. Once a failure

happens, the checkpoint interval is reset to ∆tcmpt,i.

The basic idea behind the above formula is to increase the checkpoint interval

over time so that it has the same slope as the curve of the failure rate. Since this

“lazy checkpointing” model intends to skip some checkpoints, it can mitigate the

I/O overhead caused by checkpointing and improve the efficiency of the HPC system

compared to the static optimal checkpoint interval represented by 5.2.

5.2.3 Identifying checkpoint intervals for a fixed burst buffer

capacity

For absorbing the output of large-scale scientific applications with high checkpoint

frequencies and large data sizes in each step, a burst buffer may require tens of

thousands of SSD devices. Since SSDs are more expensive than traditional spinning

disk drives of the same capacity, system designers often try to limit the number of

SSDs. Fang and Chien (2015) follows a similar logic and tries to determine a new

optimal checkpoint interval under a fixed burst buffer capacity. Their model is:

arg min
∆tcmpt,i

M∑
i=1

Ttotal,i (5.4)

s.t.
M∑
i=1

Tcmpt,i
∆tcmpt,i

Si ≤ Cmax, (5.5)

where Cmax is the total capacity of SSDs provisioned for the burst buffer to store the

checkpoint data.

62

There are two disadvantages in this model. First, the objective function just

simply sums up the total execution time of each job, which cannot accurately represent

the total consumed computation resources. Instead, the execution time of each job

should be weighted by the number of compute nodes each job occupies. Second, the

above model intends to extend the checkpoint interval of each job, especially those

with larger checkpoint data sizes or longer total computation times, to limit the

amount of data written to the burst buffer, which significantly increases the potential

wasted computation time caused by system failures.

In this work, we argue that the endurance is as critical as capacity in designing

SSD-based burst buffers.

5.3 Checkpoint Placement Optimization with Guar-

anteed Burst Buffer Endurance

All existing studies assume that the burst buffer is used to absorb all checkpoint data

from the HPC systems and only some of the checkpoints (e.g. every n-th checkpoint)

are flushed from the burst buffer to the underlying parallel file systems for backup. In

that case, if multiple jobs that all produce large amounts of checkpoint data execute

concurrently, then it becomes very challenging to maintain the burst buffer endurance

requirements without negatively affecting the computational efficiency. Therefore, in

order to optimize the computational efficiency of large-scale scientific applications

while guaranteeing the lifetime of the SSD-based burst buffer, we propose a new

optimization model which collaboratively leverages both the burst buffer and parallel

file systems to store checkpoint data. A major difference from existing approaches

is that our proposed model can keep the original optimal checkpoint interval (to the

best it can) and also reduce the potential wasted computation time caused by system

failures without exceeding the write limit of the burst buffer.

63

We denote the time consumed by writing one checkpoint of the i-th job to the

burst buffer as ∆twr,bbckpt,i and that to the parallel file systems as ∆twr,pfsckpt,i . If the write

throughput of the i-th job to the burst buffer and parallel file systems are given, we

can calculate ∆twr,bbckpt,i and ∆twr,pfsckpt,i as:

∆twr,bbckpt,i =
Si

thrptwr,bbi

, (5.6)

∆twr,pfsckpt,i =
Si

thrptwr,pfsi

(5.7)

The challenge is to determine the optimal percentage of the checkpoints that should

be written to the burst buffer per application. If we use αi to denote the percentage

of checkpoints from the i-th job which should be written to the burst buffer, then

the average time spent on writing one checkpoint of the i-th job, ∆twrckpt,i, can be

calculated as:

∆twrckpt,i = αi∆t
wr,bb
ckpt,i + (1− αi)∆twr,pfsckpt,i (5.8)

If we replace ∆tcmpt,i with
√

2∆twr
ckpt,i

λni
in (5.1), we can obtain the total execution

time of the i-th job as:

Ttotal,i =Tcmpt,i(1 +
∆twrckpt,i
∆tcmpt,i

+
1

2
λni∆tcmpt,i)

=Tcmpt,i(1 +
∆twrckpt,i√

2∆twr
ckpt,i

λni

+
1

2
λni

√
2∆twrckpt,i
λni

)

=Tcmpt,i(1 +
√

2λni∆twrckpt,i)

=Tcmpt,i{1 +
√

2λni[αi∆t
wr,bb
ckpt,i + (1− αi)∆twr,pfsckpt,i]}

(5.9)

Now we can formulate the objective function of our optimization model as follows

arg min
αi

M∑
i=1

niTcmpt,i{1 +
√

2λni[αi∆t
wr,bb
ckpt,i + (1− αi)∆twr,pfsckpt,i]}, (5.10)

64

in which each job’s total execution time is weighted by the number of compute nodes

each job occupies.

The total size of the checkpoint data written to the burst buffer can be calculated

as
M∑
i=1

Tcmpt,i√
2[αi∆t

wr,bb
ckpt,i+(1−αi)∆t

wr,pfs
ckpt,i]

λni

αiSi (5.11)

Since vendors provide the daily write limits of the SSD devices, we denote the daily

write limit of the entire SSD-based burst buffer as lmax. After we divide (5.11) by

Tcmpt,i, we can obtain the average checkpoint data written per hour, which should not

exceed the per-hour write limit of the burst buffer, as the constraint of our model:

M∑
i=1

αiSi√
2[αi∆t

wr,bb
ckpt,i+(1−αi)∆t

wr,pfs
ckpt,i]

λni

≤ lmax/24 (5.12)

Putting them all together, we establish the following optimization model to

determine the optimal percentage of checkpoints that should be written to the burst

buffer for each scientific application.

arg min
αi

M∑
i=1

niTcmpt,i{1 +
√

2λni[αi∆t
wr,bb
ckpt,i + (1− αi)∆twr,pfsckpt,i]}

s.t.
M∑
i=1

αiSi√
2[αi∆t

wr,bb
ckpt,i+(1−αi)∆t

wr,pfs
ckpt,i]

λni

≤ lmax/24
(5.13)

Apparently, our optimization model is a nonlinear programming model. To make

it more easier to resolve, we substitute
√

2λni[αi∆t
wr,bb
ckpt,i + (1− αi)∆twr,pfsckpt,i] with xi in

both the objective function and constraint to transform the model into the following

65

form:

arg min
αi

M∑
i=1

niTcmpt,i(1 + xi)

s.t.
M∑
i=1

1
2
xi −

λnit
wr,pfs
ckpt,i

xi

twr,bbckpt,i − t
wr,pfs
ckpt,i

Si ≤ lmax/24

(5.14)

We can solve the this constrained nonlinear programming problem by using the

interior-point algorithm Wächter and Biegler (2006).

After we obtain the optimal value for xi, thereby αi, according to formula (5.2),

we can also calculate the new optimal checkpoint interval of the i-th job as

∆tcmpt,i =

√
2(αi∆t

wr,bb
ckpt,i + (1− αi)∆twr,pfsckpt,i)

λni
(5.15)

By using both the optimal αi and ∆tcmpt,i for all scientific applications, we can

maximize the computation efficiency of an HPC system while guaranteeing the SSD

endurance requirements for the burst buffer.

5.4 Adaptive Checkpoint Placement for Optimal

HPC System and Burst Buffer Usage

Assuming runtime characteristics, such as failure rates, job size, checkpoint size,

of scientific applications are given, we can solve the above optimization model and

determine the checkpoint interval and the percentage of checkpoint data that should

be stored on the burst buffer on a per job basis. However, in practice, some of these

runtime characteristics cannot be obtained before execution and others vary with

time. Therefore, we’d like to design an adaptive algorithm which can dynamically

adjust the checkpoint placement based on those time-dependent characteristics and

continuously optimize the usage of the burst buffer.

66

5.4.1 Runtime characteristics of HPC systems and scientific

applications

First, let us categorize the runtime characteristics of HPC systems and scientific

applications that are required for determining the optimal checkpoint placement and

identify the ones varying during the application execution.

• Checkpoint size: Although different scientific applications write checkpoints

of different sizes, for a specific scientific application the size of each checkpoint

is usually constant.

• Job size: Job size means the number of compute nodes each computation

job occupies. Job size not only determines the aggregate I/O write and

read bandwidths, but also effects the failure rate of each running scientific

application. The job size of each application is usually determined before the

execution and does not change if the computation continues normally. However,

when the job is restarting from a failure, the job size might be changed as it

depends on how the job scheduler allocates the compute nodes to restart the

job.

• Aggregate I/O bandwidth: The aggregate I/O bandwidth of each job can

achieve when writing checkpoints to either the burst buffer or the parallel file

system are determined by the job size. Jobs with larger sizes often have higher

aggregate I/O bandwidth. If the job size remains the same, the aggregate I/O

bandwidth for each job will not change.

• Total computation time: Total computation time of each scientific applica-

tion is the time required to finish all computation tasks, not including that spent

on writing checkpoints or recovering from failures. It depends on the complexity

of the job and the job size. If the job size does not change, this value for each

scientific application will be constant.

67

• Per-node failure rate: Per-node failure rates of HPC systems are often

estimated using historical failure logs. Though constant failure rates are

often assumed in most of existing models, several studies have shown that

the failure rates of compute nodes in large-scale HPC systems might vary

with time Schroeder and Gibson (2006); Tiwari et al. (2014); El-Sayed and

Schroeder (2014). For instance, Tiwari et al. (2014) presents the analysis of

failure data collected from multiple supercomputing facilities including Oak

Ridge Leadership Computing Facility (OLCF) and the Los Alamos National

Laboratory (LANL). The results indicate that there is a strong temporal locality

between compute node failures in HPC systems.

5.4.2 Effect of dynamic runtime characteristics on check-

point placement optimization

From the above analysis, we realize that except the checkpoint size, all other runtime

characteristics might change during the execution. Next, we need to study how

the variation in these runtime characteristics effects the optimization results of the

checkpoint placement.

When job size is changed

The job size could be changed when the job is restarting from a failure. For example,

on Titan supercomputer, when a job is terminated by a failure, the system might

try to restart it by resubmitting it to the job scheduler. Then the job scheduler will

re-launch the job on currently available compute nodes, which usually are not the

nodes used by the job before the failure. If the available compute nodes are less than

those used before the failure, the size of the re-launched job has to be downgraded.

In the optimization model given by formula 5.13, the size of the i-th job is denoted

by ni. If ni decreases, the aggregate failure rate of the i-th job, λni, will decrease.

Meanwhile, the decrease of ni also reduces the aggregate I/O bandwidth the i-th job

68

can achieve, and thereby increases the average time spent on writing checkpoints to

the storage, [αi∆t
wr,bb
ckpt,i + (1−αi)∆twr,pfsckpt,i]. Therefore, if ni decreases, according to the

constraint of the optimization model, the checkpoints written to the burst buffer will

decrease. In that case, if we do not write more percentage of checkpoints to the burst

buffer, the burst buffer will be underutilized.

When an existing job finishes or a new job joins

If an existing job finishes, all the computing resources it occupies will be released. It

does not need the burst buffer to store its checkpoints anymore. In that case, the

checkpoint placement should be re-optimized and the new percentage of checkpoint

data that should be stored on the burst buffer as well as the new checkpoint interval

should be calculated for those remaining jobs. Basically, the remaining jobs will be

allocated more burst buffer write permit since the total write workload to the burst

buffer has decreased.

Similarly, when a new job joins, the optimization results on checkpoint placement

should be calculated again and some burst buffer write permit should be allocated to

the new job accordingly.

When failure rate is time-dependent

Time-dependent failure rates have been observed among compute nodes in HPC

systems of different sizes. For example, we analyze the failure logs collected from

three HPC computing clusters constructed with different number of compute nodes

and use four different distributions to fit the time between failures (in hours) extracted

from the failure logs. The fitting results are shown in TABLE 5.2, which lists the

parameters of each distribution estimated by using Maximum Likelihood Estimation.

In order to illustrate the fitness of these four different distributions, we present the

Q-Q plot for each distribution in Figure 5.2. Specifically, each Q-Q plot compares

the quantiles drawn from the failure data (y-axis) to theoretical quantiles calculated

69

from a particular distribution using parameters listed in TABLE 5.2 (x-axis). If the

quantiles of the failure data came from the same distribution, the points in the Q-Q

plot will approximately lie on the line y = x. As shown in Figure 5.2, for each of

these three HPC systems, the Weibull distribution fits the failure data best.

Table 5.2: Distributions fitted to the failure data

System
Distribution

Exponential Weibull Normal Lognormal
LANL System 8 rate=0.0119 shape=0.7111, mean= 84.079, meanlog=3.3992,

(164 nodes) scale=67.375 sd=122.00 sdlog=1.7931
LANL System 18 rate=0.1336 shape=0.8170, mean=7.4829, meanlog=1.2194,

(1024 nodes) scale=6.6293 sd=12.806 sdlog=1.4505
OLCF Titan rate=0.1378 shape=0.6885 mean=7.2565 meanlog=0.9197

(18,688 nodes) scale=5.4527 sd=12.731 sdlog=1.5817

For each of these three HPC systems given in TABLE 5.2, the shape parameter

of the Weibull distribution is less than 1, indicating a decreasing failure rate. This

means the expected remaining time until the next failure increases with the time

since the last failure has occurred, or in other words, the next failure is more likely

to happen within a relatively short time period after the last failure. For example, as

shown in Figure 5.3, if failure 2 is the next failure after the failure 1, then it is more

likely to occur very soon after failure 1 because of the decreasing failure rate.

Ideally, the most efficient way to utilize the burst buffer is limiting the write

workloads to extend the SSDs’ lifetime while maximizing the read workloads to reduce

the job restarting time by leveraging the high read throughput of the burst buffer.

However, if the static checkpoint placement is used, as shown in Figure 5.3, the

checkpoints are written with constant frequency and a fixed percentage of them are

stored on the burst buffer. In this case, the probability that the job uses a checkpoint

stored on the burst buffer to recover from the failure is low since the failures are

not uniformly distributed due to the decreasing failure rate. Therefore, in order to

utilize the HPC system and the burst buffer more efficiently, the checkpoint placement

algorithm must also be able to adapt to the time-dependent failure rate. For instance,

as shown in Figure 5.3, the adaptive checkpoint placement should be able to adjust

70

●●●
●●●

●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●●●●●●
●●●●●●●●●●●
●●●
●●●●●●●
●●●●
●●●●●
●●●●●●
●●●●●
●●
●●●●

●●●
●
●●●●
●●●

●
●●●

●

●

●

●
●

●

●

0 200 500

0
20

0
60

0
10

00

Exponential

●●●
●●●
●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●●●●●●
●●●●●●●●●●●

●●●
●●●●●●●
●●●●
●●●●●
●●●●●●
●●●●●

●●
●●●●
●●●
●
●●●●

●●●●
●●●

●

●

●

●
●

●

●

0 400 800

0
20

0
60

0
10

00

Weibull

●●●
●●●

●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●●●●●●
●●●●●●●●●●●
●●●
●●●●●●●
●●●●
●●●●●
●●●●●●
●●●●●
●●
●●●●
●●●
●
●●●●
●●●
●
●●●
●

●

●

●
●

●

●

−200 200

0
20

0
60

0
10

00

Normal

●●●
●●●
●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●●●●●●
●●●●●●●●●●●
●●●
●●●●●●●
●●●●
●●●●●
●●●●●●
●●●●●
●●
●●●●
●●●
●
●●●●
●●●
●
●●●
●

●

●

●
●

●

●

0 6000

0
20

0
60

0
10

00

Lognormal

(a) LANL System 8 (164 nodes, small scale)

●●
●●

●●
●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●

●●●●●●●●●●●
●●●●

●●●●●
●●

●

●

●

●

0 20 50

0
10

0
20

0
30

0

Exponential

●●
●●

●●
●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●

●●●●●●●●●●●
●●●●●●●

●●
● ●

●

●

●

●

0 40 80

0
10

0
20

0
30

0

Weibull

●● ●●
●●

●●
●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●

●●●●●●●●
●●●●●
●●●●●
●●●

●
●

●

●

●

−20 20
0

10
0

20
0

30
0

Normal

●●
●●
●●

●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●
●●●●●●●●

●●●●●●●●●●● ●●
●

●

●

●

●

0 100 250

0
10

0
20

0
30

0

Lognormal

(b) LANL System 18 (1024 nodes, medium scale)

●●
●●●

●●●
●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●
●●●●●●●●●●
●●●●●●●●●●●

●●●●●●●●●●
●●●●●●●

●●●●
●●●●●●●

●●●
●●●●●●●

●●●
●●
●●●
●●●

●●
●●●

● ●

●
●

●

●

● ●

0 20 40

0
40

80
12

0

Exponential

●●
●●●
●●●
●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●
●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●
●●●●●●●
●●●●
●●●●●●●

●●●
●●●●●
●●●
●●
●●
●●●
●●●

●●
●●●

●●

●
●

●

●

● ●

0 40 100

0
40

80
12

0

Weibull

●●
●●●

●●●
●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●
●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●
●●●●●●●
●●●●
●●●●●●●
●●●
●●●●●
●●●
●●
●●
●●●
●●●
●●
●●●
●●

●
●

●

●

●●

−20 20

0
40

80
12

0

Normal

●●
●●●
●●●
●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●
●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●
●●●●●●●
●●●●
●●●●●●●
●●●
●●●●●
●●●
●●
●●
●●●
●●●
●●
●●●

●●

●
●

●

●

● ●

0 200 500

0
40

80
12

0

Lognormal

(c) OLCF Titan (18,688 nodes, large scale)

Figure 5.2: Q-Q plot for visualizing fitness of different distributions

the percentage of checkpoints written to the burst buffer after failure 1, so that the

likelihood of restarting the job using checkpoints from the burst buffer when failure

2 happens can be increased.

71

...

failure 2failure 1

failure 2failure 1

... ...

...

compute
checkpoint

to PFS
checkpoint to
burst buffer

restart
from PFS

restart from
burst buffer

waste

static checkpoint placement

adaptive checkpoint placement

Figure 5.3: Static/adaptive checkpoint placement

5.4.3 Adaptive checkpoint placement optimization algorithm

The design of our adaptive checkpoint placement algorithm is based on two

assumptions. First, in HPC systems, it is possible to obtain all running jobs’ runtime

characteristics (such as the job size, the remaining computation time, failure rates,

etc.), which will be fed to our optimization algorithm as the input parameters. Second,

there is a way to apply the optimization results given by our algorithm to adjusting the

checkpoint interval of each scientific computation job. In practice, the first assumption

is often valid as most of the commonly used workload manager softwares are able to

collect jobs’ runtime information during operation. The second assumption is also

possible as some workload managers, such as SLURM SchedMD (2015), can utilize

interfaces provided by checkpoint/restart libraries, such as BLCR Laboratory (2015),

to configure the checkpoint interval of each job. Therefore, it is possible to integrate

our algorithm into the workload managers to achieve adaptive checkpoint placement

optimization.

In order to make the checkpoint placement adaptive to those changing runtime

characteristics, the previous model designed for the static checkpoint placement

optimization needs to be modified. First, given a fixed optimization period, ∆opt,

the objective function of the model, as shown bellow, is to minimize the overhead,

72

including the time spent on writing, reading checkpoints and the wasted computation

time due to failures, during such time period.

arg min
αi

M∑
i=1

ni{
∆opt

∆tcmpt,i
[αi∆t

wr,bb
ckpt,i + (1− αi)∆twr,pfsckpt,i]+

ni
N
Nf [αi∆t

rd,bb
ckpt,i + (1− αi)∆trd,pfsckpt,i] +

ni
N
Nf

∆tcmpt,i
2
},

(5.16)

where Nf is the expected number of node failures during ∆opt. If we assume the

current time is tnow and the last failure happened at tfail, Nf can be calculated as

Nf =
∫ tnow+∆topt−tfail
tnow−tfail

h(t)dt, where h(t) is the hazard rate function estimated by

using the failure logs collected from the Titan supercomputer (h(t) = β
η
(t
η
)β−1, where

β is the shape parameter and η is the scale parameter of the Weibull distribution).

Apparently, the above objective function achieves the minimum when ∆tcmpt,i =√
∆opt[αi∆t

wr,bb
ckpt,i+(1−αi)∆t

wr,pfs
ckpt,i]

niNf/(2N)
, and after we replace the ∆tcmpt,i with this value, the

objective function can be simplified as:

arg min
αi

M∑
i=1

ni{
√

2
ni
N
Nf∆opt[αi∆t

wr,bb
ckpt,i + (1− αi)∆twr,pfsckpt,i]

+
ni
N
Nf [αi∆t

rd,bb
ckpt,i + (1− αi)∆trd,pfsckpt,i]}

(5.17)

Furthermore, the constraint on burst buffer write limit can be denoted as follows:

M∑
i=1

αiSi√
∆opt[αi∆t

wr,bb
ckpt,i+(1−αi)∆t

wr,pfs
ckpt,i]

niNf/(2N)

≤ lmax/24
(5.18)

As illustrated in Algorithm 3, our algorithm will be called by the workload

manager to optimize the checkpoint placement at the beginning of every ∆topt.

Specifically, our algorithm first obtains the runtime characteristics of each running

job from the workload manager, including the checkpoint size and job size. Then

based on the job size, it estimates the I/O throughput each job can achieve when

writing the checkpoints to or reading the checkpoints from the storage. For example,

73

Algorithm 3 Adaptive Checkpoint Placement Optimization

1: Obtain runtime characteristics from the workload manager:
checkpoint sizes [S1, S2 . . . , SM],
job sizes [n1, n2 . . . , nM]

2: Estimate I/O throughput of each job:

burst buffer: [thrptwr,bb1 , . . . , thrptwr,bbM],[thrptrd,bb1 , . . . , thrptrd,bbM]

PFS: [thrptwr,pfs1 , . . . , thrptwr,pfsM],[thrptrd,pfs1 , . . . , thrptrd,pfsM]
3: Calculate time spent on writing/reading one checkpoint for each job:

burst buffer: [∆twr,bbckpt,1, . . . ,∆t
wr,bb
ckpt,M],[∆trd,bbckpt,1, . . . ,∆t

rd,bb
ckpt,M]

PFS: [∆twr,pfsckpt,1 , . . . ,∆t
wr,pfs
ckpt,M],[∆trd,pfsckpt,1 , . . . ,∆t

rd,pfs
ckpt,M]

4: Estimate the number of node failures during ∆topt:

Nf =
∫ tnow+∆topt−tfail
tnow−tfail h(t)dt

5: Resolve the optimization model:

arg min
αi

M∑
i=1

ni{
√

2
ni
N
Nf∆opt[αi∆t

wr,bb
ckpt,i + (1− αi)∆twr,pfsckpt,i]

+
ni
N
Nf [αi∆t

rd,bb
ckpt,i + (1− αi)∆trd,pfsckpt,i]}

s.t.
M∑
i=1

αiSi√
∆opt[αi∆t

wr,bb
ckpt,i+(1−αi)∆t

wr,pfs
ckpt,i]

niNf/(2N)

≤ lmax/24

6: Calculate new checkpoint intervals for each job:

∆tcmpt,i =

√
∆opt[αi∆t

wr,bb
ckpt,i+(1−αi)∆t

wr,pfs
ckpt,i]

niNf/(2N)

7: Apply new checkpoint intervals and [α1, α2, . . . , αM] to the workload manager to adjust
runtime characteristics of each job

8: Wait until tnow + ∆topt, go to step 1

the burst buffer layers in HPC systems are usually built upon SSD devices locally

attached to each compute node. Therefore, the aggregate I/O throughput the job

can achieve is roughly estimated as the product of the job size and each SSD’s I/O

bandwidth. For the parallel file system, such as Spider II Oral et al. (2013), when the

job size is below some threshold, the aggregate I/O throughput is also proportional

to the job size, but once the job size is larger than such threshold, the I/O bandwidth

of the parallel file system will be saturated Oral et al. (2014). After estimating the

I/O throughput, our algorithm calculates the time spent on writing and reading one

checkpoint for each job.

74

The most challenging part in our algorithm is estimating the number of node

failures in the HPC system. Most large-scale HPC systems maintain failure logs

during their operation Tiwari et al. (2014). By analyzing the failure logs, we can

obtain the failure characteristics of compute nodes in the system. For example, as

we mentioned in previous paragraphs, the analysis of failure logs demonstrates a

Weibull distribution with decreasing failure rate fits the time between failures of Titan

supercomputer the best. By estimating the parameters of such Weibull distribution,

we can also obtain the hazard rate function, h(t).

Finally, with all the runtime characteristics that have been obtained, estimated or

calculated, our algorithm resolves the optimization model to get new percentage of

checkpoints that should be written to the burst buffer as well as the new checkpoint

interval for each job. These optimization results will be applied to all jobs through

the workload manager to guide the checkpoint placement in the coming period.

5.5 Evaluation

In this section, we evaluate our adaptive checkpoint placement algorithm through

event-based simulation and the failure traces collected from Titan supercomputer are

used to drive the simulation.

5.5.1 Evaluation setup

Our simulation parameter settings are based on system configuration settings of

deployed leadership computing facilities and runtime characteristics obtained from

real scientific application jobs.

System features of leadership computing facilities

• Compute platform: Our models and algorithms are primarily evaluated

based on the architecture and characteristics of Titan, the second fastest

75

supercomputer in the world, which is deployed and managed by OLCF. Titan is

composed of 18,688 compute nodes and has more than 700TB memory capacity.

According to the failure data collected by OLCF, the mean time between failure

(MTBF) of the entire Titan supercomputer is about 11 hours and the time

between node failures satisfies a Weibull distribution (See TABLE 5.2). In our

evaluation, we use the Titan failure data to drive the compute node failures in

our simulation.

• Burst buffer: Since Titan does not have a burst buffer layer per se, we apply

system characteristics of Gordon supercomputer SDSC (2015), one of the first

supercomputers utilizing SSDs, to our evaluation.

– SSD model: The solid state drives used to equip Gordon supercomputer are

Intel 710 (300GB) SSDs, which are relatively expensive compare to other

manufactures’ products. For example, each Samsung 850 Pro (256GB)

SSD Samsung (2015) costs $120, only one forth of the list price of the

Intel 710 (300GB) SSD. Since Titan has much more compute nodes than

Gordon, we choose Samsung 850 Pro (256GB) SSDs to build a more

cost-effective burst buffer for Titan in our evaluation, even though some

expensive SSDs might provide better performance and longer endurance.

– Capacity: The burst buffer layer of Gordon consists of 64 I/O nodes. Each

of these I/O nodes contains 16 SSDs, and serves 16 compute nodes. In our

evaluation, we also assume that averagely each compute node of Titan can

be served by one SSD, no matter such SSD is integrated into the I/O node

or locally attached to the compute node. Therefore, the total capacity of

the burst buffer in our evaluation is about 256× 18688 = 4.6PB.

– Bandwidth: As the 64 I/O nodes (the burst buffer layer) of Gordon system

can provide 320 GB/s aggregate write bandwidth, each SSD can roughly

provide 320 MB/s write bandwidth. Let us assume each compute node

of Titan supercomputer can also enjoy a similar write bandwidth. Since

76

Titan has 18,688 compute nodes in total, the aggregate write bandwidth

of the burst buffer will be around 320× 18688/1024 = 5, 840 GB/s.

– Write limit: If each compute node is served by a dedicated SSD, then the

total number of SSDs in Titan’s burst buffer is 18,688. Since each Samsung

850 Pro SSD has a warranty for maximum 150TB write, if the burst buffer

is designed to be in operation for at least 5 years, the maximum amount of

data can be written to the burst buffer per day is around (150×18688)/(5×

365) = 1, 536TB. If the write amplification factor is about 1.3, then the

actual write limit should be 1536/1.3 = 1, 100TB per day. In all evaluation

cases, we set the daily write limit of the burst buffer as 1, 000TB.

• Parallel file system: Spider II file system Oral et al. (2013) is a Lustre-

based parallel file system used by Titan supercomputer. It consists of 20,106

hard disk drives and provides 32PB capacity (after RAID). The aggregate I/O

bandwidth of Spider II file system depends on the number of clients issuing

the I/O operations concurrently. According to measurement results provided

by OLCF Oral et al. (2014), the aggregate write bandwidth of Spider II can

linearly increase up to 300GB/s when the number of clients is less than 6,000.

Once more than 6,000 clients are writing data to Spider II concurrently, the

I/O bandwidth gets saturated.

Runtime characteristics of scientific applications

• Checkpoint size: Different scientific applications usually write checkpoints of

different sizes and the difference could be huge. For example, CHIMERA and

VULCAN are two scientific applications running on Titan supercomputer. Each

checkpoint of CHIMERA is 160TB while that of VULCAN is only 0.83GB.

• Job size: Job size means the number of compute nodes each computation

job occupies. Job size not only determines the aggregate I/O bandwidth of

writing and reading checkpoints, but also effects the failure rate of each running

77

Table 5.3: Runtime characteristics of common scientific applications running on Titan
supercomputer

Domain Application Checkpoint size Job size Computation time
Astrophysics CHIMERA 160TB 9216 360Hours
Astrophysics VULCAN 0.83GB 256 720Hours
Climate POP 26GB 512 480Hours
Combustion S3D 5TB 2048 240Hours
Fusion GTC 20TB 6144 120Hours
Fusion GYRO 50GB 512 120Hours

scientific application. In our simulation, we vary the job size from 256 to 9216

to cover the wide range of job characteristics in real HPC environment.

• Computation time: Computation time of each scientific application is the

time required to finish all computation task, not including that spent on writing

checkpoints or recovering from failures. It depends on the complexity of the

job and number of compute nodes used by the job. In our simulation, the

computation time of simulated scientific applications varies from 120 to 720

hours.

TABLE 5.3 lists all runtime characteristics of several common scientific appli-

cations running on Titan supercomputer. We apply these characteristics to our

evaluation and simulate the computation/checkpointing activities of these scientific

applications when they are running concurrently on Titan supercomputer.

Evaluated models and algorithms

In order to demonstrate the effectiveness of our adaptive checkpoint placement

algorithm, we also evaluate several other models and algorithms for comparison. The

abbreviation and descriptions of all models and algorithms we evaluate are listed in

TABLE 5.4.

In order to have a fair comparison, the system features of the leadership computing

facility and the runtime characteristics of those scientific computation jobs are kept

the same when evaluating each of these models and algorithms.

78

Table 5.4: Evaluated models and algorithms

Abbreviation Description of the model or algorithm
Static-Unlim-BB-No-PFS Static optimal checkpoint interval given by formula 5.2
(SUBNP) is used. All checkpoints are written to the burst buffer

without limit. No checkpoint is written to the PFS directly.
Adapt-Unlim-BB-No-PFS Adaptive checkpoint model proposed by Tiwari et al. (2014) is used.
(AUBNP) All checkpoints are written to the burst buffer without

limit. No checkpoint is written to the PFS directly.
Static-Lim-BB-No-PFS Static checkpoint interval from the model proposed
(SLBNP) by Fang and Chien (2015) is used. Limited checkpoints are written to the

burst buffer. No checkpoint is written to the PFS directly.
Static-Lim-BB-Unlim-PFS Our static checkpoint placement model with guaranteed
(SLBUP) burst buffer endurance (see formula 5.13) is used.

Limited checkpoints are written to the burst buffer.
Unlimited checkpoints can be written to the PFS directly.

Adapt-Lim-BB-Unlim-PFS Our adaptive checkpoint placement algorithm is used.
(ALBUP) Limited checkpoints are written to the burst buffer.

Unlimited checkpoints can be written to the PFS directly.

5.5.2 Evaluation results

I/O workloads the burst buffer burdens with

We first evaluate the average I/O workloads the burst buffer burdens with when

different checkpoint placement models or algorithms are used by the scientific

computation jobs. Specifically, in the evaluation, we simulate the checkpoint/restart

activities of all jobs listed in TABLE 5.3 during 100-hour operation of Titan and

calculate the average amount of checkpoint data written to and read from the burst

buffer. During this 100-hour operation, except the per-node failure rate, all other

runtime characteristics, such as the number of jobs, the size of each job, etc., do not

vary with time. The evaluation result is shown in Figure 5.4.

Model SUBNP means all checkpoints from all jobs running on Titan are written

to the burst buffer directly without limit and formula 5.2 is adopted to determine the

optimal checkpoint interval for each job, as shown in Figure 5.4(a), the amount of

checkpoint data written to the burst buffer per day could be more than 5,500TB. If the

burst buffer is built with Samsung 850 Pro SSDs, under such intensive write workload,

the lifetime of the burst buffer might be only (150 × 18688)/(5500 × 365) = 1.4

years. Even if model AUBNP is used, which can dynamically adjust the checkpoint

79

SUBNP AUBNP SLBNP SLBUP ALBUP

C
he

ck
po

in
t d

at
a

w
rit

te
n

to

 th
e

bu
rs

t b
uf

fe
r

pe
r

da
y

(T
B

)
0

20
00

40
00

60
00

(a) Write workloads

SUBNP AUBNP SLBNP SLBUP ALBUP

C
he

ck
po

in
t d

at
a

re
ad

 fr
om

 th

e
bu

rs
t b

uf
fe

r
pe

r
da

y
(T

B
)

0
50

10
0

15
0

20
0

(b) Read workloads

Figure 5.4: Average amount of checkpoint data written to and read from the burst
buffer per day when different checkpoint placement models or algorithms are used

interval according to the changing failure rate to reduce the write workloads, as long

as all checkpoints are directly absorbed by the burst buffer, the data written to the

burst buffer per day is still about 2,200TB, much more than that is allowed if the

burst buffer is expected to serve more than 5 years. Therefore, in order to prolong

the lifetime of the burst buffer, write workloads issued to the burst buffer must be

limited. For example, since the write limit of the burst buffer has been taken into

consideration, when model SLBNP, SLBUP and algorithm ALBUP are used, the

daily write workloads issued to the burst buffer are all less than 1,000TB (the dash

line in Figure 5.4(a)) and the lifetime of the burst buffer can be extended to more

than 5 years.

In Figure 5.4(b), we also illustrate the average amount of checkpoint data read

from the burst buffer per day when different checkpoint placement models are used.

Apparently, since model SUBNP, AUBNP and SLBNP allow all checkpoints to be

written to the burst buffer directly without limit, the jobs always restart from failures

using checkpoints stored on the burst buffer. That is why the average amount of data

read from the burst buffer per day when using these three models are similar. For

model SLBUP and algorithm ALBUP, the read workloads issued to the burst buffer

are much less, as some of the checkpoints have been written to the parallel file system

instead of the burst buffer. Moreover, using algorithm ALBUP generates 16.5% more

80

read workloads than model SLBUP. This is because algorithm ALBUP dynamically

adjusts the percentage of checkpoints written to the burst buffer based on the changing

failure rate and increases the likelihood of restarting the job using checkpoints stored

on the burst buffer.

Computation efficiency of the scientific applications and entire HPC

system

Next we evaluate the computation efficiency of each scientific application job as well

as that of the entire HPC system when different checkpoint placement models are

applied to.

The computation efficiency of the i-th scientific application is defined as follows:

i-th job’s computation efficiency =
Tcmpt,i
Ttotal,i

× 100%, (5.19)

where Ttotal,i is the total execution time and Tcmpt,i is the total time spent on

computation. As shown in Figure 5.5, if model SUBNP is used, each scientific

application job can achieve the best computation efficiency. Compare to model

SUBNP, using model AUBNP results in a slightly decrease in the computation

efficiency as the dynamic adjustment of checkpoint interval might potentially increase

the wasted computation time. However, both model SUBNP and AUBNP cannot

satisfy the burst buffer endurance requirement. If the write limits of the burst buffer

is set as 1,000TB per day, using model SLBNP reduces the computation efficiency

of jobs that generate large checkpoints (such as CHIMERA and GTC) significantly.

This is because such model intends to increase the checkpoint intervals of those jobs to

reduce the amount of data written to the burst buffer, which inevitably increases the

wasted time due to potential failures of compute nodes. On the other hand, with the

same write limits, if our SLBUP model or ALBUP algorithm is used, computation

efficiency of each job at most decreases by 5% compare to model SUBNP. This is

because these two models utilize both burst buffer and the underlying parallel file

81

GTC GYRO POP VULCAN CHIMERA S3D

C
om

pu
ta

tio
n

ef
fic

ie
nc

y
(%

)

0
20

40
60

80
10

0

SUBNP
AUBNP
SLBNP
SLBUP
ALBUP

Figure 5.5: Average computation efficiency of each scientific application job when
different checkpoint placement models or algorithms are used

system collaboratively to store checkpoint data and can keep the original optimal

checkpoint interval to some extent without exceeding the write limit of the burst

buffer.

The computation efficiency of the entire HPC system is defined as follows:

system computation efficiency =

∑M
i=1 niTcmpt,i∑M
i=1 niTtotal,i

× 100%, (5.20)

where M is the number of jobs running on the HPC system and ni is the size of the

i-th job. Therefore, after obtaining the average total execution time and computation

time of each scientific application job from the simulation, we can calculate the system

computation efficiency when different checkpoint placement models or algorithms are

used. The calculation results are listed in TABLE 5.5.

Table 5.5: System computation efficiency when different checkpoint placement models
or algorithms are used

Model/algorithm System efficiency (%)
SUBNP 97.55
AUBNP 96.22
SLBNP 84.57
SLBUP 94.40
ALBUP 94.58

82

The calculation results demonstrate that, compare to model SUBNP, the system

efficiency decreases by 13% when model SLBNP is used, while using our SLBUP

model or ALBUP algorithm, the system efficiency at most decrease by 3%.

Comparison of static vs. adaptive checkpoint placement

Since some runtime characteristics, such as the failure rate and job sizes, might vary

with time during the execution of the scientific applications, the checkpoint placement

optimization needs to adapt to the changing runtime characteristics to achieve the

most efficient utilization of the burst buffer. Next, we present the comparison between

the static and the adaptive checkpoint placement when the runtime characteristics

are not constant during the operation of the HPC system.

First, let us study how static and adaptive checkpoint placement perform when

the per-node failure rate is time-dependent. In the previous section, through failure

trace analysis, we have revealed that the time between computer node failures of

Titan fits a Weibull distribution with decreasing failure rate. By using such failure

trace to drive the simulation, we obtain the evaluation results shown in TABLE 5.5.

From TABLE 5.5 we can observe that, though not much, our adaptive checkpoint

placement algorithm ALBUP does achieve higher system computation efficiency than

the static model SLBUP. The reason that algorithm ALBUP performs better than

model SLBUP when the failure rate is time-dependent can be clearly illustrated using

Figure 5.6.

In Figure 5.6, we adopt box plot to visualize the distribution of different runtime

overhead observed in 1,000 simulation runs of each model, including system time spent

on writing checkpoints, wasted computation due to failures and job restarting. From

this figure, we can observe that: 1) Algorithm ALBUP can significantly reduce the

system time spent on checkpointing. This is because ALBUP can dynamically adjust

the checkpoint intervals for each running job based on the time-dependent failure rate

and reduce the number of checkpoints written to the storage. 2) Though the number

of checkpoints reduces when ALBUP algorithm is used, the distribution of wasted

83

●

●

●●

●

●●●●●

●

●

●

●
●

●
●

●

●
●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●●●●
●

●●●●●●●●●●●●●●●

●●

●●

●

●●●

●
●
●●●

●

●

●
●

●
●

●

●
●

●●

●●●●●●●●●●●●●●●●●●●0
50

00
0

15
00

00

S
ys

te
m

 ti
m

e
(n

od
e

ho
ur

)

Checkpointing Wasted computation Restarting

SLBUP
ALBUP

●
●
●●

●

●

●

●

●●

●

●●
●●

●

●

●

●

●

●

●
●

●

●
●●

●

●●

●
●

●

●

0
40

00
80

00

Figure 5.6: Box plot of system time spent on writing checkpoints, wasted computation
due to failures and job restarting, when the node failure rate is time-dependent (1,000
simulation runs for each model)

computation time and the time spent on restarting the failed jobs have no obvious

change compare to model SLBUP, which means the checkpointing overhead is reduced

without increasing other overhead. 3) Actually, when we calculate the expectations of

these two distributions, it shows that the average wasted computation time is reduced

by 175 node hour while the average time spent on restarting is decreased by 72 node

hour if ALBUP is used, which indicates that our ALBUP algorithm can perform

checkpoint placement more efficiently compare to our SLBUP model.

Second, we evaluate how static and adaptive checkpoint placement perform when

the job sizes are varying over time. In our evaluation, we assume that once a job fails,

the chance it will lose some nodes after restarting is 70% and the percentage of nodes

it will lose is a random variable whose value is selected between 0 and 10%. Then

we run the simulation for model SLBUP and algorithm ALBUP respectively and the

results are shown in Figure 5.7.

As shown in Figure 5.7(a), when the job sizes are varying over time, the total

amount of checkpoint data written to the burst buffer is only 930TB per day if the

static checkpoint placement is used, 7% less than the 1,000TB per day write limit,

which means the burst buffer is not fully utilized. However, if the adaptive checkpoint

placement is used, the daily write workloads to the burst buffer is still around 1,000TB

84

SLBUP ALBUP

C
he

ck
po

in
t d

at
a

w
rit

te
n

to

 th
e

bu
rs

t b
uf

fe
r

pe
r

da
y

(T
B

)
0

20
0

40
0

60
0

80
0

(a) Write workloads

SLBUP ALBUP

C
he

ck
po

in
t d

at
a

re
ad

 fr
om

 th

e
bu

rs
t b

uf
fe

r
pe

r
da

y
(T

B
)

0
20

40
60

80

(b) Read workloads

Figure 5.7: Average amount of checkpoint data written to and read from the burst
buffer per day when job sizes are varying over time

per day. From Figure 5.7(b), we can also observe similar phenomenon on the total

amount of checkpoint data read from the burst buffer. This is because the ALBUP

algorithm can dynamically adjust the percentage of checkpoints written to the burst

buffer based on the changing job sizes so that the burst buffer can always be fully

utilized. Besides, we also calculate the average system computation efficiency when

the job sizes are varying over time. The calculation results indicate that using model

SLBUP the system efficiency is 94.67%, while using the ALBUP algorithm the system

can achieve 94.75% efficiency.

Effect of optimization period on adaptive checkpoint placement

Since our ALBUP algorithm is designed to be triggered periodically to optimize the

checkpoint placement, the length of the time period between two consecutive calls of

ALBUP might have non-negligible impact on the model’s performance. Therefore,

we also evaluate our ALBUP algorithm by varying the period of triggering it during

system operation.

As shown in Figure 5.8, when we increase the period of calling the ALBUP

algorithm from 1 hour to 9 hours, we obtain the following results: 1) The average

85

2 4 6 8

0
20

00
0

40
00

0
60

00
0

Period of triggering ALBUP algorithm (hour)

C
on

su
m

ed
 s

ys
te

m
 ti

m
e

 (
no

de
 h

ou
r)

●

● ● ●

●

●

Checkpointing
Wasted
Restarting

Figure 5.8: Performance of the ALBUP algorithm when varying the period between
optimizations

system time spent on checkpointing decreases. Specifically, the increase of the

optimization period results in underestimate on the number of node failures during

each period, which makes the algorithm incorrectly extend the checkpoint intervals.

Since less checkpoints are written, the time consumed by the checkpointing operation

decreases. 2) The average wasted computation time increases significantly. This is

also caused by the increase of the checkpoint interval, as more failed jobs have to

restart using checkpoints that were not recently written. 3) The system time spent

on restarting the failed jobs has no obvious variation. 4) The system computation

efficiency does not decrease significantly until the optimization period is longer than

9 hours, demonstrating the robustness of our ALBUP algorithm.

86

Chapter 6

Conclusion

In this dissertation, I focus on the following three critical issues that commonly exist

in maintaining and managing large-scale storage systems: 1) How to minimize the

impact brought by component failures and ensure a highly operational experience in

maintaining large-scale storage systems? 2) How to cost-effectively integrate solid-

state drives (SSD) into large-scale storage system to improve system performance

and efficiency? 3) How to maximize computation efficiency of large-scale scientific

applications while guarantee the endurance requirements of the SSD-based burst

buffer in high performance hierarchical storage systems? In order to solve these

issues, I propose multiple novel models and algorithms.

One of the major challenges I encountered was how to evaluate these models

and algorithms, as those deployed large-scale storage systems are seldom open to

public, let alone allowed to make some changes to them. Therefore, all the models

and algorithms proposed in my dissertation have been evaluated through simulation.

In order to guarantee the fidelity of the simulation results, I setup the simulation

based on the real parameters of those deployed large-scale storage systems and use

the data collected from the real storage systems to validate the simulation results.

The evaluation results demonstrate that: 1) the simulation results are comparable

with data gathered from real system measurement, 2) these proposed models and

87

algorithms can significantly improve the reliability and efficiency of large-scale storage

systems.

88

Bibliography

89

Agrawal, N., Prabhakaran, V., Wobber, T., Davis, J. D., Manasse, M., and Panigrahy,

R. (2008). Design Tradeoffs for SSD Performance. In USENIX 2008 Annual

Technical Conference, ATC’08, pages 57–70. 9

Alam, M. and Mani, V. (1988). Queueing Model of a Bi-Level Markov Service-System

and Its Solution using Recursion. Transactions on Reliability, 37:427–433. 6

Beaver, D., Kumar, S., Li, H. C., Sobel, J., and Vajgel, P. (2010). Finding a Needle in

Haystack: Facebook’s Photo Storage. In Proceedings of the 9th USENIX Conference

on Operating Systems Design and Implementation, OSDI’10, pages 1–8. 1

Behlendorf, B. (2012). Sequoia’s 55PB Lustre+ZFS Filesystem. In Lustre User Group

(LUG) Meeting. OpenSFS. 1

Bent, J., Faibish, S., Ahrens, J., Grider, G., Patchett, J., Tzelnic, P., and Woodring,

J. (2012). Jitter-Free Co-Processing on a Prototype Exascale Storage Stack. In

28th Symposium on Mass Storage Systems and Technologies, MSST ’12, pages 1–5.

8, 56

Cai, M., Chervenak, A., and Frank, M. (2004). A Peer-to-Peer Replica Location

Service Based on a Distributed Hash Table. In Proceedings of the 2004 ACM/IEEE

Conference on Supercomputing, SC ’04, pages 56–67. 6

Chen, F., Koufaty, D. A., and Zhang, X. (2009). Understanding Intrinsic

Characteristics and System Implications of Flash Memory based Solid State Drives.

In Proceedings of the Eleventh International Joint Conference on Measurement and

90

Modeling of Computer Systems, volume 37 of SIGMETRICS ’09, pages 181–192.

ACM. 51

Chen, F., Koufaty, D. A., and Zhang, X. (2011a). Hystor: Making the Best Use

of Solid State Drives in High Performance Storage Systems. In Proceedings of the

International Conference on Supercomputing, ICS ’11, pages 22–32, New York, NY,

USA. ACM. 7, 9

Chen, F., Luo, T., and Zhang, X. (2011b). CAFTL: A Content-aware Flash

Translation Layer Enhancing the Lifespan of Flash Memory Based Solid State

Drives. In Proceedings of the 9th USENIX Conference on File and Stroage

Technologies, FAST ’11, pages 6–6. 9

Chen, P. M., Lee, E. K., Gibson, G. A., Katz, R. H., and Patterson, D. A. (1994).

RAID: High-performance, Reliable Secondary Storage. ACM Computing Surveys,

26(2):145–185. 5, 16

Daly, J. T. (2006). A Higher Order Estimate of the Optimum Checkpoint Interval for

Restart Dumps. Future Generation Computer Systems, 22(3):303–312. 9, 60, 61

DataDirect Networks, Inc. (2011). S2A9900 Datasheet, http://www.ddn.com/

support/downloads-documentation/. 14

DataDirect Networks, Inc. (2014). DDN SFA12K Family, http://www.ddn.com/

products/storage-platform-sfa12kx/. 14

Devroye, L. (1986). Sample-based Non-uniform Random Variate Generation. In

Proceedings of the 18th Conference on Winter Simulation, WSC ’86, pages 260–

265. 23

El-Sayed, N. and Schroeder, B. (2014). To Checkpoint or not To Checkpoint:

Understanding Energy-Performance-I/O Tradeoffs in HPC Checkpointing. In

Proceedings of the International Conference on Cluster Computing, CLUSTER ’14,

pages 93–102. 68

91

http://www.ddn.com/support/downloads-documentation/
http://www.ddn.com/support/downloads-documentation/
http://www.ddn.com/products/storage-platform-sfa12kx/
http://www.ddn.com/products/storage-platform-sfa12kx/

Elerath, J. G. and Pecht, M. (2007). Enhanced reliability modeling of raid storage

systems. In In Proceedings of the International Conference on Dependable Systems

and Networks (DSN, pages 175–184. 5, 18

Elerath, J. G. and Schindler, J. (2014). Beyond MTTDL: A Closed-Form RAID 6

Reliability Equation. ACM Transactions on Storage, 10(2):7:1–7:21. 5, 18

Fang, A. and Chien, A. A. (2015). How Much SSD Is Useful for Resilience in

Supercomputers. In Proceedings of the 5th Workshop on Fault Tolerance for HPC

at eXtreme Scale, FTXS ’15, pages 47–54. 9, 58, 60, 62, 79

Ghemawat, S., Gobioff, H., and Leung, S.-T. (2003a). The Google File System. In

Proceedings of the Nineteenth ACM Symposium on Operating Systems Principles,

SOSP ’03, pages 29–43. 1

Ghemawat, S., Gobioff, H., and Leung, S.-T. (2003b). The Google File System. In

Proceedings of the Nineteenth ACM Symposium on Operating Systems Principles,

SOSP ’03, pages 29–43, New York, NY, USA. ACM. 48

Ghodrati, B., Benjevic, D., and Jardine, A. (2012). Product support improvement

by considering system operating environment: A case study on spare parts

procurement. International Journal of Quality and Reliability Management,

29(4):436–450. 6

Gibson, G. A. and Patterson, D. A. (1993). Designing Disk Arrays for High Data

Reliability. Journal of Parallel and Distributed Computing, 17(1-2):4–27. 5, 16

Greenan, K. (2009). Reliability and Power-Efficiency in Erasure-Coded Storage

Systems. Technical Report UCSC-SSRC-09-08, University of California, Santa

Cruz. 5, 16, 18

Greenwood, P. E. and Nikulin, M. S. (1996). A Guide to Chi-Squared Testing. Wiley,

New York. 22

92

Hill, J. (June 13, 2014). Spider I system administrators on component replacement

time. 18

Holland, M. and Gibson, G. A. (1992). Parity Declustering for Continuous Operation

in Redundant Disk Arrays, volume 27. ACM. 27

Honicky, R. J. and Miller, E. L. (2004). Replication Under Scalable Hashing: A

Family of Algorithms for Scalable Decentralized Data Distribution. In Proceedings

of the 18th International Parallel & Distributed Processing Symposium, IPDPS ’04.

6

Hu, X., Eleftheriou, E., Haas, R., Iliadis, I., and Pletka, R. (2009). Write

Amplification Analysis in Flash-based Solid State Drives. In Proceedings of

SYSTOR 2009: The Israeli Experimental Systems Conference, SYSTOR ’09, pages

10:1–10:9. 57

IBM DS8000 Series (2014). http://www-03.ibm.com/systems/storage/disk/

ds8000/overview.html. 14

Jardine, A. and Tsang, A. (2005). Maintenance, Replacement, and Reliability: Theory

and Applications. Dekker Mechanical Engineering. Taylor & Francis. 6

Kaiser, J., Margaglia, F., and Brinkmann, A. (2013). Extending SSD Lifetime

in Database Applications with Page Overwrites. In Proceedings of the 6th

International Systems and Storage Conference, SYSTOR ’13, pages 11:1–11:12.

57

Kuenning, G. (2005). LASR Traces, http://www.lasr.cs.ucla.edu/seer/seer_

traces.html. 43, 50

Laboratory, L. B. N. (2015). Berkeley Lab Checkpoint/Restart (BLCR) for LIN-

UX, http://crd.lbl.gov/departments/computer-science/CLaSS/research/

BLCR/. 72

93

http://www-03.ibm.com/systems/storage/disk/ds8000/overview.html
http://www-03.ibm.com/systems/storage/disk/ds8000/overview.html
http://www.lasr.cs.ucla.edu/seer/seer_traces.html
http://www.lasr.cs.ucla.edu/seer/seer_traces.html
http://crd.lbl.gov/departments/computer-science/CLaSS/research/BLCR/
http://crd.lbl.gov/departments/computer-science/CLaSS/research/BLCR/

Lee, E. K. and Thekkath, C. A. (1996). Petal: Distributed Virtual Disks. In

Proceedings of the Seventh International Conference on Architectural Support for

Programming Languages and Operating Systems, ASPLOS VII, pages 84–92. 6

Lee, S., Kim, T., Kim, K., and Kim, J. (2012). Lifetime Management of Flash-

based SSDs Using Recovery-aware Dynamic Throttling. In Proceedings of the 10th

USENIX Conference on File and Storage Technologies, FAST ’12, pages 26–26. 57

Lewis, T. P. and Cochran, J. K. (1995). Applying Queueing Theory to Improve the

Modeling of Spares Provisioning of Small Combat Aircraft Units. In Proceedings

of the 17th International Conference on Computers and Industrial Engineering,

ICC&IE ’94, pages 297–301, Tarrytown, NY, USA. Pergamon Press, Inc. 6

Liu, N., Cope, J., Carns, P. H., Carothers, C. D., Ross, R. B., Grider, G., Crume,

A., and Maltzahn, C. (2012). On the Role of Burst Buffers in Leadership-Class

Storage Systems. In 28th Symposium on Mass Storage Systems and Technologies,

MSST ’12, pages 1–11. 8, 56

Lu, Y., Shu, J., and Zheng, W. (2013). Extending the Lifetime of Flash-based Storage

Through Reducing Write Amplification from File Systems. In Proceedings of the

11th USENIX Conference on File and Storage Technologies, FAST ’13, pages 257–

270. 9

MacCormick, J., Murphy, N., Najork, M., Thekkath, C. A., and Zhou, L. (2004).

Boxwood: Abstractions As the Foundation for Storage Infrastructure. In

Proceedings of the 6th Conference on Symposium on Opearting Systems Design

& Implementation - Volume 6, OSDI ’04, pages 105–120. 6

Mani, V. and Sarma, V. (1984). Queuing Network Models for Aircraft Availability

and Spares Management. Transction on Reliability, R-33(3):257–262. 6

94

Megiddo, N. and Modha, D. S. (2003). ARC: A Self-Tuning, Low Overhead

Replacement Cache. In Proceedings of the 2Nd USENIX Conference on File and

Storage Technologies, FAST ’03, pages 115–130. 43

Moody, A., Bronevetsky, G., Mohror, K., and Supinski, B. R. d. (2010). Design,

Modeling, and Evaluation of a Scalable Multi-level Checkpointing System.

In Proceedings of the 2010 ACM/IEEE International Conference for High

Performance Computing, Networking, Storage and Analysis, SC ’10, pages 1–11. 8

NERSC (2016). NERSC File Systems, http://www.nersc.gov/users/

storage-and-file-systems/file-systems/. 53

NetApp, Inc. (2014). FAS8080 EX, http://www.netapp.com/us/products/

storage-systems/fas8000/. 14

OLCF (2012). ORNL Debuts Titan Supercomputer, https://www.olcf.ornl.gov/

wp-content/themes/olcf/titan/Titan_Debuts.pdf. 57

Oral, S., Dillow, D. A., Fuller, D., Hill, J., Leverman, D., Vazhkudai, S. S., Wang, F.,

Kim, Y., Rogers, J., Simmons, J., et al. (2013). OLCF’s 1 TB/s, Next-Generation

Lustre File System. Proceedings of the Cray User Group Conference (CUG). 1, 74,

77

Oral, S., Simmons, J., Hill, J., Leverman, D., Wang, F., Ezell, M., Miller, R., Fuller,

D., Gunasekaran, R., Kim, Y., Gupta, S., Tiwari, D., Vazhkudai, S. S., Rogers,

J. H., Dillow, D., Shipman, G. M., and Bland, A. S. (2014). Best Practices and

Lessons Learned from Deploying and Operating Large-scale Data-centric Parallel

File Systems. In Proceedings of the International Conference for High Performance

Computing, Networking, Storage and Analysis, SC ’14, pages 217–228. 74, 77

Panasas, Inc. (2014). ActiveStor 16 & 18, http://www.panasas.com/products/

activestor. 14

95

http://www.nersc.gov/users/storage-and-file-systems/file-systems/
http://www.nersc.gov/users/storage-and-file-systems/file-systems/
http://www.netapp.com/us/products/storage-systems/fas8000/
http://www.netapp.com/us/products/storage-systems/fas8000/
https://www.olcf.ornl.gov/wp-content/themes/olcf/titan/Titan_Debuts.pdf
https://www.olcf.ornl.gov/wp-content/themes/olcf/titan/Titan_Debuts.pdf
http://www.panasas.com/products/activestor
http://www.panasas.com/products/activestor

Park, S. and Shen, K. (2009a). A Performance Evaluation of Scientific I/O Workloads

on Flash-Based SSDs. In Proceedings of the 2009 International Conference on

Cluster Computing, pages 1–5. 8

Park, S. and Shen, K. (2009b). A Performance Evaluation of Scientific I/O Workloads

on Flash-based SSDs. In IEEE International Conference on Cluster Computing and

Workshops, CLUSTER ’09, pages 1–5. IEEE. 40

Patterson, D. A., Gibson, G., and Katz, R. H. (1988). A Case for Redundant Arrays of

Inexpensive Disks (RAID). In Proceedings of the 1988 ACM SIGMOD International

Conference on Management of Data, SIGMOD ’88, pages 109–116. 5, 16

Payer, H., Sanvido, M. A., Bandic, Z. Z., and Kirsch, C. M. (2009). Combo

Drive: Optimizing Cost and Performance in a Heterogeneous Storage Device. In

Proceedings of the 1st Workshop on integrating solid-state memory into the storage

hierarchy, WISH ’09. 8

Petascale Data Storage Institute (2016). Failure Data, http://pdsi.nersc.gov/. 53

Pinheiro, E., Weber, W.-D., and Barroso, L. A. (2007). Failure Trends in a Large

Disk Drive Population. In Proceedings of the 5th USENIX Conference on File and

Storage Technologies, FAST ’07, pages 2–2. 16

Pritchett, T. and Thottethodi, M. (2010). SieveStore: A Highly-selective, Ensemble-

level Disk Cache for Cost-performance. In Proceedings of the 37th Annual

International Symposium on Computer Architecture, ISCA ’10, pages 163–174, New

York, NY, USA. ACM. 7

Rao, K. K., Hafner, J. L., and Golding, R. A. (2006). Reliability for Networked

Storage Nodes. In International Conference on Dependable Systems and Networks

(DSN), pages 237–248. IEEE Computer Society. 5

Ratnasamy, S., Francis, P., Handley, M., Karp, R., and Shenker, S. (2001). A

Scalable Content-addressable Network. In Proceedings of the 2001 Conference

96

http://pdsi.nersc.gov/

on Applications, Technologies, Architectures, and Protocols for Computer

Communications, SIGCOMM ’01, pages 161–172. 6

Rausand, M. and Hoyland, A. (2003). System Reliability Theory: Models, Statistical

Methods and Applications. Wiley-IEEE, 3 edition. 20

Rowstron, A. and Druschel, P. (2001). Storage Management and Caching in PAST, a

Large-scale, Persistent Peer-to-peer Storage Utility. In Proceedings of the Eighteenth

ACM Symposium on Operating Systems Principles, SOSP ’01, pages 188–201. 6

Sakai, K., Sumimoto, S., and Kurokawa, M. (2012). High-Performance and Highly

Reliable File System for the K Computer. FUJITSU Science Technology, 48(3):302–

209. 1

Samsung (2015). Samsung SSD 850 PRO Series Datasheet, http://www.samsung.

com/global/business/semiconductor/minisite/SSD/downloads/document/

Samsung_SSD_850_PRO_Data_Sheet_rev_2_0.pdf. 57, 76

Sato, K., Maruyama, N., Mohror, K., Moody, A., Gamblin, T., de Supinski, B. R.,

and Matsuoka, S. (2012). Design and Modeling of a Non-blocking Checkpointing

System. In Proceedings of the International Conference on High Performance

Computing, Networking, Storage and Analysis, SC ’12, pages 19:1–19:10. 8, 56

Sato, K., Mohror, K., Moody, A., Gamblin, T., Supinski, B. R. d., Maruyama, N., and

Matsuoka, S. (2014). A User-Level InfiniBand-Based File System and Checkpoint

Strategy for Burst Buffers. In 14th IEEE/ACM International Symposium on

Cluster, Cloud and Grid Computing, CCGrid ’14, pages 21–30. 8, 56

SchedMD (2015). Slurm Workload Manager, http://slurm.schedmd.com/. 72

Schroeder, B. and Gibson, G. A. (2006). A Large-scale Study of Failures in High-

performance Computing Systems. In Proceedings of the International Conference

on Dependable Systems and Networks, DSN ’06, pages 249–258. 68

97

http://www.samsung.com/global/business/semiconductor/minisite/SSD/downloads/document/Samsung_SSD_850_PRO_Data_Sheet_rev_2_0.pdf
http://www.samsung.com/global/business/semiconductor/minisite/SSD/downloads/document/Samsung_SSD_850_PRO_Data_Sheet_rev_2_0.pdf
http://www.samsung.com/global/business/semiconductor/minisite/SSD/downloads/document/Samsung_SSD_850_PRO_Data_Sheet_rev_2_0.pdf
http://slurm.schedmd.com/

Schroeder, B. and Gibson, G. A. (2007). Disk Failures in the Real World: What Does

an MTTF of 1,000,000 Hours Mean to You? In Proceedings of the 5th USENIX

Conference on File and Storage Technologies, FAST ’07. 17

Schulze, M., Gibson, G., Katz, R., and Patterson, D. (1989). How Reliable Is A RAID.

In Thirty-Fourth IEEE Computer Society International Conference: Intellectual

Leverage, Digest of Papers, pages 118–123. IEEE. 5, 16

Schwarz, T. J. E., Xin, Q., Miller, E. L., Long, D. D. E., Hospodor, A., and

Ng, S. W. (2004). Disk Scrubbing in Large Archival Storage Systems. In 12th

International Workshop on Modeling, Analysis, and Simulation of Computer and

Telecommunication Systems, MASCOTS ’04, pages 409–418. 18

SDSC (2015). Gordon Supercomputer, http://www.sdsc.edu/support/user_

guides/gordon.html. 2, 76

Seagate Technology (2014). ClusterStor 9000, www.xyratex.com/products/

clusterstor-9000. 14

Shipman, G., Dillow, D., Oral, S., and Wang, F. (2009). The Spider Center Wide

File System: From Concept to Reality. In Cray User Group (CUG) Conference,

Atlanta. 1, 14

Soundararajan, G., Prabhakaran, V., Balakrishnan, M., and Wobber, T. (2010).

Extending SSD Lifetimes with Disk-based Write Caches. In Proceedings of the

8th USENIX Conference on File and Storage Technologies, FAST ’10, pages 8–8. 9

Srinivasan, M., Saab, P., and Tkachenko, V. (2015). Flashcache, https://github.

com/facebook/flashcache/. 7

Stoica, I., Morris, R., Karger, D., Kaashoek, M. F., and Balakrishnan, H. (2001).

Chord: A Scalable Peer-to-peer Lookup Service for Internet Applications. In

Proceedings of the 2001 Conference on Applications, Technologies, Architectures,

and Protocols for Computer Communications, SIGCOMM ’01, pages 149–160. 6

98

http://www.sdsc.edu/support/user_guides/gordon.html
http://www.sdsc.edu/support/user_guides/gordon.html
www.xyratex.com/products/clusterstor-9000
www.xyratex.com/products/clusterstor-9000
https://github.com/facebook/flashcache/
https://github.com/facebook/flashcache/

Tiwari, D., Gupta, S., and Vazhkudai, S. S. (2014). Lazy Checkpointing: Exploiting

Temporal Locality in Failures to Mitigate Checkpointing Overheads on Extreme-

Scale Systems. In 44th Annual IEEE/IFIP International Conference on Dependable

Systems and Networks, DSN ’14, pages 25–36. 57, 61, 68, 75, 79

UCSF (2015). UCSF CHIMERA: an Extensible Molecular Modeling System, http:

//www.rbvi.ucsf.edu/chimera/. 57

Vaidya, N. H. (1997). Impact of Checkpoint Latency on Overhead Ratio of a

Checkpointing Scheme. IEEE Transactions on Computers, 46(8):942–947. 9, 60,

61

Vaughan, T. S. (2005). Failure Replacement and Preventive Maintenance Spare Parts

Ordering Policy. European Journal of Operational Research, 161(1):183–190. 6

Wächter, A. and Biegler, L. T. (2006). On the Implementation of an Interior-point

Filter Line-search Algorithm for Large-scale Nonlinear Programming. Mathematical

Programming, 106(1):25–57. 66

Wan, L., Lu, Z., Cao, Q., Wang, F., Oral, S., and Settlemyer, B. W. (2014a).

SSD-Optimized Workload Placement with Adaptive Learning and Classification

in HPC environments. In IEEE 30th Symposium on Mass Storage Systems and

Technologies, MSST ’14, pages 1–6. 41

Wan, L., Wang, F., Oral, S., Tiwari, D., Vazhkudai, S. S., and Cao, Q. (2015).

A Practical Approach to Reconciling Availability, Performance, and Capacity in

Provisioning Extreme-Scale Storage Systems. In Proceedings of the International

Conference for High Performance Computing, Networking, Storage and Analysis,

SC ’15, pages 75:1–75:12. 14

Wan, L., Wang, F., Oral, S., Vazhkudai, S. S., and Cao, Q. (2014b). A Report on

Simulation-Driven Reliability and Failure Analysis of Large-Scale Storage Systems.

Technical Report ORNL/TM-2014/421, Oak Ridge National Laboratory. 14

99

http://www.rbvi.ucsf.edu/chimera/
http://www.rbvi.ucsf.edu/chimera/

Wang, T., Oral, S., Wang, Y., Settlemyer, B. W., Atchley, S., and Yu, W. (2014).

BurstMem: a High-Performance Burst Buffer System for Scientific Applications.

In International Conference on Big Data, pages 71–79. 8

Weil, S. A., Brandt, S. A., Miller, E. L., Long, D. D. E., and Maltzahn, C. (2006a).

Ceph: A Scalable, High-performance Distributed File System. In Proceedings of

the 7th Symposium on Operating Systems Design and Implementation, OSDI ’06,

pages 307–320. 48

Weil, S. A., Brandt, S. A., Miller, E. L., and Maltzahn, C. (2006b). CRUSH:

Controlled, Scalable, Decentralized Placement of Replicated Data. In Proceedings

of the 2006 ACM/IEEE Conference on Supercomputing, SC ’06. 7, 48

Wu, G. and He, X. (2012). Delta-FTL: Improving SSD Lifetime via Exploiting

Content Locality. In Proceedings of the 7th ACM European Conference on Computer

Systems, EuroSys ’12, pages 253–266. 9

Wu, P.-L., Chang, Y.-H., and Kuo, T.-W. (2009). A File-system-aware FTL Design

for Flash-memory Storage Systems. In Proceedings of the Conference on Design,

Automation and Test in Europe, DATE ’09, pages 393–398. 9

Xin, Q., Miller, E. L., Schwarz, T. J. E., Long, D. D. E., Brandt, S. A., and Litwin,

W. (2003). Reliability Mechanisms for Very Large Storage Systems. In IEEE

Symposium on Mass Storage Systems, pages 146–156. 5

Xu, W., Lu, Y., Li, Q., Zhou, E., Song, Z., Dong, Y., Zhang, W., Wei, D., Zhang,

X., Chen, H., Xing, J., and Yuan, Y. (2014). Hybrid Hierarchy Storage System in

MilkyWay-2 Supercomputer. Frontiers of Computer Science, 8(3):367–377. 8, 56

Yang, Q. and Ren, J. (2011). I-CASH: Intelligently Coupled Array of SSD and

HDD. In Proceedings of the 2011 IEEE 17th International Symposium on High

Performance Computer Architecture, HPCA ’11, pages 278–289, Washington, DC,

USA. IEEE Computer Society. 7, 9, 57

100

Young, J. W. (1974). A First Order Approximation to the Optimum Checkpoint

Interval. Communications of the ACM, 17(9):530–531. 9, 60, 61

Zhang, X., Davis, K., and Jiang, S. (2012). iTransformer: Using SSD to Improve

Disk Scheduling for High-performance I/O. In IEEE 26th International Parallel

& Distributed Processing Symposium, IPDPS ’12, pages 715–726. IEEE Computer

Society. 7

101

Vita

Mr. Lipeng Wan is a Ph.D. candidate in computer science major at University

of Tennessee, Knoxville. He received his M.S. degree (2011) in information &

communication engineering from Southeast University, China, and his B.S. degree

(June 2008) in communication engineering from Nanjing University of Science

and Technology, China. His research interests include parallel and distributed

storage systems, high performance computing, embedded systems, and performance

optimization for solid-state drives.

102

	Achieving High Reliability and Efficiency in Maintaining Large-Scale Storage Systems through Optimal Resource Provisioning and Data Placement
	Recommended Citation

	Front Matter
	Title
	Dedication
	Acknowledgements
	Quote
	Abstract

	Table of Contents
	1 Introduction
	2 Related Work
	3 Optimal Resource Management and Spare Provisioning
	3.1 The Overview
	3.2 Factors Affecting the Reliability of Large-Scale Storage Systems
	3.2.1 System architectures
	3.2.2 Device failures
	3.2.3 Failure dependencies and propagation

	3.3 Initial Provisioning
	3.3.1 Optimizing for performance
	3.3.2 Impact of number of disks and disk capacity
	3.3.3 Effect of increasing disks/SSU on system reliability

	3.4 Continuous Provisioning
	3.4.1 Ad hoc provisioning
	3.4.2 Dynamic spare provisioning model
	3.4.3 Continuous provisioning evaluation

	4 Optimal Workload-Adaptive Data Placement
	4.1 Problem Formulation
	4.2 System Model
	4.3 Algorithm Design
	4.3.1 Temporal locality in data objects access
	4.3.2 Markov chain prediction model
	4.3.3 Optimal data placement for maximizing data access throughput
	4.3.4 Adaptive data replication for increasing the storage space efficiency

	4.4 Evaluation
	4.4.1 I/O trace analysis and preprocess
	4.4.2 Evaluation on optimal data placement model
	4.4.3 Evaluation on adaptive data replication

	5 Optimal Checkpoint Placement with Guaranteed Burst Buffer Endurance
	5.1 The Overview
	5.2 Background
	5.2.1 Optimal checkpoint interval
	5.2.2 Identifying checkpoint intervals by exploiting the temporal locality of failures
	5.2.3 Identifying checkpoint intervals for a fixed burst buffer capacity

	5.3 Checkpoint Placement Optimization with Guaranteed Burst Buffer Endurance
	5.4 Adaptive Checkpoint Placement for Optimal HPC System and Burst Buffer Usage
	5.4.1 Runtime characteristics of HPC systems and scientific applications
	5.4.2 Effect of dynamic runtime characteristics on checkpoint placement optimization
	5.4.3 Adaptive checkpoint placement optimization algorithm

	5.5 Evaluation
	5.5.1 Evaluation setup
	5.5.2 Evaluation results

	6 Conclusion
	Bibliography
	Vita

