
Marquette University Marquette University

e-Publications@Marquette e-Publications@Marquette

Dissertations (1934 -) Dissertations, Theses, and Professional
Projects

Load Balancing Algorithms for Parallel Spatial Join on HPC Load Balancing Algorithms for Parallel Spatial Join on HPC

Platforms Platforms

Jie Yang
Marquette University

Follow this and additional works at: https://epublications.marquette.edu/dissertations_mu

 Part of the Computer Sciences Commons

Recommended Citation Recommended Citation
Yang, Jie, "Load Balancing Algorithms for Parallel Spatial Join on HPC Platforms" (2022). Dissertations
(1934 -). 1162.
https://epublications.marquette.edu/dissertations_mu/1162

https://epublications.marquette.edu/
https://epublications.marquette.edu/dissertations_mu
https://epublications.marquette.edu/diss_theses
https://epublications.marquette.edu/diss_theses
https://epublications.marquette.edu/dissertations_mu?utm_source=epublications.marquette.edu%2Fdissertations_mu%2F1162&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=epublications.marquette.edu%2Fdissertations_mu%2F1162&utm_medium=PDF&utm_campaign=PDFCoverPages
https://epublications.marquette.edu/dissertations_mu/1162?utm_source=epublications.marquette.edu%2Fdissertations_mu%2F1162&utm_medium=PDF&utm_campaign=PDFCoverPages

LOAD BALANCING ALGORITHMS FOR PARALLEL SPATIAL JOIN
ON HPC PLATFORMS

by

Jie YANG, B.S.

A Dissertation submitted to the Faculty of the Graduate School,

Marquette University,

in Partial Fulfillment of the Requirements for

the Degree of Doctor of Philosophy

Milwaukee, Wisconsin, USA

May 2022

© 2022

Jie YANG, B.S.

All Rights Reserved

To my parents, my wife, and our kid.

i

ACKNOWLEDGMENTS

Jie YANG, B.S.

Marquette University, 2022

First, I would like to thank my advisor, Dr. Satish Puri, for his advice and help on my
research, career, and life. His kindness, optimism, and knowledge inspire me all the time.

I would like to thank Dr. Dennis Brylow for a great internship and course experience,
and for being my thesis committee member. His intelligence and deliberation always shine
in my study and research life.

I would like to thank Dr. Praveen Madiraju for giving generously his time to be my
thesis committe member. His kindness helps me to get over the obstacles in my research
and life.

I would like to thank Dr. Hui Zhou for a great internship and invaluable feedback on
my work, and for being my thesis committee member. His patience, creativity, leadership
constantly guide me to climb the moutains of knowledge.

A big thanks to my Marquette colleagues, and the PMRS team at Argonne National
Laboratory. I feel so lucky that I am working with so many lovely, kind, great, and
optimistic people.

The work presented in this thesis is partly supported by the National Science Foundation
CRII Grant No.1756000 and the Northwestern Mutual Data Science Institute. This work
used the NSF Extreme Science and Engineering Discovery Environment (XSEDE), which
is supported by ACI-1548562.

ii

ABSTRACT

Load Balancing Algorithms for Parallel
Spatial Join on HPC Platforms

Jie YANG, B.S.

Marquette University, 2022

Geospatial datasets are growing in volume, complexity and heterogeneity. For efficient
execution of geospatial computations and analytics on large scale datasets, parallel
processing is necessary. To exploit fine-grained parallel processing on large scale compute
clusters, partitioning of skewed datasets in a load-balanced way is challenging. The
workload in spatial join is data dependent and highly irregular. Moreover, wide variation
in the size and density of geometries from one region of the map to another, further
exacerbates the load imbalance. This dissertation focuses on spatial join operation used
in Geographic Information Systems (GIS) and spatial databases, where the inputs are two
layers of geospatial data and the output is a combination of the two layers according to join
predicate.

This dissertation introduces a novel spatial data partitioning algorithm geared towards
load balancing the parallel spatial join processing. Unlike existing partitioning techniques,
the proposed partitioning algorithm divides the spatial join workload instead of partition-
ing the individual datasets separately to provide better load-balancing. This workload
partitioning algorithm has been evaluated on a high performance computing system using
real-world datasets. An intermediate output-sensitive duplication avoidance technique is
proposed that decreases the external memory space requirement for storing spatial join
candidates across the partitions. GPU acceleration is used to further reduce the spatial
partitioning runtime.

For dynamic load balancing in spatial join, a novel framework for fine-grained work
stealing is presented. This framework is efficient and NUMA-aware. Performance
improvements are demonstrated on shared and distributed memory architectures using
threads and message passing. Experimental results show effective mitigation of data skew.
The framework supports a variety of spatial join predicates and spatial overlay using
partitioned and un-partitioned datasets.

Keywords: spatial data, spatial join, parallel computing, data partitioning, duplication
avoidance, load balancing, GPU, quadtree, rtree, work-stealing, message passing interface,
remote memory access

iii

TABLE OF CONTENTS

ACKNOWLEDGMENTS . i

ABSTRACT . ii

LIST OF TABLES . vii

LIST OF FIGURES . viii

1 INTRODUCTION . 1

1.1 Introduction . 1

1.2 Motivation . 2

1.3 Spatial Data Partitioning and Indexing . 2

1.4 Load Balancing in Parallel Spatial Join . 4

1.4.1 Work Stealing . 5

1.4.2 NUMA . 6

1.4.3 MPI Non-blocking Communication and One-sided Communication 6

1.5 Dissertation Statement and Contributions 7

1.6 Thesis Outline . 9

2 LITERATURE REVIEW . 11

2.1 Introduction . 11

2.2 Geo-Spatial Data Partitioning . 13

2.2.1 Partitioning and Indexing . 13

2.2.2 Uniform Partitioning . 14

2.2.3 Quadtree Partitioning . 17

2.2.4 Multi-Jagged Partitioning . 20

2.2.5 Rectangle Tree . 24

2.2.6 Duplication Avoidance . 26

iv

2.3 Spatial Join . 28

2.3.1 Plane Sweep . 28

2.3.2 Spatial Join using Map-Reduce 29

2.3.3 GeoSpark . 31

2.4 Message Passing Interface . 33

2.4.1 Non-Blocking Communication . 33

2.4.2 One-Sided Communication . 35

3 EFFICIENT PARALLEL AND ADAPTIVE PARTITIONING FOR LOAD-
BALANCING IN SPATIAL JOIN . 37

3.1 Introduction . 37

3.2 Background . 38

3.3 Related Work . 41

3.4 Adaptive Partitioning . 42

3.4.1 Finding candidates for partitioning 43

3.4.2 Multithreaded Partitioning of Candidates 45

3.5 GPU Acceleration of Adaptive Partitioning 48

3.6 Parallel Adaptive Partitioning . 53

3.6.1 Parallel ADP for Distributed Memory 53

3.6.2 Time Complexity . 55

3.7 Experimental Results . 56

3.7.1 Performance of Output-sensitive Duplication Avoidance 57

3.7.2 OpenMP Quadtree Partitioning Speedup 58

3.7.3 Computing cost for ADP . 59

3.7.4 GPU Speedup for ADP . 61

3.7.5 Weak scaling for ParADP . 62

3.7.6 Strong scaling for ParADP . 62

v

3.7.7 Partition Quality . 63

3.8 Conclusion . 68

3.9 Acknowledgment . 68

4 LOAD BALANCING SPATIAL JOIN BY WORK STEALING ON SHARED
AND DISTRIBUTED MEMORY . 69

4.1 Introduction . 69

4.2 Background . 70

4.3 Related Work . 72

4.3.1 Spatial Join . 72

4.3.2 Load Balancing in Parallel Spatial Join 73

4.3.3 Work Stealing . 73

4.3.4 NUMA . 74

4.3.5 RMA and MPI Non-blocking Communication 74

4.4 Implementation of Work Stealing Spatial Join 75

4.4.1 Work Stealing Queue . 75

4.4.2 NUMA Memory Policies . 75

4.4.3 Algorithm . 77

4.4.4 Handling Partitioned and Un-Partitioned Datasets 79

4.5 Framework of Work Stealing Spatial Join on Distributed Memory 80

4.5.1 Overall Framework . 80

4.5.2 Worker Threads . 81

4.5.3 Coordinator in Send Status . 82

4.5.4 Coordinator in Receive Status . 82

4.5.5 Internode Communication . 83

4.5.6 Theoretical Analysis . 84

4.6 Experimental Results . 85

vi

4.6.1 NUMA . 87

4.6.2 Tasks Composition of WSSJ . 88

4.6.3 Tasks Composition of WSSJ-DM 89

4.6.4 Comparison Experiments for WSSJ 90

4.6.5 Comparison Experiments for WSSJ-DM 91

4.6.6 Strong Scaling for WSSJ-DM . 92

4.6.7 Benchmark . 92

4.7 Conclusion . 95

5 ASYNCHRONOUS DYNAMIC LOAD BALANCING BASED SPATIAL JOIN 97

5.1 Introduction . 97

5.2 Spatial Data Computing Costs Modeling 98

5.3 Spatial Data Partitioning . 98

5.4 Dynamic Load-balancing . 101

6 SUMMARY AND FUTURE WORK . 102

6.1 Summary . 102

6.2 Future Work . 103

Bibliography . 104

Appendices . 113

A.1 Pseudo code for CUDA quadtree partition 113

vii

LIST OF TABLES

3.1 Attributes of the data sets . 57

3.2 OpenMP based Quadtree Partitioning time (seconds) 59

3.3 ADP total and break-down execution time for different pairs of datasets . . 60

3.4 ADP-GPU execution time for different pairs of datasets on an Nvidia Titan-V 61

3.5 ParADP execution time for weak scaling 62

3.6 ParADP execution time for strong scaling 63

4.1 Attributes of the datasets . 86

4.2 Execution time (in sec) for Sequential Indexed Spatial Join, WSSJ (36
cores), WSSJ-DM (25 nodes) performing spatial join on different pairs of
un-partitioned datasets. 95

viii

LIST OF FIGURES

1.1 Spatial Join techniques. 3

2.1 If both R and S are partitioned using a same grid, then the join process only
needs to consider corresponding cells. 15

2.2 Quadtree visuallization . 18

2.3 An example of the region quadtree. (Originally presented by Hanan Samet). 21

2.4 Examples of using RCB and MJ. The cutting order is either indicated by
colors (red→ blue→ green→ pink→ orange) or by the thickness of the
cutting line (thickest to thinnest). The two MJ variants produce similar par-
titions, butMJ with migration allowsmore concurrency during partitioning.
(Originally presented by Mehmet Deveci) 22

2.5 Rtree visuallization. 25

2.6 An example of using reference point method. 27

2.7 An overview of the mapreduce paradigm. (Originally presented by Jeffrey
Dean). 30

2.8 An overview of the GeoSpark framework. (Originally presented by Jia Yu). 32

2.9 An example (broadcasting) of using MPI non-blocking APIs. 34

2.10 An example of active MPI one-sided communication. 36

3.1 Number of geometries shown in each grid cell. The workload of a cell in
grid C is the product of the number of geometries present in corresponding
cells in A and B (e.g., workload in the fourth cell is 9*5). 39

3.2 Mapping of candidates to grid cells. (r1, s1), (r1, s2), (r2, s3) are candi-
dates. Due to our output-sensitive method, geometry r1 is not stored in cell
IDs (D, I), (C, I), (B, III), (B, IV), and (A, IV) even though it passes through
these grid cells. Instead, r1 is stored in cells (C, II) and (A, V) because it is
part of two candidates (r1, s1) and (r1, s2) only. 44

3.3 Visualization of Algorithm 6 and 7 . 49

3.4 ParADP using 4 compute nodes with 4 cores in each node. Longitudinal
thick black lines are generated first for rearranging data based on its stripe
boundary in each node. The green lines are generated by each node inde-
pendently. Every CPU core/thread is assigned one cell. The thin red lines
are partitioning boundaries generated by each CPU core individually. 55

ix

3.5 Parallel partitioning of the roads and the parks into 8192 grid cells using
ParADP . 56

3.6 Storage space needed using different partitioning techniques 57

3.7 Max process time andmin process time for GEOS Intersectsmethod using
parks and sports using an increasing number of grid cells generated byADP.
84 cores are used for all cases. 59

3.8 Speedups of ParADP w.r.t. ADP for generating a grid with 65536 cells
using two datasets - 1) roads (72 million polylines) and 2) parks (10 million
polygons). 63

3.9 Box-plot showing distribution of execution time by differentMPI processes
runningGEOS Intersects query using parks and the sports data. Each time
the data sets are partitioned into 8192 parts. Max process execution time
along with few outliers are also shown for each partitioning scheme. 64

3.10 Maximum and minimum process execution times. Datasets parks and
sports were used and partitioned into 8192 parts. 65

3.11 Execution time of applying Intersects on different cells of the partitioned
parks and sports. The data sets are partitioned into 8192 cells by ParADP
and Quadtree partitioning. 66

3.12 Execution time of applying Intersects on different cells of the partitioned
parks and sports data. The data sets are partitioned into 8192 cells by
ParADP and ADP. 66

4.1 The Work Stealing Spatial Join model in shared memory (WSSJ). The blue
arrows show the direction of flows of Spatial Join tasks within a worker
thread. The red arrows show the direction of flows for stolen tasks. 76

4.2 TheWork Stealing Spatial Join system on distributedmemory (WSSJ-DM).
The solid blue arrows show the directions of the flows of spatial join tasks.
The dashed orange arrows show the directions of the flows of control mes-
sages. “NB send/recv” stands for “MPI non-blocking send or receive”.
“Gen buf” stands for ”Generate send buffer” and “Parse received buffer”. . 81

4.3 Theoretical performance modeling of WSSJ-DM before reaching bottleneck. 86

4.4 Execution time comparison of different NUMA policies in WSSJ for per-
forming ST_Intersects on Sports and Cemetery. 88

4.5 Composition of tasks at different WSSJ workers. Both cases used 36 work-
ers to perform ST_Intersection on Lakes and Parks. 89

4.6 Composition of tasks at different WSSJ-DM nodes. Both cases used 5
nodes to perform ST_Intersection on Lakes and Parks. 90

x

4.7 Execution time comparison of using WSSJ, Master-Worker (MW), and
Round Robin assignment (R-R) to perform different spatial joins on Lakes
and Sports, which are spatial partitioned into 8192 sub-sets using ADP
partitioning. 91

4.8 Execution time comparison amongWSSJ-DM, ADLB, SPINOJA-DM, and
Round Robin assignment (R-R) performing spatial joins on Lakes and
Parks, which are spatially partitioned into 8192 grid cells using ADP par-
titioning. 93

4.9 Execution time and speedup plot of WSSJ-DM w.r.t sequential join. For
comparison, ST_INTERSECTION was used on Lakes and Parks. Input data
was partitioned into 8192 grid cells using different approaches. 94

5.1 The execution time of GEOS to find the intersections between two geome-
tries. In (a) all geometry collections are kept; in (b) all geometry collections
are broken down into single geometries in the samples. 99

5.2 Max and min processing times of MPI processes to perform join on two
spatial datasets, lakes (8.4 M polygons) and sports (1.8 M polygons). 100

5.3 Execution time comparison between two versions: 1) Using ADLB and 2)
MPI-GIS dynamic load-balancing for join between Sports (1.8M polygons)
and Roads (72 M polylines). 101

1

CHAPTER 1
INTRODUCTION

1.1 Introduction

We are in the era of Spatial Big Data. Due to the developments of topographic tech-

niques, clear satellite imagery, and various means for collecting information, geospa-

tial datasets are growing in volume, complexity and heterogeneity. For example, Open-

StreetMap data for the whole world is about 1 terabyte 1 and NASA world climate datasets

are about 17 terabytes 2. Processing such large data and running spatial analytics require

a lot of time. Spatial data volume and variety makes processing and analytics both data-

intensive and compute-intensive tasks.

Analyzing spatial data is important in many fields and leading to new discoveries. There

are frequent occurrences of natrual disasters such as earthquakes, floods, wildfires. Gov-

ernments and researchers analyze spatial data related to those disasters to predict, control

damage, and rescue vicitims [1]. Spatial data can be used to locate the center(s) of conta-

gions like plague, COVID-19 and help to prevent them [2,3]. Web users contribute millions

of posts with geographic tags on social platforms per day. Those data can be used to study

human behaviors, research on commercial purposes, and so on [4]. Urban planning directly

relays on analyzing spatial data to decide locations of vital public infrastructures such as

hospitals, airports and even roads [5]. The need of analyzing spatial data is fundmental in

research fileds such as geology [6].

Spatial join is an important collection of operations for analyzing spatial data. It is

used to find the relations between multiple spatial objects. With the increasing volume and

complexity of spatial data, there is an increasing demand for efficient spatial join techniques.

Parallel programming is a plain solution to accelerate the process of spatial join. However,

as the size and density of geometries varies from one region of the map to another [7, 8],
1https://wiki.openstreetmap.org/wiki/Planet.osm
2https://cds.nccs.nasa.gov/nex

https://wiki.openstreetmap.org/wiki/Planet.osm
https://cds.nccs.nasa.gov/nex

2

data skew and load imbalance are vital issues for parallel spatial join [9]. To make better

utilizations of modern computing architectures (multicore CPUs, GPUs), solutions to the

load balancing problem are important.

1.2 Motivation

With the evolution of the computing architectures, modern High Performance Clusters

(HPC) can provide massive computing resources. Howver, when we use HPCs to process

spatial join problems, the load imblance in parallel spatial join wastes the majority of HPCs’

computing ability.

Due to the developments of topographic techniques, clear satellite imagery, and various

means for collecting information, geospatial datasets are growing in volume, complexity,

and heterogeneity. For efficient execution of spatial computations and analytics on large

spatial data sets, parallel processing is required. To exploit fine-grained parallel processing

in large scale compute clusters, partitioning in a load-balanced way is necessary for skewed

datasets.

Load imbalance due to data skew limits the scalability of parallel spatial join. There are

some techniques to address this problem. One of the techniques is to use data and space

partitioning to minimize workload differences across threads/processes. However, load im-

balance still exists due to differences in join costs of different pairs of input geometries in

the partitions. Another technique is to share spatial join tasks among threads using a shared

queue.

1.3 Spatial Data Partitioning and Indexing

In Geographic Information System (GIS) and spatial database, two datasets are com-

bined based on some spatial relationship among geometries in the input datasets.

Spatial join [10] involves two spatial datasets R and S. Spatial join operations can be

classified into two types: type 1 is to determine spatial relationship3, such as ST_Within,
3https://postgis.net/docs/reference.html#Spatial_Relationships

https://postgis.net/docs/reference.html#Spatial_Relationships

3

ST_Intersects, and other operations; type 2 is to compute overlay area4, such as ST_Inter-

section, ST_Union, and other operations. ST_Intersects is used to answer a query— Is there

any overlap between the two geometries? This operation is often faster because the compu-

tation can stop as soon as the spatial relationship is confirmed. Join operation of the second

type is used in map overlay, and it is more expensive because the entire output geometries

have to be computed.

A spatial join on two datasets can be performed in two phases: 1) filtering phase and

2) refinement phase. For techniques working the filtering phase, the minimum bounding

rectangles (MBR) of geometries instead of the geometries themselves are usually used to

perfom effcient filtering. A collection of candidate pairs is produced and passed to the

refinement phase. The refinement phase then removes false positives and produces a set of

pairs in relationship join or a set of new geometries in overlay join.

FIGURE 1.1 Spatial Join techniques.

Figure 1.1 provides an overview of current spatial join techniques. Besides for the

filtering or refinement phase, being suitable for Internal memory or external memory can

be another classification for spatial join techniques. External memory solutions usually aim
4https://postgis.net/docs/reference.html#Overlay_Functions

https://postgis.net/docs/reference.html#Overlay_Functions

4

at large spatial data-sets which can not be loaded on a single machine.

Spatial Join operations costs for a pair of geometries: assume the numbers of vertices

are n and m. In the filtering phase, the MBRs of two geometries are used to verify if

two geometries potentially intersect with each other. This computing is a constant cost as

MBRs are four-point rectangles. The numbers of vertices of geometries do not affect this

cost. In the refinement phase, the cost varies by join operations and algorithms. Take ST_-

Intersection as an example: a naive line-by-line algorithm can take O((n + m)2); Plane

Sweeping [11], one of the best spatial join algorithms, takes O((n + m + k)log(n + m)),

where k is the number of vertices of the intersection.

1.4 Load Balancing in Parallel Spatial Join

Parallel spatial join solutions utilizes multicore CPUs in shared memory, or multiple

computing nodes in distributed memory. However, due to data skew and join operation cost

uncertainty, load umbalancing is a critical problem for recent parallel spatial join solutions.

Various techniques have been developed to reduce load umbalancing in parallel spatial

join. Spatial join parallelization has been discussed in [9, 12–17]. [9] uses object decom-

position based declustering to mitigate data processing skew on shared memory. A task

manager is used to arranging join tasks among workers for load balancing. [12] divides

parallel spatial join into three phases: 1) Partitioning Phase, 2) Join Phase and 3) Refinement

Pahse. Two parallel spatial join algorithms Clone JOin and Shadow Join was introduced

in [12]. [12] uses partitioning based strategies to decluster spatial data for parallel spa-

tial join. [13] builds two hash tables on two inputs for non-blocking parallel spatial join,

with optional duplication avoidance. The MapReduce paradigm is used in Spatial Join with

MapReduce [14], a parallel spatial join algorithm using no spatial indexes, with a tile-based

duplication avoidance. [15] presented a parallel spatial join framework based on MPI. The

framework uses a prediction model to migrate files among MPI processes for load balanc-

ing. [16] uses bitmaps to determine the number of spatial objects to perform dynamic

load balancing. Spatial join was implemented on hypercube architecture of the Connec-

5

tion Machine [17] using Census TIGER/Line data. [17] noted that in parallel spatial join,

the execution time increases by increasing the capacity of a Rtree node, while the execu-

tion time decreses with a higher PMR (Polygonal Map Random) quadtree bucket capacity.

Declustering is proposed as a load balancing strategy in [18, 19]. [18] studied the impact

of declustering spatial data for shared-nothing parallel structures by implementing a round-

robin and a top-left declustering strategies, with or without redundancy. [19] parallelized

spatial GIS range-query (one spatial join operation) by partitioned spatial data. The authors

also compared the impacts of static schedule methods and dynamic load balancing methos

over parallel spatial join, and proved that the hierachical declustering approach provides

better load balancing. [20] introduced PBSM (Partition Based Spatial–Merge) by using

partitioning of universe into tiles (grid cells). The tiles are then assigned to processors in a

round-robin fashion. The experiments show that PBSM has better performance than R-tree

based spatial join and indexed nested loops spatial join. [21] performs parallel multidi-

mensional similarity join using Partitioning based Quantiling (PQ) algorithms. The paper

proves that considering the number of join tests is beneficial for load balacing.

1.4.1 Work Stealing

Work stealing is a dynamic load balancing strategy [22–26]. It has been used in shared

memory and distributed memory [23] load balancing solutions.

Chase-Lev’s lock-free deque [24] is an important data structure in many shared-memory

work stealing designs. The deque uses a dynamic-cyclic-array, which allows: 1) the owner

to push and pop elements from the top of the deque, 2) others to perform concurrent lock-

free steal from the bottom of the deque. Nhat’s Work Stealing Queue [25] implementation

in C++11 is based on Chase-Lev’s lock-free deque and shows a remarkable performance

in benchmarks. We use it in our work stealing implementations. For simplicity, we have

referred to Work Stealing Queue as queue.

6

1.4.2 NUMA

The execution of spatial join computations are impacted by NUMA memory policies.

Spatial join algorithms allocate a temporary buffer to carry out intermediate steps of join

algorithm on two geometries. The spatial objects are copied to the temporary buffer to

carry out Quadtree partitioning of an individual geometry, to order the coordinates, and to

populate the intersection matrix.

The default NUMA policy on most Linux systems after boot-up is MPOL_DEFAULT,

which is “local allocation”. Under this policy, Linuxwill attempt to satisfymemory requests

from the nearest NUMA node of the CPU which submits the memory requests. MPOL_-

DEFAULT works fine in many scenarios. However, in terms of work stealing, a thread

on one NUMA node can steal a task from another NUMA node. A page in memory is

accessed by multiple threads. For spatial join, in all experiments we have conducted so far,

the tasks on a few worker threads (usually 1 to 4) take much longer to finish than the rest of

the threads. When multiple threads allocate and write to temporary buffers for tasks from

remote NUMA nodes, there can be memory requests congestion.

MPOL_BIND andMPOL_PREFERRED can mitigate the memory requests congestion

issue. Under these two policies, the temporary buffers are on the same NUMA node as the

pairs of geometries to be joined. The issue withMPOL_BIND is that it is a strict policy; the

OS can only utilize the memory on specified NUMA node(s).

Under MPOL_INTERLEAVE mode, the memory allocations are uniformly distributed

among all NUMA nodes. The temporary buffers are allocated in an interleaved manner as

the pairs of geometries are joined.

1.4.3 MPI Non-blocking Communication and One-sided Communication

We have used one-sided (put/get) Message Passing Interface (MPI) functions for com-

municating data among cooperating. One-sided programming model is referred to as Re-

mote Memory Access (RMA) in MPI. It is suitable for expressing irregular communication

patterns that arise while coordinating tasks among processes in distributed memory [27].

7

Non-blocking MPI functions can be leveraged to overlap communication operations with

computational steps of spatial join.

1.5 Dissertation Statement and Contributions

The goal of this dissertation is to solve the load imbalance problems in parallel spatial

join. For that purpose, this dissertation focuses on spatial data management, storage meth-

ods and spatial join tasks scheduling, sharing techniques to mitigate the loading imbalance

problems. This dissertation focuses on improving the utilization of many-core architecture

in the field of spatial data processing.

Dissertation Statement

Parallel spatial join is a promised analyzing tool for spatial data. Spatial data

partitioing methods and workload schedulers are important for parallel spatial join

programs to utlize modern many core architectures.

To address the load imblance problems in current parallel spatial join approaches, this

thesis introduces a novel spatial data partitioning approach, and a distributed work stealing

system for spatial join.

An efficient parallel and adaptive partitioning method: Our partitioning method for

spatial join uses Adaptive Partitioning (ADP) technique, which is based on Quadtree parti-

tioning. Unlike existing partitioning techniques, ADP partitions the spatial join workload

instead of partitioning the individual datasets separately to provide better load-balancing.

Based on our experimental evaluation, ADP partitions spatial data in a more balanced way

than Quadtree partitioning and Uniform grid partitioning. ADP uses an output-sensitive

duplication avoidance technique which minimizes duplication of geometries that are not

part of spatial join output. In a distributed memory environment, this technique can reduce

data communication and storage requirements compared to traditional methods.

A work stealing spatial join framework on shared and distributed memory: we

present our parallel spatial join system, WSSJ-DM. WSSJ-DM benefits from balanced par-

8

titioning research. Moreover, we experimentally show that our system works well with un-

balanced partitioning and spatially un-partitioned datasets, with minor impact on its overall

performance. WSSJ-DM uses work stealing technique to share join tasks on shared mem-

ory. We study the effect of memory affinity in work stealing operations involved in spatial

join in a NUMA-aware system. On distributed memory, non-blocking communications are

used to shuffle tasks between busy and idle nodes.

These two contributions show the following key intellectual insights:

1) We show that ADP provides better load blancing per partition than existing ap-

proaches. ADP considers the workload of the refinement phase of each partition,

and always cuts the partition with most workload.

2) While being partitioning into more parts, more external memory space is needed to

store the partitioning result due to duplications. By eliminating unnecessary duplica-

tions and objects not participating join, ADP is able to use significant smaller external

memory space than current approaches.

3) ADP can be extended to support mutliple many-core architectures such as multicore

machine, distributed cluster, and GPU. The paralliszed ADP shows a good scale and

can partition large datasets in a short time.

4) We demonstrate effective mitigation of data skew in a fine-grained manner to avoid

stragglers (threads taking much longer than others to finish). Both WSSJ and WSSJ-

DM are proved to be load balancing and efficient.

5) WSSJ implemented using non-blocking task queues solves the NP-complete problem

- load imblance problem in parallel spatial join - for typical spatial join cases in shared

memory.

6) WSSJ-DM overlaps communication and computation parts of parallel spatial join,

which makes it is the first application that solves the intersection problem on two

10-GB datasets in 30 seconds.

9

1.6 Thesis Outline

This section outlines the thesis and breifly introduces the rest chapters.

Chapter 2 presents literature review on the topics of this thesis. Each of the subsequent

chapters presents a solution or technique which directly related or can be used for parallel

spatial join. The techniques, problems, solutions and related work are introduced in each

section.

Chapter 3 presents Adaptive Partitioning [28], a novel spatial data partitioning

alogrithm. ADP takes the distribution of geometries in both layers into consideration which

can improve spatial partitioning by producing grid cells with similar workload. Sincewe use

a filtering-based approach to find the potentially overlapping geometries, we can minimize

duplication of geometries that do not take part in spatial computations in the refine phase.

Moreover, we parallize ADP on multiple tools/platforms, including Pthread, MPI, CUDA,

and OpenMP. The MPI + Pthread implementation (ParADP) scales up to four thousands

CPU cores.

Chapter 4 presents our parallel spatial join system,WSSJ-DM.WSSJ-DMbenefits from

balanced partitioning research. Moreover, we experimentally show that our system works

well with unbalanced partitioning and spatially un-partitioned datasets, with minor impact

on its overall performance. WSSJ-DM uses work stealing technique to share join tasks

on shared memory. We study the effect of memory affinity in work stealing operations

involved in spatial join in a NUMA-aware system. On distributed memory, non-blocking

communications are used to shuffle tasks between busy and idle nodes.

Chapter 5 presents the preliminary work for Chapter 3 and Chapter 4. It presents spa-

tial data partitioning techniques such as quadtree and uniform grid partitioning based on

modeling of spatial join [10] cost. In addition, we present Asynchronous Dynamic Load

Balancing (ADLB) [26] based spatial join implementation. The spatial join times model-

ing experiments expound how geometry collections make load-balancing difficult. We use

different spatial data partitioning techniques to find a more balanced method. We evalu-

ate the performance of ADLB-based program by comparing with another MPI-GIS [29]

10

implementation.

Chapter 6 summarizes this thesis and discusses future research.

11

CHAPTER 2
LITERATURE REVIEW

2.1 Introduction

With the increasing volume and complexity of spatial data, spatial data partitioning

techniques are significant to handle mega size spatial datasets. Spatial data partitioning

not only benefits parallel spatial join, but also benefits sequential join because of domain

decomsiption. Additionally, partitioned spatial data is easy to be stored and loaded to the

internal memory due to the independence of sub datasets.

Partitioning spatial data has been well-studied in literature. To begin with, [10] in-

troduced a naive approach of partitioning spatial data and utilizing the partitioned data for

spatial join. For example, a two-dimensional coordinate system is partitioned into four

Quadrants by the x-axis and y-axis; a three-dimensional space can be further partitioned

into 8 subspaces if z-axis is used. Two orginal datasets, R and S, are partitioned using the

same grid and their subsets can be stored in external memory. The corresponding subsets

in R and S can be loaded into internal memory for spatial join. Those corresponding pairs

are independent of each other, so a shared-nothing parallel spatial join framework can be

easliy implemented by partitioned spatial data. However, if a naive partitioning approach

is used such as the Uniform Partitioning, the load imbalance problem strictly limits the par-

allel spatial join framework’s performance. The choice of partitioning scheme depends on

the application where it is used.

The outline of literature review for spatial data partitioning is listed as following:

1) A basic introduction of spatial data partitioning is introduced in Section 2.2.1;

2) The uniform partitioning is introduced in Section 2.2.2;

3) A paper about quadtree is introduced in Section 2.2.3;

4) The rectangle tree data structure and related papers are introduced in Section 2.2.5;

5) The multi-jagged partitioning technique is introduced in 2.2.4;

12

6) Finally, an inline duplication avoidance technique is introduced in 2.2.6.

Spatial join is a collection of important operations for analyzing spatial data. In spatial

analytics, combining two or more datasets gives us insights that are not available in a single

dataset. Spatial Join operations can be divided into two types: 1) join operations to find

spatial relationships, such as intersects, within, and other operations; 2) join operations to

compute overlay area, such as intersection, union, and other operations. A spatial join on

two datasets can be performed in two phases: 1) filtering phase and 2) refinement phase.

In the filtering phase, the minimum bounding rectangles (MBR) of geometries are used to

produce a collection of candidate pairs, in whichMBRs of two geometries from two datasets

overlap.

The outline of literature review for spatial join is listed as following:

1) The Plane Sweep technique is introduced in Section 2.3.1;

2) A parallel spatial join framework derived from Map-Reduce is introduced in Sec-

tion 2.3.2;

The Message Passing Interface (MPI) is the de-facto message passing standard on High

Performance Computing platforms. An important function provided by MPI is to allow

processes on a cluster to communicate with each other in various methods and formats. For

instance, MPI_Bcast allows one process to broadcast its data with other processes. The

MPI standard only defines the logic of MPI operations. An implementation of MPI may

have its own effcient way to design functions such as MPI_Bcast. The utilization of MPI

is a key point of designing an effcient HPC program.

The outline of literature review forMessage Passing Interface (MPI) realated techniques

is listed as following:

1) MPI non-blocking communication is introduced in Section 2.4.1;

2) MPI one-sided communication is introduced in Section 2.4.2.

13

2.2 Geo-Spatial Data Partitioning

2.2.1 Partitioning and Indexing

Spatial data usually can be partitioned based on a grid, such as uniform partitioning, or

on the data itself, such as partititioning using a Rectangle-tree (R-tree) index or a quadtree

index, etc. To illustrate how spatial data partitioning works, Edwin Jacox and Hanan Samet

introduce a simplified algorithm in [10], as shown in Algorithm 1. The basic idea is to

define a customized grid and use it to partition both datasets, R and S. The number of cells

in the grid is mainly evaluated by the available memory, that is, to have all sub-sets to fit

in the memory. Every spatial object is put into each partition which overlaps with it. If an

object is overlapped by multiple partitions, it will be included in all of those partitions. An

example is shown in Figure 2.1, there is a rectangle laying on the board of partition 1 and

2. This rectangle will be inlcuded in both partition R1 and R2. Any furture spatial join pro-

grams which use R1 or R2 have to include that rectangle. And this brings in the duplication

problem in parallel spatial join, which is introduced in Section 2.2.6 In Figure 2.1, R and S

are partitioned into four cells using the same grid. Each cell in R will only be joined with

the corresponding cell in S. For instance, R 1 only joins with S1, and there is no need to

consider joining R1 with S2.

The first step inAlgorithm 1 is to calculate howmany partitions are needed. The purpose

of this step is to ensure that each pair of two corresponding partions is small enough to fit

in internal memory. The available internal memory and the size of Minimum Bounding

Rectangle (MBR) are used by the function DETERMINE_PARTITIONS to calculate the

minimal number of partitions. However, this min_num_of_partitions is usually incorrect

due to the skew of spatial data. More advanced partitioning algorithms such as quadtree

Partitioning in Section 2.2.3 and Multi-Jagged Partitiong in Section 2.2.4 and others can

handle this problem by partitioning more on dense areas (area with more spatial objects).

Min_num_of_partitions is used to get the list of partition cells by functionDETERMINE_-

PARTITIONS.

The second step is to use partition_list partitioning R and S. Once partition_list is gen-

14

erated, the next step is to scan R and S, and place every object into its corresponding parti-

tion(s). The partitions are then stored the partitioning results to external memory and can be

reused. Finally, in the join phase, each partition in R and its corresponding partition in S are

loaded to the internal memory and joined. Detailed Spatial Join techniques are introduced

in Section 2.3.

Algorithm 1 Grid Join
1: Input: Spatial data sets R and S.
2: Output: Join results RESULTS.
3: /* calculate the number of cells in the grid */
4: m← available internal memory
5: MBR_size← space needed to store one MBR
6: min_num_of_partitions← (sizeof(R) + sizeof(S)) * MBR_size / m
7: partition_list← DETERMINE_PARTITIONS(min_num_of_partitions)
8: /* partition data and store it to external memory */
9: partition_results_R← PARTITION_DATA(partition_list, R)
10: partition_results_S← PARTITION_DATA(partition_list, S)
11: /* perform join operation on partitioned data */
12: for each partition in partition_list do
13: partition_R← READ_PARTITION(partition_results_R)
14: partition_S← READ_PARTITION(partition_results_S)
15: RESULTS← RESULTS ∪ SPATIAL_JOIN(partition_R, partition_S)
16: end for

2.2.2 Uniform Partitioning

Uniform partitioning is simple and is already shown in Figure 2.1. For instance, a map is

partitioned uniformly by the longitude and latitiude lines (not physically but numerically).

Though uniform partitioning is simple, it is good to be used as a starting point as in [20].

Jignesh Patel and David DeWitt use Partition Based Spatial-Merge (PBSM) to perform

spatial join in [20]. PBSM does not require any indices on the joining attribute of the two

inputs, R and S. Instead, it uses the unique identifiers of each geometry in R and S to map

them in the filter step.

1) Filter Step: PBSM loads all geometries from R and S and store them as key-pointer

elements, R(kp) or S(kp). WithR(kp) and S(kp), PBSM performs a Plane-sweep opera-

15

FIGURE 2.1 If both R and S are partitioned using a same grid, then the join process only needs to
consider corresponding cells.

tion, which is introduced in 2.2.6, to find all pairs of intersecting Minimum Bounding

Rectangles (MBRs) between R and S. If R(kp) and S(kp) are too large for the internal

16

memory, they can be partitioned into non-disjoint subsets to be fitted in the memory.

The partitioning approach is uniform and similar to the algorithm described in Sec-

tion 2.2.1. The duplication mechanism is also same. In this step, geometries from R

and S are mapped to each other if their MBRs are intersected. The pairs are stored in

a fashion that geometries from R are used as the keys and those from S are the values.

This key-value structure can avoid random seeking in R and S.

2) Refinement Step: The key-value pairs are loaded in a manner that loads enough

keys (geometries from R) fitting the internal memory, with their corresponding values

(geometries from S). The geometries from S are loaded sequentially into the mem-

ory. Then the join operation is performed, and the outputs are recorded based on the

uniques identifiers of each geometry.

There are several steps to carry out these two steps. First the number of partitions is

needed to be decided. As the plane-sweep requires all data to be in the internal memory,

PBSM uses the cardinalities of R and S, the size of the internal memory M, and the size of

a key-value pointer. The partition number P is decided by the following formula:

P =
⌈

(sizeof(R) + sizeof(S)) ∗ sizeof(key − value pointer)
M

⌉

As being stated, the partitioning function used by PBSM is the Uniform Partitioning. To

mitigate the skew of the Uniform Partitioning, the entire universe is partitioned into more

tiles than partitions and each tile is mapped to a partition in a round-robin or hashing scheme.

It is studied in [20] that withmore tiles the data skew is reduced, but the replication overhead

is higher. PBSM can also choose to dynamically partition large partitions to handle skew,

which becomes a quadtree like partitioning in 2.2.3.

Additionally, this paper contributes a comprehensive performance experiments for three

different spatial join algorithms:

1) an indexed nested loops based spatial join algorithm,

2) an R-tree based spatial join algorithm,

17

3) and the PBSM algorithm.

The indexed nested loops based spatial join algorithm first builds an index on the smaller

set between R and S. An Rtree index is typically used. Then the inputs are sorted by turing

MBRs into Hilbert values and this makes the geometries to be joint spacially close. The

R-tree based spatial join algorithm first builds an index on both R and S. The two R-trees

allows fast synchronous depth-first traversal to find all matching pairs between R and S.

With spatial datasets from the real world, these comparing experiments carry out two

important conclusions:

1) the PBSM algorithm is more effective than the other two without exisiting index,

2) and prove that loading an index is cheaper than constructing one at run-time.

As a conclusion, Partition Based Spatial-Merge does not need and indices, which makes

it sutiable for situations like intermediate computations. PBSM can handle spatial datasets

which larger than available internal memory by partitioning and mapping.

2.2.3 Quadtree Partitioning

Quadtree Partitioning keeps partitioning the largest cell of all its subsets until the target

number of partition is meet. It is introduced in [30, 31] as a tree data structure for spatial

data, and we can also use it as a partitioning algorithm. The main idea is to overlay a tree of

coordinates on top of the hierarchical representation of an intdgrated circuit. The coordinate

tree enables one to find quickly the set of all objects that intersect a given window. When

a quadtree being visuallized, it can be either in a two-dimensional style in Figure 2.2(a) or

in an abstract tree in Figure 2.2(b). Due to the limit of usable area, the abstract quadtree in

Figure 2.2(b) is only partially corresponding to the quadtree in Figure 2.2(a).

Quadtree is a hierachical data structure whose space is recursively partitioned into four

children of same size. The following features make diffrent types of quadtree:

1) the type of data the quadtree is used to represent, such as geographical data;

2) the principle guiding the decomposition process, such as parallel or sequential;

18

3) the data is in variable form or not.

A quadtree can be used to represent multiple types of objects such as points, rectangles,

regions, volumes, or even irregular geometries which can be presented by rectangles. A

regular decomposition can be happened on each level and partition each parts equally, or

it can be input-sensitive. The depth (which also means how many times a quadtree can

be partitioned) can be determined by the input, or be fixed initially becasue of computer

architecture or other reasons.

(a) A quadtree represented in a two-dimensional plane

(b) A quadtree represented in a tree structure

FIGURE 2.2 Quadtree visuallization

Gershon Kedem descirble a new data structure Quad-CIF based on the quadtree specif-

19

ically for Integrated Circuit (IC) design in [30]. A typical quadtre structure begins with

a large rectangle which covers all objects, and then divides itself to four equal size sub-

rectangles as shown in Figure 2.2(a). The division is recussively carried on the sub-

rectangles until the partition target is met, which is usally the number of partitions. An

object is put into one quadtree node if and only if it is inside that node. Moreover, this ob-

ject should not appear in any children nodes of the node it is in. This brings two problems

for the IC design:

1) Most rectangles in IC design are small, so most of them will be at the leaves of the

quadtree. This feature makes the depth of the tree to O(log(N)).

2) There are many small objects on the top nodes, which returns a bulk collection of

objects to most inquries.

Quad-CIF changes the principle of how an object be stored in a node. It is a bottom-up

approach:

1) Each collection of items is treated as a quadtree, with a minimum bounding box as

the root;

2) If the item is a rectangle (object), it will be stored as it-is;

3) If the item is a collection of other items, its minimum bounding box will be stored

with others represented by a pointer.

Quad-CIF has fewer levels than a regular quadtree when most of the dataset are small

objects. In Quad-CIF, each cell is only checked one time and only interactive cells are

checked. Since many cells are not interactive in the IC design, it reduces the time needed

for sorting and querying by using Quad-CIF.

Hanan Samet in [31] andAllen Klinger in [32] introduce the concept of region quadtree

in [31]. A quadtree is a region quadtree if it meets the following criteria:

1) its maximal blocks are disjoint with each other;

2) it has a standard size, i.e., powers of two;

3) it is at standart locations.

20

We can get a region quadtree by successive subdivision of an image array into four equal-

size quadrants. The arry is continuously divided until all elements inside it are entirely 0s

or 1s. The region quadtree can be characterized as the resolution of that image since every

node of it only has same elements.

2.3 gives an example of the region quadtree. A simple plygon is shown in Fig-

ure 2.3(a) [31] and represented in a 9 * 9 binary matrix in Figure 2.3(b). By continuously

dividing the binary array until all elements inside it are entirely 0s or 1s, a region quadtree

is built as in Figure 2.3(c). Noted that the number in the cells are identifiers of the quadtree

node. Figure 2.3(d) is the abstract region quadtree.

In the tree representation, the root node covers the entire array. Each quadrant of a

node becomes a child node (labeled by nw (northwest), ne (northeast), sw (southwest), se

(southeast)). The leaf nodes, as being presented, can not be further divided since it only

has one of 0s or 1s. A leaf node is black if its corresponding block is entirely inside the

represented region (Figure 2.3(a)), or white if it is entirely outside. The non-leaf nodes are

all in gray.

2.2.4 Multi-Jagged Partitioning

Parallel partitioning in parallel is tricky. Assume the spatial data is distributed in the

distributed memory and without any duplications. The skew of the spatial data leads to

the load imbalance problem for the partitioner while the purpose of sptial data partitioning

is to mitigate load imblancing. Parallel partitioners like Recursive Coordinate Bisection

(RCB) [33] migrates data during partitioning to mitigate the load imbalance problem. Sim-

ilar to the quadtree approach, RCB recursively bisects a node into two parts by cutting the

plane orthogonally. The cutting also happens on the longest dimension. Thus, the weights

of objects of two sub-plane are equal. In each recursion the data migration happens and

which may lead to intensive data movement during RCB partitioning.

To address the data movement problem in RCB, Mehmet Deveci’s team uses a parallel

partitioning algorithm named Multi-Jagged coordinate partitioning (MJ) in [8].

21

(a) Sample region (b) The binary array representation

(c) The maximal blocks (d) The corresponding quadtree

FIGURE 2.3 An example of the region quadtree. (Originally presented by Hanan Samet).

There are diffrents bettween RCB and MJ:

1) MJ cuts multi-partition concurrently, while RCB only cuts on one partition;

2) The datamigration is optional inMJ, while RCBmigrates objects after each bisection;

3) And MJ uses hybrid MPI + OpenMP for its implementation.

Figure 2.4(a) gives an example of using RCB to partition a two-dimensional area to

16 parts. The cutting order is sequential and indicated by the thickness of lines, begining

with the thickest red line. Two examples for partitioning the same area using MJ are given

in Figure 2.4(b) and Figure 2.4(c). There are five recursions in Figure 2.4(b) and each

22

recursions three cutting operations happen concurrently, in which no data is moved. With

data movement in MJ, as shown in Figure 2.4(c), the number of recursions is reduced to

two, and the second recursion has twelve cutting operations (horizontal blue lines) happened

concurrently.

(a) A partition of size 16 using RCB

(b) A partition of size 16 using MJ with no migra-
tion

(c) A partition of size 16 using MJ with migration

FIGURE 2.4 Examples of using RCB and MJ. The cutting order is either indicated by colors (red→
blue→ green→ pink→ orange) or by the thickness of the cutting line (thickest to thinnest). The
two MJ variants produce similar partitions, but MJ with migration allows more concurrency during
partitioning. (Originally presented by Mehmet Deveci)

The overall view of MJ is describled in Algorithm 2. MJ takes a spatial dataset C

with n (d-dimensional) coordinates, and the target partition number κ. MJ maintains a

permutation array of size n to avoid unnecessary data movement, marked as Premute. An-

other permutation array xPerm is used to record the beginning and ending indices of each

23

partition. Initially the number of partition P is 1. The DETERMINE_DIMENSION_-

TO_PARTITION function returns the dimension that needs to be partitioned during this

recursion. Note that in Algorithm 2, line 12 to line 17 can be done concurrently, and this

is the concurrency we have seen in Figure 2.4. µ records the balancing information of cur-

rent partitioning, which is computed by function PARTITION_ON_ONE_DIMENSION

by comparing the sizes of newly genetated partitons. PARTITION_ON_ONE_DIMEN-

SION also performs the partitioning operation and computes the weights of all partitions.

After one concurrent recursion, CHECK_AND_MIGRATE checks if there is need to mi-

grate any data. Finally, the information is recorded in xPerm and which will be returned as

the final partitioning result.

Algorithm 2 Parallel Multi-Jagged Algorithm
1: Input: Spatial data set C, its size n, weights of all objects W , dimensions d, target

partition number κ.
2: Output: Partition information recorded in xPerm.
3: /* Initialize permutation */
4: for i from 0 to n− 1 do
5: Permute_i← i
6: end for
7: xPerm_0← 0
8: xPerm_1← n
9: Current number of partitions P← 1
10: while P < κ do
11: dim gets DETERMINE_DIMENSION_TO_PARTITION()
12: for i from 0 to P − 1 do
13: begin← xPerm_i
14: end← xPerm_i+1
15: µ← PARTITION_ON_ONE_DIMENSION((C_i), W, Permute, begin, end,

dim)
16: newxPerm← UPDATE_PERM(Permute, begin, end, µ)
17: end for
18: CHECK_AND_MIGRATE((C),W, µ, κ, Permute)
19: xPerm← newxPerm
20: update P
21: end while

Though the initial idea of MJ is to partition the original dataset into power of two par-

24

titions, there is a technique can be used to allow MJ to get arbitray number of partitons.

When the dimension d and the target number of partitons κ are given, MJ can partition the

data into
⌈
κ1/d

⌉
initially, and then update the target number of partitons for current recur-

sion based on the weights of partitons. With the dynamic target numbers of partitons, the

eventual number of partitons will meet the initial requirement, which is κ.

2.2.5 Rectangle Tree

The Rectangle Tree (R-tree) is a popular data structure for indexing spatial data. The

core idea of building R-tree is to group nearby objects in a node and several such nodes

are grouped to form a node of the next higher level. A simple example of R-tree is shown

in Figure 2.5(a). The objects in a child’s node is always covered by its parent node. This

feature allows quick searching in an R-tree by eleminating mismatch nodes and all of their

children. Figure 2.5(b) is an abstract R-tree of the graph shown in Figure 2.5(a). The colors

and nodes are corresponded in the two figures. The non-lefaf nodes contain the entries to

their children and the leaf nodes contains the objects (point, rectangle, polygon, etc.) from

the orginal spatial data set.

Though R-tree shows advantages on indexing or storing spatial data, its overlapping

problem needs to be solved. For instance, the major parts of R1 and R2 are overlapped,

which can indicate the usgae of space in the simple R-tree is inefficient. This problem leads

to multiple chanllenges:

1) The area that a node covers can be minimized;

2) The overlap area of two nodes on the same level can be minimized;

3) The utilization of storage in R-tree can be optimized.

To address this overlapping problem, Norbert and Hans-Peter improved the performanc

of Rtree in [34] and name their approach R*-tree.

The first step in R*-tree is to find the suitable subtrees. In order to minimize the overlap

when inserting a new spatial object to the existiing tree, the new object should always be

grouped with the least expansion of exisiting area in the tree. There are three scenarios:

25

(a) A rtree represented in a two-dimensional

(b) A rtree represented in a tree structure

FIGURE 2.5 Rtree visuallization.

1) The current node is null; then a new node is built based on the new object;

2) The current node contains leaves, which indicates this node is next to the lowest level

of this subtree; then the child node with the least area enlargement by grouping the

new object is choosen.

3) The current node contains no leaves, the child node with the least rectangle enlarge-

ment by grouping the new object is choosen.

This step improves the utilization of R-tree space and improves the query performance as

less area is needed to be searched.

When a node contains too many children, it is necessary to split this node to maintain the

efficiency of an R-tree. The children are sorted by the values of their overlapping rectangles.

Go through all the children and find a splitting position where the sum of the two sub-areas

is smallest. Since the children nodes are sorted, this steps takes O(mlog(m)) time, where

26

m is the number of children in the node to be split.

R-tree is nondeterministic in inserting new spatial objects, which means different order

of insertion can lead to diffrent R-trees. Thus, in some cases, the R-tree can be ineffcient

because a high tree may be built. R*-tree uses forced relnsert during its constrcution to

improve the retrieval performance. During the step of finding a suitable subtree, there can

be two choices based on the number of existing children

1) If the number of existing children is larger than a fixed limit, perform a split;

2) Otherwise, perform an insertion.

Notice that when a node is splited, its parent node is also possible to meet the splitting

criterion. R*-tree forces a reinsertion when a split happens on a level for the first time.

The reinsertion step is to remove several children of given node to reduce the size of the

node. The removal should be performed in a way that the node covers minimal area after

removal. The removed children then are reinserted into the R*-tree. The advantages of the

forced reinsertion are:

1) It changes the children of a node so that the node covers a smaller area;

2) The storage utilization is improved since less overlap between nodes on a same level;

3) Fewer splits happen because reinsertions take place;

4) Some nodes have chances to be placed in a better postion of the R-tree, which im-

proves the effciency.

2.2.6 Duplication Avoidance

Duplicated results will be collected if replication happens (very likely) during partition-

ing. Considering the example in Figure 2.1, if a pair of overlapping objects is on a partition

boundary, then this pair of objects will be stored in both partions, which leads to the duplica-

tion problem when the partitioned data is used. To avoid misleading results and redundant

computing, duplicate results are expected to be removed from the candidate set during the

refinement stage.

27

A simple way to remove the duplications is to sort the candidate set generated in the

filtering stage. It is easy to remove redundant candidates if all candidates are sorted. In

some spatial join techniques, sorted candidates are required, and this simple duplication

avoidance introduces no extra cost. However, in many cases, the entire candidates are too

many to be put in the memory. In this scenario, an inline duplication avoidance technique

is more suitable.

Jens-Peter Dittrich and Bernhard Seeger introduce an inline duplication avoidance tech-

nique in [35, 36] named reference point method. Reference point method finds a point

within the intersection of MBRs of the two objects. An example is shown in Figure 2.6.

Two rectangles r and s, belong to R and S respectively, lay on the board of two partitions

P0 and P1. Both partitons have r and s. Therefore, a spatial join approach will join r and s

twice. Not only the results are redundant, but also the time cost are doubled. If some spatial

objects (e.g. the Pacific Ocean on a typical Earth map) lay over multiple partitions, the cost

of related computing may be enlarged exponentially, since larger objects are likely to have

relations (cover, within, intersect) with more other objects.

FIGURE 2.6 An example of using reference point method.

The idea of reference point method is to use a unique point within the intersection of R

and S. The position of this unique point can be arbitrary, but the way to choose a reference

point should be fixed in one program. In Figure 2.6, the top-left point of the intersection is

28

used as the reference point. As the reference point locates only in partition P0, the pair of

R and S can be ignored when processing partition P1. This method adds few overhead to

the entire program since the MBRs of objects can be used for generating reference points.

The cost is O(1) for a single pair of candidates applying reference point method.

2.3 Spatial Join

2.3.1 Plane Sweep

Plane Sweep is introduced by Michael Shamos in his book and the most recent version

is [37]. As one of the most basic algorithmic paradigms in computational geometry, the core

idea of a plane sweep algorithm is using an imaginary, vertical or horizontal line to sweep

the entire plane. The objects on the plane are only processed when the sweepline reaches

them. Since if two geometries have common area, they will be reached by the sweepline

in a certain window. Hence, many spatial data related operations (e.g. intersects) can be

optimized to a one dimensional interval intersection problem by applying the plane sweep

paradigm.

Lars Arge’s team Introduced Scalable Sweeping-Based Spatial Join (SSSJ) in [11].

SSSJ performs an initial sort and classfication on all objects, and then performs join

opeartions using plane-sweeping. The first step is named textitRectangle Join in SSSJ. All

objects in R and S are sorted by their MBRs’ lower y-axis values into one list L. Then, the

entire space is partitioned into k vertical stripes such that each strip contains at most 2N/k

objects, where N is the number of objects in R and S. An object is considered small if it is

only in one stripe, otherwise it is large. A large object then is partitioned into three parts,

two end pieces and one center piece. These pieces are used to avoid an object spanning on

the sweepline for too long.

The next step is to perform plane-sweep based spatial join on sorted L. There are multi-

ple choices for this step as long as them meet Alogrithm 3. Alogrithm 3 decribles a general

approach of a plane sweep join. The key data sturcutre is used to store the elements being

swept. DR and DS are two instances of such data structure. This data sturcutre need to

29

support insert, scan and delete operations. The insert operation is ued to insert new objects

into DR and DS . The scan operation is used to find intersetion between exisiting objects

with newly inserted objects. The delete operation is used to remove objects that will not be

future used in DR and DS to keep this data strucutre effcient. By finding the intersections

between new inserted objects and previous objects in DR or DS , all intersected pairs can be

found in one sweep. Algorithms like Tree Sweep [38], List Sweep, Striped Sweep, Forward

Sweep [39] and so on, all can be used by SSSJ.

Algorithm 3 General Plane Sweep Join
1: Input: Spatial data sets R and S.
2: Output: Join results RESULTS.
3: DR ← empty
4: DS ← empty
5: while R and S are not empty do
6: r← R.head
7: s← S.head
8: if r.minY < s.minY then
9: Insert r→ DR

10: Delete elements in→ DS whose maxY < r.minY
11: Find intersections between r and all element in DS

12: Remove r from R
13: else
14: Insert s→ DS

15: Delete elements in→ DR whose maxY < s.minY
16: Find intersections between s and all element in DR

17: Remove s from S
18: end if
19: end while

2.3.2 Spatial Join using Map-Reduce

MapReduce is a widely used parallel programming paradigm introduced in [40] by Jef-

frey Dean and Sanjay Ghemawat. MapReduce is combined by two procedures: map, and

reduce. In the map procedure, the system automatically schedules computing tasks among

computing processes accoss large-scale clusters. Error handling and internode communi-

cations are also handled during this procedure. The ”reduce” procedure is customized. The

30

programmers can decide how the mapped tasks are handled. MapReduce makes it is much

easier to program on a distributed environment, provide load balancing options, and handle

errors like a machine failure. A typical mapreduce framework is shown in Figure 2.7.

FIGURE 2.7 An overview of the mapreduce paradigm. (Originally presented by Jeffrey Dean).

Based on mapreduce, Shubin Zhang’s team presents Spatial Join with MapReduce

(SJMR), a parallel spatial join algorithm to support heterogeneous relation queries for spa-

tial datasets. The SJMR algorithm operates in the following two stages

1) Map stage Every object in R and S is presented by a unique identifier (OID), its MBR

and other spatial properties if appliable. By using a tile-based partitioning method,

every object is mapped into one or more partitions. Key-value pairs are generated

where the keys are the partition numbers and values are OID, MBR and other spatial

properties. SJMR treates one partition as one task in mapreduce.

2) Reduce stage The spatial join happens in this stage, including filtering and refine-

ment steps. In the filtering step, a striped plane sweep (introduced in Section 2.3.1)

31

technique is used to find all candidate pairs. A list of OID pairs standing for candi-

dates is generated in this step. The refinement step performs the required join oper-

ation (intersects, union, within, etc.) on the OID list. The final spatial join result is

produced after this step.

SJMR uses reference point method (introduced in Section 2.2.6) as its duplication avoid-

ance mechanism.

2.3.3 GeoSpark

GeoSpark is a large-scale spatial data processing framework running on in-memory

clusters, presented by Jia Yu’s team in [41]. Figure 2.8 gives an overview of GeoSpark.

GeoSpark has three layers:

1) Apache Spark Layer provides basic Spark functions such as loading or storing data

on external memory, and regular RDD operations1;

2) Spatial RDD Layer extends the regular RDD to support spatial data;

3) Spatial Query Processing Layer provides spatial data querying functions such as

building indices or performing regular spatial join functions such as intersects.

The Apache Spark Layer allows customized programming by using GeoSpark as a plat-

form. Programmers can extend GeoSpark based on their own analyzing methods by modi-

fying Sptial SQL API and Scala/Java RDD API.

Spatial RDD Layer is able to hanlde multiple formats of spatial data, such as Well-

known Text (WKT), CSV, ESRI Shapefile and so on. GeoSpark also extends the default

Spark data partitioner to hanle spatial objects in this layer. Spatial indices, such as R-tree

and quadtree, are also supported by GeoSpark.

Spatial Query Processing Layer handles spatial data querying. As spatial join is com-

puting and data intensive, Spark makes massive data shuffling during querying, which is

a burdan to the network and also downgrade the performace. To mitigate this problem,
1Resilient distributed dataset (RDD) is a concept introduced in Apache Spark which stands for

fault-tolerant data which can be read or modified in parallel.

32

FIGURE 2.8 An overview of the GeoSpark framework. (Originally presented by Jia Yu).

GeoSpark partitons the spatial data based on the objects’ locations. It also caches the Spa-

tial RDD. Therefore, GEOSPARK join ultlizes of existing spatial partitioned RDDs and

eliminates partitions which have no relations with current in processing RDDS. GeoSpark

builds local indices one each RDD partition, intead of building a global index which en-

larges the storage need. When a query is called, GeoSpark is able to partitione it into small

tasks and processed in parallel because of the distributed local indices.

33

2.4 Message Passing Interface

2.4.1 Non-Blocking Communication

The MPI blocking communications are easy to be understood and implemented. How-

ever, three problems are introduced:

1) Extra synchronization step is required;

2) The processes involved are busy waiting, i.e., they occupy all CPU circles during

waiting;

3) It’s hard to tell if some involved processes are working on something esle or simply

in failure.

By using non-blocking communication, not only the three problems are addressed, a pro-

gram can overlap its computing tasks and communicating tasks.

MPI non-blocking APIs can be called by passing a communication, a request handle and

other information similar to blocking APIs. A checking function (e.g. MPI_Wait, MPI_-

Test)needs to be called after a non-blocking communication API being used. The checking

function checks if the purpose of the non-blocking has achieved. Whether the purpose of

the non-blocking communication has been achieved or not, the checking function termi-

nates itself. The main thread can resume its work and check the communication in future if

the checking function returns a false answer. The program may even turn itslef in a timed

sleep and yeild the CPU to other prgrams. Additionally, for the purpose of fault-tolerance,

checking can be performed during the waiting phase of non-blocking communication. Fig-

ure 2.9 gives a simple example of using MPI_Ibcast. Instead of waiting the MPI_Ibcast to

be finished, the process can perform other tasks, computing or even trigger another MPI

communication.

Torsten Hoefler’s team introduces two ways to extend MPI to support non-blocking

collective communications in [42].

The first one is to use a separate thread which performs blocking collective communi-

cations to achieve the non-blocking purpose. A task queue model is used to manage these

34

FIGURE 2.9 An example (broadcasting) of using MPI non-blocking APIs.

non-blocking communication tasks. One or more dedicated threads are initialized with their

own task queues. Whenever a non-blocking collective function is called, a communication

task (containing all data and necessary arguments) is push into one of the work queues, in

a round-robin manner (if there are multiple communication threads). A worker thread can

be notified either by checking its work queue, or using a condidion signal. A significant

drawback is : it’s recommended to assigne one MPI job one core, only half of the CPUs can

be used to compute. Whenever a communication thread is notified there is a task in its work

queue, this thread calls the corresponding MPI blocking collective operation. It set a done

flag after the communication is finished. When the main thread calls a checking function,

this done flag is checked. Another drawback of this method is that the communicators used

by the communication threads should be duplicated from those communicators in the main

thread. The duplication of an MPI communicator is a blocking collective operations. This

drawback makes the first call to non-blocking collective operations on a communicator is

actually blocking.

The second one is to use existing non-blocking point-to-point functions. The key idea

of this way is to implement a collective schedule. This collective schedule needs to decide

the oprations needed to accomplish the non-blocking collective operations. Similar to the

blocking collective opeartions using blocking point-to-point opeartions, the non-blocking

collective schedule also depends on non-blocking point-to-point opeartions. Those opera-

tions are saved in the collective shechdule instead of being checked immediately. A call of

35

communication checking function checks where those operations are fully accomplished or

not.

2.4.2 One-Sided Communication

MPI One-Sided Communcation, also known as Remote Memory Access (RMA), is

introduced by William Gropp and his team in [43, 44]. Classic MPI two-sided commu-

nication operations (blocking or non-blocking) bring in overheads such as extra memory

copy, handshakes in Rendezvous protocol, operation match, and so on. By using one-sided

communcation, those overheads can be eliminated.

In MPI one-sided communication model, processes are allowed to access other pro-

cesses’ memory space directly. In two-sided communication, both sender and receiver need

to provide complete parameters. As a contrast, only one process needs to specify the details

in one-sided communication. As a benifit, the explicit parameters matching can be wavied.

MPI defines several terms for its one-sided communication model:

1) Origin: the process which performs the one-sided communication;

2) Target: the process whose memory is accessed;

3) Window: a memory area of the target process can be accessed by the origin process.

MPI one-sided communication does not mean that the origin process has access to the entire

memory space of the target process; instead, only the window area is available. The time

that the origin process is also bounded by the modes of one-sided communication. There

are two modes in MPI one-sided communication:

1) Active mode: the target process decides in which time period its windowm can be

accessed. The advantage is that the origin process(es) can perform multiple data

transfers. An asynchronization (e.g. MPI_Waitall) is required in this mode to finish

all operations on the window.

2) Passive mode: the target process puts no limitation on when its window can be ac-

cessed. Instead, the target process need to exctute the communication requests, either

by setting a seperated thread or periodically checking its window.

36

Figure 2.10 gives a simple example of active MPI one-sided communication. The com-

munciation begins with callingMPI-Win_start and ends with callingMPI-Win_end. These

two functions specify the access period of the window on the target process. The target pro-

cess posts its window by calling MPI-Win_start. One-sided operations, such as MPI_Put,

MPI_Get,MPI_Accumulate, can be performed by the orgin processes. MPI_Win_fence can

be called during this period to perform a sychronization among all involved processes.

FIGURE 2.10 An example of active MPI one-sided communication.

37

CHAPTER 3
EFFICIENT PARALLEL AND ADAPTIVE PARTITIONING FOR LOAD-BALANCING IN SPATIAL JOIN

3.1 Introduction

Due to the developments of topographic techniques, clear satellite imagery, and various

means for collecting information, geospatial datasets are growing in volume, complexity,

and heterogeneity. For efficient execution of spatial computations and analytics on large

spatial data sets, parallel processing is required. To exploit fine-grained parallel process-

ing in large scale compute clusters, partitioning in a load-balanced way is necessary for

skewed datasets. In this work, we focus on spatial join operation where the inputs are two

layers of geospatial data. Our partitioning method for spatial join uses Adaptive Partition-

ing (ADP) technique, which is based on Quadtree partitioning. Unlike existing partitioning

techniques, ADP partitions the spatial join workload instead of partitioning the individual

datasets separately to provide better load-balancing. Based on our experimental evalua-

tion, ADP partitions spatial data in a more balanced way than Quadtree partitioning and

Uniform grid partitioning. ADP uses an output-sensitive duplication avoidance technique

which minimizes duplication of geometries that are not part of spatial join output. In a dis-

tributed memory environment, this technique can reduce data communication and storage

requirements compared to traditional methods.

To improve the performance of ADP, an MPI+Threads based parallelization is pre-

sented. With ParADP, a pair of real world datasets, one with 717 million polylines and

another with 10 million polygons, is partitioned into 65,536 grid cells within 7 seconds.

ParADP performs well with both good weak scaling up to 4,032 CPU cores and good strong

scaling up to 4,032 CPU cores. We also applied ADP on GPU. Based on some of our ex-

periments, performance benefit obtained by GPU-accelerated ADP is equivalent to that of

20 compute nodes (560 CPU cores).

The material in this chapter was presented in part on 34th IEEE International Parallel & Distributed Pro-
cessing Symposium (IPDPS). https://ieeexplore.ieee.org/abstract/document/9139867. Source code
for this paper can be found at https://github.com/Jayyee-HPC/paradp_partitioiner.git

https://ieeexplore.ieee.org/abstract/document/9139867
https://github.com/Jayyee-HPC/paradp_partitioiner.git

38

This chapter is organized as follows. Section 3.2 introduces background information

and Section 3.3 introduces related work. Section 3.4 describes Adaptive Partitioning and its

OpenMP based version. A parallel partitioning algorithm (ParADP) for ADP is presented in

Section 3.6. Section 3.7 evaluates the performance of ADP and ParADP. Finally, Section 3.8

concludes this work.

3.2 Background

With the increasing volume and complexity of spatial data, there is an increasing de-

mand for efficient geospatial techniques for parallelizing spatial computations [45]. Spatial

join and map overlay are important in many scenarios like disaster prediction and rescue,

urban planning and so on. Parallel processing can be used to speed up the compute-intensive

and data-intensive spatial computations. Spatial data partitioning is an efficient method for

data-parallel applications. However, spatial data is often skewed and contains a variety

of geometric shapes, leading to a load-balancing problem in the parallelization of spatial

computations.

Spatial join involves two spatial layers, namely, R and S. Performing spatial join

queries with predicate Intersects, Contains, Overlap, etc., on R and S generates a col-

lection of pairs (r, s), where r ∈ R, s ∈ S that satisfy the join predicate. For example, ”find

all roads that cross a river” is an Intersects query [10]. A spatial join can be performed

in two phases: 1) filter phase and 2) refinement phase. In the filter phase, the minimum

bounding rectangles (MBR) of geometries are utilized to generate a collection of candidate

pairs where each pair consists of cross-layer geometries whose MBRs have spatial overlap.

These candidate pairs are further refined in the second phase using the actual geometric

representations.

Many existing spatial data partitioning techniques are based on one layer, which ig-

nore the distribution of data in another layer. In our prior work, we developed MPI-GIS

for partition-based polygon overlay and spatial join computation [46]. MPI-Vector-IO is a

component of MPI-GIS that performs parallel I/O of spatial data stored in parallel filesys-

39

tem [29]. We experimented with uniform grid partitioning which does not perform well

for skewed data. Adaptive spatial partitioning, as described in this paper, is designed to

improve the load balancing in MPI-GIS.

FIGURE 3.1 Number of geometries shown in each grid cell. The workload of a cell in grid C is the
product of the number of geometries present in corresponding cells in A and B (e.g., workload in
the fourth cell is 9*5).

To illustrate workload partitioning for spatial join, an example is provided in Figure 3.1

using A and B as the two input layers. A and B have different data distribution and the data

is partitioned among four grid cells. The output is layer C which assumes the worst case

scenario where a geometry in A needs to be compared against all geometries in B. In output

grid C, the maximum workload is present in the fourth cell, even though the corresponding

fourth cell in grid A and B do not have the maximum geometries in their respective grids.

This is in contrast to the traditional partitioning algorithms which will prioritize dividing

the second cell in grid A for example. However, neither partitioning on A nor B alone

will focus on partitioning the actual workload. In this paper, we propose a Quadtree-based

algorithm (ADP) based on both layers. ADP takes the distribution of geometries in both

layers into consideration which can improve spatial partitioning by producing grid cells

with similar workload.

Since we use a filtering-based approach to find the potentially overlapping geometries,

we can minimize duplication of geometries that do not take part in spatial computations in

the refine phase. We refer to this technique as output-sensitive duplication avoidance. This

is not possible in a single layer partitioning approach.

Moreover, we propose a parallel adaptive partitioning algorithm (ParADP) in High Per-

formance Computing (HPC) environment using MPI and C++ threads. Our distributed-

40

memory algorithm with p multicore processors scans the MBRs of an entire dataset by

choosing p sample MBRs by each processor to get a global view of the data distribution.

This is accomplished using the sample sort algorithm. For an HPC cluster with p multicore

processors with q cores each, p vertical stripes and q horizontal stripes within a vertical

stripe are created. The further partitioning is carried out by each CPU core in parallel to

meet the user-defined number of partitions. This method is designed to keep the proces-

sors busy and minimize the overall data movement during spatial partitioning. Once the

grid partitions are created and geometries are mapped to the grid cells, actual geometries

can be finally moved to the corresponding cell(s) where they belong. Therefore, the actual

geometries need to move only once from source processor to destination processor. This

is in contrast to dynamic load-balancing approach where repartitioning is used after initial

partitioning to distribute workload to processors with lighter workload [10].

Various experiments are designed to inspect the performance of ADP and Parallel Adap-

tive Partitioning (ParADP). As a sequential partitioning technique, ADP’s and ParADP’s

partition qualities are compared with Quadtree partitioning and Uniform partitioning. Our

implementations use Geometry Engine OpenSource0 (GEOS) library which provides 1)

spatial data indices such as Rtree, 2) geometry-based algorithms, and 3) parsing of spatial

data.

The main contributions of this paper are as follows:

1) A load-balancing focused partitioning algorithm together with an improved Duplica-

tion Avoidance technique and an OpenMP tasks based in-memory parallel Quadtree

partitioning implementation.

2) A fast adaptive parallel partitioning algorithm for load-balancing compute-intensive

spatial operations implemented using Message Passing Interface (MPI) and C++

threads for spatial datasets containing geometries like polyline and polygon.

3) Experimental evaluation of the algorithm on a large compute cluster containing up

to 4032 CPU cores with real-world datasets. Partitioning two layers 1) roads (24
0http://trac.osgeo.org/geos

http://trac.osgeo.org/geos

41

GB) and 2) parks (9 GB) containing 75 million candidate pairs is completed within

7 seconds on a cluster of 4032 cores.

3.3 Related Work

Partitioning spatial data has been well-studied in literature. Equi-Partitioning, Min-

Skew [47], Uniform grid, R-tree, Quadtree, and binary space partitioning are some classic

examples of space partitioning. The choice of partitioning scheme depends on the appli-

cation where it is used. Multijagged is a scalable spatial data partitioning algorithm [8].

However, it is applicable for point data only. In our lab’s work, we consider polyline and

polygon data as input.

Parallel and Distributed partitioning: Parallel data partitioning has been studied in

the context of spatial query processing, spatial join operation, and polygon overlay [9, 29,

48–53]. SpatialHadoop supports different partitioning schemes using techniques based on

Quadtree, R-tree, grid, etc. in a MapReduce environment [7]. PolySketch is a tile-based

partitioning of polygons and polylines for GPU-based computations [54, 55]. The parallel

partitioning algorithm presented here uses MPI.

MPI-based GIS system: In our lab’s prior work, we experimented with MPI-based

approaches [46, 56] and developed parallel I/O and partitioning framework called MPI-

Vector-IO as an HPC system [29]. MPI-Vector-IO partitions WKT files stored in parallel

filesystems like Lustre and GPFS into file splits. After data partitioning, a uniform grid is

used for spatial partitioning. However, it suffers from load-imbalance for skewed data due

to the lack of adaptive grid partitioning. This motivated the research into load-balancing

spatial partitioning techniques.

Load-balancing: The output for an ideal spatial partitioning algorithm is to produce

partitions that can be assigned to processors in a load-balanced fashion so that the total

execution time is minimized. Ideally, processors should have equal amounts of work and

a processor is not waiting for other processors to finish their computation. Both Spatial-

Hadoop (SH) and Hadoop-GIS use dynamic load balancing present in Apache Hadoop

42

framework [7,16,57]. In [7], Quadtree method performed well relatively to other methods.

To avoid the cost of reading and shuffle-exchange of the entire data, SH reads only a small

percentage (e.g. 1%) of the data randomly to generate a global space partitioning. The

methods presented here read all the MBR data. In my prior work, I studied load-balancing

using Asynchronous Dynamic Load Balancing (ADLB) library, but the scalability was lim-

ited due to the high cost of moving polygonal data across MPI processes [58].

Data skew results in load imbalance. To mitigate the effects of load imbalance,

SPINOJA system [9] partitions the spatial dataset such that the amount of computation

demanded by each partition is equalized, and the processing skew is minimized. Heuristics

like declustering skewed distribution of geometries and round-robin assignment of parti-

tions to processors has been shown to be effective for loadbalancing [9, 59]. The exper-

imental evaluation in [9] was done on a single processor with 8 cores. In this work, the

performance has been evaluated using thousands of CPU cores in a distributed memory

environment.

In this Chapter, ST_intersection1 and ST_intersects2 operations on two datasets are

considered. ST_intersection is used to find the intersection region of two geometries and

ST_intersects is used to find whether two geometries intersect with each other.

3.4 Adaptive Partitioning

In our adaptive partitioning (ADP) method, we consider both layers to capture the data

skew inherent in spatial join and overlay operations. For each geometry in a layer, we take

its minimum bounding rectangle (MBR) and the number of points it contains as input. The

output is an adaptive grid consisting of cells and a mapping from candidate pairs to grid

cells. The goal is to generate a spatial partition that minimizes the load imbalance when

spatial computations are carried out in the refine phase in each cell.

The Adaptive Partitioning contains two steps: 1) find pairs of geometries from two spa-

tial data layers whose MBRs overlap with each other, and 2) generate a grid using Quadtree
1https://postgis.net/docs/ST_Intersection.html
2https://postgis.net/docs/ST_Intersects.html

https://postgis.net/docs/ST_Intersection.html
https://postgis.net/docs/ST_Intersects.html

43

partitioning and map those pairs to the grid cells. In partition-based spatial join (PBSJ), for

a given number of partitions (cells), geometries from each layer is stored in all the partitions

where it belongs. Spatial join is then carried out in each partition. Instead of partitioning

data from each layer, in this paper, we propose to first find all the candidate pairs, and then

partition the candidate pairs on a grid. The advantages of this approach is workload-aware

partitioning as well as reducing the inter-process communication.

3.4.1 Finding candidates for partitioning

Algorithm 4 Algorithm for finding candidates
1: Input: Two collections of spatial objects R and S.
2: Output: Candidate set denoted by C
3: Build Rtree index RI using MBRs of R
4: forMBR sj in S do
5: results← RI.query(sj.MBR)
6: for rk in results do
7: Find the intersection of rk.MBR and sj.MBR
8: Calculate center point of intersection denoted by pjk

9: Calculate weight wjk using weight equation.
10: C ← C ∪ tuple(rk, sj, pjk, wjk)
11: end for
12: end for

Algorithm 4 describes the procedure used to find the pairs of cross-layer geometries

which potentially intersect each other, i.e. their MBRs have overlap. The inputs to the

algorithm are two collections (layers) of geometries denoted by R and S. A Rtree index is

built from MBRs of R which helps in reducing searching time [60]. Then an R-tree query

is performed using MBRs of S which generates a collection of candidates denoted by C.

Reference point method: As described earlier, geometry spanning multiple cells of a

grid is duplicated in all the cells it passes through.

As shown in Figure 3.2, a candidate (r2, s3) gets mapped to two cells (C, IV) and (C,

V). To avoid redundant computation on the same candidate pair by two different processors

in adjacent cells, reference point method is used [36]. As shown in Figure 3.2, this method

44

calculates the intersection of MBRs r2 and s3 of a candidate and assigns it to the proces-

sor owning the cell where the center point of the MBR intersection belongs. For (r2, s3),

the owner cell is (C, V). Since, this method works in the refinement phase, in a distributed

memory implementation of PBSJ, mapping these geometries to their corresponding parti-

tions requires data communication [10, 29, 57].

FIGURE 3.2 Mapping of candidates to grid cells. (r1, s1), (r1, s2), (r2, s3) are candidates. Due to
our output-sensitive method, geometry r1 is not stored in cell IDs (D, I), (C, I), (B, III), (B, IV), and
(A, IV) even though it passes through these grid cells. Instead, r1 is stored in cells (C, II) and (A,
V) because it is part of two candidates (r1, s1) and (r1, s2) only.

Output-sensitive Duplication Avoidance technique: We employ the reference point

method in our implementation. This method can be applied to reduce redundant storage of

geometries in spatial join. Our new method takes advantage of the fact that since all candi-

dates are known, a geometry need not be stored in all the grid cells it passes through. The

storage of geometries in grid cells can be determined by the location of the candidates in the

grid. We illustrate this observation using geometry r1 that spans through multiple cells in

Figure 3.2. The space-saving is one of the advantages of considering both layers during spa-

tial partitioning. In a filter and refine based join processing, there can be thousands/millions

of candidates. Less redundancy resulting from avoiding unnecessary storage of geometries

leads to reduced storage requirements as the grid cells become finer in resolution. This also

applies to minimizing the communication required to move the large geometries to their

45

corresponding cells in a distributed memory version of PBSJ.

After the filter step, we know all the candidates. Geometries from a layer that do not

participate in any spatial join operations are considered to have zero-weight and thus do

not impact the weight associated with a grid partition. Moreover, these geometries are

not considered while mapping the pairs to the grid cells. Some of these geometries have

thousands of vertices and span multiple grid cells. As such, in a distributed GIS system,

where data partitioning is used, this improves the effectiveness of weight calculation and

thus load balancing when grid dimensions become fine-grained.

3.4.2 Multithreaded Partitioning of Candidates

For grid partitioning of candidates, we use each candidate’s center point and weight

attributes. Standard Quadtree partitioning divides a cell recursively if the number of objects

in it is more than a threshold value. The goal of our parallel partitioning method is different.

For a user-specified target number N of grid cells, the main goal is to generate N cells with

roughly equivalent weight. Our sequential implementation of this method uses a greedy

approach of selecting the cell with the highest weight and generating four sub-cells. This

can be implemented using a max-heap where cells are accessed in descending order of their

weights. The weights of those new sub-cells are recalculated by summing the weights of

all candidates within those sub-cell area. The greedy approach of first partitioning the cell

with the highest weight limits the concurrency to four tasks per step. Therefore, we relax

this constraint by allowing multiple cells to be partitioned in parallel. However, we still

want to generate grid cells that are closer to sequential implementation.

To illustrate an issue with parallelization of our Quadtree partitioning approach, here is

an example. Let us consider 4 cells with weights given by an array A = {20, 15, 6, 4}. Let

us assume that the first cell (A[0]) got divided into four sub-cells with weights {19, 1, 0, 0}

by a thread. If another thread picks cell with weight 6 for division instead of picking cell

with weight 19, and we need only eight cells as output, it is clear that we may not end up

with desired output. A single-threaded execution would pick 19 before 6 because of its

46

descending order priority. As, we can see, we do not want a lower weight cell to be consid-

ered for subdivision by a thread, if there are relatively higher weight cells still undergoing

division by another thread. This decision-making also depends on how many cells have

already been partitioned w.r.t the target N .

Theorem 3.1 is used for guiding the parallelism of Quadtree partitioning in ADP and

ParADP.

THEOREM 3.1 Assume that A is an array of cells arranged in descending order of its cell-

weights. A sequential algorithm partitions cells in A by selecting a cell with the largest

weight, and splitting the cell into sub-cells by dividing its weight. If wi ≥ w0/κ, a sub-set

B = w0, w1, ..., wi−2, wi−1 can be partitioned into at most i ∗ κ sub-cells whose values are

≥ wi, where split factor κ ≥ 1.

Proof of Theorem 3.1: If (i∗κ) + q sub-cells were generated by the partitioning algorithm,

whose weights ≥ wi, where q > 0, then ∑i−1
n=0 wn ≥ ((i ∗ κ) + q) ∗ wi ≥ i ∗ w0 + q ∗ wi.

This leads to contradiction since
∑i−1

n=0 wn can at most be i ∗ w0.

Based on Theorem 3.1, we can simultaneously split cells with weights w0 to wi when

wi ≥ w0/κ. An algorithm can control the degree of concurrency by choosing κ. Moreover,

by adjusting the value of κ, we can trade off speed-up vs accuracy of a parallel partitioning

method. Here the accuracymeans the similarity of the partitioning grid produced by parallel

method compared to the sequential method.

By applying Theorem 3.1, we have incorporated a heuristic in our OpenMP algorithm

which compares the weight of a cell against the cell with the maximumweightwmax. A cell

other than the cell with wmax can be partitioned if its weight is ≥ wmax/κ, where κ ≥ 1.

The value of κ can be customized. With lower value of κ, the output of parallel partitioning

is closer to a sequential partitioning.

Algorithm 5 describes the OpenMP based Parallel Quadtree partitioning algorithm. A

user provides the desired number of partitions in the grid. C is the set of candidate pairs.

Elements in C contains points with weights. The weight of a cell is the summation of the

weights of candidates in that cell. Initially, G only contains an MBR, which is denoted by

47

Algorithm 5 OpenMP based Quadtree Partitioning Algorithm
1: Input: Candidate collection C, target number of cells N , GlobalMBR, maximum

OpenMP tasks P , number of OpenMP tasks counter in queue R, threshold T
2: Output: A list of grid cells G
3: Initialize G← GlobalMBR
4: Initialize R← ∅
5: while number of cells less than N − T do
6: counter ← 0
7: #pragma omp parallel num_threads(P)
8: {
9: #pragma omp single
10: {
11: //Only the main thread adds tasks
12: for i = 0; i < P ; i++ do
13: if G[i].weight ≥ G[0].weight/κ then
14: counter++
15: #pragma omp task
16: R[i]← Quadtree partition on G[i]
17: end if
18: end for
19: }//End omp single
20: #pragma omp taskwait
21: }// End omp parallel
22: G.delete(0, counter − 1)
23: //In each iteration the number of tasks may vary
24: G← all elements in R
25: R← ∅
26: G.sort() // in descending order of cell-weights
27: end while
28: //After loop terminates, G’s size is around N − T + 4P
29: Sequential Quadtree partitioning of G to the size of N

48

GlobalMBR in the algorithm, that covers all objects in R and S. During the execution

of the algorithm, G will contain sub-cells generated at a given time and elements of G are

sorted by their weights in descending order. Cells whose weights are≥ κ∗G[0].weight are

subdivided concurrently via OpenMP tasks. The computations in Step 9 include distribution

of the candidates in a cell among its sub-cells and calculating the weights of the new sub-

cells.

The task number is bounded by the number of CPU coresP to achieve a balance between

concurrency and partitioning quality. A list R is used to retrieve grid cells from tasks, as

directly writing to G will cause a race condition. After all tasks are completed, all cells

which were selected for partitioning will be removed from G. Next iteration begins when

G is sorted. A threshold T is needed to avoid generating more sub-cells than required.

Taking parallel Quadtree partitioning as an example, T can be set to 4 ∗ P or more.

3.5 GPU Acceleration of Adaptive Partitioning

Given two input layers (files), we need to find out the candidates in order to esti-

mate workload in spatial join. However, sequential enumeration of candidates based on

Algorithm 4 on a CPU becomes time-consuming for large data sets. Algorithm 4 takes

O((m + k) ∗ log(n)) time using R-tree data structure, where n and m are the number of

geometries in the two input datasets. k is the average size of Rtree query results. However,

on a GPU, there is a lack of a fast algorithm with O((m + k) ∗ log(n)) time.

A brute force approach for finding candidates employs all-to-all intersection test on two

input datasets. This can be easily implemented on a GPU. However, the performance will

degrade for larger inputs because of the quadratic nature of the algorithm. For datasets with

sparse output (small k), this algorithm is inefficient and does not utilize the GPU parallelism

effectively. Sparse output happenswhenMBRs from one dataset only intersects with a small

set of MBRs from the other dataset.

We employ data partitioning as a divide and conquer strategy. Data partitioning of in-

put MBRs leads to space partitioning. This leads to a filter-and-refine approach for finding

49

candidates [54]. Figure 3.3(a) shows the data partitioning approach where MBR approxi-

mations of geometries are shown as blue and red rectangles. The main idea is to cluster the

MBRs of each layer after sorting of MBRs on x-coordinate. The clustering produces data

partitions that we refer to grouped-MBRs or GMBRs. Next, in Figure 3.3(b) we show the

filter step, where some MBRs that are not in the common area between the two GMBRs,

are discarded from further processing. Finally, after reducing search space, candidate pairs

are computed by overlap tests among the remaining MBRs.

(a) Two GMBRs

(b) Candidate pairs

FIGURE 3.3 Visualization of Algorithm 6 and 7

50

To better understand GPU-ADP, we visualized the processes of Algorithm 6 and 7 as

in Figure 3.3.

Figure 3.3(a) is the visualization of Algorithm 6. TwoGMBRs are formed based on two

sub-sets of MBRs.

Figure 3.3(b) is the visualization of Algorithm 7. Only MBRs within or intersect with

the intersection of two GMBRs are considered.

GPU has been used on partitioning geospatial join using bitmap quadtree approach in

[61], and building quadtree in [62]. Generally, quadtree approaches on GPUwork on points

without weight, while ADP uses MBRs with weights to partition. We need to solve these

two problems to take advantages from GPU.

Algorithm 6 describes the implementation of a filter. The core idea of Algorithm 6 is to

partition input MBRs input many groups of MBRs, and MBRs are geographically closed to

each other in a subgroup. The input is a set of MBRs from one dataset. The output Groups

is a set of MBR groups, along with the large MBRs of every group. The sorting procedure

guarantees that MBRs in one group are geographically nearby. Sorted MBRs are divided

into small sets of a given size,GROUP_SIZE, to take advantage of the GPU architecture.

A GPU block can be assigned one or more groups of MBRs. The block finds the overall

MBR of a group, then push the result into Groups.

Algorithm 6 Algorithm for implementing an MBR filter on GPU
1: Input: A collection of MBRs, MBRs.
2: Output: A set of MBR groups denoted by Groups
3: Sort(MBRs, by min x)
4: Divide MBRs into subsets SUBs by size GROUP_SIZE
5: Assign SUBs to different GPU blocks
6: for Each GPU block do
7: for subi in SUBs assigned to the block do
8: GMBRi ← compute the overall MBR of subi

9: Groups← (subi, GMBRi)
10: end for
11: end for

After applying Algorithm 6 on both datasets, we use the outputs to find candidates on

51

GPU as shown in Algorithm 7. R_Groups and S_Groups are outputs of Algorithm 6.

The output C is a collection of candidates with weights. rgi and sgj are groups from

R_Groups and S_Groups respectively. Each GPU block is assigned one or more groups

from R_Groups, and find intersection for these groups with every group in S_Groups.

Wg is the total weight of all candidate pairs. Wg is used to decide minimum weight of a

partitioned cell by dividing the target number of partitions.

Algorithm 7 Algorithm for finding candidates on GPU
1: Input: Two sets of MBR groups denoted by R_Groups and S_Groups
2: Output: Candidate set denoted by C, global weight Wg

3: Assign R_Groups to different GPU blocks
4: for Each GPU block do
5: for rgi in R_Groups assigned to the block do
6: for sgj in S_Groups do
7: Find all intersections of all mbrs in rgi and sgj

8: Calculate all corresponding center points of intersection
9: Calculate all corresponding weights using weight equation.
10: C ← C ∪ tuple(intersections, centerpoints, weights)
11: Wg ← Wg + sum(weights)
12: end for
13: end for
14: end for

Algorithm 8 describes the GPU based Parallel Quadtree partitioning algorithm with

CUDA dynamic parallelism. It is modified based on a sample code3 provided by NVIDIA

to work on candidates with weights to produce partitioning cells, while the original code

only builds a quadtree index on points without weights. Due to the volume of the code,

Algorithm 8 only provides the general idea. The detailed pseudocode can be found in A.1.

In Algorithm 8, only one block is called initially. Four children blocks will be launched

if none of the stop criteria are met. The stop criteria include the customized number of target

partitions N , max_depth, minimum_weight, and minimum_candidates. max_depth

is the max depth of the quadtree approach can be, which is a GPU hardware limit. The

limit of N can be lifted to get better partition quality but less controllable on the number
3https://github.com/NVIDIA/cuda-samples/tree/master/Samples/cdpQuadtree

https://github.com/NVIDIA/cuda-samples/tree/master/Samples/cdpQuadtree

52

of produced cells. minimum_weight can be calculated by Wg ÷ N × ϵ, where Wg is

given by Algorithm 7 and ϵ ranges from 1 to 3 to avoid over partitioning on light cells.

minimum_candidates is a fixed value to avoid a cell contains too few candidate pairs.

When one of the stop criteria is met, the block writes its node_MBR to G and exists.

Initially, the entire collection of candidate pairs C with the Global_MBR as the

node_MBR are given to a single block. An node_MBR strictly covers all candidates

in its range. range is a pair of integers recording the start and end locations of C, ini-

tialed as (0, C.size). The initial depth depth is set to 1. N is the customized number of

target partitions. C is the set of candidate pairs with weights. The weight of a cell Wcell is

the summation of the weights of candidates in that cell. GlobalMBR is divided into four

equal-size sub-MBRs by computing its center point center.

Algorithm 8 GPU based Quadtree Partitioning Algorithm
1: Recursive function: __kernel__ quadtree_partition()
2: Input: Candidate collection C, target number of cells N , max_depth,

minimum_weight, minimum_candidates, node_MBR, range, depth
3: Output: A global list of grid cells G
4: Wcell ← sum weights of all candidates in range
5: if one or more stop criteria are met then
6: G← Node_MBR
7: return
8: end if
9: center ← node_MBR
10: Divide node_MBR→ four new_MBRs based on center for four children
11: Within range, divide C evenly and assign each thread one subset Csub

12: Count the numbers of candidates in four new_MBRs
13: Scan the threads’ results to get the numbers of candidates in four new_MBRs
14: Divide range→ four new_ranges based on the scan results
15: Move candidates to four sections based on the scan result
16: depth += 1
17: Launch four quadtree_partition() using new_ranges, new_MBRs, depth and other

old parameters

Each thread in a GPU block is assigned parts of the candidates Csub within the

range. A thread will first count how many candidates belong to each quarter. Thread 0

scans all counting results to make rooms for moving candidates from in_candidates to

53

out_candidates. Based on the scanning results, the input range is divided into four new

subranges to record the number of candidates belong to each subMBR. Each thread moves

all candidates in itsCsub to their correct position in out_candidates. depth plus one is used

for the children blocks. In the end, one thread of this grid launches four new blocks using

the updated parameters.

3.6 Parallel Adaptive Partitioning

In this section, we will discuss a parallel partitioning system to accelerate ADP using

MPI + Threads approach. In short, we first split the candidate pairs along x-axis among

compute nodes and then split those pairs along the y-axis among threads in a computing

node. Finally, each thread employs ADP to further partition the grid into a user-defined

number of partitions denoted by N .

First, we will describe how to partition a single layer of geometries using their MBRs as

input in the next subsection. Then, we will discuss how to use both layers to guide parallel

partitioning.

3.6.1 Parallel ADP for Distributed Memory

To speed up the partitioning algorithms, we designed a parallel partitioning algorithm,

called ParADP, by using a hybrid MPI and multithreaded implementation. MPI is only

used to facilitate data communication among the computing nodes. C++ Threads are used

within each multicore node. ParADP consists of a parallel MBR sorting phase, a data

communication phase, a work distribution phase, and a partition phase. Parallel Sorting

by Regular Sampling (PSRS) technique [63] is used for sorting regular samples of MBRs

taken from different compute nodes.

ADP for two datasets of size m and n using p nodes is shown next:

1) Parallel Sorting Phase: Each compute node reads m/p and n/p MBRs from the

two datasets respectively. Then each node sorts the MBRs from dataset I by the

maximum x-coordinate values. Each node chooses p regular samples and node 0

54

gathers all samples. Node 0 sorts all samples and chooses p − 1 pivot values from

the sorted sample list. Node 0 broadcasts all pivot values.

2) Communication Phase: Partition the whole world into p vertical stripes based on

the pivot values and assign each node a stripe. Each node marks the MBRs meant for

other p − 1 nodes for communication. Since each node has a fraction of the entire

data, it contains MBRs that do not belong to the stripe it is assigned. So, each node

sends MBRs to their corresponding nodes based on whether a given MBR overlaps

with a stripe. Also, MBRs belonging to the local stripe are received from other nodes.

These steps can be performed by using MPI_Send and MPI_Recv functions or using

MPI_Alltoall function.

3) In-memory Work Distribution Phase: After communication, each node sorts the

data it received by the maximum y-coordinate values of the MBRs from dataset II.

For creating horizontal stripes, each node chooses q− 1 pivot values from the sorted

maximum y values, where q is the number of cores in each compute node. Each

node partitions its stripe into q horizontal cells and redistributes its MBRs among the

respective cells. Each CPU core is assigned one cell.

4) Partitioning Phase: Here we use ADP algorithm as discussed earlier. Each cell cij

calculates its total weight wij by adding all candidates’ weights within it. Each node

gathers the total weight wi of its stripe and uses MPI_Reduce to get the total weight

W for the whole dataset. Every cell generates wij ÷W ×N number of sub-cells

using Quadtree partitioning, where N is the target number of cells required in the

grid.

The grid generated by the parallel partitioning system is different from a normal

Quadtree grid. An example is given in Figure 3.4 to show how ParADP works. Each

processor in ParADP gets a unique stripe and divides the stripe further among its cores. To

reach the user-defined target number of partitions, each core partitions the space within its

horizontal stripe independently.

Figure 3.5 shows a grid with 8192 cells generated by ParADP for the roads and the parks

55

FIGURE 3.4 ParADP using 4 compute nodes with 4 cores in each node. Longitudinal thick black
lines are generated first for rearranging data based on its stripe boundary in each node. The green
lines are generated by each node independently. Every CPU core/thread is assigned one cell. The
thin red lines are partitioning boundaries generated by each CPU core individually.

using 32 nodes on Bridges. There are 32 stripes which can be distinguished by different

coloring scheme.

3.6.2 Time Complexity

Execution time breakdown: 1) In the parallel sorting phase, sorting m/p MBRs on

each node takes O((m/p)∗log (m/p)) and communicating pivot values takes O(p2) time.

2) In the communication phase, each node gets approximately (m + n)/p MBRs and sends

(m + n) ∗ (p− 1)/p MBRs, which takes O(m + n) time. 3) In the work distribution phase,

each node sorts MBRs from dataset II and divides two datasets into q subsets, which takes

O(m/p∗log (m/p))+O(q∗log (m/p))+O(q∗log (n/p)) time. 4) The partition phase takes

O(mij ∗ nij) time, where mij and nij represent the number of MBRs in a cell from dataset

I and II respectively.

Best and worst case: ADP takes O(mn) time because an MBR in dataset I can poten-

tially overlap with all the MBRs in dataset II. However, in ParADP, MBRs from dataset I

56

FIGURE 3.5 Parallel partitioning of the roads and the parks into 8192 grid cells using ParADP

is roughly equally divided among p nodes. PSRS algorithm ensures that a processor ends

up with at most 2m/p objects [63]. If we assume that MBRs are drawn from uniform dis-

tribution, each compute node roughly gets m/p MBRs.

In the worst case,m/pMBRs from dataset I andn/q MBRs from dataset II, are clustered

in one cell (owned by a CPU core), while other cells only have MBRs from one layer only.

The time complexity in the worst case is the product of the number of MBRs from I and II,

i.e., O(mn/(pq)). Even in the worst case, ParADP is pq times faster than ADP, which is

O(mn).

The best case is when both datasets are uniformly distributed. In this case, each CPU

core gets m/pq and n/pq MBRs from the two datasets respectively. For the best case,

ParADP is (pq)2 times faster than ADP.

3.7 Experimental Results

All of our experiments used various real world data sets, sports, lakes, parks, and roads,

which are taken from SpatialHadoop website4. The attributes of the datasets are shown in

Table 3.1. ADP in this section refers to the sequential version.

Most of the experiments on CPU are done on a supercomputer named Bridges5 at the

57

Name Type #Geometries File size

sports Polygons 1.8 M 590 MB
lakes Polygons 8.4 M 9 GB
parks Polygons 10 M 9.3 GB
Roads Polylines 72 M 24 GB

TABLE 3.1 Attributes of the data sets

Pittsburgh Supercomputing Center. Bridges has 752 regular nodes and each node has 2 Intel

Haswell (E5-2695 v3, 14 cores each processor) processors running at 2.3 - 3.3 GHz with

128 GBs of memory. The experiments on GPU are done on a single Nvidia Titan V GPU.

Titan V has Volta architecture. It has 12 GB HBM2 memory and 5120 CUDA cores.

In the subsections below, we have provided the storage space savings due to our du-

plicate avoidance technique. We performed experiments to analyze ADP’s execution time.

The weak scaling and strong scaling experiments are designed for testing the scalability

of ParADP. The partition qualities of ADP, ParADP, Quadtree Partitioning, and Uniform

Partitioning were compared.

3.7.1 Performance of Output-sensitive Duplication Avoidance

FIGURE 3.6 Storage space needed using different partitioning techniques

Three pairs of real world data sets were used: 1) lakes and sports, 2) roads and sports,

and 3) roads and lakes. By storing in Well Known Text (WKT) format, sports, lakes and

roads take 24 GB, 9 GB, 590 MB disk space respectively. They were partitioned into 1024,

2048, 4096, 8192, 16384 parts using three techniques: ADP, Quadtree, and Uniform grid.
5bridges.psc.edu

bridges.psc.edu

58

Then the geometries in each grid cell were stored separately in a file and written to hard

disk inWKT format.

To evaluate the performance of our new duplication avoidance technique on the pre-

processing stage of spatial join, ADP, Quadtree, and Uniform partitioning were used on

different pairs of datasets. Their outputs were stored in a hard disk. We applied output-

sensitive duplication avoidance technique in ADP only to compare the improvement in

space complexity. In Figure 3.6, in all situations, ADP generates fewer data than Quadtree

and Uniform partitioning. In the case of partitioning sports and lakes into 1024 cells, the

total size of files generated by ADP only use around 10% of the disk space used by data

generated by Quadtree and Uniform partitioning.

When one dataset is much smaller than the other one, the number of candidate pairs

may be smaller than the number of geometries in the two datasets. ADP can take this

advantage and save disk space when the partitions are written to disk. This also means

less communication for an in-memory distributed PBSJ algorithm. When the number of

candidate pairs generated is high, such as 188 million, for lakes and roads, ADP may use

more disk space than the original files. However, ADP still uses less space than Quadtree

Partitioning because ADP stores geometries that are part of the candidate pairs only. As

Quadtree partitioning generates more cells in areas with high density than Uniform grid,

there is a higher chance of geometries being duplicated in Quadtree partitioning, which

results in higher disk space consumption.

3.7.2 OpenMP Quadtree Partitioning Speedup

To evaluate the performance of the OpenMP based Quadtree partitioning, we used 3.3

million points which are the center points of a candidate’s MBR intersections from lakes

and sports generated by Algorithm 4. Several experiments were done by using a different

number of CPU cores. The value of κ is set to 2 and the threshold is set to 4P , where P is

the number of available CPU cores.

As shown in Table 3.2, the benefits of OpenMP parallelization is realized for higher

59

0 2,000 4,000 6,000 8,000 10,000 12,000 14,000 16,000 18,000 20,000
0

5

10

15

Number of cells

Ti
m
e
(s
ec
on
d)

Max Time Min Time

FIGURE 3.7 Max process time and min process time for GEOS Intersects method using parks and
sports using an increasing number of grid cells generated by ADP. 84 cores are used for all cases.

number of cells. For 32K cells, OpenMP based Quadtree partitioning achieved its highest

speedup of 2.63 compared to the sequential Quadtree partitioning. Performance is impacted

by the lack of scalable multithreaded R-tree library that we use internally in Line 9 of Al-

gorithm 5.

Cores \Cells 1024 2048 4096 8192 16384 32768

1 16.03 18.33 21.09 27.10 42.43 99.39
4 16.17 18.43 21.06 26.18 35.21 62.09
8 16.06 18.31 21.57 26.54 33.42 51.87
16 15.99 18.26 20.54 24.66 30.84 50.22
32 15.41 17.79 19.93 24.04 28.89 38.05

TABLE 3.2 OpenMP based Quadtree Partitioning time (seconds)

3.7.3 Computing cost for ADP

We designed several experiments to test the impact on ADP quality using different par-

tition numbers. Parks and sports data are partitioned into 1024, 2048, 4096, 8192, 16384

cells for five experiments respectively. For all cases, three nodes (84 cores) on Bridges are

used. As shown in Figure 3.7, with a higher number of partitions, the gap between maxi-

mum and minimum MPI process execution times narrows for GEOS Intersects method.

This demonstrates that load-balancing improves for a higher number of partitions for ADP.

60

Partitioning cost is determined not only by the number of objects in the two layers but

also by the number of candidate pairs found during the filtering phase. The number of

candidates found in the filtering phase using Algorithm 4 are as follows:

1) Parks and sports is about 2.7 millions.

2) Roads and parks is about 8.1 millions.

R⊕ S Partition Number Tcand(s) Tquad(s) Ttotal

parks ⊕ sports 8192 835.69 28.43 864.12
parks ⊕ sports 16384 828.93 43.10 872.03
parks ⊕ sports 32768 853.57 99.32 952.89
parks ⊕ sports 65536 859.63 346.73 1206.36
roads ⊕ parks 8192 19714.03 1222.69 20,936.72
roads ⊕ parks 16384 19193.30 1562.82 20,756.12
roads ⊕ parks 32768 19972.41 1975.74 21,948.15
roads ⊕ parks 65536 19829.00 2757.72 20,756.12

TABLE 3.3 ADP total and break-down execution time for different pairs of datasets

Table 3.3 shows the time it takes for ADP on different pairs of datasets to generate a

given number of partitions. Tcand is the time used for finding the candidates as in Algo-

rithm 4. For the same pair of datasets, Tcand doesn’t change as the number of candidates

doesn’t change much when the partition number changes. Tquad is the time for implement-

ing Quadtree partitioning.

When the size of the two datasets increases, the time for finding candidates pairs grows

faster than the Quadtree partitioning time. This is shown in Table 3.3. Partition based spatial

join is affected by data partitioning [10] cost. From Table 3.3, we can see that partitioning

can take a lot of time when the target partition number is large for bigger datasets. Even

though ADP is effective as we saw earlier, it is time-consuming. This motivates the need

for parallel partitioning.

61

R⊕ S Partition Number Tcand(s) Tquad(s) Ttotal Speedup

parks⊕sports 8192 1.84 0.55 2.39 361.56
parks⊕sports 16384 1.77 0.55 2.32 337.08
parks⊕sports 32768 1.75 0.56 2.31 412.51
parks⊕sports 65536 1.77 0.59 2.36 511.17
roads⊕parks 8192 50.23 10.33 60.56 345.72
roads⊕parks 16384 50.56 10.32 60.88 340.93
roads⊕parks 32768 50.24 12.78 63.02 348.27
roads⊕parks 65536 50.19 15.90 66.09 314.06

TABLE 3.4 ADP-GPU execution time for different pairs of datasets on an Nvidia Titan-V

3.7.4 GPU Speedup for ADP

Table 3.4 shows the time it takes for using CUDA to perform ADP on different pairs of

datasets to generate a given number of partitions.

Tcand is the time used for finding the candidates, which is a combination of Algorithm 6

and Algorithm 7. For the same pair of datasets, Talg1 doesn’t change as the number of

candidates doesn’t change much when the partition number changes. Tquad is the time for

implementing Quadtree partitioning.

When the size of the two datasets increases, the time for finding candidate pairs grows

faster than the Quadtree partitioning time. This is shown in Table 3.4. The time needed

for Quadtree partitioning also increases with increased in size of data. Compared with

sequential ADP in Table 3.3, our GPU implementation on NVidia Titan V provides a stable

speedup between 314 to 511 times. The GPU here has equivalent performance with 11 to

18 normal computing nodes (28 cores each node) on Bridges.

The drawback of this CUDA implementation is the memory limit of a GPU. Not only

the MBRs and weights of two input datasets need memory space, the generated candidates

and their weights also need additional GPUmemory. For instance, the GPU we used has 12

GB memory, which allows a single run of ADP-GPU to partition roads and parks at most.

For any larger pair, multiple runs of ADP-GPU are required.

62

3.7.5 Weak scaling for ParADP

Here we discuss weak scaling experiments for ParADP. We generate new pairs of

datasets by duplicating geometries in parks. When the number of compute nodes increases

by 16, one duplication of parks is added to the workload and the number of cells in the

target grid increases by 8192. As shown in Table 3.5, ParADP has good weak scaling.

R S Candidates Nodes Grid cells Ttotal(s)

roads parks 75 M 16 8192 49.32
roads 2*parks 150 M 32 16384 38.63
roads 3*parks 225 M 48 24576 36.89
roads 4*parks 300 M 64 32768 41.45
roads 5*parks 375 M 80 40960 40.13
roads 6*parks 450 M 96 49152 32.26
roads 7*parks 525 M 112 57344 30.77
roads 8*parks 600 M 128 65536 31.70
roads 9*parks 675 M 144 73728 30.56

TABLE 3.5 ParADP execution time for weak scaling

3.7.6 Strong scaling for ParADP

For strong scaling experiments, roads and parks are used. Nine experiments are per-

formed with 16, 32, 48, 64, 80, 96, 112, 128, 144 nodes on Bridges. Each node on Bridges

has 28 cores.

In Table 3.6, Ttotal stands for the total time for ParADP and Ts stands for the time for

parallel sorting step. In all instances, ParADP has high speedups as shown in Figure 3.8.

ParADP has high efficiency which ranges from 0.84 to 1.02, where the highest efficiency

of 1.02 is achieved with 32 nodes. The reasons that the efficiency is greater than 1 are that

1) with data decomposition for both layers, the query range for every geometry is sharply

reduced; 2) within a certain number of nodes, the parallel sorting time decreases with more

nodes as R doesn’t change.

63

0 1,000 2,000 3,000 4,0000

1,000

2,000

3,000

Number of cores

Pa
rA
D
P
sp
ee
du
p
w
.r.
t.
A
D
P ParADP speedups

FIGURE3.8 Speedups of ParADPw.r.t. ADP for generating a gridwith 65536 cells using two datasets
- 1) roads (72 million polylines) and 2) parks (10 million polygons).

R S Partition Number Nodes Ttotal(s) Ts(s)

roads parks 65536 16 55.56 1.82
roads parks 65536 32 24.69 0.73
roads parks 65536 48 19.32 0.64
roads parks 65536 64 13.80 0.38
roads parks 65536 80 11.98 0.32
roads parks 65536 96 10.13 0.15
roads parks 65536 112 9.64 0.15
roads parks 65536 128 7.46 0.14
roads parks 65536 144 6.84 0.14

TABLE 3.6 ParADP execution time for strong scaling

3.7.7 Partition Quality

We compare the partition qualities between ADP, Quadtree partitioning, and Uni-

form partitioning. For the partitioned data, we have implemented refinement phase us-

ing 1) GEOS Intersects method and 2) GEOS Intersection. Intersection method takes

more time than Intersects method because the output geometry needs to be computed for

Intersection. Round-robin scheduling of partitions/cells to MPI processes is carried out.

Static scheduling captures the partition quality for a given partitioning technique. Maximum

and minimum execution time is reported. The maximum time taken by a thread/process de-

64

termines the end-to-end time.

FIGURE 3.9 Box-plot showing distribution of execution time by different MPI processes running
GEOS Intersects query using parks and the sports data. Each time the data sets are partitioned into
8192 parts. Max process execution time along with few outliers are also shown for each partitioning
scheme.

Figure 3.9 shows the comparison of execution time for ADP, Quadtree Partitioning,

and Uniform Partitioning. As shown in the figure, with more MPI processes involved, the

average execution times decrease. However, using Uniform partitioning, the maximum

MPI process execution time doesn’t change much; using Quadtree partitioning, the overall

maximumMPI process execution time changes slightly but in some cases it increases. Since

the execution time of a parallel application is decided by the thread taking the longest time

(straggler effect), using ADP minimizes the overall execution time.

Figure 3.10 shows the timing for the refinement phase using GEOS Intersection

method. We compare the partition quality using ADP, Quadtree partitioning, and ParADP.

Figure 3.10(a) shows the maximum (max) and minimum (min) MPI process times when an

MPI-GIS implementation applied Intersection on the partitioned parks and sports. Both

data are partitioned into 8192 parts. As shown in the figure, the max process times for

ParADP are much lower than the max process times for Quadtree partitioning. The min

process times for ParADP are higher than the min process times for Quadtree partitioning.

The MPI process times for ParADP-based partitioned data are in a much narrower range

than the MPI process times for Quadtree-based partitioned data. Figure 3.10(b) shows the

65

28 56 84 112 140 168
0

20

40

60

80

100

Number of MPI processes

Ex
ec
ut
io
n
tim

e
(s
ec
on
d)

UNImax UNImin QDmax QDmin ADPmax ADPmin

(a) Applying GEOS Intersection on two datasets generated by ADP, Quadtree parti-
tioning, and uniform partitioning.

28 56 84 112 140 168
0

10

20

30

40

50

Number of MPI processes

Ex
ec
ut
io
n
tim

e
(s
ec
on
d)

QDmax QDmin ADPmax ADPmin ParADPmax ParADPmin

(b) Applying GEOS Intersects method on two datasets generated by ADP, ParADP,
and Quadtree partitioning.

FIGURE 3.10 Maximum andminimum process execution times. Datasets parks and sportswere used
and partitioned into 8192 parts.

66

FIGURE 3.11 Execution time of applying Intersects on different cells of the partitioned parks and
sports. The data sets are partitioned into 8192 cells by ParADP and Quadtree partitioning.

FIGURE 3.12 Execution time of applying Intersects on different cells of the partitioned parks and
sports data. The data sets are partitioned into 8192 cells by ParADP and ADP.

67

maximum (max) and minimum (min) MPI process times when Intersects operation is

applied on the partitioned parks and sports. ParADP shows improvement over Quadtree

partitioning in both experiments.

The Intersects execution times for processing each cell of partitioned parks and sports

are shown in Figure 3.11. The parks and sports are partitioned to 8192 cells by ParADP

and Quadtree partitioning. As we can see, the Intersects execution times for processing

ParADP-based partitioned cells are within a narrow range and none of them exceed 0.8

second. On the other hand, the Intersects execution times for processing Quadtree-based

partitioned cells have higher variation and the longest execution time taken is 7 seconds. If

we consider a large scale HPC system with as many CPU cores as the number of partitions

and each CPU core is assigned data in a pair of cells, spatial join can be done within 0.8

second using ParADP partitioned cells while 7 seconds are needed to process Quadtree-

based partitioned cells.

The Intersects execution times for processing each cell of partitioned parks and sports

are shown in Figure 3.12. The parks and sports are partitioned into 8192 cells by ADP

and ParADP. Cells with higher cell ID take a longer time in ADP. This is because cells

with higher ID have larger weight. Compared to ADP, ParADP shows a narrower process

execution time range and a lower value for maximum MPI process execution time.

ParADP shows better partition quality than Quadtree partitioning. Once the candidate

pairs are partitioned among the CPU cores, ParADP internally calls ADP. In this way,

ParADPmethod can exploit parallelism in adaptively partitioning the workload. The above-

mentioned experimental results prove the benefit of partitioning workload by considering

both layers versus partitioning data in a layer by layer basis.

For load balancing spatial computations, an alternative approach is to start with a grid

that is based on a single layer (dataset) and dynamically rebalance the workload in cells that

have higher workload. In a distributed memory environment, this leads to the movement

of complex geometries from an MPI process with higher workload to another MPI process

with lower workload. Moreover, there is overhead involved in serializing, deserializing

68

and parsing the geometries due to communication. This is based on our prior experience

of parallelizing spatial join with ADLB library for load balancing. The size of individual

geometries varies from few KB to 10 MB. Therefore, the cost of dynamic load balancing

while running partition-based spatial join is quite high. Thus, we explored the feasibility of

generating a grid with user-specified number of partitions in this paper.

3.8 Conclusion

In this paper, we proposed Adaptive Partitioning techniques. ADP can partition spatial

data like polygons and polylines in a load-balanced fashion. We have presented experi-

ments on various real-world data sets and evaluated the partition quality between ADP and

two classic partitioning techniques, Quadtree partitioning, and Uniform partitioning. A new

duplication avoidance technique is introduced by which unnecessary duplication of geome-

tries spanning multiple grid cells is reduced. OpenMP and GPU versions of ADP was also

presented. ADP-OpenMP provides an easy parallization of ADP, and ADP-GPU provides

competitive speedup for ADP on a single machine.

We have also designed a parallel partitioning system. Parallel ADP can partition large

real-world spatial datasets with data skew in a shorter time. ParADP algorithm has been

shown to be scalable on thousands of CPU cores. ParADP shows better partition quality

than ADP and Quadtree-based partitioning. The weak scaling and strong scaling experi-

ments prove that ParADP has good scalability and improves performance with increase in

the size of compute cluster up to 4032 CPU cores.

3.9 Acknowledgment

The work presented in this chapeter is partly supported by the National Science Foun-

dation CRII Grant No.1756000 and the Northwestern Mutual Data Science Institute. This

work used the NSF Extreme Science and Engineering Discovery Environment (XSEDE),

which is supported by ACI-1548562.

69

CHAPTER 4
LOAD BALANCING SPATIAL JOIN BY WORK STEALING ON SHARED AND DISTRIBUTED

MEMORY

4.1 Introduction

Spatial join is an important operation for analyzing spatial data. Parallelization is essen-

tial to accelerate spatial join performance. However, load imbalance due to data skew limits

the scalability of parallel spatial join. There are some techniques to address this problem.

One of the techniques is to use data and space partitioning to minimize workload differ-

ences across threads/processes. However, load imbalance still exists due to differences in

join costs of different pairs of input geometries in the partitions. Another technique is to

share spatial join tasks among threads using a shared queue.

For the load imbalance problem, we present our parallel spatial join system, WSSJ-DM.

WSSJ-DM benefits from balanced partitioning research. Moreover, we experimentally

show that our system works well with unbalanced partitioning and spatially un-partitioned

datasets, with minor impact on its overall performance. WSSJ-DM uses work stealing tech-

nique to share join tasks on shared memory. We study the effect of memory affinity in work

stealing operations involved in spatial join in a NUMA-aware system. On distributed mem-

ory, non-blocking communications are used to shuffle tasks between busy and idle nodes.

In all the experiments we have done, WSSJ-DM significantly outperformed static and

dynamic load balancing methods. WSSJ-DM performed spatial join using ST_Intersection

on Lakes (8.4M polygons) and Parks (10M polygons) in 30 seconds using 35 compute

nodes on a cluster (1260 CPU cores). A Master-Worker implementation took 160 seconds

in contrast.

This chapter is organized as follows. Section 4.2 introduces background information

and Section 4.3 introduces related work. WSSJ is introduced in Section 4.4, and is extended

for distributed memory in Section 4.5. Section 4.6 evaluates the performance of WSSJ and

WSSJ-DM. Finally, Section 4.7 concludes this work.

70

4.2 Background

In Geographic Information Systems (GIS) and spatial databases, two datasets are com-

bined based on some spatial relationship among geometries in the input datasets. For in-

stance, given two sets of polygons, R and S, find all the pairs of overlapping polygons

between the two sets, that is, for each polygon r in dataset R, find each overlapping poly-

gon s from dataset S. This is an example of spatial join [10].

In map overlay, superimposing one dataset containing hurricane swath (polygonal area)

and another dataset with county boundaries, is used to determine nearby rescue shelters.

Map overlay is the operation where two maps are combined to produce an output map [46].

In spatial analytics, combining two or more datasets gives us insights that are not available

in a single dataset. We will focus on spatial join and map overlay problems important in

spatial analytics [45].

In a spatial join implementation with a filter-and-refine approach, the computational

graph is constructed after loading the geometries from the two input maps and performing

spatial indexing and query operations. This graph represents the spatial overlap relation-

ships (many-to-many) from all the geometries of the first map to the geometries of the

second map. The resulting relationship graph is a bipartite graph (two disjoint sets for the

two input maps) where vertices are geometries and edges represent computational geom-

etry tasks. For real-world maps, the degree of the graph vertices varies widely. This data

dependent and irregular variation of degree is one of the factors behind load imbalance.

Another factor is variation of the size and density of geometries from one region of the map

to another [7, 8].

The overall load imbalance is determined by two factors - 1) size and distribution of ge-

ometries in the two input maps that need to be joined together by a process and 2) number

of outputs produced per process. The output-sensitive nature makes load balancing diffi-

cult because the number of outputs is not known a priori and can not be estimated easily

for complex geometries where approximations result in numerous false hits [9,54]. There-

fore, input data and intermediate output data partitioning techniques are used to minimize

71

variation of load across partitions [10, 28, 29].

An existing approach in partition-based spatial join (PBSM) is to create a certain number

of grid cells and assign the cells to processors [14, 20, 29, 46]. Some approaches use static

round-robin assignment [20, 29, 46] and others use dynamic load balancing [9, 14]. How-

ever, increasing the number of partitions with the number of processors for load balancing

leads to increase in problem size due to replication of geometries across partitions [10,14].

A geometry that overlaps more than one partition has to be replicated. This increases the

amount of work (compared to sequential work) as the number of partitions increase [10,14].

This limits the number of partitions. Our technique for load balancing is more fine-grained

because our tasks are at individual geometry level compared to existing approaches that

work at grid cell level. Our task construction enables fine-grained load balancing. In our

system, the dependency between filter and refine level tasks are handled without exposing

the dependencies to the work stealing runtime.

Engineering a work stealing spatial join system on distributed memory is challenging

because work stealing requires serialization and communication of complex geometries by

a busy sending process, and deserialization (parsing) of geometries at an idle receiving pro-

cess. This is a significant computation and communication overhead for large geometries.

However, this overhead is not present in a shared memory queue based implementation [9].

Another challenge is effective flow control among processes participating in pull-based task

sharing in spatial join.

Spatial partitioning for parallel spatial join is challenging with skewed data at scale.

Static and dynamic load balancing spatial join systems perform well with balanced par-

titions. For instance, MapReduce based systems like SpatialHadoop, GeoSpark, and

SparkGIS leverage the dynamic load balancing capability of Hadoop and Spark with well-

partitioned input data [7,64,65]. However, these systems do not support work stealing. This

is also the case with MPI-based spatial join systems like MPI-GIS and ParADP [28,29,56].

As such, a thread joining partitions with maximum work can become a bottleneck because

these systems do not support dynamic task sharing or dynamic re-partitioning. The pro-

72

posed WSSJ-DM system can handle this scenario at run-time because the idle processes

steal work from busy processes in a fine-grained manner.

Our flow control using MPI Remote Memory Access (RMA) guides the granularity and

timing of task sharing to keep the idle processes busy and while minimizing the overheads

at busy processes. The new design is able to leverage multiple compute nodes efficiently

to speedup parallel spatial join, in the presence of serialization and work coordination over-

heads. From a performance perspective, this is an improvement over shared memory spatial

join [9] and distributed memory MPI-based spatial join systems [28, 29, 46].

We present the effect of memory affinity in work stealing operations involved in spatial

join on a NUMA-aware system. Our results complement existing line of work on NUMA-

aware spatial join [66, 67].

Contributions of the work presented in this chapter are as follows:

• We provide a novel NUMA-aware Work Stealing Spatial Join system (WSSJ) on

shared memory. We extended WSSJ to distributed memory (WSSJ-DM).

• We demonstrate effective mitigation of data skew in a fine-grained manner to avoid

stragglers (threads taking much longer than others to finish). Both WSSJ and WSSJ-

DM are demonstrated to be load balancing and efficient.

• Both WSSJ and WSSJ-DM can perform a variety of spatial relationship joins and

spatial overlay joins. Our system can effectively handle data skew in spatially parti-

tioned and un-partitioned datasets.

4.3 Related Work

4.3.1 Spatial Join

Spatial join [10] involves two spatial datasets R and S. There are two types of Spatial

join operations: type 1 is to determine spatial relationship1, such as ST_Within, ST_Inter-

sects, and other operations; type 2 is to compute overlay area2, such as ST_Intersection,
1https://postgis.net/docs/reference.html#Spatial_Relationships
2https://postgis.net/docs/reference.html#Overlay_Functions

https://postgis.net/docs/reference.html#Spatial_Relationships
https://postgis.net/docs/reference.html#Overlay_Functions

73

ST_Union, and other operations. ST_Intersects is used to answer a query - Is there any

overlap between the two geometries? This operation is often faster because the computa-

tion can stop as soon as the spatial relationship is confirmed. Join operation of the second

type is used in map overlay, and it is more expensive because the entire output geometries

have to be computed.

A spatial join on two datasets can be performed in two phases: 1) filtering phase and

2) refinement phase. In the filtering phase, the minimum bounding rectangles (MBR) of

geometries are used to produce a collection of candidate pairs, in which MBRs of two

geometries from two datasets overlap.

The refinement phase then removes false positives and produces a set of pairs in rela-

tionship join or a set of new geometries in overlay join.

4.3.2 Load Balancing in Parallel Spatial Join

Spatial join parallelization has been discussed in [14,15]. Spatial join was implemented

on hypercube architecture of the Connection Machine [17] using Census TIGER/Line data.

[20] uses partitioning of universe into tiles (grid cells). The tiles are then assigned to pro-

cessors in a round-robin fashion. Declustering is proposed as a load balancing strategy in

[18,19]. [16] uses bitmaps to determine the number of spatial objects to perform dynamic

load balancing. SPINOJA [9] uses object decomposition based declustering to mitigate data

processing skew on shared memory. MapReduce-based spatial join systems first create data

partitions using various partitioning techniques and then use dynamic load balancing sup-

ported byMapReduce implementations like Hadoop and Spark to join grid partitions [7,65].

4.3.3 Work Stealing

Work stealing is a dynamic load balancing strategy [22–26]. This strategy has been used

in shared memory and distributed memory [23] load balancing solutions.

Chase-Lev’s lock-free deque [24] is an important data structure in many shared-memory

work stealing designs. The deque uses a dynamic-cyclic-array, which allows: 1) the owner

to push and pop elements from the top of the deque, 2) others to perform concurrent lock-

74

free steal from the bottom of the deque. Nhat’s Work Stealing Queue [25] implementation

in C++11 is based on Chase-Lev’s lock-free deque and shows a remarkable performance

in benchmarks. We use it in our work stealing implementations. For simplicity, we have

referred to Work Stealing Queue as queue.

4.3.4 NUMA

In non-uniform memory access, processor cores have access to local memory and re-

mote memory. Remote memory access is costly compared to local access. There has been

some earlier work on NUMA-aware algorithms. [67] discusses an experimental study on

enabling NUMA-aware main memory spatial join processing. [66] discusses a systematic

approach for efficient in-memory query processing on NUMA systems.

Many NUMA policies can be used on current Linux systems. MPOL_DEFAULT,

MPOL_INTERLEAVE, MPOL _PREFERRED, and MPOL_BIND are typically available.3

These policies can be set by calling a system function set_mempolicy. Our findings on

NUMA policies are novel.

4.3.5 RMA and MPI Non-blocking Communication

We have used one-sided (put/get) Message Passing Interface (MPI) functions for com-

municating data among cooperating. One-sided programming model is referred to as Re-

mote Memory Access (RMA) in MPI. It is suitable for expressing irregular communication

patterns that arise while coordinating tasks among processes in distributed memory [27].

Non-blocking MPI functions can be leveraged to overlap communication operations with

computational steps of spatial join.
3https://linux.die.net/man/2/mbind

https://linux.die.net/man/2/mbind

75

4.4 Implementation of Work Stealing Spatial Join

4.4.1 Work Stealing Queue

A simple work stealing system for spatial join on shared-memory consists of the fol-

lowing steps:

1) Create one thread at each processor and each thread uses a queue to hold tasks to be

scheduled.

2) Each thread pushes its tasks to its own queue from the bottom. And then pops and

processes tasks from the queue.

3) A thread can steal tasks from the top of other threads’ queues after all tasks in its own

queue are finished.

Based on these steps, we built a work stealing model for Spatial Join in shared memory

(WSSJ) shown as Figure 4.1. In the figure, there are multiple worker threads (m + 1) and

each worker thread holds its own queue. “Gen Tasks” stands for “Generate spatial join

tasks”. “Join OP” refers to Spatial Join operation. A worker thread generates tasks and

pushes these tasks into its queue. It can pop tasks from its own queue and steal tasks from

other threads’ queues.

A worker thread generates tasks and pushes these tasks into its queue. It can pop tasks

from its own queue and steal tasks from a victim’s queue. The victim can be chosen ran-

domly. In WSSJ, each worker performs the filtering phase and refinement phase indepen-

dently.

4.4.2 NUMAMemory Policies

The execution of spatial join computations are impacted by NUMA memory policies.

Spatial join algorithms allocate a temporary buffer to carry out intermediate steps of join

algorithm on two geometries. The spatial objects are copied to the temporary buffer to

carry out Quadtree partitioning of an individual geometry, to order the coordinates, and to

populate the intersection matrix.

76

FIGURE 4.1 TheWork Stealing Spatial Join model in shared memory (WSSJ). The blue arrows show
the direction of flows of Spatial Join tasks within a worker thread. The red arrows show the direction
of flows for stolen tasks.

The default NUMA policy on most Linux systems after boot-up is MPOL_DEFAULT,

which is “local allocation”. Under this policy, Linuxwill attempt to satisfymemory requests

from the nearest NUMA node of the CPU which submits the memory requests. MPOL_-

DEFAULT works fine in many scenarios. However, in terms of work stealing, a thread

on one NUMA node can steal a task from another NUMA node. A page in memory is

accessed by multiple threads. For spatial join, in all experiments we have conducted so far,

the tasks on a few worker threads (usually 1 to 4) take much longer to finish than the rest of

the threads. When multiple threads allocate and write to temporary buffers for tasks from

remote NUMA nodes, there can be memory requests congestion.

MPOL_BIND andMPOL_PREFERRED can mitigate the memory requests congestion

issue. Under these two policies, the temporary buffers are on the same NUMA node as the

pairs of geometries to be joined. The issue withMPOL_BIND is that it is a strict policy; the

OS can only utilize the memory on specified NUMA node(s).

Under MPOL_INTERLEAVE mode, the memory allocations are uniformly distributed

among all NUMA nodes. The temporary buffers are allocated in an interleaved manner as

77

the pairs of geometries are joined.

The NUMA effects discussed here are due to work stealing inherent in parallel spatial

join with higher number of threads. We compared the impacts of different memory policies

in Section 4.6.1.

4.4.3 Algorithm

Combining the ideas expressed in Section 4.4.1 and 4.4.2, we here present our final

NUMA-aware Work Stealing algorithms for spatial join.

Algorithm 9 describes the way that a worker thread generates spatial join tasks and push

those tasks into its Work Stealing queue. R and S stand for two spatial datasets to be joined.

WSSJ uses spatially partitioned datasets. For instance, spatial partitioning of R and S into

4 partitions will result in grid cells R1 to R4 and S1 to S4. This creates 4 join tasks, (R1,

S1), (R2, S2), (R3, S3), (R4, S4). Each thread is assigned one or more partition(s) as input.

queues[T] are instances of Work Stealing Queue, where T equals the number of worker

threads.

Task Construction: A spatial join task consists of a subset of geometries from R and S

that spatially overlap. We chose one geometry from R and multiple geometries from S as a

unit task in our system. For overlap detection using minimum bounding rectangle (MBR)

approximation of geometries, we use a search tree (index) for MBR query. Assuming, a

join on partition pair (R1, S1), where R1 = {r0, r1, .., rm} and S1 = {s0, s1, .., sn}, a unit

task is a key-value pair, where key is ri, i ∈ {0, m} and value is an arbitrary subset from

S1, e.g., {s0, s2, .., sk}, returned by query operation (Line 8).

The Break_Down_Task() function splits a large task into a set of smaller tasks by break-

ing down the value part of the task. We set a Thresholdtask as the size limit of a task.

This step is necessary as a huge geometry r usually returns a large query result in Line 8 of

Algorithm 9, which is one reason of load imbalance.

In WSSJ, each thread occupies one CPU and Algorithm 9 is executed per thread inde-

pendent of other threads.

78

Algorithm 9 Algorithm for Pushing Jobs into Queues
1: Input: Subsets of spatial objects from R and S.
2: Output: Queue queues[T] populated with tasks.
3: Assign NUMA policy.
4: Initialize all the queues in queues[T].
5: for Thread ti in Threads do
6: Build an index Indexi using MBRs of R
7: for Object sj in S do
8: tasks← Indexi.query()
9: sub_tasks← Break_Down_Task(tasks)
10: queues[i].push(sub_tasks)
11: end for
12: end for
13:

Algorithm 10 Algorithm for Work Stealing Spatial Join
1: Input: Queue queues[T] populated with tasks.
2: Output: Spatial Join results.
3: for Thread ti in Threads do
4: while queues[i] not empty do
5: task ← queues[i].pop()
6: resultsi ← Spatial_Join_OP(task)
7: end while
8: while Not all queues empty do
9: victim← Get_Victim()
10: while queues[victim] not empty do
11: task ← queues[victim].steal()
12: resultsi ← Spatial_Join_OP(task)
13: end while
14: end while
15: end for

79

Algorithm 10 describes how to choose a victim and steal tasks from the victim’s queue.

TheGet_Victim() function provides the next available victim to be stolen. It follows a cyclic

order, beginning with the caller thread’s rank+1. This schedule is simple and robust; it can

be as efficient as other schedules in WSSJ. Work Stealing Queues store pointers to tasks.

A worker thread ti first pops tasks from its own queue queues[i], and perform join

operations until its queue becomes empty. Then it finds a victim thread. The thief thread

will keep stealing and performing join operations until the victim’s queue becomes empty.

All join results generated by ti are pushed into resultsi.

4.4.4 Handling Partitioned and Un-Partitioned Datasets

Generally, parallel spatial join implementations use spatially partitioned datasets. Par-

titioned datasets are useful to reduce data skew in tasks and make it possible to process

datasets larger than available memory. On the other hand, spatial dataset partitioning re-

quires extra time and extra storage space. As WSSJ can share tasks among threads, it is

feasible to use spatially un-partitioned datasets (smaller than memory limit) directly.

Let each worker in WSSJ take a part of R and a part of S as its input. The subsets of

R and S can be randomly distributed, as long as the mapping relations of all subsets can

be assembled back to the same relations mapping R to S, as shown in Formula 4.1. As

there is no need to consider the spatial localities of geometries in R, this step can be done

at run-time with no additional cost compared with using partitioned datasets.

In Formula 4.1, R and S are randomly distributed into n and m parts respectively. ⊕

stands for a spatial join operation. We can get the same join results ofR andS by performing

join operations on all pairs of Ri and Sj .

R = R0 + R1 + ...Rn

S = S0 + S1 + ...Sm

R⊕ S =
n∑

i=0

m∑
j=0

Ri ⊕ Sj

(4.1)

80

WSSJ using un-partitioned datasets takes slightly longer to finish when compared to

partitioned datasets. The benefit of using un-partitioned data is that no data pre-processing

is required, which needs extra computing resources and storage space.

4.5 Framework of Work Stealing Spatial Join on Distributed Memory

We introduced a lock-free deque based work stealing spatial join system (WSSJ) in Sec-

tion 4.4. A work stealing spatial join system was built on distributed memory architecture

with WSSJ working on individual compute nodes. We call it WSSJ-DM in short.

Now we will show how to coordinate data movement due to work stealing across nodes

and associated flow control. We are going to describe the overall design of WSSJ-DM

4.5.1 Overall Framework

In our WSSJ-DM design, each node still uses the shared memory work stealing system,

plus one coordinator. The coordinators are used to communicate with other nodes and

shuffle tasks, as shown in Figure 4.2. A coordinator can spawn multiple threads to speed

up the send/recv procedure.

In Figure 4.2, each dashed red rectangle stands for aWSSJ-DMnode. There aremultiple

nodes. Each node has multiple worker threads, and one coordinator. Each thread has one

work stealing deque. The worker threads and dequeues are same as in WSSJ.

In the beginning, each node takes grid cells of R and S in a Round Robin manner. A

worker thread follows the same flow path as WSSJ: parsing data files, building indices,

and pushing tasks into their own work stealing queues. After all the tasks get pushed, the

coordinator (Coord A) thread begins to monitor its RMA window. If all local queues are

empty, Coord A begins to seek job from other nodes by writing to the RMA window of

other coordinators. Another node (Coord B) notices the change in its RMA window. Coord

B resets its window (to allow new starving coordinator) and begins to steal tasks from local

queues and then sends those tasks to Coord A.

We discuss the steps in detail in the following subsections.

81

FIGURE 4.2 The Work Stealing Spatial Join system on distributed memory (WSSJ-DM). The solid
blue arrows show the directions of the flows of spatial join tasks. The dashed orange arrows show
the directions of the flows of control messages. “NB send/recv” stands for “MPI non-blocking send
or receive”. “Gen buf” stands for ”Generate send buffer” and “Parse received buffer”.

4.5.2 Worker Threads

Same as in WSSJ, the worker threads: 1) build index on their share of whole R and S

datasets; 2) form spatial join tasks; 3) push tasks into their own deque; 4) pop tasks from

their own deque and execute the tasks; 5) steal tasks from other threads in the same node

and execute the tasks. Additionally, after all local tasks are finished, the worker threads in

WSSJ-DM wait for tasks from their coordinator, which ”steal” tasks from other coordina-

tors. The coordinators also inform their worker threads that all tasks across all nodes are

done.

The worker threads mainly focus on performing join operations, and behave similarly

to worker threads in WSSJ. In the next two subsections, we will discuss the core module of

82

WSSJ-DM, the coordinators.

4.5.3 Coordinator in Send Status

The coordinators are threads within a WSSJ-DM node meant to facilitate communica-

tion with other nodes. A coordinator can be in two status based on the number of all tasks

in local work stealing queues: 1) send status and 2) receive status.

A coordinator (Coord A) maintains an RMA window, initially as waiting for task re-

quests. It waits until all local spatial join tasks are enqueued. It then steps into the Send

Status. Coord A checks its RMA window periodically. If no change is found, it will up-

date the window with its current remaining tasks and then goes on sleep until next period to

save CPU cycles for the worker threads. If there is information that other coordinators are

looking for tasks, Coord A will mark those coordinators as starving. It then begins to steal

tasks from local queues and send those tasks to other coordinators.

The tasks are converted to basic data type arrays to be used by MPI functions. Coord A

uses MPI non-blocking send function to send those task arrays. It will keep sending tasks

to starving coordinators until all local tasks are done or almost done. Coord A can fork

multiple threads to accelerate the task sending process.

While sending tasks, Coord A still checks and updates its RMAwindow periodically, to

be found by other starving processes. Coord A also uses MPI non-blocking receive function

to gather feedback from other coordinators. If it finds that some coordinators have received

too much work to finish in time, it sends a temporary stop sign to those coordinators and

stops sending tasks to them. When all local tasks are done, Coord A sends a stop sign to all

starving coordinators in its record.

4.5.4 Coordinator in Receive Status

After all local tasks are done, Coord A enters the Receive Status. Coord A checks the

RMA windows of other coordinators. If a window indicates that all its owner’s tasks were

finished, Coord A records this information and checks the next available RMA window.

Among all the other coordinators, it will ask for tasks from the one with the most tasks left

83

(lets name it Coord B). If a window is written by other starving coordinators, Coord A will

skip this window.

In case when its task request is put on Coord B’s window, Coord A will use MPI non-

blocking receive function to wait for tasks. When the data is received, Coord A parses

the received data to spatial join tasks and pushes those tasks to an empty queue. This task

receiving-parsing-pushing progress can be accelerated by using multiple receive threads.

After that, Coord A marks the queue to allow workers to steal.

Coord A sends the number of its local tasks to Coord B after a few invocations of re-

ceiving function, also using non-blocking send. Coord B uses this number to judge ifCoord

A needs a temporary stop, i.e., Coord A has received too many tasks, but its worker threads

are processing tasks slowly. If Coord A receives a temporary stop, it will be on sleep until

most received tasks are done by its worker threads. After waiting, it will again seek another

coordinator which still has tasks. If Coord A receives a stop sign, it will mark Coord B as

“all tasks finished” and seek another coordinator for more tasks.

If Coord A finds that all other coordinators have no task, it will inform all its worker

threads and terminate itself.

4.5.5 Internode Communication

The most important feature of MPI non-blocking send and receive in WSSJ-DM is that

it allows overlapping communication and computation.

The coordinators in WSSJ-DM use multiple threads to perform MPI_Isend() to send

spatial join tasks andMPI_Irecv() to receive tasks. These send/receive threads can perform

all send and receive operations concurrently, and then go to sleep. These threads wake up

periodically to check if their send and receive operations have finished. Thus, for the most

part, send/receive threads are on sleep and yield the CPUs to the worker threads to perform

compute-intensive join operations.

RemoteMemory Access (RMA) allows access to remote memory. By using the feature,

a coordinator inWSSJ-DM nodes can show the node’s status in its RMAwindow. It can tell

84

others if current node: 1) has spatial join tasks and the number of tasks, or 2) has no tasks,

or 3) is hand shaking with another node. A coordinator can also write a request to another

coordinator’s window based on the information on that window, and wait for instructions

for following tasks shuffling.

4.5.6 Theoretical Analysis

We analyze the theoretical performance of WSSJ-DM in this section. The benefit to be

gained by WSSJ-DM depends on the computational complexity of spatial join operations

because there is a tradeoff between doing work locally vs sending the work to a remote

node. For instance, spatial overlay join is more compute-intensive than relationship join.

This difference will impact work stealing.

A model is developed here to study the impact of work stealing by remote compute

nodes on execution time. Even thoughmultiple processes are active in parallel work-sharing

in WSSJ-DM (some in stealing mode and others in victim mode), our model considers one

such scenario, to show the scalability bottlenecks because of overheads in work stealing.

Let us assume, among n nodes, only Node1 has tasks which require a total of V com-

putations and the other n− 1 nodes have no tasks. The computing capacity of Nodei is fi

which means number of computations done per second.

fi1 is the ability of Nodei to finish tasks that belongs to Node1, which is bounded by

fi, the network, and send/receive buffer generation and parsing speed.

When Node1 sends tasks to a new node Nodei, the total computing ability of Node1

and Nodei is f1 + fi1, minus the cost γ for moving tasks to Nodei. γ is an average cost

which is based on the average size of tasks, buffering of geometries, parsing speed, and the

network bandwidth. γ may increase with more idle nodes requesting Node1 for tasks. We

derive Formula 4.2 which models the execution time of WSSJ-DM on tasks consuming V

computing resources before Node1 reaches its limit of sending tasks.

T = V

f1 + (∑n
2 fi1)− (n− 1) ∗ γ

(4.2)

85

We present Formula 4.3 to model the performance of WSSJ-DM in which Node1

reaches its limit of sending tasks to m nodes, where m is fixed and n > m.

T = V

f1 + (∑m
2 fi1)− (n− 1) ∗ γ

(4.3)

From Formula 4.2 and 4.3, we can get the following observations about WSSJ-DM:

1) WSSJ-DM can always get benefit from additional compute nodes before reaching its

bottleneck.

2) WSSJ-DM will be slowed down by using more nodes after reaching its bottleneck.

3) When γ is high due to a slow or congested network, WSSJ-DM performance will not

improve by adding more compute nodes.

4) Execution time can be reduced by better compute capacity (higher fi1) and faster

network (smaller γ).

In Figure 4.3(a), we assume: V = 10000, all fi1 = f1/3. For convenient, we let γ = 1.

The domain of f1 is [100, 1000]. The domain of n is [1, 10]. We can find that, under the

given limit, i.e. Node1 does not reach its limit of sending tasks, the improvement of more

nodes is more noticeable with lower f1. More nodes can always bring some improvement.

To explain Formula 4.2, we drew Figure 4.3(b). We assume γ is fixed here. In Fig-

ure 4.3, we assume: f1 = 100, all fi1 = f1/3, γ = 1. The domain of V is [1000, 10000].

The domain of n is [1, 10]. We can see that, under the given limit, the larger the volume of

tasks V is, the improvement of additional nodes is more significant.

4.6 Experimental Results

All of our experiments used five real world datasets: cemetery, sports, lakes, parks,

and roads, which are taken from SpatialHadoop website4. The datasets are stored in Well

Known Text (WKT) format and the characteristics of these datasets are shown in Table 4.1.
4http://spatialhadoop.cs.umn.edu/datasets.html

http://spatialhadoop.cs.umn.edu/datasets.html

86

(a) V is fixed to 10000. (b) f1 is fixed to 100.

FIGURE 4.3 Theoretical performance modeling of WSSJ-DM before reaching bottleneck.

Name Type #Geometries File size

cemetery Polygons 193 K 56 MB
sports Polygons 1.8 M 590 MB
lakes Polygons 8.4 M 9 GB
parks Polygons 10 M 9.3 GB
Roads Polylines 72 M 24 GB

TABLE 4.1 Attributes of the datasets

All the experiments are done on a cluster named Bebop5 at Argonne National Labora-

tory. Bebop has 664 regular nodes and other nodes. A regular node on Bebop has two Intel

Xeon E5-2695v4 (36 cores per node), and 128 GB DDR4 memory. We used GCC 8.2.0,

C++ 17, Intel MPI 3.1, and GEOS6 3.9.1 in all the following experiments.

A Master-Worker and a Round Robin assignment implementations are used for com-

parison. Master-Worker is a scheduling strategy for dynamic load balancing. A master

is in charge of feeding tasks to idle workers. It has been widely used in shared memory

solutions, like SPINOJA [9], and distributed memory solutions, like GeoSpark [64], Ge-

oMesa [68]. Round Robin assignment is a widely used technique where each core/node

takes parts of partitioned R and S in a cyclic manner, and the cores/nodes finish its work

independently [20, 29, 46]. Dense areas are distributed among processors due to Round
5https://www.lcrc.anl.gov/systems/resources/bebop/
6https://trac.osgeo.org/geos

https://www.lcrc.anl.gov/systems/resources/bebop/
https://trac.osgeo.org/geos

87

Robin assignment.

For pre-processing, three partitioning methods were used: Uniform, Quad-tree, and

Adaptive Partitioning (ADP) [28]. [28] shows that for static load balancing, ADP > Quad-

tree > Uniform in general cases.

In following experiments, the value of Thresholdtask is set to 20. The number of

send/receive thread is set to 5 and the number of tasks per send/receive is set to 100. We also

did various experiments on different Thresholdtask and different numbers of send/receive

thread.

4.6.1 NUMA

Based on our analysis in Section 4.4.2, we designed comparison experiments among

different NUMA policies on WSSJ. The pair of datasets being used is Sports and Ceme-

tery, which was Quad-tree partitioned into 8192 grid cells. The reason to use Sports and

Cemetery is that both datasets are small and most geometries are small in the datasets. ST_-

Intersects is one of the lightest spatial join operations.

In the experiments, we controlled the sizes of R and S by duplicating the original

datasets. The duplication coefficient D means that R and S contain n copies of Sports

and Cemetery respectively.

The regular nodes on Bebops only have two NUMA nodes, 0 and 1. The polices settings

are: MPOL_INTERLEAVE, node 0 and 1; MPOL_BIND, node 0; MPOL_PREFERRED,

node 0; MPOL_DEFAULT. In all tests, threads were evenly distributed on two NUMA

nodes.

The results are shown in Figure 4.4. We can see that different polices do not have much

difference with 4 threads in Figure 4.4(a). With more threads, in Figure 4.4(d), it takes

longer usingMPOL_DEFAULT than the other three polices. As we mentioned earlier, more

threads may lead to higher memory request congestion between the NUMA domains. The

default policy gets negatively impacted by resource contention when compared to other

policies.

88

BecauseMPOL_BIND only use one NUMA node, it runs out of memory atD=40while

others run out of memory at D=80.

10 20 30 40 50 60
0

50

100

150

OOM

D

Ti
m
e(
Se
co
nd
s)

MPOL_DEFAULT
MPOL_INTERLEAVE

MPOL_BIND
MPOL_PREFERRED

(a) 4 Threads

10 20 30 40 50 60
0

50

100

150

OOM

D

Ti
m
e(
Se
co
nd
s)

MPOL_DEFAULT
MPOL_INTERLEAVE

MPOL_BIND
MPOL_PREFERRED

(b) 8 Threads

10 20 30 40 50 60
0

50

100

150

OOM

D

Ti
m
e(
Se
co
nd
s)

MPOL_DEFAULT
MPOL_INTERLEAVE

MPOL_BIND
MPOL_PREFERRED

(c) 18 Threads

10 20 30 40 50 60
0

50

100

150

OOM

D

Ti
m
e(
Se
co
nd
s)

MPOL_DEFAULT
MPOL_INTERLEAVE

MPOL_BIND
MPOL_PREFERRED

(d) 36 Threads

FIGURE 4.4 Execution time comparison of different NUMA policies in WSSJ for performing ST_-
Intersects on Sports and Cemetery.

4.6.2 Tasks Composition of WSSJ

There are two types of tasks for a WSSJ worker thread: owned tasks and stolen tasks.

Owned tasks are tasks being randomly assigned to a worker in the beginning. Stolen tasks

are tasks stolen from other workers.

We designed experiments to show the task composition of every WSSJ-DM node in

Figure 4.5. We used 36 WSSJ workers (one worker for each core) to perform ST_Intersec-

tion on Lakes and Parks which were partitioned into 8192 grid cells using ADP or Uniform

89

Partitioning.

From Figure 4.5, we can see that the tasks compositions vary in all workers. Every

worker was able to finish tasks at approximately the same time. WSSJ is not sensitive to

different partitioning approaches. Using Uniform Partitioning is even slightly faster (172s)

than using ADP (174s), as it has fewer data duplication (2.38%) than ADP (5.82%).

FIGURE 4.5 Composition of tasks at differentWSSJ workers. Both cases used 36 workers to perform
ST_Intersection on Lakes and Parks.

4.6.3 Tasks Composition of WSSJ-DM

A WSSJ-DM node can have two types of tasks: local tasks and remote tasks. Local

tasks are tasks being assigned in a Round Robin scheme to each node in the beginning.

Remote tasks are tasks received from other nodes by its coordinator.

We designed experiments to show the task composition of every WSSJ-DM node in

Figure 4.6. We used five WSSJ-DM nodes to perform ST_Intersection on Lakes and Parks

which were partitioned into 8192 grid cells using ADP or Uniform Partitioning.

From Figure 4.6, we can see that the tasks compositions vary in all nodes in both cases.

In both cases, there is one node that only works on local tasks. WSSJ-DM is able to re-

balance the tasks and manage each node to finish at approximately the same time. We can

observe that using amore statically balanced partitioning (ADP) shows a better performance

90

in WSSJ-DM. This is because a task costs more computing resources being performed re-

motely than locally. A more balanced initial assignment can reduce the total number of

remote tasks.

FIGURE 4.6 Composition of tasks at different WSSJ-DM nodes. Both cases used 5 nodes to perform
ST_Intersection on Lakes and Parks.

4.6.4 Comparison Experiments for WSSJ

We designed experiments to compare the performance of WSSJ, Master-Worker, and

Round Robin assignment using different join operations on Lakes and Sports which were

partitioned into 8192 grid cells using ADP partitioning. Round Robin assignment has a

better load balancing using ADP partitioning compared with Quad-tree or Uniform parti-

tioning [28].

The results are shown in Figure 4.7. In all cases, a single compute node was used but

with different number of cores. WSSJ shows a better performance thanMaster-Worker and

Round Robin assignment in all cases. In these experiments, WSSJ has a parallel efficiency

between 80% (at 36 cores) and 107% (at 4 cores) with respect to sequential spatial join

using R-tree index (as shown in Table 4.2).

91

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38

10

20

30

40

50

60

70

80

90

100

110

120

(a) ST_Intersects on Lakes and Sports

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38

10

20

30

40

50

60

70

80

90

100

110

120

130

(b) ST_Intersection on Lakes and Sports

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38

100

200

300

400

500

600

700

800

900

1,000

1,100

1,200

1,300

1,400

1,500

1,600

(c) ST_Union on Lakes and Sports

FIGURE 4.7 Execution time comparison of using WSSJ, Master-Worker (MW), and Round Robin
assignment (R-R) to perform different spatial joins on Lakes and Sports, which are spatial parti-
tioned into 8192 sub-sets using ADP partitioning.

4.6.5 Comparison Experiments for WSSJ-DM

We compared WSSJ-DM with Master-Worker and Round Robin assignment using dif-

ferent join operations on different pairs of spatial data in Figure 4.8. The experiments were

using 1 to 10 nodes (36 to 360 CPU cores).

As shown in Figure 4.8, WSSJ-DM performs better than ADLB, SPINOJA-DM, and

Round Robin assignment in most tests. WSSJ-DM performs similar with SPINOJA-DM in

the ST_Union test for Lakes and Parks, in which computing is more densely than ST_Inter-

92

section and ST_Intersects. Execution time of WSSJ-DM and SPINOJA-DM keep decreas-

ing with more CPU cores, while generally WSSJ-DM shows a better performance. The

ADLB and Round-Robin implementations reach their bottlenecks quickly because of load

imbalance.

WSSJ-DM shows a more significant decrease in time for heavier spatial join operations.

In general, Union operation is computationally more expensive than Intersection. Inter-

section operation is more expensive than Intersects. This is reflected in the experimental

results and our model also predicted the observed performance difference in Section 4.5.6.

Spatial Union operation has the most computational work among the three operations. So,

WSSJ-DM has a higher performance for Union.

4.6.6 Strong Scaling for WSSJ-DM

Wedesigned strong scaling experiments forWSSJ-DM.WSSJ-DMwas used to perform

ST_Intersection on Lakes and Parks partitioned by different methods. By using different

numbers of nodes (36 cores/node), we show the results in Figure 4.9. The corresponding

speedups are plotted in Figure 4.9(b).

The results also follow our model that we presented in Section 4.5.6. Due to variation

of load across different regions of the input, the performance of WSSJ-DM may fluctuate

with different number of nodes. But the general trend is that WSSJ-DM can finish spatial

join on Lakes and Parks faster with more cores before reaching the bottleneck.

WSSJ-DM using ADP partitioning shows the best performance, as ADP is able to pro-

vide a better static load balancing than Quadtree or Uniform partitioning [28], which means

WSSJ-DM nodes can spend more time on local tasks.

4.6.7 Benchmark

To demonstrate that our system performs well with un-partitioned datasets as well, we

used Sequential Spatial Join with Index, WSSJ, and WSSJ-DM to perform ST_Intersects,

ST_Intersection, and ST_Union on several pairs of spatially un-partitioned datasets, and the

results are shown in Table 4.2. WSSJ was using 1 node (36 cores) andWSSJ-DMwas using

93

50 100 150 200 250 300 350
20

30

40

50

60

70

80

90

100

110

120

130

140

150

160

170

(a) ST_Intersects on Lakes and Parks

50 100 150 200 250 300 350
20

40

60

80

100

120

140

160

180

200

220

240

260

280

300

(b) ST_Intersection on Lakes and Parks

50 100 150 200 250 300 350

200

400

600

800

1,000

1,200

1,400

1,600

1,800

2,000

2,200

2,400

(c) ST_Union on Lakes and Parks

FIGURE 4.8 Execution time comparison among WSSJ-DM, ADLB, SPINOJA-DM, and Round
Robin assignment (R-R) performing spatial joins on Lakes and Parks, which are spatially par-
titioned into 8192 grid cells using ADP partitioning.

25 nodes (900 cores).

We can see that both WSSJ and WSSJ-DM can be helpful in saving time compared

with sequential cases, especially with large datasets. For instance, performing ST_Union

on Roads and Lakes took sequential join 53.45 hours, while WSSJ finished in 1.89 hours

and WSSJ-DM finished in 7.26 minutes.

There are two special cases that WSSJ and WSSJ-DM do not show high parallel effi-

ciency, though they are still much faster than the sequential join:

94

0 200 400 600 800 1,0001,2001,4000

50

100

150

200

Number of cores

Ti
m
e
(s
ec
on
ds
)

Un-partitioned
Uniform
Quad-tree
Adaptive

(a) Time (seconds)

0 200 400 600 800 1,0001,2001,4000

50

100

150

200

Number of cores

Sp
ee
du
p

(b) Speedup w.r.t sequential spatial join using R-tree index

FIGURE 4.9 Execution time and speedup plot of WSSJ-DM w.r.t sequential join. For comparison,
ST_INTERSECTION was used on Lakes and Parks. Input data was partitioned into 8192 grid cells
using different approaches.

• ST_Intersects on Roads and Lakes. This is because the memory access becomes

bottleneck in this special case. The geometries in Roads are usually huge line-strings

95

while ST_Intersects is a light operation.

• WSSJ-DM on Sports and Cemetery. These two dataset are small, and the communi-

cation (check RMA windows) between different nodes is the major cost in all three

cases.

Dataset R⊕S Join OP Sequential WSSJ WSSJ-DM

Sports⊕Cemetery

Intersects

3.39 0.59 0.14
Parks⊕Sports 165.76 10.80 1.78
Lakes⊕Sports 344.71 16.47 2.90
Lakes⊕Parks 2,401.74 119.25 20.95
Roads⊕Lakes 600.60 118.97 20.32

Sports⊕Cemetery

Intersection

3.92 0.61 0.14
Parks⊕Sports 339.32 16.14 2.89
Lakes⊕Sports 389.61 17.546 3.07
Lakes⊕Parks 4,912.32 196.24 29.92
Roads⊕Lakes 14,391.57 520.10 35.29

Sports⊕Cemetery

Union

4.38 0.68 0.13
Parks⊕Sports 1,908.46 71.82 8.60
Lakes⊕Sports 4,550.04 179.66 15.49
Lakes⊕Parks 43,236.40 1,834.39 146.25
Roads⊕Lakes 192,450.86 6,820.24 435.41

TABLE 4.2 Execution time (in sec) for Sequential Indexed Spatial Join, WSSJ (36 cores), WSSJ-DM
(25 nodes) performing spatial join on different pairs of un-partitioned datasets.

4.7 Conclusion

In this paper, we proposedWork Stealing Spatial Join. WSSJ can perform multiple spa-

tial relationship joins and overlay joins with high parallel efficiency. It can handle skewed

data by sharing tasks among workers using work stealing queues. We showed that WSSJ

96

takes advantage of NUMA policies other than the default policy. We have presented ex-

periments on various real-world datasets and evaluated the performance between WSSJ

and two other parallel spatial join methods, Master-Worker and Round Robin assignment.

WSSJ has clear advantages on all the tests.

To our knowledge, we introduced the first Work Stealing system for Spatial Join on

distributed memory (WSSJ-DM). It uses RMA and MPI Non-blocking communication to

shuffle tasks among nodes. Various experiments were conducted on WSSJ-DM. WSSJ-

DM shows better performance and scalability than Master-Worker and Round Robin as-

signment. The results of WSSJ-DM follow the theoretical model we presented.

97

CHAPTER 5
ASYNCHRONOUS DYNAMIC LOAD BALANCING BASED SPATIAL JOIN

We are in the era of Spatial Big Data. Due to the developments of topographic tech-

niques, clear satellite imagery, and various means for collecting information, geospa-

tial datasets are growing in volume, complexity and heterogeneity. For example, Open-

StreetMap data for the whole world is about 1 terabyte 1 and NASA world climate datasets

are about 17 terabytes 2 Ṗrocessing such large data and running spatial analytics require a lot

of time. Spatial data volume and variety makes processing and analytics both data-intensive

and compute-intensive tasks. In this work, we present spatial data partitioning techniques

such as quadtree and uniform grid partitioning based on modeling of spatial join [10] cost.

In addition, we present Asynchronous Dynamic Load Balancing (ADLB) [26] based spatial

join implementation. The spatial join times modeling experiments expound how geometry

collections make load-balancing difficult. We use different spatial data partitioning tech-

niques to find a more balanced method. We evaluate the performance of ADLB-based

program by comparing with another MPI-GIS [29] implementation

5.1 Introduction

With the increasing volume and complexity of spatial data, there is an increasing de-

mand for efficient geospatial techniques for parallelizing spatial computations. This chapter

talks about modeling spatial join time, challenges encountered in spatial data partitioning,

and bottleneck for handling spatial big data using ADLB to build MPI based GIS. Much

of our research on big spatial data has been done on a supercomputer named Bridges at

the Pittsburgh Supercomputing Center. Our implementations use Geometry Engine Open-

Source (GEOS) library which provides

1) spatial data indices such as Rtree;
1https://wiki.openstreetmap.org/wiki/Planet.osm
2https://cds.nccs.nasa.gov/nex

https://wiki.openstreetmap.org/wiki/Planet.osm
https://cds.nccs.nasa.gov/nex

98

2) geometry-based algorithms;

3) and parsing of geometric data.

The datasets used in this chapter are in Well-Known Text (WKT) format, which records

geometry objects on a map as a text markup language. For example, a polygon with 3 ver-

tices is represented as POLYGON((10 20, 30 40, 50 60, 10 20)). A geometry collection

can be represented as GEOMETRYCOLLECTION(POINT((12 17)), LINESTRING((3 3,

-10 10))). In section 2, we model polygon intersection costs and reveal one of the causes

of load-imbalance in parallel spatial join implementations. In section 3 and 4, we present

two contributions of this work which are 1) spatial join cost-based partitioning and 2) asyn-

chronous dynamic load balancing for geospatial computations.

5.2 Spatial Data Computing Costs Modeling

When we try to predict the execution time of spatial join algorithms, there are some spe-

cial scenarios. The theoretical time complexity for finding whether two geometric shapes

with n and m vertices intersect is O(n*m) [69]. However, actual execution time can vary as

intersections can be found before going through all the vertices. We perform intersection

operation on pairs of geometries which are samples from lakes (8.4 M polygons) and sports

(1.8 M polygons).

The execution times for different pairs of geometries are distributed as shown in Fig-

ure 5.1(a). After analysis, we figured out that geometry collections cause the distribution to

be more scattered. We performed another intersection operation on same pairs of geome-

tries with all geometry collections being split to geometries. The join times for different

pairs of geometries are shown in Figure 5.1(b). After geometry collections being divided,

the join time shows a better correlation with the theoretical time complexity.

5.3 Spatial Data Partitioning

Partitioning spatial data makes spatial computing and dynamic load-balancing much

easier. Similar to join operation in databases, we have spatial join operation that is used

99

(a) Time costs distribution of finding the intersection of two geometries

(b) Time costs distribution of finding the intersection of two geometries, with
geometry collection disassembled

FIGURE 5.1 The execution time of GEOS to find the intersections between two geometries. In (a) all
geometry collections are kept; in (b) all geometry collections are broken down into single geometries
in the samples.

100

in spatial databases and Geographic Information System (GIS). Spatial join finds all-to-all

relations between two geometry layers based on whether two shapes overlap or not. With

partitioned data, not only the join task is divided into many sub-tasks, but also the spatial

query for a single geometry becomes more efficient.

We have embedded our computational cost model inherent in spatial join algorithms

to do better partitioning on top of adaptive grid partitioning. This is the novelty in this

work. For both quadtree partitioning and uniform partitioning, two spatial datasets, lakes

(8.4 M polygons) and sports (1.8 M polygons), are partitioned into 8192 parts. An MPI-

GIS implementation performs the join tasks with join tasks being scheduled in round-robin

manner to check the quality of different partitioning techniques.

The implementation ran on regular Bridges computing nodes which have two E5-2695

v3 CPUs, i.e. 28 cores each node.

Figure 5.2 shows the performances of two partitioning techniques by comparing the

maximum execution times and the minimum execution times of the MPI-GIS program.

The maximum execution times for the data partitioned based on quadtree partitioning are

20% to 35% lower than the maximum execution times for the data partitioned based on

uniform partitioning. With more processes, the minimum execution time are closer to 0 for

both partitioning methods.

FIGURE 5.2 Max and min processing times of MPI processes to perform join on two spatial datasets,
lakes (8.4 M polygons) and sports (1.8 M polygons).

101

5.4 Dynamic Load-balancing

It’s better to use dynamic scheduling with partitioned spatial data. We have built a

single-sever multi-worker parallel spatial join program for partitioned data. The sever keeps

the remaining tasks and once a worker becomes idle, it can ask for tasks from the server.

The program has been tested using two spatial datasets: Roads (72 million polylines stored)

and Sports (1.8 million polygons). The WKT file for Roads is 24 GB and the WKT file for

sports is 590 MB. In Figure 5.3, the curve of maximum times (red curve) an MPI process

takes is close to the curve of minimum times (blue curve), which indicates the parallel

program is load-balanced.

The concept of Asynchronous Dynamic Load Balancing (ADLB) is multiserver multi-

worker. We have built an ADLB-based spatial join program. The servers keep join tasks as

a group. Once a server runs out of tasks, it asks for tasks form other servers. Once a worker

finishes its task, it asks a new task from its server. The same datasets are used for test. In

Figure 5.3, the curve of maximum times (yellow curve) an ADLB process takes is closer

to the curve of minimum times (grey curve) than the first program. However, the ADLB-

based program takes almost double time as the single-server multi-worker program. For

ADLB-based spatial join implementation, transferring and parsing data are the overheads.

FIGURE 5.3 Execution time comparison between two versions: 1) Using ADLB and 2) MPI-GIS
dynamic load-balancing for join between Sports (1.8 M polygons) and Roads (72 M polylines).

102

CHAPTER 6
SUMMARY AND FUTURE WORK

6.1 Summary

In Chapter 3, we proposed Adaptive Partitioning techniques. ADP can partition spatial

data like polygons and polylines in a load-balanced fashion. We have presented experi-

ments on various real-world data sets and evaluated the partition quality between ADP and

two classic partitioning techniques, Quadtree partitioning, and Uniform partitioning. A new

duplication avoidance technique is introduced by which unnecessary duplication of geome-

tries spanning multiple grid cells is reduced. OpenMP and GPU versions of ADP was also

presented. ADP-OpenMP provides an easy parallization of ADP, and ADP-GPU provides

competitive speedup for ADP on a single machine.

We have also designed a parallel partitioning system. Parallel ADP can partition large

real-world spatial datasets with data skew in a shorter time. ParADP algorithm has been

shown to be scalable on thousands of CPU cores. ParADP shows better partition quality

than ADP and Quadtree-based partitioning. The weak scaling and strong scaling experi-

ments prove that ParADP has good scalability and improves performance with increase in

the size of compute cluster up to 4032 CPU cores.

In Chapter 4, we proposedWork Stealing Spatial Join. WSSJ can perform multiple spa-

tial relationship joins and overlay joins with high parallel efficiency. It can handle skewed

data by sharing tasks among workers using work stealing queues. We showed that WSSJ

takes advantage of NUMA policies other than the default policy. We have presented ex-

periments on various real-world datasets and evaluated the performance between WSSJ

and two other parallel spatial join methods, Master-Worker and Round Robin assignment.

WSSJ has clear advantages on all the tests.

To our knowledge, we introduced the first Work Stealing system for Spatial Join on

distributed memory (WSSJ-DM). It uses RMA and MPI Non-blocking communication to

103

shuffle tasks among nodes. Various experiments were conducted on WSSJ-DM. WSSJ-

DM shows better performance and scalability than Master-Worker and Round Robin as-

signment. The results of WSSJ-DM follow the theoretical model we presented.

6.2 Future Work

Scalability of WSSJ-DM: Chapter 4 introduced a work stealing framework (WSSJ-

DM) for spatial join in distributed environment. Though it is faster and effcient than current

approaches, it does not scale. Its peak performance reaches at 40 nodes (about 1400 cores).

There is still room to optimize it.

One possible direction is to build a hierarchical data structure for an idle process finding

a vicitim in O(logN) time, where N is the number of processes. From the bottom-up view,

let n computing nodes to form a larger group. And then group n of such larger groups to

be one level higher. A B-tree is formed in this manner. When a starving node tries to seek

a busy node to steal from, it first checks its own group, then one level higher. The target

seeking process can be done in O(log(p)) time, where p is the number of nodes.

One other way is to have each node maintain a p array, which records all nodes’ tasks.

For every given unit of time, each node randomly find another node and exchange their task

information arrays.

Utilization of WSSJ-DM for General Purpose: WSSJ-DM performs on spatial join.

It has the potential to be a general load balancer like ADLB. Every conponment of WSSJ-

DM is independent. If we change the spatial join engine to a user define function, or a

callback, WSSJ-DM can be used for general purposes.

104

Bibliography

[1] C. Zhang, T. Zhao, L. Anselin, W. Li, and K. Chen, “A map-reduce based parallel

approach for improving query performance in a geospatial semantic web for disaster

response,” Earth Science Informatics, vol. 8, no. 3, pp. 499–509, 2015.

[2] M.-J. Perles, J. F. Sortino, and M. F. Mérida, “The neighborhood contagion focus as

a spatial unit for diagnosis and epidemiological action against covid-19 contagion in

urban spaces: A methodological proposal for its detection and delimitation,” Interna-

tional Journal of Environmental Research and Public Health, vol. 18, no. 6, p. 3145,

2021.

[3] H. Samet, Y. Han, J. Kastner, and H. Wei, “Using animation to visualize spatio-

temporal varying covid-19 data,” in Proceedings of the 1st ACM SIGSPATIAL

International Workshop on Modeling and Understanding the Spread of COVID-19,

ser. COVID-19. New York, NY, USA: Association for Computing Machinery, 2020,

p. 53–62. [Online]. Available: https://doi.org/10.1145/3423459.3430761

[4] W. Qi, R. Procter, J. Zhang, and W. Guo, “Mapping consumer sentiment toward wire-

less services using geospatial twitter data,” IEEE Access, vol. 7, pp. 113 726–113 739,

2019.

[5] A. Páez and D. M. Scott, “Spatial statistics for urban analysis: a review of techniques

with examples,” GeoJournal, vol. 61, no. 1, pp. 53–67, 2004.

[6] R. C. Selley, L. R. M. Cocks, and I. R. Plimer, Encyclopedia of geology. Elsevier

Academic, 2005.

[7] A. Eldawy, L. Alarabi, and M. F. Mokbel, “Spatial partitioning techniques in spatial-

hadoop,” Proceedings of the VLDB Endowment, vol. 8, no. 12, pp. 1602–1605, 2015.

https://doi.org/10.1145/3423459.3430761

105

[8] M. Deveci, S. Rajamanickam, K. D. Devine, and Ü. V. Çatalyürek, “Multi-jagged: A

scalable parallel spatial partitioning algorithm,” IEEE Transactions on Parallel and

Distributed Systems, vol. 27, no. 3, pp. 803–817, 2015.

[9] S. Ray, B. Simion, A. D. Brown, and R. Johnson, “Skew-resistant parallel in-memory

spatial join,” in Proceedings of the 26th International Conference on Scientific and

Statistical Database Management. ACM, 2014, p. 6.

[10] E. H. Jacox and H. Samet, “Spatial join techniques,” ACM Trans. Database Syst.,

vol. 32, no. 1, Mar. 2007. [Online]. Available: http://doi.acm.org/10.1145/1206049.

1206056

[11] L. Arge, O. Procopiuc, S. Ramaswamy, T. Suel, and J. S. Vitter, “Scalable sweeping-

based spatial join,” in VLDB, vol. 98. Citeseer, 1998, pp. 570–581.

[12] J. M. Patel and D. J. DeWitt, “Clone join and shadow join: two parallel spatial join

algorithms,” in Proceedings of the 8th ACM international symposium on Advances in

geographic information systems, 2000, pp. 54–61.

[13] G. Luo, J. F. Naughton, and C. J. Ellmann, “A non-blocking parallel spatial join algo-

rithm,” in Proceedings 18th International Conference on Data Engineering. IEEE,

2002, pp. 697–705.

[14] S. Zhang, J. Han, Z. Liu, K. Wang, and Z. Xu, “Sjmr: Parallelizing spatial join with

mapreduce on clusters,” in 2009 IEEE International Conference on Cluster Comput-

ing and Workshops. IEEE, 2009, pp. 1–8.

[15] K. Araki and T. Shimbo, “An mpi-based framework for proessing spatial vector data

on heterogeneous distributed systems,” in 2016 Fourth International Symposium on

Computing and Networking (CANDAR). IEEE, 2016, pp. 554–558.

[16] S. Shohdy, Y. Su, and G. Agrawal, “Load balancing and accelerating parallel spatial

join operations using bitmap indexing,” in 2015 IEEE 22nd International Conference

on High Performance Computing (HiPC). IEEE, 2015, pp. 396–405.

http://doi.acm.org/10.1145/1206049.1206056
http://doi.acm.org/10.1145/1206049.1206056

106

[17] E. G. Hoel andH. Samet, “Data-parallel spatial join algorithms,” in 1994 International

Conference on Parallel Processing Vol. 3, vol. 3. IEEE, 1994, pp. 227–234.

[18] K.-L. Tan and X. Y. Jeffrey, “A performance study of declustering strategies for par-

allel spatial databases,” in International Conference on Database and Expert Systems

Applications. Springer, 1995, pp. 157–166.

[19] S. Shekhar, S. Ravada, D. Chubb, and G. Turner, “Declustering and load-balancing

methods for parallelizing geographic information systems,” IEEE Transactions on

Knowledge and Data Engineering, vol. 10, no. 4, pp. 632–655, 1998.

[20] J. M. Patel and D. J. DeWitt, “Partition based spatial-merge join,” ACM Sigmod

Record, vol. 25, no. 2, pp. 259–270, 1996.

[21] K. Alsabti, S. Ranka, and V. Singh, “An efficient parallel algorithm for high dimen-

sional similarity join,” in Proceedings of the First Merged International Parallel Pro-

cessing Symposium and Symposium on Parallel and Distributed Processing. IEEE,

1998, pp. 556–560.

[22] R. D. Blumofe and C. E. Leiserson, “Scheduling multithreaded computations by

work stealing,” J. ACM, vol. 46, no. 5, p. 720–748, Sep. 1999. [Online]. Available:

https://doi.org/10.1145/324133.324234

[23] J. Dinan, D. B. Larkins, P. Sadayappan, S. Krishnamoorthy, and J. Nieplocha, “Scal-

able work stealing,” in Proceedings of the Conference on High Performance Comput-

ing Networking, Storage and Analysis. IEEE, 2009, pp. 1–11.

[24] D. Chase and Y. Lev, “Dynamic circular work-stealing deque,” in Proceedings of the

seventeenth annual ACM symposium on Parallelism in algorithms and architectures,

2005, pp. 21–28.

[25] N. M. Lê, A. Pop, A. Cohen, and F. Zappa Nardelli, “Correct and efficient work-

stealing for weak memory models,” ACM SIGPLANNotices, vol. 48, no. 8, pp. 69–80,

2013.

https://doi.org/10.1145/324133.324234

107

[26] E. L. Lusk, S. C. Pieper, R. M. Butler et al., “More scalability, less pain: A simple

programmingmodel and its implementation for extreme computing,” SciDACReview,

vol. 17, no. 1, pp. 30–37, 2010.

[27] W. Gropp, T. Hoefler, R. Thakur, and E. Lusk, Using advanced MPI: Modern features

of the message-passing interface. MIT Press, 2014.

[28] J. Yang and S. Puri, “Efficient parallel and adaptive partitioning for load-balancing in

spatial join,” in 2020 IEEE International Parallel and Distributed Processing Sympo-

sium (IPDPS). IEEE, 2020, pp. 810–820.

[29] S. Puri, A. Paudel, and S. K. Prasad, “Mpi-vector-io: Parallel i/o and partitioning

for geospatial vector data,” in Proceedings of the 47th International Conference on

Parallel Processing, 2018, pp. 1–11.

[30] G. Kedem, “The quad-cif tree: A data structure for hierarchical on-line algorithms,”

in 19th Design Automation Conference, 1982, pp. 352–357.

[31] H. Samet, “Spatial data structures.” 1995.

[32] A. Klinger, “Patterns and search statistics,” in Optimizing methods in statistics. El-

sevier, 1971, pp. 303–337.

[33] M. J. Berger and S. H. Bokhari, “A partitioning strategy for nonuniform problems

on multiprocessors,” IEEE Transactions on Computers, vol. 36, no. 05, pp. 570–580,

1987.

[34] N. Beckmann, H.-P. Kriegel, R. Schneider, and B. Seeger, “The r*-tree: An efficient

and robust access method for points and rectangles,” in Proceedings of the 1990 ACM

SIGMOD international conference on Management of data, 1990, pp. 322–331.

[35] B. Seeger, “Performance comparison of segment access methods implemented on top

of the buddy-tree,” in Symposium on Spatial Databases. Springer, 1991, pp. 277–

296.

108

[36] J.-P. Dittrich and B. Seeger, “Data redundancy and duplicate detection in spatial join

processing,” in Proceedings of 16th International Conference on Data Engineering

(Cat. No. 00CB37073). IEEE, 2000, pp. 535–546.

[37] F. P. Preparata andM. I. Shamos,Computational geometry: an introduction. Springer

Science & Business Media, 2012.

[38] E. N. Hanson, “The interval skip list: A data structure for finding all intervals that

overlap a point,” in Workshop on Algorithms and Data Structures. Springer, 1991,

pp. 153–164.

[39] T. Brinkhoff, H.-P. Kriegel, and B. Seeger, “Efficient processing of spatial joins using

r-trees,” ACM SIGMOD Record, vol. 22, no. 2, pp. 237–246, 1993.

[40] J. Dean and S. Ghemawat, “Mapreduce: Simplified data processing on large clusters,”

2004.

[41] J. Yu, Z. Zhang, and M. Sarwat, “Spatial data management in apache spark: the

geospark perspective and beyond,” GeoInformatica, vol. 23, no. 1, pp. 37–78, 2019.

[42] T. Hoefler, P. Kambadur, R. L. Graham, G. Shipman, and A. Lumsdaine, “A case

for standard non-blocking collective operations,” in European Parallel Virtual Ma-

chine/Message Passing Interface Users’ Group Meeting. Springer, 2007, pp. 125–

134.

[43] W. Jiang, J. Liu, H.-W. Jin, D. K. Panda, W. Gropp, and R. Thakur, “High performance

mpi-2 one-sided communication over infiniband,” in IEEE International Symposium

on Cluster Computing and the Grid, 2004. CCGrid 2004. IEEE, 2004, pp. 531–538.

[44] W. D. Gropp and R. Thakur, “Revealing the performance of mpi rma implemen-

tations,” in European Parallel Virtual Machine/Message Passing Interface Users’

Group Meeting. Springer, 2007, pp. 272–280.

109

[45] S. K. Prasad, D. Aghajarian, M. McDermott, D. Shah, M. Mokbel, S. Puri, S. J. Rey,

S. Shekhar, Y. Xe, R. R. Vatsavai et al., “Parallel processing over spatial-temporal

datasets from geo, bio, climate and social science communities: A research roadmap,”

in 2017 IEEE International Congress on Big Data (BigData Congress). IEEE, 2017,

pp. 232–250.

[46] S. Puri and S. K. Prasad, “A parallel algorithm for clipping polygons with im-

proved bounds and a distributed overlay processing system using mpi,” in 2015 15th

IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing. IEEE,

2015, pp. 576–585.

[47] S. Acharya, V. Poosala, and S. Ramaswamy, “Selectivity estimation in spatial

databases,” in Proceedings of the 1999 ACM SIGMOD international conference on

Management of data, 1999, pp. 13–24.

[48] W. R. Franklin, C. Narayanaswaml, M. Kankanhalll, D. Sun, M.-C. Zhou, and P. Y.

Wu, “Uniform grids: A technique for intersection detection on serial and parallel ma-

chines,” in Proceedings of Auto-Carto 9. Citeseer, 1989.

[49] X. Zhou, D. J. Abel, and D. Truffet, “Data partitioning for parallel spatial join pro-

cessing,” Geoinformatica, vol. 2, no. 2, pp. 175–204, 1998.

[50] S. Puri and S. K. Prasad, “Efficient parallel and distributed algorithms for gis polyg-

onal overlay processing,” in 2013 IEEE International Symposium on Parallel & Dis-

tributed Processing, Workshops and PhD Forum. IEEE, 2013, pp. 2238–2241.

[51] S. Puri, D. Agarwal, X. He, and S. K. Prasad, “Mapreduce algorithms for gis polyg-

onal overlay processing,” in 2013 IEEE International Symposium on Parallel & Dis-

tributed Processing, Workshops and PhD Forum. IEEE, 2013, pp. 1009–1016.

[52] S. Puri and S. K. Prasad, “Output-sensitive parallel algorithm for polygon clipping,”

in 2014 43rd International Conference on Parallel Processing. IEEE, 2014, pp.

241–250.

110

[53] D. Aghajarian, S. Puri, and S. Prasad, “Gcmf: an efficient end-to-end spatial join

system over large polygonal datasets on gpgpu platform,” in Proceedings of the 24th

ACM SIGSPATIAL International Conference on Advances in Geographic Information

Systems, 2016, pp. 1–10.

[54] Y. Liu, J. Yang, and S. Puri, “Hierarchical filter and refinement system over large

polygonal datasets on cpu-gpu,” in 2019 IEEE 26th International Conference on High

Performance Computing, Data, and Analytics (HiPC). IEEE, 2019, pp. 141–151.

[55] A. Paudel and S. Puri, “Openacc based gpu parallelization of plane sweep algorithm

for geometric intersection,” in International Workshop on Accelerator Programming

Using Directives. Springer, 2018, pp. 114–135.

[56] D. Agarwal, S. Puri, X. He, and S. K. Prasad, “A system for gis polygonal overlay

computation on linux cluster-an experience and performance report,” in 2012 IEEE

26th International Parallel and Distributed Processing SymposiumWorkshops & PhD

Forum. IEEE, 2012, pp. 1433–1439.

[57] A. Aji, F. Wang, H. Vo, R. Lee, Q. Liu, X. Zhang, and J. Saltz, “Hadoop-gis: A high

performance spatial data warehousing system over mapreduce,” in Proceedings of the

VLDB Endowment International Conference on Very Large Data Bases, vol. 6, no. 11.

NIH Public Access, 2013.

[58] J. Yang, A. Paudel, and S. Puri, “Spatial data decomposition and load balancing on

hpc platforms,” in Proceedings of the Practice and Experience in Advanced Research

Computing on Rise of the Machines (learning), 2019, pp. 1–4.

[59] S. Shekhar, S. Ravada, V. Kumar, D. Chubb, and G. Turner, “Load-balancing in high

performance gis: Declustering polygonal maps,” in International Symposium on Spa-

tial Databases. Springer, 1995, pp. 196–215.

111

[60] M.-L. Lo and C. V. Ravishankar, “Spatial joins using seeded trees,” in Proceedings of

the 1994 ACM SIGMOD international conference on Management of data, 1994, pp.

209–220.

[61] J. Zhang, S. You, and L. Gruenwald, “Parallel quadtree coding of large-scale raster

geospatial data on gpgpus,” in Proceedings of the 19th ACM SIGSPATIAL Interna-

tional Conference on Advances in Geographic Information Systems, 2011, pp. 457–

460.

[62] M. Kelly, A. Breslow, and A. Kelly, “Quad-tree construction on the gpu: A hybrid

cpu-gpu approach,” Retrieved June13, 2011.

[63] H. Shi and J. Schaeffer, “Parallel sorting by regular sampling,” Journal of parallel

and distributed computing, vol. 14, no. 4, pp. 361–372, 1992.

[64] J. Yu, J. Wu, and M. Sarwat, “Geospark: A cluster computing framework for process-

ing large-scale spatial data,” in Proceedings of the 23rd SIGSPATIAL international

conference on advances in geographic information systems, 2015, pp. 1–4.

[65] F. Baig, H. Vo, T. Kurc, J. Saltz, and F. Wang, “Sparkgis: Resource aware efficient

in-memory spatial query processing,” in Proceedings of the 25th ACM SIGSPATIAL

international conference on advances in geographic information systems, 2017, pp.

1–10.

[66] P. Memarzia, S. Ray, and V. C. Bhavsar, “The art of efficient in-memory query pro-

cessing on numa systems: a systematic approach,” in 2020 IEEE 36th International

Conference on Data Engineering (ICDE). IEEE, 2020, pp. 781–792.

[67] S. Ray, C. Higgins, V. Anupindi, and S. Gautam, “Enabling numa-awaremainmemory

spatial join processing: An experimental study,” ADMS@ VLDB, 2020.

[68] J. N. Hughes, A. Annex, C. N. Eichelberger, A. Fox, A. Hulbert, and M. Ronquest,

“Geomesa: a distributed architecture for spatio-temporal fusion,” inGeospatial infor-

112

matics, fusion, and motion video analytics V, vol. 9473. International Society for

Optics and Photonics, 2015, p. 94730F.

[69] L. J. Simonson, “Industrial strength polygon clipping: A novel algorithm with appli-

cations in vlsi cad,” Computer-Aided Design, vol. 42, no. 12, pp. 1189–1196, 2010.

113

Appendices

A.1 Pseudo code for CUDA quadtree partition

114

	Load Balancing Algorithms for Parallel Spatial Join on HPC Platforms
	Recommended Citation

	ACKNOWLEDGMENTS
	ABSTRACT
	LIST OF TABLES
	LIST OF FIGURES
	1 INTRODUCTION
	1.1 Introduction
	1.2 Motivation
	1.3 Spatial Data Partitioning and Indexing
	1.4 Load Balancing in Parallel Spatial Join
	1.4.1 Work Stealing
	1.4.2 NUMA
	1.4.3 MPI Non-blocking Communication and One-sided Communication

	1.5 Dissertation Statement and Contributions
	1.6 Thesis Outline

	2 LITERATURE REVIEW
	2.1 Introduction
	2.2 Geo-Spatial Data Partitioning
	2.2.1 Partitioning and Indexing
	2.2.2 Uniform Partitioning
	2.2.3 Quadtree Partitioning
	2.2.4 Multi-Jagged Partitioning
	2.2.5 Rectangle Tree
	2.2.6 Duplication Avoidance

	2.3 Spatial Join
	2.3.1 Plane Sweep
	2.3.2 Spatial Join using Map-Reduce
	2.3.3 GeoSpark

	2.4 Message Passing Interface
	2.4.1 Non-Blocking Communication
	2.4.2 One-Sided Communication

	3 EFFICIENT PARALLEL AND ADAPTIVE PARTITIONING FOR LOAD-BALANCING IN SPATIAL JOIN
	3.1 Introduction
	3.2 Background
	3.3 Related Work
	3.4 Adaptive Partitioning
	3.4.1 Finding candidates for partitioning
	3.4.2 Multithreaded Partitioning of Candidates

	3.5 GPU Acceleration of Adaptive Partitioning
	3.6 Parallel Adaptive Partitioning
	3.6.1 Parallel ADP for Distributed Memory
	3.6.2 Time Complexity

	3.7 Experimental Results
	3.7.1 Performance of Output-sensitive Duplication Avoidance
	3.7.2 OpenMP Quadtree Partitioning Speedup
	3.7.3 Computing cost for ADP
	3.7.4 GPU Speedup for ADP
	3.7.5 Weak scaling for ParADP
	3.7.6 Strong scaling for ParADP
	3.7.7 Partition Quality

	3.8 Conclusion
	3.9 Acknowledgment

	4 LOAD BALANCING SPATIAL JOIN BY WORK STEALING ON SHARED AND DISTRIBUTED MEMORY
	4.1 Introduction
	4.2 Background
	4.3 Related Work
	4.3.1 Spatial Join
	4.3.2 Load Balancing in Parallel Spatial Join
	4.3.3 Work Stealing
	4.3.4 NUMA
	4.3.5 RMA and MPI Non-blocking Communication

	4.4 Implementation of Work Stealing Spatial Join
	4.4.1 Work Stealing Queue
	4.4.2 NUMA Memory Policies
	4.4.3 Algorithm
	4.4.4 Handling Partitioned and Un-Partitioned Datasets

	4.5 Framework of Work Stealing Spatial Join on Distributed Memory
	4.5.1 Overall Framework
	4.5.2 Worker Threads
	4.5.3 Coordinator in Send Status
	4.5.4 Coordinator in Receive Status
	4.5.5 Internode Communication
	4.5.6 Theoretical Analysis

	4.6 Experimental Results
	4.6.1 NUMA
	4.6.2 Tasks Composition of WSSJ
	4.6.3 Tasks Composition of WSSJ-DM
	4.6.4 Comparison Experiments for WSSJ
	4.6.5 Comparison Experiments for WSSJ-DM
	4.6.6 Strong Scaling for WSSJ-DM
	4.6.7 Benchmark

	4.7 Conclusion

	5 ASYNCHRONOUS DYNAMIC LOAD BALANCING BASED SPATIAL JOIN
	5.1 Introduction
	5.2 Spatial Data Computing Costs Modeling
	5.3 Spatial Data Partitioning
	5.4 Dynamic Load-balancing

	6 SUMMARY AND FUTURE WORK
	6.1 Summary
	6.2 Future Work

	Bibliography
	Appendices
	A.1 Pseudo code for CUDA quadtree partition

