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ABSTRACT 
In recent times, geospatial datasets are growing in terms of size, complexity and heterogeneity. High 
performance systems are needed to analyze such data to produce actionable insights in an efficient manner. For 
polygonal a.k.a vector datasets, operations such as I/O, data partitioning, communication, and load balancing 
becomes challenging in a cluster environment. In this work, we present MPI-Vector-IO 1 , a parallel I/O library 
that we have designed using MPI-IO specifically for partitioning and reading irregular vector data formats such 
as Well Known Text. It makes MPI aware of spatial data, spatial primitives and provides support for spatial data 
types embedded within collective computation and communication using MPI message-passing library. These 
abstractions along with parallel I/O support are useful for parallel Geographic Information System (GIS) 
application development on HPC platforms.  

https://dl.acm.org/citation.cfm?doid=3225058.3225105
http://epublications.marquette.edu/


Performance evaluation is done on Lustre and GPFS filesystems. MPI-Vector-IO scales well with MPI processes 
and file size and achieves bandwidth up to 22 GB/s for common spatial data access patterns. We observed that 
independent file read functions performed better than collective functions in MPI-IO for contiguous access 
pattern on Lustre. In general, the I/O is improved by one to two orders of magnitude over real-world datasets 
using up to 1152 CPU cores. Spatial Join query is used as an exemplar to demonstrate an end-to-end application 
using MPI-Vector-IO. 
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Message Passing Interface, Parallel IO, HPC, Spatial Join, Spatial Data 

1 INTRODUCTION 
In Geo-spatial domain, there has been a recent explosion in the amount of spatial data produced by satellites, 
medical and GPS enabled devices [25]. For example, NASA satellite data archive exceeded 500 TB and is still 
growing [10]. OpenStreetMap (OSM) data in a single XML file is about 800 GB [23]. However, the current 
software stack in spatial computing is rather ill-suited to the emerging realities of big data. In addition to 
“raster” format, polygonal spatial data are stored in a variety of “vector” data formats including ESRI Shapefiles, 
Well Known Text (WKT), OSM XML, CSV (New York Taxi dataset), etc [11, 13, 20, 22]. In this work, we 
concentrate on vector data where shapes are represented with points, lines and polygons. The polygonal 
(vector) data are harder to process in parallel due to non-uniform distribution and irregular shape. 

Spatial computing tasks like spatial join is both data- and compute-intensive. Spatial join is important in spatial 
data management systems to gain insights from large-scale geospatial data. Parallel I/O and spatial partitioning 
of irregular vector data (as opposed to raster data) is challenging and difficult to optimize. Real data distribution 
is often skewed. Spatial operations involve non-uniform data access and computation due to varying number of 
vertices in different shapes with no well-defined communication pattern due to irregular spatial task 
distributions. Large polygons may have more than 100K coordinates. Optimizing such tasks in a heterogeneous 
parallel environment requires focus on efficient I/O, communication and computation. Many disaster response 
scenarios call for leveraging high performance computing techniques to yield real-time results e.g., in forest fire 
or hurricane simulation, where multiple layers of spatial data needs to be joined and overlaid to predict the 
affected areas and rescue shelters. 

MPI-IO is a parallel I/O interface specified in the MPI-2 standard. It is implemented and used on a wide range of 
platforms. MPI has become the de facto parallel mechanism for I/O and communication on most high 
performance computing systems. It provides contiguous and non-contiguous access patterns using independent 
and collective functions (Level 0 to 3). However, MPI only provides functions for unformatted binary file I/O. It 
does not provide functions for formatted text based spatial data which is the case with the vector data that we 
consider here in this paper [11, 22]. MPI-IO integration into existing geo-spatial HPC systems allows them to 
benefit from the optimizations built into the MPI-IO implementations. 

An MPI based GIS system (MPI-GIS) to parallelize a spatial computation requires file partitioning and spatial 
partitioning of data among MPI processes. Using a parallel filesystem and I/O middleware for geo-spatial vector 
data has not been explored before. The I/O performance depends on file access patterns exhibited by an 
application. Design space exploration is needed to answer questions like how much throughput is achievable for 
irregular data access patterns on a given parallel filesystem. For this requirement, we have developed MPI-
Vector-IO, a parallel I/O library using MPI-IO on top of parallel filesystem that can efficiently partition spatial 
data consisting of variable length geometries. The size of a geometry varies from less than a KB to more than 10 
MB. We have implemented three levels of MPI-IO abstractions and evaluated them on GPFS and Lustre. We also 



study contiguous and non-contiguous access patterns and their ramifications on performance and spatial 
partitioning. Spatial join is chosen as an exemplar application for end-to-end evaluation. 

We discuss the design and implementation of a user-friendly I/O and partitioning library targeted to GIS 
community’s need to run spatial analytics on an HPC platform. MPI-Vector-IO is not tied to any specific format. 
This library improves the state of the practice by enabling HPC based GIS systems to handle publicly available 
datasets where a single file can be more than hundred GBs in size. MPI-Vector-IO introduces spatial data aware 
abstractions for collectives in MPI and provides communication interfaces required for global spatial 
partitioning. It can perform I/O and parsing for a variety of data types including polygon/polyline. Two 
approaches have been designed for file partitioning in order to ensure that a geometry does not get split among 
consecutive MPI ranks. 

The main contributions of this paper can be summarized as follows: 

(1) MPI-Vector-IO: Parallel I/O support for partitioning and reading variable length geometries using 
MPI-IO. By using a flexible interface, it allows user-defined methods to parse coordinates to GEOS 
geometry objects. We provide benchmarks for contiguous and non-contiguous access patterns on Lustre 
and GPFS parallel filesystems.  
(2) Evaluation of independent and collective MPI file read functions. We show that independent 
functions provide better performance than collectives for contiguous file read operations on vector data 
stored on Lustre.  
(3) Spatial data aware MPI: Derived spatial data types, spatial reduction operations and communication 
support for spatial data using MPI. With these new spatial types, the efficiency of built-in reduction 
operations can be leveraged.  
(4) An MPI framework to parallelize spatial computations on top of MPI-Vector-IO (described in Section 
4.3). The framework enables parallel spatial indexing and join operations on an order of magnitude 
larger datasets (indexing up to 700M geometries in 137 GB single file in 90 seconds) [1–3, 5, 27, 28, 32]. 

 

The rest of the paper is structured as follows. Section 2 presents general technical background related to this 
paper. Section 3 discusses the challenges and implementation issues. In Section 4, we present the design and 
implementation details of MPI-Vector-IO. Section 5 presents the experiments and evaluation using real datasets. 
Section 6 concludes this paper. 

Level 0  Contiguous and Independent 
Level 1 Contiguous and Collective 
Level 3 Non-contiguous and Collective 

Table 1: Three levels in MPI file read functions. 

2 BACKGROUND CONCEPTS AND RELATED WORK 
Vector data: Well-Known Text (WKT) is a text markup language for representing vector geometry objects on a 
map. A polygon with 3 vertices is represented as POLYGON ((30 10, 40 40, 20 40, 30 10)) [31]. Its binary 
equivalent, known as Well-Known Binary, is used to transfer and store the geometries in spatial databases. 
These formats were originally defined by the Open Geospatial Consortium. 

Parallel I/O and MPI-IO: Parallel filesystems like GPFS and Lustre store chunks of a file across multiple hard disks 
which make parallel read/write possible. In Lustre, stripe count and stripe size can be specified for a file and a 
directory. Stripe count means the number of storage devices (OST) where the file blocks are striped. MPI 
provides I/O routines for read/write operations by multiple processes to a common file. Using parallel I/O can 



lead to improved performance and provides a single file for storage and transfer purposes. File access can be 
expressed in contiguous or non-contiguous fashion (each process accesses multiple small chunks of data located 
noncontiguously). Special functions like MPI_Type_contiguous and MPI_Type_vector can be used for non-
contiguous types. These types allow for gaps such that elements are separated by multiples of the extent of the 
input datatype. An example of non-contiguous area is a column of a 2D array stored in a row major order. MPI 
provides independent and collective functions for file read and write operations as shown in Table 1. 

In literature, there are several studies and software tools like PnetCDF, HDF5, ADIOS, T3PIO, HieRO, etc. for 
optimizing I/O in an HPC environment [8, 15, 18, 19, 21, 24]. These are geared towards scientific and simulation 
applications reading/writing checkpoint or visualization data and use specific file formats like NetCDF, HDF, BP, 
etc. These formats are very different from spatial vector data formats. Using the existing libraries mentioned 
earlier would require data format conversion and preprocessing to store file offsets of the variable length 
geometries in order to allow random access for partitioning. Our proposed method (Algorithm 1) uses 
interprocess communication to partition the file on the fly and does not require any preprocessing. Some file 
access patterns in GIS are also different from scientific applications. Chou et al. discusses in-memory system for 
spatial indexing and query without using a parallel filesystem [8]. Our work is geared towards spatial data 
analytics use cases where the data resides on a parallel filesystem. 

Much of the research on big spatial data has been done on top of HDFS filesystem using MapReduce paradigm 
[4, 12]. The default design of HDFS/Hadoop cannot efficiently utilize the advanced features of the available 
resources in HPC platforms. In our past project on polygon overlay computation, we found MPI-based system to 
be faster than Hadoop based system [26]. With time-critical and latency sensitive applications in mind, we are 
proposing HPCoriented solution to geo-spatial data problems based on MPI. 

Geometry Engine OpenSource (GEOS) is a widely used C++ library that provides 1) spatial data structures 
including Quadtree and R-tree, 2) computational geometry and GIS algorithms, and 3) parsing WKT geometries. 
MPI-Vector-IO internally calls this library for geometric algorithms. Due to this integration, it enables the usage 
of GEOS in a shared-nothing MPI environment. 

Filter and Refine technique: Spatial query e.g. searching for all geometries overlapping with a polygon p is carried 
out in two phases. In the filter phase, all of the spatial data is scanned and overlap test is carried out with 
rectangular approximation (bounding rectangle) of the geometries. Using approximations produce some false 
positives. Therefore, in the refine phase, actual geometries are used for overlap test. This technique leads to 
better performance because overlap test on rectangles is faster than with the larger and complicated 
geometries. Moreover, a sizable chunk of the input geometries are weeded out in the filter phase itself. 

By combining the generality of filter and refine with the GEOS library, a framework can be developed to handle a 
class of spatial analytics use cases. We will show how to combine this framework with MPI-Vector-IO for 
parallelization in Section 4.3 and show spatial join as an exemplar. 

Spatial Join: Spatial join is similar to join operation on two tables in a database. In spatial join, the records have 
spatial attributes i.e. 2D objects and the join operation is defined on spatial properties. An example of a spatial 
join is “Find all pairs of rivers and cities that intersect.” Intersect operation for a given pair of polygons returns 
true if and only if polygons share any portion of space. In general, spatial join can be defined as follows: given 
two spatial datasets R and S and a spatial join predicate θ (e.g., overlap, contain, intersect) as input, spatial join 
returns the set of all pairs (r,s) where r ∈ R, s∈S, and θ is true for (r,s) [16]. Similar to spatial queries, spatial join 
also follows filter and refine technique. 

Existing MPI based approaches: There are few HPC based research studies focused on parallelizing spatial 
computations on CPU and GPU without much attention to parallelize file I/O [3, 5, 32]. Our earlier work on 



polygon overlay avoided file partitioning and it was not designed to use any parallel filesystem [1, 28]. As such, 
file I/O proved to be the bottleneck. Each process read a chunk of input shapefile using a sequential library. This 
approach only worked with a shapefile because it maintains an extra index file to hold the offsets of the 
geometries in the main file. For other XML data formats, we implemented redundant file reading by all 
processes and master process distributing data to other workers. These redundant and serial I/O strategies were 
slow, cumbersome, and overwhelmed the memory capacity of individual nodes for larger data. Other research 
projects do not study the parallel I/O issues for variable length spatial data [5, 8]. 

3 CHALLENGES AND IMPLEMENTATION ISSUES 
Users in geo-spatial domain are tool constrained in HPC environment. For large geo-spatial files, data 
partitioning is one of the big challenges. Following questions are addressed in this paper: 

1) Data Partitioning: How to partition a file that contains irregular and unstructured data (co-ordinates + 
attributes)? Simple partitioning by file-blocks fails due to geometries getting split across two consecutive MPI 
ranks.  

2) Expressing vector data I/O using MPI: MPI-IO functions are for unformatted binary file access similar to POSIX 
read and write functions [14]. Using these functions require reading the file, followed by parsing phase to 
construct data types. MPI does not have any functions for formatted text I/O equivalent to fprintf and fscanf in C 
language. Formatted I/O functions are suitable for text-based spatial data; for instance, parsing phase is not 
required for reading points, lines and rectangles using fscanf. Given the fact that MPI-IO functions are designed 
for binary unformatted data, how to use them effectively for geo-spatial applications where the data is 
formatted and not necessarily in binary form? A variety of geometry representations defined by Open 
Geospatial Consortium should be supported and the nitty-gritty of file and data partitioning issues should be 
abstracted away by the parallel library.  

3) MPI-IO and ROMIO issues: MPI standard specifies that the count parameter passed to MPI functions be a 32-
bit integer. Using user-defined derived data types, count can be reduced to a lower number than what a 32-bit 
integer can hold. However, this creates problem with ROMIO, a widely used MPI-IO implementation, where an 
MPI process can not read/write more than 2 GB of data in a single operation. It should be noted that this is a 
known limitation of ROMIO. For MPI communication of large data, derived data types are not sufficient for 
irregular MPI collectives. For instance, in Alltoallv that allows processes to send messages of different sizes, but 
have only one datatype parameter, a single derived data type that will work for all processes needs to be 
defined at run-time. This requires additional phase of communication to determine the extent of the new data 
type a priori. With respect to the new data type, the communication buffer needs to be padded accordingly, 
which adds overhead during serialization and deserialization. 

 

 

Figure 1: Local geometries read by MPI-Vector-IO is projected to a grid by each process. Shaded area represents 
tasks assigned to 𝑃𝑃1. For spatial locality, 𝑃𝑃1 needs geometries overlapping with its area from other processes 
including 𝑃𝑃0 and 𝑃𝑃𝑛𝑛−1. 



4 MPI-VECTOR-IO 
In this section, we will discuss data parallel MPI-Vector-IO architecture with respect to I/O, file and spatial 
partitioning using MPI. 

For efficient and scalable partitioning of vector data, we need to focus on all three aspects - I/O, computation, 
and communication. In order to parallelize spatial computations, MPI-Vector-IO performs data partitioning in 
two distinct phases - 1) file partitioning for data parallelism and 2) cellular grid based partitioning to ensure 
spatial locality. 

Two access patterns are used depending on the size of the data and application. For large files, a block size 
needs to be specified with an upper bound of 2 GB per process due to ROMIO limitation. Block size can be varied 
by user to control the granularity of computation. If block size is not defined, then the file is logically divided 
equally among the processes. After file partitioning, each process reads the local geometries and projects them 
to a local grid as shown in Figure 1. Inter-process exchange of geometries is required to get a global partitioning 
of the overall data in order to ensure that each cell of the grid contains all the geometries that lies in it partially 
or completely. If a geometry spans multiple cells, then it is simply replicated to these cells. Duplicate avoidance 
is carried out later in the refinement phase. The data decomposition is in terms of cell which is also an abstract 
type to represent a unit task in our system. A subset of these cell-based tasks are assigned to processes. 

MPI-Vector-IO system carries out filter-and-refine on spatial data stored on parallel filesystem in a distributed 
fashion. Figure 2 shows the architecture and data flow in a cluster environment with high performance 
interconnects and parallel filesystems. The general architecture shown in this figure represents the data flow for 
a range of applications like spatial query, join and overlay. The data flow diagram shows distributed spatial 
computation and communication using 3 compute nodes. The geometries in a file partition (𝑃𝑃0 to 𝑃𝑃11) are 
mapped to corresponding grid cells. For populating the cells with geometries overlapping with its boundary, an 
R-tree is first built by inserting the individual cell boundaries. Then, for each geometry in the local file partition, 
the overlapping grid cells are determined by querying with the geometry’s MBR against this R-tree. An all-to-all 
personalized data exchange produces global spatial partitioning. 

We start with our main contribution - parallel I/O and partitioning for polygonal data. Then, we will show how to 
parallelize spatial computations on top of MPI-Vector-IO. 



  

Figure 2: MPI-Vector-IO architecture and data flow diagrams. 

4.1 Design and implementation of MPI-Vector-IO 
Depending on the type of spatial data, MPI-Vector-IO supports both formatted as well as unformatted data. It 
takes advantage of the I/O interface in MPI that supports features like collective and independent I/O. The input 
layers are split into logical partitions among MPI processes. For text-based data like WKT, each file partition is 
treated as collection of strings and assigned to a single process. All the strings in each partition gets parsed into 
geometries first and then mapped to one or more grid cells based on its MBR’s spatial overlap with the grid cells. 

 

Figure 3: File partitioning among processes (contiguous mode). 

Contiguous File Access: In MPI-Vector-IO, the basic idea is to logically partition the entire file among N processes. 
Each process participates in reading a portion of a common file as shown in Figure 3. For formatted text data, 
default file view is used for contiguous file access. In order to handle data with co-ordinates and text attributes, 
we have used buffer of MPI_CHAR data type in MPI-IO functions. A user can select the I/O functions to be used 
in independent (Level 0) or collective (Level 1) mode by each process. If block size is not specified, then each 
process reads equal chunks of the file as shown in Figure 3. Otherwise, each process determines the file offsets 
based on the block size specified by the user. The block size is defined for each process. In this case, there are 
multiple iterations of file access required to read the complete file. As shown in Algorithm 1, all iterations except 
the last one read (N*blockSize) bytes. The last iteration requires special handling. Depending on the portion of 
file remaining in the last iteration, a subset of processes call the file read function. 



Handling variable-length geometries: Due to file partitioning, a polygon vertex list can potentially get split across 
file partition read by a process. This is undesirable since a shape needs to be read by one process in its entirety. 
To prevent this splitting, a process needs to read slightly more than (FileSize/N) bytes. The exact number of 
bytes is determined by the maximum size of a shape in our current data sets which is 11 MB to handle the 
largest polygon. One way to resolve this issue is to allow the file access by two consecutive processes to overlap 
with each other near the block boundaries. This overlap area is similar to a halo region and its length can be 
specified if the upper bound on the size of a geometry is known a priori. Among the two contending processes, 
one of them needs to take the ownership of the geometry spanning a block boundary. This approach requires 
O(N) bytes of redundant file reading because of overlapping read accesses. This problem is further exacerbated 
when multiple iterations are required to read the file completely because the block size read by each process is 
small. 

Dynamic file partitioning: Another approach is to read fixed-size blocks with no overlaps by each MPI process 
and use send and recv communication in a ring fashion where an MPI process passes the incomplete geometry’s 
co-ordinates to its neighboring process as shown in Algorithm 1. MPI communication is used instead of MPI 
processes reading overlapped file blocks. In Line 12 of Algorithm 1, the processes are partitioned into two 
groups to avoid deadlock conditions. One group consists of even-numbered processes and the other of the odd-
numbered processes. The even-numbered processes perform a send followed by receive, and the odd-
numbered processes perform a receive followed by a send. Only three arguments are shown in the send/receive 
function calls, namely buffer address, buffer size and source/destination ranks. In Line 15 and 17, the receive 
function’s max buffer size is fixed as 11 megabytes. To get the actual number of data types received, 
MPI_Get_count function is used. If an upper bound on the message size is not easy to calculate, MPI Probe and 
Get_Count functions are required to find the message size for receive function’s buffer allocation. Dynamic file 
partitioning solves the variable length geometries getting split among processes. This approach does not require 
halo regions and has the advantage of not doing redundant file reading. Moreover, parallel file read access will 
be stripe aligned. 

 

Figure 4: File partitioning (non-contiguous mode). Each process reads file partitions in a round-robin fashion. 

Non-Contiguous File Access for Spatial Data: In many GIS applications, the co-ordinate data is partitioned among 
grid cells and the cells are distributed among MPI processes in a round-robin fashion for load-balancing. For 
example, in a grid-based polygon overlay operation, the output needs to be written to a single file in which the 
storage order corresponds to that of the global grid data layout in row-major order. Since the spatial data is 
distributed among processes, this requires non-contiguous file writing (shown in Figure 4). This ensures that the 
output file is same as if produced sequentially. 

To ensure spatial data locality, points and line segments are often sorted in 2D using Z-order and Hilbert curve. 
Rectangles and polygons are partitioned into grid cells for the same purpose. For spatially sorted data, 
contiguous and non-contiguous file reading results in different partitioning. A contiguous access may result in 
coarse-grained and uneven spatial partitioning among different processes as shown in Figure 5 a) with 6 
processes. For skewed data, this may lead to load-imbalance among processes. Non-contiguous read creates 
fine-grained tasks and declustering of data as shown in Figure 5 b). Heuristics like declustering geometries and 
round-robin assignment to tasks has been shown to be effective for load-balancing [30]. By defining custom file 



views using derived data types, MPI-Vector-IO enables these techniques to be applied while doing file read for 
point, line segment, and polygonal data. 

 
Figure 5: Spatial partitioning as a result of file partitioning among 6 processes with a) default file view (Figure 3) 
and b) non-contiguous file view (Figure 4). 

Algorithm 1 Iterative File Reading - Message based 

1: Input variables: fileSize, blockSize, N, rank 
2: MPI_Offset globalOffset ← 0 
3: MPI_Offset fileChunkSize ← N * blockSize 
4: iterations ← [fileSize/fileChunkSize] 
5: for (i=0; i <(iterations-1); i++) do 
6: globalOffset ← i * fileChunkSize 
7: start ← globalOffset + rank * blockSize 
8: MPI_File_read_at_all(file, start, fileBuffer, blockSize) 
9: lastDelimPos ← blockSize-1 
10: while (fileBuffer[lastDelimPos] != DELIMITER) do 
11: lastDelimPos-- 
12: if (rank%2 == 0) then 
13: MPI_Send((fileBuffer+lastDelimPos), 
14: (blockSize-lastDelimPos), (rank+1)%N) 
15: MPI_Recv(recvBuffer, maxBufferSize, (rank-1+N)%N) 
16: else 
17: MPI_Recv(recvBuffer, maxBufferSize, (rank-1+N)%N) 
18: MPI_Send((fileBuffer+lastDelimPos), 
19: (blockSize-lastDelimPos), (rank+1)%N) 
20: handleLastIteration() 

 

Unlike polygons that vary in length, spatial types like points, lines, and MBRs have fixed length. Files containing 
these special types are preprocessed and stored in binary as basic or struct type. MPI-IO functions then directly 
read the data as MPI datatypes. In case of spatial index files that need frequent access, the advantage in doing 
so is that file access becomes regular and much faster. Moreover, custom file views can be easily defined for 
these unformatted files with fixed-size records. This makes non-contiguous file access easier to implement. A file 
block size needs to be defined in terms of number of datatypes to specify the areas in file accessible per process. 

Implementing non-contiguous file access for variable length polygons and polylines requires preprocessing. 
Vertex count and displacement arrays containing length of geometries and arrayoffsets are populated as a 
preprocessing step. Using these auxiliary arrays, MPI_type_indexed derived data type is created to specify block 
layout in file views. Collective functions are used in all cases. 

Spatial Type Spatial Reduction  
 Operator Supported Types 



MPI_POINT MPI_MIN RECT, LINE, POINT 
MPI_LINE MPI_MAX RECT, LINE, POINT 
MPI_RECT MPI_UNION RECT 

Table 2: Spatial data types and reduction operators. 

 
Figure 6: Using new types and operators in MPI functions. 

4.2 Collective Computation and Communication for Spatial types 
This subsection is motivated by the fact that user-defined data types and operations not only enhance the 
abstraction and reusability of a system, but also performance in case of MPI in the presence of hardware 
support [6]. Using derived datatypes and functions to specify the data layout, non-contiguous elements need 
not be copied to additional buffer for send/recv and file access operations, thereby, leading to optimized 
communication. In case of I/O, it may lead to fewer system calls and physical disk I/O. 

4.2.1 Spatial data types.  
MPI provides a rich set of predefined datatypes. Using these, we have defined additional derived types to 
represent spatial data that are supported by WKT and GEOS library e.g., MPI_Point, MPI_Line, MPI_Rect, etc. 
These data types are shown in Table 2. For instance, MPI_Rect is defined as a contiguous type of 4 doubles. 
Additional compound types such as multi-point, multi-line, and fixed-size polygon are defined by nesting basic 
spatial types. With these new spatial types, the efficiency of built-in MPI reduction operations can be leveraged, 
provided we define new reduction operators for the corresponding data type using MPI_Op_create and pass it 
to the user-defined function. An example showing how to use it is given in Figure 6. 

4.2.2 Collective Reduction Operators for Spatial types.  
With derived data types, existing MPI reduction operators like MPI_MIN, MPI_MAX, etc., do not work. So, we 
have redefined them for lines, MBRs, etc. The min operator can be used to find the line or rectangle with 
minimum size among processes. New MPI_UNION operator on MBRs is also defined which has been used to find 
the grid dimensions from the union of MBRs generated by individual processes during spatial partitioning. To 
implement it, there is a user-defined function linked to the union operator that performs geometric union of 
rectangles. MPI uses this operator to carry out the function in a optimized reduction tree fashion. An example 
usage is shown in Figure 6. These operators can be non-commutative, but must be associative. 

4.2.3 Communication buffer management.  
There are two inputs to this module for each MPI process - 1) the spatial data read from a file partition that is 
already mapped to a cellular grid and 2) rankto-cells mapping, for example, round-robin. Since a process may 
have a geometry belonging to a cell mapped to a different process, data exchange is required for global spatial 
partitioning. MPI bufferoriented communication requires serialization and deserialization of geometries 
(grouped by cell) by each process. Each MPI process serializes the coordinates and geometry related text data 
for all MPI processes in its send character buffer for all-to-all exchange. For vector data consisting of polygons, 
the number of vertices vary considerably. MPI-Vector-IO provides collective communication functions to 
exchange spatial data of different types (including polygons) among processes. Due to the variation in the 
number of geometries and size of each geometry to be sent (received) to (from) other processes, each MPI 
process needs to provide send (recv) count and displacement arrays. As such, all-to-all collective communication 



is performed in at least two communication rounds. Before actually sending the entire co-ordinate data using 
MPI_Alltoallv, the processes exchange the buffer related information among them using MPI_Alltoall which is 
then used to calculate the receiver side count and displacement arrays of MPI_Alltoallv.  

Handling large data exchange: For large data sets, it is often not possible to perform data exchange in a single 
phase due to memory limitations. As such, we have incorporated sliding window technique where 
communication happens in distinct number of phases in an iterative manner. In each phase, spatial data 
contained in a chunk of cells are exchanged. 

4.3 Parallelizing Spatial Computations using MPI-Vector-IO 
Many GIS applications involving query and join operations require a filter-and-refine approach. As such, MPI-
Vector-IO extends this concept to be carried out in a distributed fashion. As a system, MPIVector-IO is designed 
in an extensible manner to take care of file splitting and spatial partitioning using object-oriented approaches to 
handle a variety of data formats with minimal change. Basic steps required to parallelize spatial computations 
are shown in Figure 7. 

Parsing module: Spatial data is parsed while reading the file from disk and from the MPI communication buffer 
during deserialization. Unlike PnetCDF, our implementation is not tied to any specific file format. To handle a 
variety of file formats, our flexible interface presents the geometric data in those files as a collection of strings, 
thereby allowing user to define parsing method that returns a GEOS geometry for each string. For reading WKT 
data format, the parse interface is implemented by WKTParser class that extracts the coordinates by parsing 
them into Geometry objects. This extensible approach applies to other vector data as well e.g., XML and 
CSVbased spatial data. Other feature data associated with the geometry is stored in userdata field of GEOS 
Geometry class. Using GEOS library internally allows our system to represent a wide variety of shapes defined by 
OGC standard. 

 
Figure 7: Main steps for performing spatial computation using MPI-Vector-IO. 

For partitioned data, spatial computation can be carried out by extending refine interface that receives two 
collection of geometries in a cell. For spatial query workload, the second collection can be treated as geometries 
from batch query. Refine tasks are scheduled based on the task mapping across processes thereby carrying out 
distributed spatial computations in different cells. More details on the library with examples are provided on the 
project page 2. 

5 EXPERIMENTAL RESULTS 
This section provides an experimental study of the performance of our system using a variety of large vector 
datasets. First, as our contributions are about spatial data support in MPI, the experiments are designed to show 



the performance of the various system components. We have chosen spatial join as a representative 
application. We have not compared MPI-Vector-IO with PnetCDF or ADIOS. Using these tools would require 
cumbersome conversion of the real vector datasets to tool-specific formats and preprocessing to calculate the 
file offsets for each geometry in order to allow random access. 

Table 3: Real-world datasets and Sequential parsing time. 

 Dataset Shape File Size Count I/O (sec) 
1 Cemetery Polygon 56 MB 193 K 2.1 
2 Lakes Polygon 9 GB 8 M 328 
3 Roads Polygon 24 GB 72 M 786 
4 All Objects Polygon 92 GB 263 M 4728 
5 Road Network Line 137 GB 717 M 2873 
6 All Nodes Point 96 GB 2.7 B 3782 

 

Parsing large datasets: Spatial data sets are growing in size. Table 3 shows the description of the datasets with 
different sizes, types, and number of shapes extracted from OpenStreetMap which represents map data from 
the whole world [22]. For spatial queries on large spatial data files of 100 GBs, I/O and parsing phase itself takes 
about an hour, as shown in the last column of the table. 

Cluster Information: We have used COMET cluster with Lustre filesystem [9]. The cluster has 2.5 GHz Intel Xeon 
E5-2680v3 processors and 128 GB DDR4 DRAM. Each node has 24 cores. The network topology is FDR InfiniBand 
with 56 Gb/s link bandwidth. It has 6 petabytes of 100 GB/s durable storage. There are 96 OSTs available for 
striping. Maximum compute nodes that are allowed in a single job is 72. 16 MPI processes are run per node. We 
used Open MPI version 1.8.4 and GCC 4.9.2. 

We have used ROGER cluster [29] with GPFS parallel filesystem. The compute nodes have two Intel Xeon E5-
2660 v3 chips. Each chip has 10 cores, each running at 2.6GHz. Each node has 256 GB of physical RAM. The 
cluster is connected by a high-speed network with 40Gb/s switches in the core and 10Gb/s uplinks to each node. 
20 MPI processes are run per node. We used MPICH/3.1.4 and GCC 4.9.2 to build the system. GEOS library 
version 3.4.2 has been used for local spatial indexing and join [17]. 

First, we evaluate MPI-Vector-IO on Lustre and GPFS. Then, in subsection 5.2, we evaluate an end-to-end spatial 
join system built on top of MPI-Vector-IO. 

5.1 MPI-Vector-IO performance evaluation 
The results shown here are average of at least three runs. First, we discuss performance evaluation of file read 
operations (Level 0 and 1) on Lustre by varying stripe count (OST) and stripe size. On GPFS, we did not have the 
permission to change those parameters. Therefore, we used the default filesystem configuration on GPFS. 

5.1.1 Lustre Experiments.  
The granularity of spatial computation can be controlled by varying block sizes to be read by each process. A 
user can specify coarse-grained block size if the application is less compute intensive e.g. range query. However, 
spatial join requires fine-grained block decomposition since it is very compute intensive. Moreover, grain size 
also impacts load balancing. Therefore, here we show how much throughput is achievable for a variety of block 
sizes. 

In the following experiments, 16 cores per node is used with 1 MPI process for each core. A single file is striped 
using different stripe count (upto 96 OST allowed) and stripe size to study the performance variations. Block size 
read by each process is kept same as the stripe size for file access alignment with the stripes. 



Performance of Algorithm 1 depends on the number of iterations of file access required to read a whole file in 
blocks. The number of iterations depend on the number of processes, file size, and block size read by each 
process (see steps 3 and 4 of Algorithm 1). For instance, in case of Roads data set, using 256 processes and 32 
MB block size, 4 iterations are required to read the complete file. Using 16 MB block size, 7 iterations are 
required. However, if we use 128 processes and 32 MB block size, file read functions are invoked 7 times. Each 
time 4 GB file chunks are read and the file offset is advanced accordingly. In the last iteration, only 168 MB 
needs to be read. Therefore, the block size used for the last iteration is different than 32 MB. It should be noted 
that fewer iterations also means less send/recv messages to handle the geometries getting split among 
consecutive MPI ranks. 

Independent Read (Level 0): In Figure 8, file read performance in the order of GB/s is shown for the largest 
polygonal data. The number of nodes is varied from 4 to 72 (maximum allowed). The performance improves 
when the number of processes is increased up to a certain extent due to the reduction in the number of file 
access. For all stripe counts, there is a range of processes where relatively high bandwidth is achieved. The 
maximum bandwidth achieved is 22 GB/s using 48 compute nodes. In Figure 9, file read bandwidth for Roads 
data is shown for different number of OSTs. Roads is much smaller data set than All Objects. Therefore, we have 
chosen a smaller stripe size (32 MB) to allow larger number of processes in this experiment. Block size read 
impacts the I/O performance and with smaller size, we can see up to 8-9 GB/s bandwidth for different number 
of OSTs. In Lustre, performance for a given number of processes generally increases with the number of OSTs 
before reaching maximum value. The higher I/O requirement for larger number of processes quickly saturates 
the link bandwidth. 

 
Figure 8: File Read bandwith for All Objects (92 GB) with stripe size 64 MB and128 MB. Stripe count 64 (Level 0). 

Contiguous and Collective Read (Level 1): We compared the performance of reading Lakes (9 GB) by employing 
two strategies - 1) overlapping file access by consecutive MPI ranks and 2) nonoverlapping file access with send-
recv communication (referred to as message based) to handle file partitioning for variable length geometries. As 
shown in Figure 10, message based algorithm performs better for a range of processes and stripe counts. Block 
size was fixed to 32 MB. We repeated this experiment on NFS filesystem as well with different block sizes and 
reached to the same conclusion. The overhead of reading 11 MB halo region by each process is greater than 
exchanging missing co-ordinates. Therefore, we have used message-based file partitioning for Level 0 and 1 
access patterns. 



 
Figure 9: File Read bandwith for Roads (24 GB) for different stripe counts and fixed stripe size 32 MB (Level 0). 

 
Figure 10: Performance comparison between Message vs Overlap access strategy for three different stripe 
counts (OST). 

 
Figure 11: File Read time for Roads (24 GB) with stripe size 16 MB (Level 1). 

Figure 11 shows the read performance for Roads using three stripe counts and 16 MB block size. The maximum 
bandwidth achieved is 3.5 GB/s with 96 OSTs. For Lakes (9 GB), the maximum bandwidth achieved is about 3.6 
GB/s with the same number of OSTs. When we doubled the block size to 32 MB, up to 5 GB/s bandwidth is 
achieved. For both datasets, performance improved with using higher stripe counts (OST). In general, for a fixed 
block size, disk access frequency and message passing overhead decreases when the number of processes 
increase. However, in the figure, we can see the performance drop for 24, 48, and 72 nodes. For instance, 
performance using 48 nodes is worse than 32. Similarly, performance using 24 nodes is worse than 16 nodes. 
This is due to the fact that on Lustre, the upper bound on the number of MPI processes actually performing read 
operation (reader) is equal to the number of nodes. The actual number of readers can be less than the number 
of nodes as described in the next paragraph.  

MPI hint with key cb_nodes can be provided by the user to set the number of nodes performing I/O operations. 
However, on Lustre, the actual number of readers is determined based on whether the number of nodes is a 
multiple or a divisor of the stripe count [21]. We notice good performance when the number of readers selected 
by ROMIO is equal to the number of nodes. This happens when the stripe count (OST) is a multiple of the 



number of nodes. This is shown in Figure 11 for 16, 32, and 64 nodes. The number of readers selected by ROMIO 
is a function of number of nodes and stripe count. When the stripe count is greater than the number of nodes, 
then the number of readers selected is equal to the largest divisor of stripe count that is less than or equal to 
the number of nodes. For instance, only 16 readers are selected when 24 nodes are reading from 64 OSTs3 . 
When 48 nodes are reading from 64 OSTs, 32 readers are selected4 . This explains the performance drop for 24 
and 48 nodes as shown in the Figure. So, for collective read functions to perform well the combination of node 
count and stripe count should be chosen appropriately such that the number of nodes should be a multiple or 
divisor of the stripe count. This issue has been reported for write performance on Lustre [21]. 

In general, independent functions performed better than collective for our block-based contiguous file read use 
case due to the overhead involved in collectives. For collective functions, I/O happens in two distinct phases. 
Only a subset of MPI processes (a.k.a. aggregators) perform I/O on behalf of the other processes. Then the 
aggregators distribute the data to other processes using MPI_Alltoallv. For larger block size, the two phase I/O 
algorithm is split into multiple cycles due to buffer size constraints [7]. This leads to sub-optimal performance. 
We tried different values for cb_buffer_size and cb_block_size in order to tune collective buffering. However, 
the difference caused by these hints was not noticeable. 

5.1.2 GPFS Experiments. 
 All the experiments in this subsection were performed on ROGER cluster. The last column in Table 3 shows the 
sequential I/O time for a variety of datasets. File I/O time depends on size of the dataset. However, the parsing 
time depends on the type of shape and the number of geometries in a dataset. For instance, polygonal data (All 
Objects) takes more time for parsing than line data (Road Network) as shown in the table, even though Road 
Network is larger in size than All Objects. 

Figure 12 shows performance impact of MPI data types on reading binary file in contiguous mode. 
MPI_Type_struct performs better than MPI_Type_contiguous. The difference is that in case of the struct, MPI 
implementation internally creates the C struct based on the data type definition whereas in the contiguous case, 
user code creates a C struct using 4 contiguous floating point numbers. 

Figure 13 shows the performance for new MPI_Op for geometric Union using 100K, 200K and 400K rectangles. 
This operator is used in our system to get the global spatial grid dimensions by the union of local grid 
dimensions. 

 
Figure 12: Binary file reading time using MPI derived data types on GPFS (Level 1). 



 
Figure 13: MPI Reduce and Scan for geometric Union. 

 
Figure 14: I/O+Parsing performance for All Nodes (96 GB) and All Objects (92 GB) on GPFS (Level 1). 

Figure 14 shows the file reading performance for All Nodes and All Objects using contiguous access mode. Both 
files are about the same size but All Objects takes more time because parsing polygons take more time than 
point data in All Nodes. The I/O performance scales up to 80 processes for both files. 

Non-contiguous and Collective Access (Level 3): Figure 15 shows binary unformatted file reading time for 
contiguous and non-contiguous access modes. The block sizes show the number of MBRs where an MBR consists 
of 4 floating point numbers. As we can see in the figure, file access in contiguous mode is much faster. MPI-IO 
implementation has to perform more work in case of non-contiguous access in terms of interprocess 
communication involved in twophase I/O. For non-contiguous mode, larger block sizes perform better due to 
less aggregation and communication overhead. 

 
Figure 15: Binary file (10 GB) reading time for noncontiguous (NC) access modes on GPFS (Level 1 and 3). 

Figure 16 shows file reading performance for polygonal data using contiguous and non-contiguous access 
modes. In case of irregular and formatted data as well, contiguous access mode performs well and improves 
with increase in the number of processes for both datasets. However, performance of non-contiguous access is 
very sensitive to block-size and number of processes. The block sizes are specified in terms of number of 



polygons in this figure. Since polygons vary in length widely, the I/O request per process is very irregular and can 
vary considerably with change in block size and number of processes. 

 
Figure 16: Non-Contiguous (NC) I/O for polygon data with different block sizes on GPFS. 

5.2 End-to-end performance evaluation 
All the experiments in this subsection were performed on ROGER cluster. Here, we will discuss the component-
wise performance breakdown with respect to partitioning, communication and computation phases for spatial 
join workloads. The partitioning time includes the time taken to populate the grid cells with the geometries read 
from a local file partition. The communication time includes the buffer management overhead in serialization, 
deserialization and exchange of geometry objects. The join time includes time for spatial indexing and geometric 
intersection test. In the following plots, we note the time taken by each process and take the maximum time for 
each of the components. 

The effect of grid-based spatial partitioning can be seen in Figure 17. As the number of grid cells increase, the 
overall execution time decreases. The load in terms of number of geometries across cells can vary. Moreover, 
the cell to process mapping also changes as the number of grid cells and processes increase. This affects the load 
per process which reflects in the communication time. The total time is less than the sum of different phases 
because here we report the maximum time among all processes for each phase. 

 
Figure 17: Execution time breakdown for different number of grid cells for Spatial Join (Lakes, Cemetery) using 
80 MPI processes. 

 



Figure 18: Execution time breakdown for spatial join (#2, #1). 

In Figure 18, the spatial join time dominates the overall execution time. With increasing number of processes, 
the join time decreases as well. In Figure 19, the communication cost dominates the overall execution time. The 
execution time breakdown of different phases for in-memory spatial indexing of Road Network (137 GB) is 
shown in Figure 20. The performance of all the components improves with increase in the number of processes. 
Using 320 processes, spatial indexing of 717M edges takes only 90 seconds. 

 
Figure 19: Execution time breakdown for spatial join (#3, #1). 

Using end-to-end spatial join as an exemplar, we have shown that MPI-Vector-IO can handle data and compute-
intensive spatial operation on an order of magnitude larger data sets. This has been made possible by our 
proposed parallel I/O and data partitioning approach. However, more work is required to improve the overall 
scalability of the system by incorporating dynamic load balancing. Data partitioning and communication can be 
further improved by making it locality-aware. Previous work in this area have only used few shapefiles where 
each file can only be 2 GBs [1, 5, 28, 32]. Hence, the current work improves the state of the practice in HPC GIS 
domain. 

 
Figure 20: Execution time breakdown for indexing 137 GB (Road Network) among 2048 grid cells. 

6 CONCLUSIONS 
Analyzing large amounts of spatial data to guide decision making has become essential to businesses as well as 
scientific discovery. A spatial data framework for HPC environment needs parallel I/O and partitioning support 
for large scale collection of variable length geometries. In this paper, we introduced MPI-Vector-IO which 
enables HPC based GIS to handle large vector datasets of different formats efficiently. Introduction of new 
derived types for spatial data and reduction operators for spatial primitives make MPI spatial-aware. Moreover, 
MPI-Vector-IO system takes care of file and space partitioning along with data communication under the hood, 
thereby, making it easy to use for spatial data computations in HPC environment. Going forward, we intend to 
integrate our GPU based work [3] with MPI-Vector-IO. 
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