161 research outputs found

    Enhancing urban analysis through lacunarity multiscale measurement

    Get PDF
    Urban spatial configurations in most part of the developing countries showparticular urban forms associated with the more informal urban development ofthese areas. Latin American cities are prime examples of this sort, butinvestigation of these urban forms using up to date computational and analyticaltechniques are still scarce. The purpose of this paper is to examine and extendthe methodology of multiscale analysis for urban spatial patterns evaluation. Weexplain and explore the use of Lacunarity based measurements to follow a lineof research that might make more use of new satellite imagery information inurban planning contexts. A set of binary classifications is performed at differentthresholds on selected neighbourhoods of a small Brazilian town. Theclassifications are appraised and lacunarity measurements are compared in faceof the different geographic referenced information for the same neighbourhoodareas. It was found that even with the simple image classification procedure, animportant amount of spatial configuration characteristics could be extracted withthe analytical procedure that, in turn, may be used in planning and other urbanstudies purposes

    Assessing texture pattern in slum across scales: an unsupervised approach

    Get PDF
    According to the Global Report on Human Settlements (United Nations, 2003), almost 1 billion people (32% of the world ’s population) live in squatter settlements or slums. Recently, the perception of these settlements has changed, from harmful tumours which would spread around sickly and unhealthy cities, to a new perspective that interpret them as social expressions of more complex urban dynamics. However, considering a report from UNCHS - United Nations Center for Human Settlements, in relation to illegal and disordered urbanisation issue, some of the main challenges faced by cities are related to mapping and registering geographic information and social data spatial analysis. In this context, we present, in this paper, preliminary results from a study that aims to interpret city from the perspective of urban texture, using for this purpose, high resolution remote sensing images. We have developed analytic experiments of "urban tissue" samples, trying to identify texture patterns which could (or could not) represent distinct levels of urban poverty associated to spatial patterns. Such analysis are based on some complex theory concepts and tools, such as fractal dimension and lacunarity. Preliminary results seems to suggest that the urban tissue is fractal by nature, and from the distinct texture patterns it is possible to relate social pattern to spatial configuration, making possible the development of methodologies and computational tools which could generate, via satellite, alternative and complementary mapping and classifications for urban poverty

    HySenS data exploitation for urban land cover analysis

    Get PDF
    This paper addresses the use of HySenS airborne hyperspectral data for environmental urban monitoring. It is known that hyperspectral data can help to characterize some of the relations between soil composition, vegetation characteristics, and natural/artificial materials in urbanized areas. During the project we collected DAIS and ROSIS data over the urban test area of Pavia, Northern Italy, though due to a late delivery of ROSIS data only DAIS data was used in this work. Here we show results referring to an accurate characterization and classification of land cover/use, using different supervised approaches, exploiting spectral as well as spatial information. We demonstrate the possibility to extract from the hyperspectral data information which is very useful for environmental characterization of urban areas

    A Genetic Bayesian Approach for Texture-Aided Urban Land-Use/Land-Cover Classification

    Get PDF
    Urban land-use/land-cover classification is entering a new era with the increased availability of high-resolution satellite imagery and new methods such as texture analysis and artificial intelligence classifiers. Recent research demonstrated exciting improvements of using fractal dimension, lacunarity, and Moran’s I in classification but the integration of these spatial metrics has seldom been investigated. Also, previous research focuses more on developing new classifiers than improving the robust, simple, and fast maximum likelihood classifier. The goal of this dissertation research is to develop a new approach that utilizes a texture vector (fractal dimension, lacunarity, and Moran’s I), combined with a new genetic Bayesian classifier, to improve urban land-use/land-cover classification accuracy. Examples of different land-use/land-covers using post-Katrina IKONOS imagery of New Orleans were demonstrated. Because previous geometric-step and arithmetic-step implementations of the triangular prism algorithm can result in significant unutilized pixels when measuring local fractal dimension, the divisor-step method was developed and found to yield more accurate estimation. In addition, a new lacunarity estimator based on the triangular prism method and the gliding-box algorithm was developed and found better than existing gray-scale estimators for classifying land-use/land-cover from IKONOS imagery. The accuracy of fractal dimension-aided classification was less sensitive to window size than lacunarity and Moran’s I. In general, the optimal window size for the texture vector-aided approach is 27x27 to 37x37 pixels (i.e., 108x108 to 148x148 meters). As expected, a texture vector-aided approach yielded 2-16% better accuracy than individual textural index-aided approach. Compared to the per-pixel maximum likelihood classification, the proposed genetic Bayesian classifier yielded 12% accuracy improvement by optimizing prior probabilities with the genetic algorithm; whereas the integrated approach with a texture vector and the genetic Bayesian classifier significantly improved classification accuracy by 17-21%. Compared to the neural network classifier and genetic algorithm-support vector machines, the genetic Bayesian classifier was slightly less accurate but more computationally efficient and required less human supervision. This research not only develops a new approach of integrating texture analysis with artificial intelligence for classification, but also reveals a promising avenue of using advanced texture analysis and classification methods to associate socioeconomic statuses with remote sensing image textures

    FRACTAL DIMENSION AND LACUNARITY COMBINATION FOR PLANT LEAF CLASSIFICATION

    Get PDF
    Plants play important roles for the existence of all beings in the world. High diversity of plant’s species make a manual observation of plants classifying becomes very difficult. Fractal dimension is widely known feature descriptor for shape or texture. It is utilized to determine the complexity of an object in a form of fractional dimension. On the other hand, lacunarity is a feature descriptor that able to determine the heterogeneity of a texture image. Lacunarity was not really exploited in many fields. Moreover, there are no significant research on fractal dimension and lacunarity combination in the study of automatic plant’s leaf classification. In this paper, we focused on combination of fractal dimension and lacunarity features extraction to yield better classification result. A box counting method is implemented to get the fractal dimension feature of leaf boundary and vein. Meanwhile, a gliding box algorithm is implemented to get the lacunarity feature of leaf texture. Using 626 leaves from flavia, experiment was conducted by analyzing the performance of both feature vectors, while considering the optimal box size r. Using support vector machine classifier, result shows that combined features able to reach 93.92 % of classification accuracy

    Urban Image Classification: Per-Pixel Classifiers, Sub-Pixel Analysis, Object-Based Image Analysis, and Geospatial Methods

    Get PDF
    Remote sensing methods used to generate base maps to analyze the urban environment rely predominantly on digital sensor data from space-borne platforms. This is due in part from new sources of high spatial resolution data covering the globe, a variety of multispectral and multitemporal sources, sophisticated statistical and geospatial methods, and compatibility with GIS data sources and methods. The goal of this chapter is to review the four groups of classification methods for digital sensor data from space-borne platforms; per-pixel, sub-pixel, object-based (spatial-based), and geospatial methods. Per-pixel methods are widely used methods that classify pixels into distinct categories based solely on the spectral and ancillary information within that pixel. They are used for simple calculations of environmental indices (e.g., NDVI) to sophisticated expert systems to assign urban land covers. Researchers recognize however, that even with the smallest pixel size the spectral information within a pixel is really a combination of multiple urban surfaces. Sub-pixel classification methods therefore aim to statistically quantify the mixture of surfaces to improve overall classification accuracy. While within pixel variations exist, there is also significant evidence that groups of nearby pixels have similar spectral information and therefore belong to the same classification category. Object-oriented methods have emerged that group pixels prior to classification based on spectral similarity and spatial proximity. Classification accuracy using object-based methods show significant success and promise for numerous urban 3 applications. Like the object-oriented methods that recognize the importance of spatial proximity, geospatial methods for urban mapping also utilize neighboring pixels in the classification process. The primary difference though is that geostatistical methods (e.g., spatial autocorrelation methods) are utilized during both the pre- and post-classification steps. Within this chapter, each of the four approaches is described in terms of scale and accuracy classifying urban land use and urban land cover; and for its range of urban applications. We demonstrate the overview of four main classification groups in Figure 1 while Table 1 details the approaches with respect to classification requirements and procedures (e.g., reflectance conversion, steps before training sample selection, training samples, spatial approaches commonly used, classifiers, primary inputs for classification, output structures, number of output layers, and accuracy assessment). The chapter concludes with a brief summary of the methods reviewed and the challenges that remain in developing new classification methods for improving the efficiency and accuracy of mapping urban areas

    Toward Multi-Scale Object-Based Data Fusion

    Full text link
    This paper proposes a new methodology for object based 2-D data fu- sion, with a multiscale character. This methodology is intended to be use in agriculture, specifically in the characterization of the water status of different crops, so as to have an appropriate water management at a farm-holding scale. As a first approach to its evaluation, vegetation cover vigor data has been integrated with texture data. For this purpose, NDVI maps have been calculated using a multispectral image and Lacunarity maps from the panchromatic image. Preliminary results show this methodology is viable in the integration and management of large volumes of data, which characterize the behavior of agricultural covers at farm-holding scale

    HySenS data exploitation for urban land cover analysis

    Get PDF
    This paper addresses the use of HySenS airborne hyperspectral data for environmental urban monitoring. It is known that hyperspectral data can help to characterize some of the relations between soil composition, vegetation characteristics, and natural/artificial materials in urbanized areas. During the project we collected DAIS and ROSIS data over the urban test area of Pavia, Northern Italy, though due to a late delivery of ROSIS data only DAIS data was used in this work. Here we show results referring to an accurate characterization and classification of land cover/use, using different supervised approaches, exploiting spectral as well as spatial information. We demonstrate the possibility to extract from the hyperspectral data information which is very useful for environmental characterization of urban areas

    HySenS data exploitation for urban land cover analysis

    Get PDF
    This paper addresses the use of HySenS airborne hyperspectral data for environmental urban monitoring. It is known that hyperspectral data can help to characterize some of the relations between soil composition, vegetation characteristics, and natural/artificial materials in urbanized areas. During the project we collected DAIS and ROSIS data over the urban test area of Pavia, Northern Italy, though due to a late delivery of ROSIS data only DAIS data was used in this work. Here we show results referring to an accurate characterization and classification of land cover/use, using different supervised approaches, exploiting spectral as well as spatial information. We demonstrate the possibility to extract from the hyperspectral data information which is very useful for environmental characterization of urban areas

    Land/Water Interface Delineation Using Neural Networks.

    Get PDF
    The rapid decline in acreage of land areas in wetlands caused by frequent inundations and flooding has brought about an increased awareness and emphasis on the identification and inventory of land and water areas. This dissertation evaluates three classification methods--Normalized Difference Vegetation Index technique, Artificial Neural Networks, and Maximum-Likelihood classifier for the delineation of land/water interface conditions using Landsat-TM imagery. The effects of three scaling algorithms, including resampling by aggregation, Gaussian smoothing, and local variance analysis, on the classification accuracy are analyzed to determine how the delineation, quantification and analysis of land/water boundaries relate to problems of mixed pixels, scale and resolution. Bands 3, 4, and 5 of a Landsat TM image from Huntsville, Alabama were used as a multispectral data set, and ancillary data included USGS 7.5 minute Digital Line Graphs for classification accuracy assessment. The 30 m resolution multispectral imagery was used as baseline data and the images were degraded to a series of resolution levels and Gaussian smoothed through various scaling constants to simulate images of coarser resolution. Local variance was applied at each aggregation and scaling level to analyze the textural pattern. Classifications were then performed to delineate land/water interface conditions. To study effects of scale and resolution on the land/water boundaries delineated, overall percent classification accuracies, fractal analysis (area-perimeter relationships), and lacunarity analysis were applied to identify the range of spatial resolutions within which land/water boundaries were scale dependent. Results from maximum-likelihood classifier indicate that the method marginally produced higher overall accuracies than either NDVI or neural network methods. Effects from applying the three scaling algorithms indicate that overall classification accuracies decrease with coarser resolution, increase marginally with scaling constant, and vary non-linearly with local variance mask sizes. It was discovered that the application of Gaussian smoothing to neural network classifier produces very encouraging results in classifying the transition zone between land and water (mixed pixels) areas. Fractal analysis on the classified images indicates that coarser resolutions, higher scaling constants and higher degrees of complexity, wiggliness or contortion of the perimeter of water polygons span higher ranges of fractal dimension. As the water polygons become more complex, the perimeter becomes increasingly plane filling. From the changes in fractal dimension, lacunarity analysis and local variance analysis, it is observed that at 150 m, a peak value of measured index is obtained, before dropping off. This suggests that at 150 m, the aggregated water bodies shift to a different \u27characteristic\u27 scale and the water features formed are smooth, compact, have more regular boundaries and form connected regions. This scale dependence phenomenon can help to optimize efficient data resampling methodologies
    • …
    corecore