2,459 research outputs found

    Quantum and Classical Strong Direct Product Theorems and Optimal Time-Space Tradeoffs

    Full text link
    A strong direct product theorem says that if we want to compute k independent instances of a function, using less than k times the resources needed for one instance, then our overall success probability will be exponentially small in k. We establish such theorems for the classical as well as quantum query complexity of the OR function. This implies slightly weaker direct product results for all total functions. We prove a similar result for quantum communication protocols computing k instances of the Disjointness function. Our direct product theorems imply a time-space tradeoff T^2*S=Omega(N^3) for sorting N items on a quantum computer, which is optimal up to polylog factors. They also give several tight time-space and communication-space tradeoffs for the problems of Boolean matrix-vector multiplication and matrix multiplication.Comment: 22 pages LaTeX. 2nd version: some parts rewritten, results are essentially the same. A shorter version will appear in IEEE FOCS 0

    Quantum and classical strong direct product theorems and optimal time-space tradeoffs

    Get PDF
    A strong direct product theorem says that if we want to compute kk independent instances of a function, using less than kk times the resources needed for one instance, then our overall success probability will be exponentially small in kk. We establish such theorems for the classical as well as quantum query complexity of the OR-function. This implies slightly weaker direct product results for all total functions. We prove a similar result for quantum communication protocols computing kk instances of the disjointness function. Our direct product theorems imply a time-space tradeoff T^2S=\Om{N^3} for sorting NN items on a quantum computer, which is optimal up to polylog factors. They also give several tight time-space and communication-space tradeoffs for the problems of Boolean matrix-vector multiplication and matrix multiplication

    A Hypercontractive Inequality for Matrix-Valued Functions with Applications to Quantum Computing and LDCs

    Full text link
    The Bonami-Beckner hypercontractive inequality is a powerful tool in Fourier analysis of real-valued functions on the Boolean cube. In this paper we present a version of this inequality for matrix-valued functions on the Boolean cube. Its proof is based on a powerful inequality by Ball, Carlen, and Lieb. We also present a number of applications. First, we analyze maps that encode nn classical bits into mm qubits, in such a way that each set of kk bits can be recovered with some probability by an appropriate measurement on the quantum encoding; we show that if m<0.7nm<0.7 n, then the success probability is exponentially small in kk. This result may be viewed as a direct product version of Nayak's quantum random access code bound. It in turn implies strong direct product theorems for the one-way quantum communication complexity of Disjointness and other problems. Second, we prove that error-correcting codes that are locally decodable with 2 queries require length exponential in the length of the encoded string. This gives what is arguably the first ``non-quantum'' proof of a result originally derived by Kerenidis and de Wolf using quantum information theory, and answers a question by Trevisan.Comment: This is the full version of a paper that will appear in the proceedings of the IEEE FOCS 08 conferenc

    Poisson suspensions and infinite ergodic theory

    Full text link
    We investigate ergodic theory of Poisson suspensions. In the process, we establish close connections between finite and infinite measure preserving ergodic theory. Poisson suspensions thus provide a new approach to infinite measure preserving ergodic theory. Fields investigated here are mixing properties, spectral theory, joinings. We also compare Poisson suspensions to the apparently similar looking Gaussian dynamical systems.Comment: 18 page

    A Lower Bound for Sampling Disjoint Sets

    Get PDF
    Suppose Alice and Bob each start with private randomness and no other input, and they wish to engage in a protocol in which Alice ends up with a set x subseteq[n] and Bob ends up with a set y subseteq[n], such that (x,y) is uniformly distributed over all pairs of disjoint sets. We prove that for some constant beta0 of the uniform distribution over all pairs of disjoint sets of size sqrt{n}

    M\"obius disjointness for models of an ergodic system and beyond

    Full text link
    Given a topological dynamical system (X,T)(X,T) and an arithmetic function u ⁣:NC\boldsymbol{u}\colon\mathbb{N}\to\mathbb{C}, we study the strong MOMO property (relatively to u\boldsymbol{u}) which is a strong version of u\boldsymbol{u}-disjointness with all observable sequences in (X,T)(X,T). It is proved that, given an ergodic measure-preserving system (Z,D,κ,R)(Z,\mathcal{D},\kappa,R), the strong MOMO property (relatively to u\boldsymbol{u}) of a uniquely ergodic model (X,T)(X,T) of RR yields all other uniquely ergodic models of RR to be u\boldsymbol{u}-disjoint. It follows that all uniquely ergodic models of: ergodic unipotent diffeomorphisms on nilmanifolds, discrete spectrum automorphisms, systems given by some substitutions of constant length (including the classical Thue-Morse and Rudin-Shapiro substitutions), systems determined by Kakutani sequences are M\"obius (and Liouville) disjoint. The validity of Sarnak's conjecture implies the strong MOMO property relatively to μ\boldsymbol{\mu} in all zero entropy systems, in particular, it makes μ\boldsymbol{\mu}-disjointness uniform. The absence of strong MOMO property in positive entropy systems is discussed and, it is proved that, under the Chowla conjecture, a topological system has the strong MOMO property relatively to the Liouville function if and only if its topological entropy is zero.Comment: 35 page
    corecore