434 research outputs found

    Embeddings into the Pancake Interconnection Network

    No full text
    Article paru en 2002 dans Parallel Processing LettersInternational audienceOwing to its nice properties, the pancake is one of the Cayley graphs that were proposed as alternatives to the hypercube for interconnecting processors in parallel computers. In this paper, we present embeddings of rings, grids and hypercubes into the pancake with constant dilation and congestion. We also extend the results to similar efficient embeddings into the star graph

    Graph Laplacians, Nodal Domains, and Hyperplane Arrangements

    Get PDF
    Eigenvectors of the Laplacian of a graph G have received increasing attention in the recent past. Here we investigate their so-called nodal domains, i.e. the connected components of the maximal induced subgraphs of G on which an eigenvector ψ does not change sign. An analogue of Courant's nodal domain theorem provides upper bounds on the number of nodal domains depending on the location of ψ in the spectrum. This bound, however, is not sharp in general. In this contribution we consider the problem of computing minimal and maximal numbers of nodal domains for a particular graph. The class of Boolean Hypercubes is discussed in detail. We find that, despite the simplicity of this graph class, for which complete spectral information is available, the computations are still non-trivial. Nevertheless, we obtained some new results and a number of conjectures

    Cooperative Behavior of Kinetically Constrained Lattice Gas Models of Glassy Dynamics

    Full text link
    Kinetically constrained lattice models of glasses introduced by Kob and Andersen (KA) are analyzed. It is proved that only two behaviors are possible on hypercubic lattices: either ergodicity at all densities or trivial non-ergodicity, depending on the constraint parameter and the dimensionality. But in the ergodic cases, the dynamics is shown to be intrinsically cooperative at high densities giving rise to glassy dynamics as observed in simulations. The cooperativity is characterized by two length scales whose behavior controls finite-size effects: these are essential for interpreting simulations. In contrast to hypercubic lattices, on Bethe lattices KA models undergo a dynamical (jamming) phase transition at a critical density: this is characterized by diverging time and length scales and a discontinuous jump in the long-time limit of the density autocorrelation function. By analyzing generalized Bethe lattices (with loops) that interpolate between hypercubic lattices and standard Bethe lattices, the crossover between the dynamical transition that exists on these lattices and its absence in the hypercubic lattice limit is explored. Contact with earlier results are made via analysis of the related Fredrickson-Andersen models, followed by brief discussions of universality, of other approaches to glass transitions, and of some issues relevant for experiments.Comment: 59 page

    Optical control plane: theory and algorithms

    Get PDF
    In this thesis we propose a novel way to achieve global network information dissemination in which some wavelengths are reserved exclusively for global control information exchange. We study the routing and wavelength assignment problem for the special communication pattern of non-blocking all-to-all broadcast in WDM optical networks. We provide efficient solutions to reduce the number of wavelengths needed for non-blocking all-to-all broadcast, in the absence of wavelength converters, for network information dissemination. We adopt an approach in which we consider all nodes to be tap-and-continue capable thus studying lighttrees rather than lightpaths. To the best of our knowledge, this thesis is the first to consider “tap-and-continue” capable nodes in the context of conflict-free all-to-all broadcast. The problem of all to-all broadcast using individual lightpaths has been proven to be an NP-complete problem [6]. We provide optimal RWA solutions for conflict-free all-to-all broadcast for some particular cases of regular topologies, namely the ring, the torus and the hypercube. We make an important contribution on hypercube decomposition into edge-disjoint structures. We also present near-optimal polynomial-time solutions for the general case of arbitrary topologies. Furthermore, we apply for the first time the “cactus” representation of all minimum edge-cuts of graphs with arbitrary topologies to the problem of all-to-all broadcast in optical networks. Using this representation recursively we obtain near-optimal results for the number of wavelengths needed by the non-blocking all-to-all broadcast. The second part of this thesis focuses on the more practical case of multi-hop RWA for non- blocking all-to-all broadcast in the presence of Optical-Electrical-Optical conversion. We propose two simple but efficient multi-hop RWA models. In addition to reducing the number of wavelengths we also concentrate on reducing the number of optical receivers, another important optical resource. We analyze these models on the ring and the hypercube, as special cases of regular topologies. Lastly, we develop a good upper-bound on the number of wavelengths in the case of non-blocking multi-hop all-to-all broadcast on networks with arbitrary topologies and offer a heuristic algorithm to achieve it. We propose a novel network partitioning method based on “virtual perfect matching” for use in the RWA heuristic algorithm

    Properties and algorithms of the (n, k)-arrangement graphs

    Get PDF
    The (n, k)-arrangement interconnection topology was first introduced in 1992. The (n, k )-arrangement graph is a class of generalized star graphs. Compared with the well known n-star, the (n, k )-arrangement graph is more flexible in degree and diameter. However, there are few algorithms designed for the (n, k)-arrangement graph up to present. In this thesis, we will focus on finding graph theoretical properties of the (n, k)- arrangement graph and developing parallel algorithms that run on this network. The topological properties of the arrangement graph are first studied. They include the cyclic properties. We then study the problems of communication: broadcasting and routing. Embedding problems are also studied later on. These are very useful to develop efficient algorithms on this network. We then study the (n, k )-arrangement network from the algorithmic point of view. Specifically, we will investigate both fundamental and application algorithms such as prefix sums computation, sorting, merging and basic geometry computation: finding convex hull on the (n, k )-arrangement graph. A literature review of the state-of-the-art in relation to the (n, k)-arrangement network is also provided, as well as some open problems in this area
    • 

    corecore