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Abstract 

The (n, k)-arrangement interconnection topology was first introduced in 1992. The 

(n, k )-arrangement graph is a class of generalized star graphs. Compared with the 

well known n-star, the (n, k )-arrangement graph is more flexible in degree and diam

eter. However, there are few algorithms designed for the (n, k)-arrangement graph 

up to present. In this thesis, we will focus on finding graph theoretical properties 

of the (n, k)- arrangement graph and developing parallel algorithms that run on this 

network. 

The topological properties of the arrangement graph are first studied. They in

clude the cyclic properties. We then study the problems of communication: broad

casting and routing. Embedding problems are also studied later on. These are very 

useful to develop efficient algorithms on this network. 

We then study the (n, k )-arrangement network from the algorithmic point of view. 

Specifically, we will investigate both fundamental and application algorithms such as 

prefix sums computation, sorting, merging and basic geometry computation: finding 

convex hull on the (n, k )-arrangement graph. 

A literature review of the state-of-the-art in relation to the (n, k)-arrangement 

network is also provided, as well as some open problems in this area. 
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Chapter 1 

Introduction 

In the past 30 years, parallel computation has become a major area in computer 

science. The most primary reason for this is the time efficiency. Using a parallel 

system to solve a problem takes less time than using a sequential computer. A general 

idea is the more processors the faster. Unlike the sequential computation, there 

are two important aspects in parallel computation which are parallel computational 

models and parallel algorithms. 

Generally, a parallel algorithm is designed for a specific parallel computational 

model. Parallel computational models with good properties make it easier to design 

efficient algorithms for parallel computation. We can classify the popular models into 

two major categories, namely, shared-memory parallel machines and interconnection 

networks, depending on how the processors communicate with each other. 

In this chapter, we first introduce the basic classification of parallel computer 

architectures. We then give an introduction of shared-memory parallel machines fol

lowed by an introduction of the interconnection networks and some common topolo-

1 



CHAPTER 1. INTRODUCTION 2 

gies. The (n, k )-arrangement graph is defined next. The method to analyze and 

evaluate parallel algorithms is also presented. Finally, we give an overview and the 

organization of this thesis. 

1.1 Classification of Computer Architectures 

Depending on how instruction steams interact with data streams during program 

execution, we can classify computers into following four categories[23J: 

• Single Instruction, Single Data Stream (SISD) 

In SISD computers, there is only one control unit and one memory unit. Both 

instruction and data work sequentially. A SISD type computer is the general 

sequential machine. 

• Multiple Instruction, Single Data Stream (MISD) 

A MISD computer has multiple processors, each processor has its own control 

unit and all processors share one common memory unit. For the same data, 

different instructions are executed on it in parallel. Sometimes a pipeline of 

processors is considered MISD. 

• Single Instruction, Multiple Data Stream (SIMD) 

A SIMD computer has multiple processors, all processors are controlled by a 

central control unit and each processor has its own memory unit. In each parallel 

step, all the processors execute the same instruction on its own data. All the 

major parallel models in this thesis are SIMD computers. 
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• Multiple Instruction, MUltiple Data Stream (MIMD) 

A MIMD computer has multiple processors, each processors has its own control 

unit and memory unit. In each parallel step, all the processors execute the 

different instruction on its own data. Therefore, a MIMD computer is more 

powerful than other three classes of computers. Examples of MIMD computers 

include the Cosmic Cube, nCUBE 2, iPSC, etc[33]. 

On a parallel computer, processors need to communicate with each other to solve 

any non-trivial problems by either through a shared memory or an interconnection 

network. 

1.2 Shared-Memory Parallel Machines 

A Shared-Memory Parallel Machine contains a number of identical processors and a 

common memory. All the processors access the shared memory by a memory access 

unit (MAU). Since the sequential computer is called the random access machine 

(RAM), a Shared-Memory Parallel Machine is also known as parallel random access 

machine (PRAM). A PRAM can be seen in Figure 1.1. 

Each processor in PRAM reads data from memory by using MAU and uses MAU 

again to write the intermediate result and the final result back. Abstractly, all the 

processors access the shared memory in parallel. The most serious problem here is 

how the processors access the same location in shared memory. It is worth mentioning 

that one of the design goals for parallel algorithm design is to avoid such situations, 

as they inevitably slow down computation. In [5], four different ways for multiple 

processors to read from or write to the same memory location simultaneously are 
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CONTROL MEMORY 

UNIT ACCESS 

(PROGRAM) UNIT 
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PROCESSORS 

... -

MEMORY 
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MEMORY 

Figure 1.1: Shared-Memory Parallel Machines (PRAM) 

listed, which are made possible by the PRAM's repertoire of instructions. 

4 

• Exclusive Read (ER). In this model, for a memory location, only one proces-

sor can read the data. In parallel, different processors can read from different 

memory locations. 

• Concurrent Read (CR). In this model, for a memory location, multiple 

processors can read the same data simultaneously. ER can be seen as a special 

case of CR. 

• Exclusive Write (EW). In this model, for a memory location, only one pro-

cessor can write the data to the location. 

• Concurrent Write (CW). In this model, for a memory location, multiple pro-

cessors can write to the same location simultaneously. However, conflicts may 
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happen when several processors try to write to the same location at same time. 

Many extensions are available to be used with CW to resolve such conflict. 

1. PRIORITY CWo Each processor has a priority. It allows only the high

est priority processor to write the data into this memory location. 

2. COMMON CW. Comparing the data of all the processors, if they are 

of the same value, then they are allowed to write into this location. 

3. ARBITRARY CW. A deterministic algorithm is used to decide which 

value to save into the memory location. 

4. RANDOM CWo A randomly selected processor is allowed to write the 

data into the memory location. 

5. COMBINING CWo A combined value involving some or all the values 

from these processors gets written into the memory location. 

Combining different Read and Write options, we can get four different types of 

PRAM computers which are Exclusive Read, Exclusive Write (EREW), Exclu

sive Read, Concurrent Write (ERCW), Concurrent Read, Exclusive Write 

(CREW), and Concurrent Read, Concurrent Write (CRCW). 

1.3 Interconnection Networks 

In the last section, all communications in PRAM are done through a shared mem

ory. In the interconnected networks, each processor has its own memory unit and 

communicates with the other processors by a topological network. In the network, if 

two processors are connected by a two-way communication link, it means they can 
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exchange data simultaneously. Also, two processors directly connected by a link are 

said to be neighbours. We can use an undirected graph to describe an interconnection 

network. Mathematically, given an undirected graph G = (V, E), where each proces

sor Pi is located at the vertex Vi and there exists a direct communication link between 

two processors Pi and Pj if and only if (Vi, Vj) E E. In this thesis, we will use the terms 

"processor" and "node", "interconnection network" and "graph" interchangeablely. 

Many interconnection networks have been proposed, built, and used as commercial 

system. Next, we will briefly introduce some typical networks. We assume the number 

of processors is N for the following networks. 

Complete Graph: The complete graph is the most powerful network. In a com

plete graph K N , each of the processors is adjacent to the remaining N - 1 processors. 

A complete graph is also called a Clique. 

Linear Array: The linear array is the simplest way to connect N processors, 

Po, PI, ... , PN - I . In this network, all N processors form a one-dimensional array. 

Each processor ~ (0 < i < N - 1) is adjacent to its two neighbors ~-I and ~+I' 

The first node Po is adjacent to PI and the last node PN - I to PN - 2. Both of them 

have only one neighbor. 

If we connect Po and PN - I , we get a network called Ring. In this case, every 

node has two neighbours. 

Tree: In this network, all the N processors form a complete binary tree. 

Two-Dimensional Array: A network is obtained by arranging the N processors 

into an r x s two dimensional array. The processor in row i and column j is denoted 

by ~j, where 0 :S i :S r - 1 and 0 :S j :S s - 1. Each processor Pij has two-way 

communication links to its four neighbours P(i+I)j, P(i-I)j, Pi(j+I) and ~(j-I) if they 
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exist. Processors on the boundary rows and columns have fewer than four neighbours. 

This network is also known as Mesh. A multi-dimensional mesh can be defined 

similarly. Such a network is called a d-dimensional mesh, where d ~ 2. Each processor 

in a d-dimensional mesh is adjacent to its 2 x d neighbours, except the processors on 

the boundary. Figure 1.2 shows a 2 x 2 x 2 Mesh (a) and a 3 x 3 Mesh (b). 

(a) (b) 

Figure 1.2: 2 x 2 x 2 Mesh and 3 x 3 Mesh 

Perfect ShufHe: Let N be a power of 2 (N = 2k) and label N processors as 

Po, Pl, ... , PN - l . In the prefect shuffle interconnection network, a one-way shuffle line 

links ~ to Pj where 

{ 
2i 

J = 2i + 1- N 

05,i5,N/2-1 

N/2 5, i 5, N - 1 
(1.1 ) 

In addition, we switch one-way links to two-way connections. A two-way exchange 

link is added between each processor with even label and its successor in the network. 
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Let ik-lik-2 ... ilio be the binary representation of i. The i j shows the ih bit of i's 

binary representation, where 0 :::; j :::; k -1. Let ij be the binary complement of ij • In 

the prefect shuffle network, the processor Pik-lik-2 ... ilio is adjacent to !1,k-2 ik-3 ... ioik-l 

via shuffle line and to Pik-lik-2 ... itio via the exchange line. For example, Figure 1.3 

shows a prefect shuffle with N = 8. POOl is adjacent to POlO by a shuffle line and to 

P ooo by an exchange line. 

Shuffle line: -- Exchange line: 

Figure 1.3: A perfect-shuffle interconnection network with n = 8 

Hypercube: An n-dimensional hypercube is also known as an n-cube. Let N be 

2n for some n 2:: 0 and label all processors as Po, PI, ... , P N - I . In an n-cube, for Pi, 

let ioil ... in-2in-1 be the binary representation of i, where 0 :::; i < N. The processors 

!1, and Pj are adjacent if and only if the binary representations of the indices i and j 

differ in exactly one bit. Figure 1.4 shows a 3-cube and a 4-cube. 

The Cube-Connected Cycles network, or CCC for short, is a variation of the 

hypercube. A Cube-Connected Cycles topology has similar properties as the n-cube 

and has some additional advantage. We can obtain a Cube-Connected Cycles from 
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Q.'.....~ 
'P ~,p 
'" "1" I '" ,il 

0-·----······--,-·····0 

~+-Q I 
Pl '."; ", i P '''-..... " 

'0;;-0 
(a) Hypercube Wlth n 3 

(b) Hypercube: with n ~ 4 

Figure 1.4: Hypercube interconnection network with n = 3 and n = 4 

a n-cube by replacing each of the 2n nodes with a ring of n processors. More details 

about Cube-Connected Cycles topology can be found in [25, 46]. 

Star: The star graph was proposed to be an attractive alternative to the hy-

percube topology for interconnecting processors in a interconnection network, and 

compares favorably with it in several aspects [3]. In a star graph, there are N = n! 

processors. We call the network Sn or n-star. Each processor P is a permutation 

of n symbols. P and Q are adjacent if and only if Q can be obtained from P by 

interchanging the first symbol and ith symbol in P, where 2 ::; i ::; n. For example, in 

4-star, processor P1234 is adjacent to P2134 , P3214 and P4231 by interchanging the first 

symbol 1 with the second, third and fourth symbol. Figure 1.5 shows a 4-star. More 

details of the n-star will be discussed in Section 5.3. 
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4231 

b 

Figure 1.5: 4-Star 

There are also many other interconnection networks such as the De Bruijin net

work [50], the mesh-of-the-tree [4], and the pyramid [42], etc. 

A number of criteria are used to evaluate network topologies. We now introduce 

some of them and then use them to analyze the networks described above. 

Definition 1 The degree of a processor is the number of neighbours of this processor. 

The degree of network topology is the maximum of all processors' degrees in the 

network. 

Definition 2 The distance between two processors I{ and Pj is the number of links 

on the shortest path from I{ to Pj ; the diameter of the network is the maximum 

distance among any two arbitrary processors. 

Degree is an important criterion for assessing a topology. For example, the degree 

of a clique KN is N - 1, while that of an n-cube is n. For a network, a large de-
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gree is desirable in terms of diameter, connectivity, and fault-tolerant (defined later). 

However, having many neighbors is not only expensive, but may also be infeasible. 

Diameter is another important criterion. Since processors need to communicate 

among themselves and since the time for a message to go from one processor to an-

other depends on the distance separating them, a small diameter is better than one 

with a large diameter in networks [5]. For example, the diameter of a linear array 

with N processors is N - 1. Table 1.1 shows the degree and diameter of topologies 

we described earlier. 

Table 1.1: Interconnection networks and their degrees and diameters 

Interconnection network Degree Diameter Precise Diameter 

Linear Array 2 O(N) N -1 

r x s Mesh 4 O(max(r, s)) (r - 1) + (s - 1) 

Tree 3 O(logN) 2llogN J 

Mesh of Tree 6 O(log N) 2logN 

Pyramid 9 O(logN) ClogN 

Shuffie-Exchange 3 O(log N) 2 log N - 1 

Hypercube( n-cube) n O(logN) logN 

Cube-Connected Cycles of order n 3 o (log N) 2n+ In/2J - 2 

n-Star n-l O( logN ) 
log log N 

l3(n2-1) J 

Definition 3 The connectivity of a graph G with N points is N - 1 if G is the 

complete graph and otherwise is the minimum number of points of G whose deletion 
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results in a disconnected graph!24J. 

In a complete graph KN of N nodes, each node is adjacent to all the other N - 1 

nodes and KN has N(N - 1)/2 lines. Therefore, the connectivity of KN is N - 1. 

Definition 4 A graph G is f-fault tolemnt whenever f or less than f nodes are 

deleted from G, the remaining gr:aph is still connected. The fault tolerance of the 

graph G is the maximum number of f for which it is f-fault tolerant. 

The difference of connectivity and fault tolerance is 1. 

Definition 5 A graph is regular if and only if all nodes in this graph have the same 

degree. 

Definition 6 A graph G is vertex symmetric if and only if for any arbitrary 

vertices v and w, there exists an automorphism of the graph that maps v to w. 

Symmetric is very useful for routing in interconnection network because a vertex 

symmetric graph allows for all the node to be identical. 

The symmetric and fault tolerance properties of a graph are very important when 

talking about interconnection networks. They are the basic considerations when 

defining and building the commercial parallel interconnection network machines. 

Similar to the PRAM, depending on how many neighbours can communicate in 

one time unit, we can divide interconnection networks into two models. 

• single-port (weak) model, in each unit of time a processor is only allowed to 

send data to or receive data from one of its neighbours. 
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• all-port (strong) model, the processor can communicate with one or more of 

its neighbours simultaneously. 

Unless specified otherwise, all interconnection networks in this thesis are considered 

to be the single-port model. 

1.4 (n, k)-Arrangement Graph 

As mentioned before, the star graph was proposed to be an alternative to the hy

percube topology for interconnecting processors in a parallel computer and compares 

favorably with the hypercube in terms of the degree, symmetry properties, maximal 

fault tolerance, etc [2, 22, 44, 52J. Specifically, a star graph of dimension n is a regular 

graph with degree n - 1. It has n! nodes, but both its degree and diameter are O(n), 

i.e., sub-logarithmic in the number of vertices, while a hypercube with O(n!) vertices 

has a degree and diameter of O(log(n!)) = O(nlogn), i.e., logarithmic in the number 

of vertices. Other properties include symmetry properties, as well as many desirable 

fault tolerance characteristics [3J. However, a major limitation to its feasibility as 

a topology in which processors are connected in an interconnection network is the 

requirement that the number of nodes in an n-star be n!, resulting in a huge gap 

between the n-star and the (n + l)-star. For the very popular hypercube, a similar 

problem exists since an n-cube contains 2n nodes while the next one has 2n+1 nodes. 

It is for this reason that the (n, k)-star graph [16J and the (n, k)-arrangement graph 

[19J are proposed, both generalizations of the star graph. 

Definition 7 For 1 :::; k :::; n, an (n, k)-arrangement graph, denoted by An,k, is a 

regular graph. The vertex set is the set of all k-permutations over {1, 2" . " n}, that 
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is, {PIP2··· Pk 11 ~ Pi ~ n, and for i =J. j, Pi =J. Pj} such that two nodes are adjacent if 

their addresses differ in exactly one position. 

We will use i* to represent a node in An,k whose first symbol is i, 1 ~ i ~ n. The 

wild card symbol in i * j, i * j *, and *i are defined similarly, where 1 ~ i, j ~ nand 

i =J. j. 

Let a node P in the (n, k)-arrangement graph be P = PIP2 ... Pk. Let INT(p) be 

a internal set of node P defined by INT(p) = {Pl,P2, ... ,pd and EXT(p) be the 

external set of P defined by EXT(p) =< n > -INT(p) [19]. A symbol (element) 

in the external set is called external symbol (element). In addition, each node P 

can also be written as PIP2 ... Pklele2 ... en-k where el < e2 < ... < en-k are external 

symbols. 

For example, in a (5,3)-arrangement graph, node 123 is adjacent to 423, 523, 

143, 153, 124, and 125. {4, 5} is the external set of node 123. Figure 1.6 shows a 

(4,2)-arrangement graph. 

For each dimension j, 1 ~ j ~ k, each node has (n - k) neighbours that we call 

j-neighbours. Therefore, An,k is a k(n - k)-regular graph with n!j(n - k)! number 

of nodes. The diameter of An,k is O(k) [19]. In addition, it is both vertex and edge 

symmetric, An,l is isomorphic to an n-clique Kn, and An,n-l is isomorphic to the 

n-star [19]. In An,n-l, we can assume the external symbol is the first symbol in Sn 

and we can treat An,n-l as a n-star by the definition of the n-star. This implies 

that n-star is a special case of (n, k )-arrangement graph. (n, k )-arrangement graph 

has more flexibility than an n-star when designing the interconnection network in 

parallel computation in terms of the number of nodes. Figure 1.7 shows a (4,3)-
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42 

Figure 1.6: (4, 2)-Arrangement Graph 

arrangement graph and a 4-Star and the external symbol of the arrangement graph 

is in parentheses. 

Furthermore, there is an isomorphism between the n-alternating group graph and 

(n, n - 2)-arrangement graph[15]. The n-alternating group graph AGn = (V, E) is 

defined as follows: Let V = An, and E = {(p, q)lp, q E V, and q = po q for some 

9 En}, where An is the set of even permutations of n elements. An even permutation 

is a permutation obtainable from an even number of two-element swaps [18]. n is 

a generator set for An and 0 is the composition operator. Here, the generator n is 

defined as gi- = (12i), gt = (li2) and n = {gtI3::; i::; n} U {giI3::; i::; n}. The 

dimension of an alternating group graph is r3; 1- 2 and the degree is (n - 2) [35]. 

More details about n-alternating group graph can be found in [15, 31, 35]. 
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Figure 1. 7: (4, 3)-Arrangement Graph and 4-Star 

1.5 Analyzing Parallel Algorithms 

When applying a parallel algorithm, the most important three criteria are: running 

time, the number of processors used, and cost [5]. 

The running time of a parallel algorithm is the time required by this algorithm 

when executed to solve a problem on a parallel computer. Usually, the running time 

of a parallel algorithm algorithm is obtained by counting elementary steps in the 

worst case. There are two different types of elementary steps in parallel algorithms: 

• A computational step is a basic arithmetic or logical operation performed on 

one or two data within a processor. Such operations include adding, comparing, 

swapping, etc. 

• A routing step is used by an algorithm to send a constant size datum from 
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one processor to another via the shared memory or interconnection network. 

We assume that each elementary step takes a constant number of time units. The 

standard techniques used in analyzing sequential algorithms are applied also in par

allel algorithms. We use a function t( N) to represent the running time of a parallel 

algorithm of input size N. 

Another criterion for measuring the performance of a parallel algorithm is the 

number of processors used. Since the more processors used the more expensive the 

cost of building the computer system is, we have to balance the cost and performance. 

It is very important to minimize the number of processors used while maintaining the 

same time complexity. We use p(N) to denote the number of processors used by a 

parallel algorithm to solve a problem of size N. 

The cost c(N) of a parallel algorithm is defined as the product of its running 

time and the number of processors and denoted as c(N) = t(N) x p(N). The cost 

of a parallel algorithm is an upper bound on the total number of elementary steps 

executed. If the cost of a parallel algorithm matches a lower bound which is known 

for a sequential algorithm for the same problem, then this parallel algorithm is said 

to be cost optimal. 

1.6 Organization of the Thesis 

Many interconnection networks have been discussed previously and some new net

works are continuously being proposed. The (n, k )-arrangement graph is proposed 

in 1992 [19] which is an alternative network to the widely studied n-star graph. As 

a new proposed network, some fundamental algorithms for the (n, k )-arrangement 
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have not been studied yet. They include prefix sums, merging, sorting, etc. We will 

investigate the (n, k)-arrangement network from both the graph theoretical and the 

algorithmic points of views in this thesis. 

We will discuss the following topics in this thesis: 

1. a literature review of the (n, k )-arrangement graph; 

2. cyclic properties; 

3. external symbols; 

4. designing an optimal neighbourhood broadcasting algorithm for An,kl and using 

it to develop an optimal broadcasting algorithm; 

5. a routing algorithm that exchanges the contents between two groups of An,k'S 

in constant time; 

6. embedding mesh on the (n, k )-arrangement graph; 

7. fundamental and application algorithms for An,k including: 

(a) prefix sums; 

(b) sorting and merging; 

( c) translation and reversing; 

8. basic geometry computation: convex hull problem. 

This thesis is organized as follows. Chapter 2 offers a literature review of the (n, k)

arrangement graph. We will also define various problems to be studied in this thesis. 
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In Chapter 3, some graph theoretical properties are studied and an optimal neigh

bourhood broadcasting and an optimal broadcasting algorithm are presented. We 

discuss two constant routing algorithms for the (n, k )-arrangement graph in Chapter 

4. In Chapter 5, we present several algorithms developed for the (n, k )-arrangement 

graph. Finally, our concluding remarks, some open problems and future research 

directions are offered in Chapter 6. 



.. , 

Chapter 2 

Literature Review of the 

Arrangement Graph 

2.1 Introduction 

The (n, k )-arrangement network has received much attention lately. We will offer a 

literature review on the (n, k )-arrangement interconnection network. We will review 

the network from two aspects: its topological properties and parallel algorithms. All 

necessary terms, notations, and problems will be defined accordingly. 

2.2 Properties 

Definition 8 A set of k-permutations is a set of permutations of the n elements of 

< n > taken k at a time. 

Definition 9 An edge of An,k connecting two sets of k-permutations p and q which 

20 
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differ only in position i, 1 ~ i ~ k, is called an i-edge [19]. 

Proposition 1 (n, k) -arrangement graph is a regular graph with degree k( n - k) and 

n!/(n - k)! nodes [19]. 

Proof: By the definition of the An,k. D 

Theorem 1 An,k is vertex symmetric and edge symmetric [19]. 

Vertex symmetric shows that given two vertices, in An,k there exists an automor

phism that maps one vertex into the other. Edge symmetric shows that given any 

two edges, there exists an automorphism that maps one edge into the other. 

The (n, k)-arrangement graph has a cycle representation. The special node 12 ... k 

is called the identity node and is denoted by h [19]. It is always possible to find 

a cycle representation for an node p of the (n, k )-arrangement graph using a set of 

non-trivial internal cycles and external cycles of length 2 or more such that all the 

elements in internal cycles are in I NT(p) and each external cycle contains exactly one 

external element. For example, in Ag,7, the node p = 6351792. There are two cycles: 

CI = (2,3,5,7), C2 = (4,1,6,9). We can see all elements in CI are in INT(p), it is 

therefore an internal cycle. C2 is an external cycle because 4 is an external element 

of p. 

As a result of the node symmetric property, A path from PI to P2 can be mapped 

to a path from pi to h. We can find the path by correcting cycles in p'. For the 

previous example, the path for correcting the external cycle is 6351792 --+ 6354792 --+ 

1354792 --+ 13547.62. And the path for correcting the internal cycle is 1354762 --+ 

1354768 --+ 1254768 --+ 1234768 --+ 1234.568 --+ 1234561. Let c be the number of 
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non-trivial cycles (both internal and external), m the number of elements in these 

cycles and e the number of external cycles. 

Lemma 1 The distance D(p) between p and h in An,k is D(p) ~ c + m - 2e [19]. 

Proof: Suppose C is a external cycle of node p', C = (Xl, X2, ... , x a:), and Xa is the 

foreign external element (an external element of node 1). C can be corrected by first 

moving its Xl to its correct position which is held by X2, then the second element, 

X2, is taken to its correct position which is held by X3. Repeat it until the element, 

Xa-l, is corrected to its correct position, making Xa external. Therefore the correction 

of an external cycle C containing mi elements requires mi - 1 steps. On the other 

hand, correcting an internal cycle C' = (Yl, Y2, ... , Y(3) requires to exchange one of 

its elements (say Yl) with any external element, z, then Yl is taken to its correct 

position which is held by Y2. Repeat it until all the elements go back to their correct 

position, making z external again. The correction of an internal cycle Cj containing 

mj elements requires mj + 1 steps. Therefore, 

Dis(p) < ml - 1 + ... + (me - 1) + (me+1 + 1) + ... + (me + 1) 

c+m-2e D 

Theorem 2 The distance D(p) between p and h in An,k is D(p) = c + m - 2e [19]. 

Corollary 1 The diameter of An,k is l~k J [19]. 

Proof: Recall from Definition 2, the diameter is max {Dis(p)lp E An,k}. The max-

imum distance between an arbitrary node p and the identity node Ik is c + m - 2e. 

The maximum value of the expression is obtained for c = lk/2J, m = k, and e = o. 

Therefore the diameter is l ~ k J . D 

I 
L. 



I 

I 
I 
I 

... -

CHAPTER 2. LITERATURE REVIEW OF THE ARRANGEMENT GRAPH 23 

Definition 10 Let ij be a subgraph of An,k induced by all the vertices with the same 

lh symbol i, where 1 :::; i :::; nand 1 :::; j :::; k. 

Proposition 2 There are k different ways to decompose an An,k into n node-joint 

A n - 1,k-1 's: i j , for 1 :::; i :::; nand 1 :::; j :::; k[19j. 

From Definition 7, for any fixed i and j, where 1 :::; i :::; nand 1 :::; j :::; k, there 

are (n - l)!/(n - k)! nodes which have symbol i in position j. These nodes form an 

A n - 1,k-1. For a fixed j, An,k can be decomposed into n such subgraphs 1j , 2j , ..• , 

nj, thus partitioning An,k into n copies of A n - 1,k-1 [19] and ij is an A n - 1,k-1. For 

example, an A4,2 in Figure 1.6 contains four (3, l)-arrangement graphs by fixing the 

position 2, which are b, 22 , 32 , and 42 . 

This hierarchical structure of An,k is one of the most important properties of the 

(n, k )-arrangement graph. We are going to exploit this property in our various algo-

rithms, for example, in our broadcasting algorithm and constant routing algorithm 

which will be presented later. In our algorithms we normally use the first position to 

do the decomposition. 

Another type of partitioning is obtained by fixing an element i instead of a position 

j. For a fixed element i, the sub-graphs iI, i 2, ... , i k together with the sub-graph io, of 

all nodes which do not have i in any of their k positions, form a partitioning of An,k 

into k copies of A n - 1,k-1: iI, i 2, ... , i k , and one copy of A n - 1,k: io. This partitioning 

can be done in n different ways [19]. 

A Hamiltonian cycle in a graph is a cycle that includes all the vertices of the 

graph exactly once. If a graph has a Hamiltonian cycle, we call such a graph as 

Hamiltonian. Hamiltonian cycle on (n, k )-arrangement graph has been studied in 
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[21] and [30]. 

Proposition 3 (n, k)-arrangement graph is Hamiltonian, 1 ::; k::; n - 1. [21] 

Recently, more research results about the (n, k )-arrangement network have been 

discussed by some researchers. For example, the embedding property of An,k is in

troduced in [20, 21] and the fault tolerance and connectivity properties of An,k are 

discussed in [29, 38]. 

2.3 Algorithms 

2.3.1 Neighbourhood Broadcasting and Broadcasting 

One of important operations on a parallel computer is broadcasting where one node 

(source) sends a message to all nodes. A similar problem that has been studied is 

the problem of neighbourhood broadcasting which is defined as sending a fixed sized 

message from the source node to all its neighbours where in one time unit, a node 

can send to or receive from exactly one of its neighbours a datum of constant size 

[17]. This problem has been studied for several interconnection networks [12, 17, 

26, 27, 49, 47]. Clearly, for any interconnection network with N nodes, the problem 

of broadcasting has a trivial lower bound of O(log N) since the number of nodes 

receiving the message can at most double after each step. Similarly, the problem 

of neighbourhood broadcasting has a trivial lower bound of O(logn) where n is the 

degree of the source node. 

The problem of broadcasting on the arrangement graph has been considered 

previously. In [11], an optimal O( k log n) algorithm was developed for an (n, k)-
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arrangement graph. The central idea is to utilize different-sized broadcasting trees 

for subgraphs that constitute a spanning tree for the graph. Although optimal (and 

without message redundancy), this algorithm is fairly complicated and the derivation 

is also quite involved. Chen et al. later found a broadcasting algorithm for the (n, k )

arrangement graph in [14] where multiple spanning trees were used. This result was 

improved in [37]. For single-port model, neither algorithm is asymptotically optimal. 

2.3.2 Prefix Sums 

Given a set S = {xo, Xl,···, xn-d and a closed binary associative operation ® defined 

over S, the prefix sums are n sums 

So Xo 

The study of the prefix sums problem is important as the problem is a gener

alization of many problems as these problems are simply special cases of the prefix 

sums problems when appropriate binary operations are used. Such problems include 

broadcasting, interval broadcasting, and biological sequence comparison [9]. Prefix 

sums computation is also used in other applications such as computing the ranks of 

elements for sorting, computing carries for carry-lookahead addition, etc. The reader 

is referred to [13, 36] for in-depth study of the problem. 

It is easy to see that the problem of computing all prefix sums has a lower bound 

of n(log N) on an interconnection network with N nodes, where each node holds one 
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element. This can be shown by reducing the problem of broadcasting to the problem 

of computing prefix sums as follows. Let the first processor have the message and 

let all the other processors have a value "0" (i.e., x ® 0 = x), for any x, and the 

operation ® is the usual bit-wise OR. Thus, the lower bound for this problem on An,k 

is D(log(n!/(n - k)!)) = D(klogn). 

We will develop an optimal algorithm for the prefix sums problems on An,k in 

Chapter 5. 

2.3.3 Sorting 

Given a sequence of elements ei stored in a set of ordered processors Pi with the 

ordering relation --<, with each processor holding one element, we say that the sequence 

is sorted in nondecreasing order if ~ --< Pj then ei ~ ej. The nonincreasing order is 

defined similarly. 

Sequentially, D(N log N) number of steps are required to sort N numbers [1]. In 

an (n, k)-arrangement graph, N = n!/(n-k)!, which implies an D(log(n!/(n-k)!)) = 

D (k log n) lower bound to sort on an (n, k )-arrangement graph. Sorting on n-star has 

been studied in [39], [48] and [7]. Since (n, k )-arrangement graph is a generalization 

of the star graph, we can get some ideas from these algorithms. 

One way to define the order of processors in the (n, k )-arrangement graph is the so 

called lexicographic order. For example, the permutations of {I, 2, 3} in lexicographic 

order are 123, 132, 213, 231, 312, and 321. We can easily list all the node in the (n, k)

arrangement graph in lexicographic order by fixing the first position. For example, 
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in A4,2 the lexicographic order of nodes are 

12 --< 13 --< 14 --< 21 --< 23 --< 24 --< 31 --< 32 --< 34 --< 41 --< 42 --< 43. 

Furthermore, another order is called reverse lexicographic order, i.e., lexicographic or

der if we read from right to left. Node in reverse lexicographic order can be generated 

by decompositing the (n, k )-arrangement graph on the last position. In this thesis, 

without notice, we will use lexicographic order as the order of processors for some 

algorithms (prefix sums , sorting, etc) in the (n, k )-arrangement graph. 

We will develop two sorting algorithms for the arrangement graph in Chapter 5. 

The first one is based on a sorting algorithm for the star graph by Menn and Somani 

[39] while the second one is based on a sorting algorithm on n-dimensional mesh by 

Kunde [34]. 

2.3.4 Convex Hull 

The problem of finding the convex hull of a set of N points is one of the most 

. important problems in computational geometry. It has been well studied for serial 

model of computation [45, 10j. Convex hull is widely used to normalize patterns 

in image processing, obtain triangulation of sets of points, and topological feature 

extraction, etc. [45, 53]. 

A convex set is a set in a vector space which is defined to contain line segment 

between any two points in the set. The convex hull of a set S of points, denoted 

hull(S) is defined to be the minimum convex set containing S. Our algorithm is to 

find the convex hull of a set of N planar points on the (n, k )-arrangement graph. 

Divide-and-conquer is a common strategy to find the convex hull hull(S) of a set 
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of points S. Figure 2.1 shows a convex hull on a 2-D plane. Given an input size of 

N = n! / (n - k)! points, initially distributed one element per processor, we will design 

an algorithm to find th econvex hull in Chapter 5 using the divided-and-conquer 

technique. 

Figure 2.1: A Convex Hull on a Plane 

Note that the convex hull problem can be solved sequentially in the optimal 

O(N log N) time. On interconnection parallel models, it has been studied in mesh 

[43], mesh of trees [41], pyramid [41], hypercube [40, 41] and n-star [6]. 



Chapter 3 

Broadcasting 

3.1 Introduction 

As we mentioned in the first chapter, in a single-port (weak) model network, a node 

can communicate with one and only one of its neighbours in one time unit. This tells 

us that the broadcasting problem (BP) in such a model has a lower bound O(1og N), 

where N is the number of nodes in the network, and neighbourhood broadcasting 

problem (NBP) has a lower bound O(logd), where d is the degree ofthe network. For 

the (n, k )-arrangement graph, the lower bound will be O(log( n! / (n- k)!)) = O( k log n) 

for BP and O(1og n) for NBP. 

In this chapter, we first present cyclic properties of the (n, k )-arrangement graph. 

An optimal neighbourhood broadcasting algorithm is then presented by using these 

properties. Next, we use this result to design an optimal broadcasting algorithm on 

the (n, k )-arrangement graph. These properties and broadcasting algorithms are very 

useful in developing efficient parallel algorithms on the (n, k)-arrangement network 

29 
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in the next two chapters. 

3.2 Cyclic Properties 

Recall from the definition of the (n, k )-arrangement graph, for each dimension i, 

1 :::; i :::; k, each node has (n - k) neighbours that we call i-neighbours. For example, 

given a node p = 12 ... (i - l)i(i + 1) ... k in An,k, 1 :::; i :::; k, then its i-neighbours are 

12 ... (i - 1)(k + 1)(i + 1) ... k 

12 ... (i - 1)(k + 2)(i + 1) ... k 

12 ... (i - 1)(n)(i + 1) ... k 

Because the An,k is vertex-symmetric, without loss of generality, we assume that 

the source node is 12· .. k. For this node, its neighbours are 

(k + 1)23 .. · k 

(k+2)23 .. ·k 

n23 .. ·k 

l(k+l)3 .. ·k 

l(k+2)3 .. ·k 

In3 .. ·k 
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123··· (k - l)(k + 1) 

123 ... (k - 1) (k + 2) 

123·· . (k - l)n 

... -

The cyclic properties are based on the following observations: 

31 

Observation 1 For any node u and 1 ::; j ::; k, u and its n - k j-neighbours form a 

clique K n - k+1 . 

Proof: By the definition of the An,k. D 

Observation 2 For 1 ::; i, j ::; k and any node u, u, anyone of its i-neighbours, and 

anyone of its j-neighbours form a cycle of length six. 

Proof: By symmetry, we assume that u = h, and without loss of generality, we 

assume that i < j. Then the following 6-cycle contains u, one i-neighbour, and one 

j-neighbour, where 1 ::; l, m ::; n - k: 

123 ... i ... j ... k +-+ 

123··· (i -l)(k + l)(i + 1) ... (j -l)j(j + 1)··· k +-+ 

123· .. (i - l)(k + l)(i + 1) ... (j - l)i(j + 1) ... k +-+ 

123··· (i - l)j(i + 1) ... (j - l)i(j + 1) ... k +-+ 

123··· (i - l)j(i + 1) ... (j - l)(k + m)(j + 1)· .. k +-+ 

123··· (i - l)i( i + 1) ... (j - l)(k + m)(j + 1)··· k +-+ 

where +-+ represents a bi-directional link (edge) between two nodes. D 
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Observation 3 For any node u, any two 6-cycles formed as in Observation 2 with 

distinct 1 ::; i1, j1, i2, j2 ::; k are disjoint except at u. 

Proof: Without loss of generality, assume that u = h, i1 < j1, and i2 < h. We can 

simply list the two 6-cycles and compare them to see that they are indeed disjoint: 

Cycle 1 

I23 .. (i1 - l)i1h + 1) .. (j1 - l)j1(j1 + I) .. k +-+ 

I23 .. (i1 - I)(k + h)(i1 + 1) .. (j1 - l)j1(j1 + I) .. k +-+ 

I23 .. (i1 - I)(k + h)(i1 + 1) .. (j1 - l)i1(j1 + I) .. k +-+ 

I23 .. (i1 - l)j1(i1 + 1) .. (j1 - l)i1(j1 + I) .. k +-+ 

I23 .. (i1 - l)j1(i1 + 1) .. (j1 - I)(k + m1)(j1 + I) .. k +-+ 

I23 .. (i1 - l)i1(i1 + 1) .. (j1 - I)(k + m1)(j1 + I) .. k +-+ 

Cycle 2 

I23 .. (i2 - l)i2(i2 + 1) .. (j2 - l)j2(j2 + I) .. k +-+ 

I23 .. (i2 - I)(k + l2)(i2 + 1) .. (j2 - l)h(j2 + I) .. k +-+ 

I23 .. (i2 - I)(k + l2)(i2 + 1) .. (j2 - l)i2(j2 + I) .. k +-+ 

I23 .. (i2 - l)h(i2 + 1) .. (j2 - l)i2(j2 + I) .. k +-+ 

I23 .. (i2 - l)j2(i2 + 1) .. (j2 - I)(k + m2)(h + I) .. k +-+ 

I23 .. (i2 - l)i2(i2 + 1) .. (j2 - I)(k + m2)(j2 + I) .. k +-+ 

D 
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Note that Observations 1, 2, and 3 allow us to view the source node together with 

all its neighbours as a de facto complete graph in the sense that any two nodes are 

connected by a path of constant length. 

3.3 Neighbourhood Broadcasting 

Based on the observations in last section and the technique of recursive doubling 

where at each step, we double the number of neighbours with the message by using 

a set of disjoint cycles of constant size in An,k, a simple neighbourhood broadcasting 

algorithm for An,k can be designed. 

Initially, the source node is the only one with the message. In one step, it sends 

the message through the direct link to one of its I-neighbours. This I-neighbour 

then sends the message to a 2-neighbour of the source node through a 6-cycle. Then 

the I-neighbour sends the message to a 3-neighbour and in parallel, the 2-neighbour 

sends the message to a 4-neighbour, etc. In o (log k) time, for each 1 :::; i :::; k, there 

exists an i-neighbour with the message. Then finally, in parallel, for alII:::; i :::; k, in 

O(log(n-k)) time, all nodes in the Kn-k-clique consisting of all n-k i-neighbours will 

have the message (done by a standard broadcasting algorithm on K n - k ), resulting in a 

total time of o (log k + log( n - k)) = o (log n) neighbourhood broadcasting algorithm. 

Essentially, after each step, the number of nodes with the message is doubled 

(with the possible exception of the last step). For example, n = 6, k = 4 and source 

node e = 1234, the neighbourhood broadcasting is done in the following fashion: 

• Step 1: 

1234 ---+ 5234 (Direct link) 
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• Step 2: 

5234 -+ 5134 -+ 2134 -+ 2534 -+ 1534 (Six Length Cycle) 

.. Step 3: 

5234 -+ 5214 -+ 3214 -+ 3254 -+ 1254 (Six Length Cycle) 

1534 -+ 1532 -+ 1432 -+ 1435 -+ 1235 (Six Length Cycle) 

• Step 4: 

5234 -+ 6234 (Direct Link in K 2 ) 

1534 -+ 1634 (Direct Link in K 2 ) 

1254 -+ 1264 (Direct Link in K 2 ) 

1235 -+ 1236 (Direct Link in K 2 ) 

34 

To the best of our knowledge, this neighbourhood broadcasting algorithm is the 

first such algorithm for the (n, k )-arrangement graph. In view of the S1(log n) lower 

bound, our algorithm is optimal. 

3.4 Broadcasting 

With our algorithm for neighbourhood broadcasting just developed in the last section, 

broadcasting on an (n, k )-arrangement graph can now be done easily. Once again, 

without loss of generality, assume that node 123 ... k wants to broadcast a piece of 

message. In the first step, the message will be sent to all its neighbours through 

neighbourhood broadcasting algorithm in O(log n) time so that all i-neighbours have 

the message, 2 :::; i :::; k. We note that for all 2 :::; i :::; k, each i-neighbour of node 

123 ... k is adjacent to a node of the form i*, a k-permutation whose first symbol is i. 
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Since we want to make sure that at least one node of form i* has the message, one 

more step is required. The algorithm proceeds as follows: 

Broadcast (An,k) 

if k = 1 (the network has become a clique), simply perform a standard 

broadcasting algorithm 

else the source node 12· .. k performs a neighbourhood broadcasting. 

After one more step, we have a node of the form h, 2*, "', and n*, 

(e is hand all I-neighbours are (k + 1)*,(k + 2)*, ... n*) with the message 

In parallel, do Broadcast(h), Broadcast (21) , ... , Broadcast(n1)' 

In the example of A6,4, we know all i-neighbours, 2 :::; i :::; k are 1534 and 1634 (2-

neighbours), 1254 and 1264 (3-neighbours), and 1235 and 1236 (4-neighbours). Each 

i-neighbour is adjacent to one node of i* as follows: 

• 2 neighbour -t 2* 

1534 -t 2534 

1634 -t 2634 

• 3 neighbour -t 3* 

1254 -t 3254 

1264 -t 3264 

• 4 neighbour -t 4* 

1235 -t 4235 

1236 -t 4236 
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After this step, in every il (an An-I,k-I) at least one node has the message. We can 

then broadcast in every sub-graph recursively. 

Let t(n, k) be the running time for broadcasting on An,k, then t(n, k) is easily seen 

to be: 

t(n, k) Clogn + t(n - 1, k - 1) 

Clogn + Clog(n - 1) + t(n - 2, k - 2) 

Clogn + Clog(n - 1) + ... + 

Clog(n - k + 2) + t(n - k + 1, 1) 

Clogn + Clog(n - 1) + ... + 

Clog(n - k + 2) +CIlog(n - k + 1) 

O(log(n!j(n - k)!)) 

O(k logn), 

which is optimal in view of the O(1og(n!j(n - k)!)) lower bound. 

Compared with other broadcasting algorithms [14, 37], our novel broadcasting 

algorithm achieves optimality but is much simpler. However, we do want to point 

out that our broadcasting algorithm does allow message redundancy in that a small 

number of nodes receive the message more than once. In the next chapter, another 

broadcasting algorithm which is different from all the previous ones will be presented. 

This algorithm is based on our constant routing algorithms on the (n, k )-arrangement 

graph. 
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Chapter 4 

Routing Problems 

4.1 Introduction 

In this chapter, we will first present a constant time routing algorithm that routes the 

contents of i1 to the processors of jl, i #- j, 1 :S i, j :S n, in a bijective fashion. Then 

we extend this algorithm to allow data to be exchanged between two disjoint groups 

of An-1,k-l'S. It also runs in constant time. These two constant routing algorithms 

help us develop several fundamental algorithms for the arrangement graph in the next 

chapter. 

Furthermore, other than the broadcasting algorithms mentioned in the last chap-

ter, to the best of our knowledge, no other algorithms have been developed for the 

arrangement graph, making our algorithms from this chapter the first such algorithms 

for the (n, k )-arrangement graph. 

We will discuss two classes of highly parallel algorithms: ASCEND and DESCEND 

on the (n, k )-arrangement graph. We also present a way to embed a multidimensional 

37 
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mesh into the (n, k)-arrangement graph. Later, two algorithms, translation and re

versing, will be designed using this ASCEND and DESCEND idea. 

4.2 Constant Routing I 

Consider the following problem: Given iI, and j1, with i #- j, it is required to exchange 

the contents of the processors in i1 with the processors in j1. By exchanging the 

contents of i1 with j1 we mean that the content of each processor in i1 (j1) is routed 

to a processor in j1 (i1) such that no two processors in i1 (j1) send their contents 

to the same processor in j1 (i1). In other words, the mapping defined by such an 

exchange is a bijection between i1 and j1. For example, in A4,2, nodes in hare 12, 13 

and 14; processors in 21 are 21, 23 and 24. We can view this problem as exchanging 

the contents of i1 and j1 to each other in arbitrary order. This can be accomplished 

in constant time as shown in Procedure Exchange. Before we discuss the procedure, 

we first give the Definition 11 and Lemma 2: 

Definition 11 In An,k, for any given pair i,j, i #- j, node ia2··· azja/+2··· ak is the 

companion node of node ja2 ... alial+2 ... ak and vice versa with respect to the pair 

'l,). 

Clearly, a node and its companion node have the same set of external symbols. 

Lemma 2 In An,k, nodes i * j* and its companion node j * i* are connected through 

a 3-length path. 
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Proof: By the definition of the (n, k )-arrangement graph, it is not hard to see we 

can get a routing between i * j* and its companion node j * i* via a 3-length path: 

where x is an external symbol of both i * j* and its companion node j * i*. 0 

In our example, 12 and 21 can be exchanged though the 3-1ength path, and other 

nodes are adjacent. the exchange can be completed in 3 steps in parallel. Procedure 

Exchange is given as follows: 

Procedure Exchange (i1,j1) 

1. do in parallel for all vertices i* (j*) where 

j ~ i* (i ~ j*), send content to its neighbour j* (i*). 

2. do in parallel for all other nodes i * j* and its companion node j * i*, 

their contents are excahnged through a 3-1ength path. 0 

The selection of the external symbol x is not important in this case, since there 

are only two An - 1,k-1 's involved. For example, the algorithm could simply use the 

smallest external symbol in the routing. It is easy to see from the procedure that if 

j E i*, then the node i* and its companion node will exchange their information. 

Assume that sending a constant-size datum from one processor to another along 

an edge takes unit time. Then in a single-port model, the contents of i1 and j1, i #- j, 

can be exchanged in a bijective way in 0(1) time. 
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4.3 Constant Routing II 

We now extend the Constant Routing I to two disjoint groups as follows. Let I = 

{ ·1 -2 ·Z} d J - {-I -2 -Z} b fA' h -I -2 -Z 1,1,1,1,- .. ,1,1 an - h,h, ... ,h e two groups 0 n-1,k-1 S were 1, ,1, , ..• ,1" 

l, P, ... , l E {1, 2, ... , n} and II U JI = 21, i.e., elements from I and J are all 

distinct. It is desired to exchange the contents of iT' with jl' for all 1 :::; m :::; 1. 

Without loss of generality, we assume that iT' < jf\ for all 1 :::; m :::; 1. This task can 

also be achieved in constant time. 

We first consider the special case where i 1 = 1, P = 2, i 2 = 3, j2 = 4, ... , in / 2 = 

n-1, jn/2 = n (where, without loss of generality, we assume that n is even). Unlike the 

previous case when only one pair of An- 1,k-1'S is involved, the selection of the external 

symbols used in the routing is important_ For any node a1a2··· akle1e2· .. en-k E An,k, 

where ei < a1 < ei+1. The external symbol used in the routing of this node is 

x = max {min S, min T}. That is, 

T=0 

otherwise. 

In our case, it is not hard to prove that for any node (2m - 1) * (2m)* E iT' and its 

companion node (2m) * (2m -1)* E jl have the same external symbol because there 

is no integer between 2m - 1 and 2m. With this choice for the external symbol used 

in the routing, let us examine, for each node, how many other nodes use it in their 

routing path (of length 3). For a node (2m - 1)* E iT' such that (2m) ~ (2m - 1)*, 

it is routed to (2m)* E jl via the direct link between the two nodes. Otherwise, as 

noted before, a node a1a2··· ak = i * (i + 1)* and its companion node (i + 1) * i*, 
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where i is an odd number, are on a length-3 path 

i * (i + 1)* ~ x * (i + 1)* ~ x * i* ~ (i + 1) * i * . 

For any node ala2' .. aklele2' .. eiei+l ... en-k such that ei < al < ei+l, it has n - k 

neighbours at the position 1: 

Among them, only eia2'" aklele2' .. ei-lalei+l ... en-k has al as its external sym

bol for the routing purpose, assuming that i ~ 1. If S = 0, no node will use 

ala2 ... aklei+1 '" en-k as its second node in the routing since no node will have al as 

its external symbol used for the routing. Therefore, we can claim that if the routing 

algorithm Exchange is used for the group exchange, each node u is used by at most one 

other node v in v's routing (as the second node in a length-3 path for v). Of course, 

u is the first node in its own routing. Therefore, for the special case, the contents of 

nodes in I and J can be exchanged in constant time by procedure Group-Exchange 

given below. 

Procedure Group-Exchange (1, J) 
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1. do in parallel for 1 ::; m ::; l 

Exchange (ir, Ft)· D 

When the elements of I and J are arbitrary, we can do the following: 

Let I = {iLi~,··· ,iU and J = {jLj~,··· ,ji} such that i1 < i2 < ... < i l and 

i m < jm for all 1 ::; m ::; l. We can define a new linear order 

i 1 < j1 < i2 < j2 < ... < il < /. 

The selection of the external symbol used for the routing of each node is carried out 

with the new linear order. For example, when I = {1, 2, 4, 5} and J = {6, 3, 8, 7}, 

the new linear order is 1 < 6 < 2 < 3 < 4 < 8 < 5 < 7. For node 13564 E AS,5, its 

external symbol is max{min0,min{2,8, 7}} = 2 and has a routing path 1356412 +-+ 

2356411 +-+ 2351416 +-+ 6351412. Note that for node 63514, its external symbol is also 

2. As another example, consider node 87413, which can be written as 874131625 and 

its external symbol is max { min {6, 2}, min 5} = max {6, 5} = 5 and has a routing path 

8741315 +-+ 5741318 +-+ 5781314 +-+ 4781315. Similarly, for node 478131625, its extended 

symbol is also 5. Then the procedure Group-Exchange can be used to exchange the 

contents of nodes in I with nodes in J in a bijective way in constant time. 

Here, a few words about the running time of the routing algorithms Exchange and 

Group-Exchange are in order. If the external symbols have been determined before 

the routings, then clearly, both routing algorithms require constant time. However, 

the selection of external symbols for all the nodes is not a constant-time operation. 

In fact, according to our routing algorithms, these external symbols require O( n - k) 

= O(n) time to be found. On the other hand, it is worth pointing out that for many 

applications, the pattern of data exchanges is pre-determined, such as the cases for 
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all of our algorithms in the next section that are direct applications of the routing 

algorithm Group-Exchange. For example, for the broadcasting algorithm in next 

section and prefix sums algorithm in next chapter, we will be doing exchanges as 

follows: 

• 11 to 51 

21 to 61 

31 to 71 

41 to 81 ; 

•...... 

Therefore, the external symbols could be computed before hand by each node in 

a pre-processing step. In addition, the computation time required to obtain these 

external symbols is negligible compared to the routing/communication steps. 

4.4 Broadcasting Using Constant Routing 

Broadcasting on (n, k)-arrangement has been studied in the last chapter. The broad

casting algorithm for the arrangement graph is a trivial application of the constant

time routing Group-Exchange. 

First of all, the message is broadcast to all other processors in It recursively. Note 

that the recursion stops when k becomes 1. In this case the graph becomes a clique 
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Kn-k+l so that broadcasting can be done in O(1og( n - k + 1)) = O(1og n) time. Then 

the contents of 11 are copied to the rest of the An,k's by the technique of recursive 

doubling and the routing procedure. In other words, the contents of h are copied to 

the vertices in 21, the contents of 11 and 21 are subsequently copied to the vertices in 

31 and 41 , then the contents of h, 21, 31, and 41 are copied to the vertices in 51, 61, 

71 , and 81 . This process continues until the message is broadcast to all the vertices 

in the An k. , 

Let t( n, k) be the time complexity of the broadcasting algorithm for An,k, then 

t(n, k) = t(n -1, k -1) + clogn, resulting in t(n, k) = O(k log n) which is optimal in 

view of the n (k log n) lower bound. 

4.5 ASCEND and DESCEND 

In this section, we will discuss two classes of highly parallel algorithms: ASCEND 

and DESCEND on the (n, k)-arrangement graph. In order to design an ASCEND 

and DESCEND algorithm, way to embed a multi-dimensional mesh into an arrange-

ment graph will be introduced first. We then present a coordinate rank of the (n, k)-

arrangement graph which is based on the embedding. Two example algorithms, 

Translation and Reversing, will be designed. Finally, we will discuss the general 

case of ASCEND and DESCEND. 

4.5.1 Embedding Meshes into Arrangement Graph 

Definition 12 An embedding of graph G = (VG, EG) into H = (VH' EH) is an one-

to-one function f : VG ::::} VH. G is called a guest graph and H is called a host 
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graph. 

In considering graph embedding problems, two costs, dilation cost and expan

sion cost, are involved [28]. The edge dilation of edge (i,j) E EG is d(f(i), f(j)), 

f(i), f(j) E VH . The dilation cost of f is defined as max(i,j)EEG(d(f(i), f(j))). In ad

dition, the expansion cost is the ratio of the size of H to the size of G, i.e., IVHI/!VGI. 

In parallel computation, interconnection networks are presented as graphs. One 

of the objectives of embedding a guest (source) graph into a host (target) graph is 

to simulate a parallel algorithm for the guest graph on the host graph. The guest 

graph sometimes represents an existing parallel algorithm and the host graph is an 

interconnection network where the algorithm is executed. The difference of running 

time for the same algorithm between guest graph and host graph is dependent on the 

dilation cost and expansion cost. 

The problem of embedding into the (n, k )-arrangement graph has been studied in 

[20, 21]. In [20] the problem of embedding meshes, hypercubes, and trees has been 

considered and in [21] the problem of embedding cycles is discussed. The results 

about embedding meshes in [20] is stated in the following theorem: 

Theorem 3 An (n - k + 1) x (n - k + 2) x ... x (n - 1) x n mesh can be embedded 

in An,k with unit expansion and dilation 3. 

The number of nodes for both the (n - k + 1) x (n - k + 2) x ... x (n - 1) x n mesh 

and the (n, k)-arrangement is n!/(n - k)!. The expansion cost is 1. In embedding 

an (n - k + 1) x (n - k + 2) x ... x (n - 1) x n mesh, two nodes are connected 

though either a direct link or a 3 length path. For example, in A4,3, a node 234 is 

connect to node 134, 231, 214, 243, and 324. Nodes 134, 231, 214 are adjacent to 
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234. Nodes 243 and 324 are the companion nodes of 234 which are connected to 234 

by 3 length routing paths. This 3 length path has been discussed in our Constant 

Routing algorithm in Section 4.2. Here the Constant Routing II is used and leads 

to a constant communication cost with embedding. Therefore the dilation cost of the 

embedding is 3. Figure 4.1 show a 4 x 3 x 2 mesh on a (4,3)-arrangement graph. 

Table 4.1: Coordinate Ranks (C. R) of nodes in A5,3 

C.R A53 C.R A53 C.R A53 C.R A53 C.R A53 , , , , , 

111 123 211 213 311 312 411 412 511 512 

112 124 212 214 312 314 412 413 512 513 

113 125 213 215 313 315 413 415 513 514 

121 132 221 231 321 321 421 421 521 521 

122 134 222 234 322 324 422 423 522 523 

123 135 223 235 323 325 423 425 523 524 

131 142 231 241 331 341 431 431 531 531 

132 143 232 243 332 342 432 432 532 532 

133 145 233 245 333 345 433 435 533 534 

141 152 241 251 341 351 441 451 541 541 

142 153 242 253 342 352 442 452 542 542 

143 154 243 254 343 354 443 453 543 543 

Suppose that all the vertices un, Ul, ... , un!j(n-k)!-l in An,k have been ordered such 

that Uk -< Uj if k < j. For each node uP' let Xi be l(i-l)!l(n-k)!J mod i, n-k+l :S i :S n, 

and 0 :S Xi :S i -1. Thus, each vertex up, 0 :S P :S (n!)j(n - k)!-l, is associated with 
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143 243 342 432 

di,\2 r 123 

~dim1 

213 312 412 

Figure 4.1: 4 x 3 x 2 mesh on A4,3 

k unique values Xi, n - k + 1 ::; i ::; n. The coordinate rank of node up in An,k can be 

represented as the address XnXn-l ... Xi+1XiXi-l ... Xn-k+1. In this representation, each 

Xi, n - k + 1 ::; i ::; n, is a coordinate of the k-dimensional mesh. We call Xi the ith 

coordinate of up. Table 4.1 shows the nodes on a (5,3)-arrangement graph and their 

coordinate rank. 

From the result of the Constant Routing II, we can see that any i nodes with 

coordinates XnXn-l ... Xi+1XiXi-l ... Xn-k+2Xn-k+1, Xi = 0, 1,2, ... , i - 1, are "connected" 

in a linear array of length i in An,k after a constant time routing, n - k + 1 ::; i ::; n. 

We can see these i nodes form a column along dimension i of the k-dimensional mesh. 

In A4,3, the coordinate ranks 122, 222, 322, 422 are nodes 134, 234, 324, 423 which 

are connected in a linear array along dimension 1. 
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4.5.2 Translation and Reversing 

Suppose that all the vertices Un, Ul, ... , un!!(n-k)!-l in An,k are in lexicographical order 

and each node compute its corresponding coordinate rank. Given some integer s, 

vertex up has to send its message to uq, where q = (p + s) mod (n!/(n - k)!), for all 

p, 0 ::; p ::; n! / (n - k)!. This task is referred to as a translation. The operation 

translation is also known as cyclic shift. 

In Section 4.5.1 we have defined coordinate rank for the (n, k)-arrangement graph. 

Let coordinate rank of up before translation be XnXn-l.··Xn-k+2Xn-k+1 and YnYn-l ... 

Yn-k+2Yn-k+1 after the translation. The translation problem can be reduced to cor

recting the value for each coordinate from Xi to Yi. Since we can treat i nodes with 

coordinates XnXn-l ... Xi+1XiXi-l ... Xn-k+l, Xi = 0,1,2, ... , i -1, as "connected" in a lin

ear array of length i, a coordinate correction can be obtained after running a sorting 

algorithm on each column. A sorting algorithm is executed on ith column and the 

value used in the comparisons are Yi, for all i = n - k + 1, n - k + 2, ... , n. The time 

of sorting array in size i is O(i). As the result, the running time equals total steps of 

sorting all the columns which is O(~i=n-k+1i) = O(k(n + (n - k + 1))/2) = O(nk). 

Suppose that the element in An,k, up, is represented as the coordinate rank, 0 ::; 

p ::; n! / ( n - k)! - 1. The information of node up wants to move to the vertex uq where 

q = n!/(n - k)! - p. This problem is called reversing. Similar to the translation, let 

XnXn-l ... Xn-k+2Xn-k+l be the original coordinate rank and YnYn-l ... Yn-k+2Yn-k+l the 

coordinate rank after reversing. We can use the same method used in translation to 

correct each column in each dimension. The time complexity for the reversing is the 

same as translation which is O(nk). Reversing is needed when we want to merge two 
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sorted sequences of the same direction, that is, reversing one sequence into opposite 

direction then apply merge. Such a merging algorithm will be discussed in the next 

chapter. 

Generally, we can see Translation and Reversing as the same type of algorithm. 

We can sort coordinate from left to right and from right to left. These kinds of 

algorithms are similar to the usual ASCEND-DESCEND algorithms for the hypercube 

[46]. The general case is given as follows: 

Procedure ASCEND(An,k) 

for i = (n - k + 1) to n do 

OPER (XnXn-l",Xi+lOXi-l",Xn-k+l, 

... , 

Xn Xn-l",Xi+1(i - 1)Xi-l",Xn-k+1) 

where OPER could be any computation on i elements on the linear array of length i. 

For the dual algorithm DESCEND, the main loop of the algorithm is changed to run 

from n to (n - k + 1). In our cases, Translation and Reversing, the OPER is sorting. 

These are two similar algorithms using same idea. In these algorithms, each vertex 

has a record which includes a non-empty destination. We can use the ASCEND or 

DESCEND to match the coordinate from the original vertex by the coordinate of the 

destination vertex. Since the size of the longest linear array is n, each OPER can be 

done in O(n), the running time is sum of all the OPER which is O(nk). 
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Chapter 5 

Algorithms 

5.1 Introduction 

In this chapter, we present several basic algorithms that are fundamental to designing 

parallel algorithms on An,k' The algorithms presented here are prefix sums computa

tion, sorting, and computing convex hull on the arrangement graph. 

The prefix sums algorithm uses the constant routing algorithms introduced in last 

chapter. We will present two sorting algorithms, both of them are based on "mesh" 

embedding property of An,k' As a part of sorting algorithm, a merging algorithm is 

also presented. Finally, a convex hull algorithm, an important algorithm in compu

tational geometry, on the arrangement graph is presented which will use almost all 

algorithms we designed in this thesis. 

50 
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5.2 Prefix Sums Computation 

Once again, for the purpose of computing prefix sums, we define the processor ordering 

-< lexicographically, that is, 123··· (k-1)k -< 123··· k(k-1) -< ... -< n(n-1) ... (n

k + 1). 

An O( k log n) time algorithm for computing all prefix sums on An,k with respect 

to the processor ordering of -<, using procedure Group-Exchange, is given below. 

Suppose that we have computed prefix sums for two groups of sub-structures as 

follows: 

and that each processor holds two variables sand t, for storing the partial prefix sum 

computed so far with respect to the substructure it is in and the total sum of values 

in the group it is in, respectively. Let the total sum in Group 1 be tl and the total 

sum in Group 2 be t 2 • We first use Group-Exchange to send tl to every processor in 

Group 2, and t2 to every processor in Group 1, then the prefix sums in processors in 

Group 1 remain the same, while the prefix sum s in a processor in Group 2 becomes 

s ® t l . The total sum for all the processors in both groups becomes tl ® h All these 

steps can be accomplished in 0(1) time. When a group contains only one An-I,k-I, 

the algorithm is called recursively. Once again, the recursion stops at k = 1 when 

the prefix sums on An- k+1,1 = Kn-k+I, are computed in O(logn) time. This leads to 

a running time of O(klogn) for the prefix sums algorithm, which is optimal in view 

of the O(k log n) lower bound. It is straightforward to state the algorithm formally. 
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However, care must be taken since n is not necessarily a power of 2. 

As discussed in Section 3.2.2, this prefix sums algorithm implies yet another 

O( k log n) broadcasting algorithm. In addition, Interval Broadcasting is a spe

cial case of prefix sums. In An,k, m vertices are marked as leaders h, l2' ... , lm' where 

li < lj if i < j, and m :=; n! / (n - k)! - 1. In terms of the processor ordering (lexi

cographical ordering), each leader node li has to broadcast its information to all the 

nodes between li and li+1. Interval broadcasting can be solved by running prefix 

sums. In this special case of prefix sums, initially each leader node holds an index 1 

as well as its information, and each non-leader node sets its index to 0 and a blank 

message. The binary associative operation of the prefix sums is as follows: the node 

with index 0 is assigned to the maximum of two indices and copies the message from 

the node with larger index. 

It is easy to see that the lower bound of interval broadcasting is the same as prefix 

sums on an (n, k )-arrangement graph. Since the problem of prefix sums can be solved 

in 0 (k log n), the running time of interval broadcasting is also 0 (k log n). It can be 

reduced to the broadcasting problem by having only one leader and one interval. 

5.3 Sorting Algorithms 

We will develop two sorting algorithms for the arrangement graph in this section. 

The first one is based on a sorting algorithm for the star graph by Menn and Somani 

[39] while the second one is based on a sorting algorithm for the multi-dimensional 

mesh by Kunde [34]. 

To describe our sorting algorithms, we will first briefly describe the algorithm by 
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Table 5.1: Vertices of 84 with reverse lexicographical order 

4321 3421 4231 2431 3241 2341 

4312 3412 4132 1432 3142 1342 

4213 2413 4123 1423 2143 1243 

3214 2314 3124 1324 2134 1234 

Menn and Somani. This will offer us a good idea about why their, and subsequently 

Kunde's algorithm, can be adapted to run efficiently on the arrangement graph. 

Let 8n - 1 (i) be a sub-graph of 8n induced by all the nodes of the form *i, for 

some 1 :::; i :::; n. It can be seen that 8n - 1(i) is an (n - I)-star defined on symbols 

{1,2,···,n} - {i}. Thus, 8n can be decomposed into n 8n - 1 's: 8n - 1 (i), 1:::; i:::; n 

[3J. For example, 84 in Figure 1.5 contains four 3-stars, namely 83 (1), 83 (2), 83 (3), 

and 83 ( 4), respectively. 

For the star sorting algorithm, the processors are ordered in a reverse lexico-

graphical order, that is, n(n - 1)(n - 2) ···321 -< (n - l)n(n - 2) .. ·321 -< ... -< 

213··· (n - l)n -< 123· .. (n - l)n. 

If we arrange all the vertices in 8n into an n x (n -I)! array in the row-major order 

(in terms of the processor ordering), then row i becomes 8n - 1(i) [39J. The vertices 

in 84 are given in Table 5.1. From the processor ordering, we can see that all the 

vertices in the same column of the n x (n - I)! array (Table 5.1) have the same rank 

in their respective 8n - 1 's. For example, vertices 2431, 1432, 1423, and 1324 are all 

ranked third in 83 (1), 83 (2), 8 3 (3), and 83 (4), respectively. 

In 8n , if we exchange the pt symbol with the nth one in each vertex, we get 
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Table 5.2: Vertices of 84 after exchange 

1324 1423 1234 1432 1243 1342 

2314 2413 2134 2431 2143 2341 

3214 3412 3124 3421 3142 3241 

4213 4312 4123 4321 4132 4231 

another n x (n - 1)! array (Table 5.2) in which, by the definition of 8n , each column 

is connected to form a simple path, i.e., a linear array of processors [39]. Therefore, 

we may consider the vertices in each column of 8n (whose vertices are arranged in an 

n x (n -1)! array in row-major order) as "connected" in a path directly without this 

constant time transformation. 

Given a sequence of elements stored in a set of processors, with each processor 

holding one element, we say that the sequence is sorted in the F (Forward) direction 

if for any two elements x and y held by processors p and q, respectively, p -< q implies 

that x :::; y. The R (Reverse) direction is defined similarly. The n((n!) log(n!)) number 

of steps required to sort n! numbers sequentially implies an n(1og( n!)) = n( n log n) 

lower bound to sort on 8n . Sorting on 8n was first studied in [39] where an 0 (n 3 log n) 

time algorithm was given. This algorithm is based on a sorting algorithm (called Shear 

Sort) in [51] for a mesh-connected parallel computer, and is outlined below. In it, we 

denote by D the direction of the final sorted sequence, where D can be either F or R. 

We use jj to denote the direction opposite to D. Also, whenever we are considering 

a k-star, 2 :::; k :::; n, we always think of it as arranged in a k x (k - 1)! array in a 

row-major order. See Table 5.1 for an example. 
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Procedure n-Star Sort (D) 

• 1. in parallel sort all the odd numbered rows in the direction F and all the 

even numbered rows in the direction R recursively. 

• 2. for j = 1 to pog n 1 do 

1. Starting with row 1, arrange all rows into groups of 2j consecutively num

bered rows (the last group may not have all 2j rows). 

2. in parallel sort the columns within each group ofrows in the direction D. 

3. in parallel 

(a) sort the rows in odd-numbered groups by calling FTG (D); 

(b) sort the rows in even-numbered groups by calling FTG (D). 0 

Procedure FTG is defined as follows: 

Procedure FTG (D) 

• 1. If this is not aI-star, do Step 2 and 3, else return; 

• 2. in parallel sort all columns in direction D; 

• 3. in parallel sort all rows with FTG (D). o 

In procedure n-Star Sort, each iteration of Step 2 is the merging process. It 

merges two adjacent groups of sorted Sn-l'S. From the above algorithms we can 

see that sorting or merging on Sn is reduced to sorting on the columns. Since each 
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column is connected as a linear array, the odd-even transposition sort [32] can be 

applied. This means that given two sorted sequences stored in two groups of Sn-l'S: 

A: Sn-l(i), Sn-l(i + 1), ... , Sn-l(j) 

B: Sn-l(j + 1), Sn-l(j + 2), ... , Sn-l(l) 

i < I, (A and B do not necessarily contain the same number of Sn-l'S), such that the 

two sequences are in opposite directions, they can be merged into a sorted sequence 

stored in 

in either direction as follows. We first view Sn-l 's in A and B as an (l- i + 1) x (n -I)! 

array. In the first step, each column of length l- i + 1 is sorted. Then procedure FTG 

is applied to each row Sn-l (t), i :::; t :::; l. The latter is considered as an (n-l) x (n-2)! 

array, in which each row is an (n-2)-star, and each column oflength (n-l) is sorted. 

Now, procedure FTG is applied to each row Sn-2(km) (an (n - 2)-star whose nodes 

all have km as their last two symbols), 1 :::; k :::; nand k =J. m, i :::; m :::; l. The latter 

is considered as an (n - 2) x (n - 3)! array, in which each row is an (n - 3)-star, 

and each column of length (n - 2) is sorted. This process is repeated until a I-star 

is reached. As we can see, the merging is done by sorting on linear arrays of length 

l-i+l, n-l, n-2, ... , 2, 1. Thus the total time is (l-i+l)+(n-l)+(n-2)+···+2 

= O(n2 ). 

Let t(n) be the time to sort n! elements on Sn, then 

t(n) = t(n -1) + ilognl x O(n2 ) = O(n3 1ogn). 

Obviously, this performance is far from the lower bound O(nlogn). 
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To adapt this algorithm to run on the arrangement graph, we examine whether the 

graph has similar structure as the star in terms of the sorting algorithm. As defined 

before, the processors are ordered in lexicographic order. Therefore, all processors in 

il precede processors in )1 for) > i. We can arrange all processors in An,k as an n 

by (n - I)! / (n - k)! array such that rows are h, 21, ... , nl and processors in each 

row are also ordered. Now consider each column. For any two nodes i* E il and 

(i + 1)* E (i + 1)1 with the same rank in their corresponding A n- l ,k-l, if the node 

in il is ia2'" as(i + 1)as+2'" ak, then the node in (i + 1)r with the same rank must 

be (i + 1)a2'" asias+2'" ak. Similarly, if the node in il is ia2'" ak (i.e., (i+1) is not 

there), then the node in (i + 1h with the same rank must be (i + 1)a2'" ak. This is 

so because there is no integer between i and i + 1. This observation shows that any 

two neighbouring nodes in each column is connected by a path of length either 1 or 3. 

So like the star graph, each column can be considered as a linear array. This shows 

that the star sorting algorithm can run on the arrangement graph directly with time 

t(n, k) = t(n - 1, k -1) + logn x O(nk) = O(k2nlogn). 

Note that Ap ,1 is a p-clique Kp , which can be sorted in O(logp) time. 

Since each iteration of Step 2 of sorting procedure is the merging process, as 

the result of adapting the algorithm, we can merge two adjacent groups of sorted 

A n- l ,k-l 's (in opposite directions) in O( nk) time. In addition, given three groups of 

A n- l ,k-l, A, B, and C defined on An,k, C is Merge(A, B). Suppose each element 

after merging into C knows its original rank in A or B, the problem of unmerging 

is to permute the list to move each element in C back to its original vertex. It can 

be solved by running the merging algorithm in reverse order using the given rank 
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information. The operation unmerging also takes O(nk). 

In [34J, an efficient sorting algorithm was presented for sorting on a multi di-

mensional mesh. For a r-dimensional mesh of dimensions nl x n2 x ... X nr, its 

running time is O(nl + n2 + ... + nr)' With the lexicographical processor order-

ing and the discussion above, for An,k, we know that each column can be viewed as 

a linear array. Since each row is an (n - 1, k - I)-arrangement graph, this prop-

erty holds recursively. Therefore, an (n, k )-arrangement graph can be viewed as an 

n X (n - 1) x ... x (n - k + 1) mesh (We have shown this embeding property in Section 

4.5), thanks to our routing algorithm developed in Section 4.3. Fig. 4.1 shows the 

nodes of A4,3 as organized in a 4 x 3 x 2 mesh. Note that the connection between 

any two neighbouring nodes is through the routing from Section 4.3. Thus, Kunde's 

algorithm implies an O(n + (n -1) + ... + (n - k + 1)) = O(nk) sorting algorithm on 

the arrangement graph An,k. Of course, the processor ordering for the arrangement 

graph has to be the same as that defined on the corresponding mesh. An O(n2 ) 

sorting algorithm on Sn based on a similar idea was given in [7J. 

5.4 Convex Hull on the (n, k)-Arrangement Graph 

Given an input size of N = n!/(n - k)! planar points, initially distributed in an arbi-

trary fashion, one point per processor, we first sort the points by their x-coordinates. 

Recall that an An,k can be partitioned into n An-1,k-l'S. Therefore, n disjoint convex 

hull of (n - l)!/(n - k) can be found recursively in parallel. Then we merge these 

hulls repeatedly into a final convex hull. 

Procedure CONVEXHULL on An k , 
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1. do in parallel for 1 :::; i :::; n: CONVEXHULL on An-1,k-l 

2. for j = 1 to flog n 1 do 

(a) Starting with row 1, arrange all rows into groups of 2j consecutively num-

bered rows. 

(b) for all the groups do in parallel: merge two convex hulls within the group. 

D 

We can see that all the Step 2 does in the procedure is merging. The merging is 

discussed below. Let hull(A) and hull(B) be two disjoint convex hulls of two sets of 

points A and B. From Figure 5.1 hull(A) and hUll(B) are merged into hull(A U B) 

by finding two common tangent lines between hull(A) and hull(B). 

! 
Common 

A 

B 

Figure 5.1: Two common tangent lines between two convex hulls 

We call the points on the hull extreme points and an edge is connected by 

two neighbouring extreme points. We also define an edge eA as an external edge in 

hull(A) if eA belongs to both hull(A) and hull(A U B); eA is internal edge in hull(A) 
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if eA belongs to hull(A) but not hull(A U B). There are two important observations 

which are used to indicate if an edge is external edge or internal edge and to find a 

common tangent line. 

Observation 4 If hull(A) and hUll(B) are in the same half-plane bounded by the 

edge, the edge is a external edge. 

Proof: By the definition of the convex hull. o 

Observation 5 If an extreme point is shared by an internal edge and an external 

edge, the extreme point is on the common tangent line. 

Proof: By the definition of internal edge and external edge, the extreme point PA 

shared by an internal edge and an external edge of hull(A) is a extreme point which 

belong to hull(A U B). In the hull(A U B), two edges share PA. One is the external 

edge of Hull(A). Since an internal edge of hull(A) is not a edge of hull(A U B),PA has 

to cut off the internal edge and connect to an edge, eA,B, in hull(A U B) shared by 

another extreme point of hull(B), PB, which has the same situation as PA. Since eA,B 

is a boundary edge of hull(A U B), hull(A) and hull(B) are in the same half-plane 

bounded by the edge, eA,B is a common tangent line of hull(A) and hull(B). 0 

By the two observations, from Figure 5.2 we can clearly see that el is an external 

edge since all points in hull(A) and hUll(B) are in the same half-plane. We notice that 

e2 cuts hull(B) and the points are in different half-plane, e2 therefore is an internal 

edge. Also for the extreme point v which is shared by el and e2, where el is an 

external edge and e2 is an internal edge, we can see that v is on the upper common 

tangent line. 
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v 

B 

Figure 5.2: External edge and Internal edge 

However, instead of testing all the vertices of hull(B) with an edge e in hull(A), 

we can only test two representatives that are the nearest and farthest extreme points 

from hull(B) to e. The following definitions and a procedure Extremal Search are 

used to find these two representatives, all angles are measured with respect to the 

x-aXIS. 

First of all, We want to give the definition of the cousins as follows: 

Definition 13 The cousins of a E A in B are two consecutive elements b1 and b2 in 

B, such that a lies between b1 and b2 in the sorted list AU B resulting from merging 

A and B. 

By the definition of cousins, the cousins in B of each element in A can be deter

mined by running merging and interval broadcasting in O(nk) time on the (n, k)

arrangement graph. 

Definition 14 The distance of a point to an oriented edge p is the distance from the 

point to a line containing p; if the point is to the left (alternatively, right) of p, then 
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the distance is said to be positive (alternatively, negative). 

Definition 15 The a-distance of a point to an edge p is its distance to the edge p' 

obtained by rotating p by the angle a in a counterclockwise direction around a point. 

Let A and B be two convex hulls in the plane, each containing O(m(n-l)!j(n-k)!) 

edges stored in groups of m An-1,k-l 's, n-k+ 1 :s; m :s; n-l, given in counterclockwise 

order. An extremal search problem ES(A, B, a) is described as follows: For each edge 

pEA find a vertex vp E B with the smallest a-distance to p among vertices from B. 

vp is called an associated point of p in direction a. It is easy to see that for a = 0 

vp is of the smallest distance from p among vertices of B and for a = 7r vp is of the 

greatest distance from p among vertices of B. 

Proposition 4 Let s(e) denote the angle of an edge e. The associated point vp E B 

(in direction a) of an edge pEA belongs to an edge pi E B such that Is (p) + a - s (pi) I 

is minimized on B. 

The Proposition 4 of associated points shows that the associated point of an edge 

in A belongs to an edge that is its cousin in B. 

Now we give the procedure ES(A, B, a) as follows: 

Procedure ES(A, B, a) 

1. In parallel, increase the angles of edges of A by a. 

2. Let the edges with minimal angles in A and B be the first vertices of corre

sponding groups of An-1,k-l'S by running translation. (we can do a prefix sums 

first to determine how many translations need to do.) 
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3. Merge A and B into C (needs to reverse B first) 

4. Running an interval broadcasting to determine the cousins of every edges in A 

5. Unmerge C back to A and B D 

In the procedure ES(A, B, a), Step 1 runs in constant time. In Step 2, transla

tion requires O(nk) and the prefix sums requires O(klogn) time, therefore the total 

running time is O(nk). Since both edges in A and B are sorted in increasing order, 

the merging and reversing both requires O(nk) time. As we discussed in Section 3.4 

and Section 5.3, interval broadcasting and unmerge take O(klogn) and O(nk) time. 

As a result, after we add up all the steps, the procedure ES(A, B, a) runs in O(nk) 

time. 

For every edges in hull (A) , procedure ES(hull(A), hull(B), 0) will be executed 

first to find the point with the smallest distance in hull(B). Then let a = 7r, every 

edge can know the greatest distance point in hUll(B). After 0(1) time, each edge in 

hull(A) can determine if it is external edge or internal edge and find out four extreme 

points which can form two common tangent lines. We can see that the merging 

procedure to merge two groups takes O(nk) time and it is repeated O(logn) times. 

For the procedure CONVEX HULL, the recursion stops at k = 1 when An - k+1,l is 

a clique K n - k+1. Convex hull problem with n nodes can be solved for EREW PRAM 

with n processors in O(logn) time [41]. An algorithm designed for EREW PRAM 

can be simulated on a clique with cost O(logn) [8]. Therefore, the base case of finding 

convex hull on An,k requires 0(log2(n - k + 1)) time. Let t(n, k) be the time to find 

the convex hull of n!/(n - k)! planar points on An,k, then 

t(n, k) = t(n - 1, k -1) + O(nklogn) = 0(k2n log n) 
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Therefore the convex hull of n! / (n - k)! planar points can be found on An,k m 

o (k2n log n) time. 

We have designed a parallel algorithm for computing the convex hull of n!/(n

k)! planar points on An,k and the running time is O(k2nlogn). Since the con

vex hull problem has a lower bound of O(N log N) and can be solved sequentially 

in O(N log N) time, on our parallel interconnection network, the lower bound is 

o (log N) = O(log(n)!/(n - k)!) = O(klogn). Our result is far from the lower bound. 

However, since we have to use the merging operation, this performance matches our 

sorting algorithm on An,k which is adapted from n-star using the idea of Menn and 

Somani in Section 5.3. 



Chapter 6 

Conclusions 

In this thesis, we have studied the (n, k)-arrangement graph (interconnection network) 

which is proposed as an attractive alternative to the n-star network. We found 

some useful topological properties of the (n, k )-arrangement graph. We also designed 

several parallel algorithms for this network. In particular, we studied: 

• finding cyclic properties for An,k, which allows us to view the source node to

gether with all its neighbours as a de facto complete graph in the sense that 

any two nodes are connected by a path of constant length; 

• developing a single-port neighbourhood broadcasting algorithm for the (n, k)

arrangement network; as a result of this neighbourhood broadcasting algorithm, 

we designed a broadcasting algorithm. Both these two algorithms are optimal; 

• developing a Constant Routing I algorithm for exchanging the contents of the 

processors in two sub-graphs; we then build Constant Routing II which extend 

Constant Routing I to exchange contents between two groups of disjoint sub-

65 
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graphs; 

• designing a broadcasting algorithm which is based on Constant Routing 1/11; 

this algorithm is different from the one we discussed before and it is also optimal. 

• embedding properties of the (n, k )-arrangement graph; we embed an (n - k + 

1) x (n - k + 2) x ... x (n - 1) x n mesh into An,k with unit expansion and 

dilation 3 and a 2-dimensional mesh; 

• prefix sums algorithm for the (n, k )-arrangement graph; 

• sorting and merging algorithm for the (n, k )-arrangement graph; we discussed 

two sorting algorithms; one based on the 2-dimensional mesh embedding prop

erties of the network and Shear Sort; another one is based on multi-dimensional 

mesh structure; neither algorithm is optimal; 

• discussing ASCEND-DESCEND algorithms; in particular we designed Trans

lation and Reversing algorithms based on ASCEND-DESCEND idea from the 

hypercube; 

• designing a basic computational geometry algorithm: convex hull algorithm on 

the arrangement graph. 

So far, only a few algorithms have been developed for the arrangement graph. We 

would like to find algorithms for solving more problems on the network in the future. 

Some of them are listed below: 

• Designing some basic algorithms such as broadcasting, prefix sums, etc for the 

all-port model. 
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.. The D( ((n~!k)!) log( (n~!k)!)) number of steps required to sort n!/ (n - k)! numbers 

sequentially implies an D(1og( n! / (n - k)!)) = D( k log n) lower bound to sort on 

An k in parallel. Although we have designed a sorting algorithm which has a , 

time complexity O(nk), it still does not reach the trivial lower bound. Thus 

one open problem is to improve the sorting algorithm on the (n, k )-arrangement 

graph . 

• In this thesis, some basic data permutation problems, translation and reversing, 

run in 0 (nk) time. It remains to find a solution for them to be achieved in 

O(klogn) time, or better, in O(n) time. 

II The convex hull problem can be solved in O(N log N) sequentially. The lower 

bound on the (n, k )-arrangement graph is D( k log n) in parallel. Our convex 

hull algorithm does not reach the trivial lower bound. However, a faster merg-

ing algorithm would immediately improve a faster convex hull algorithm. We 

believe this could be achieved. 

As shown in this thesis, as well as other research work on the (n, k )-arrangement 

interconnection network, we know that the (n, k )-arrangement graph is indeed an 

attractive alternative to the popular n-star network. The (n, k )-arrangement graph 

provides us better flexibility than the n-star in controlling the number of nodes in the 

network. Some algorithms the (n, k )-arrangement graph such as broadcasting, prefix 

sums and sorting match the performance of those of algorithms developed for the 

n-star. In spite of recent research studying on the (n, k )-arrangement graph, much 

work still needs to be done to make this network a serious competitor to the n-star. 
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