
.. -

Properties and Algorithms of the

(n, k)-Arrangement Graphs

by

Yifeng Li

A Thesis Submitted to the

Department of Computer Science

in Partial Fulfillment of the

Requirements for the Degree of

Master of Science

Faculty of Mathematics and Science

Brock University

St. Catharines, Ontario, Canada

August, 2009

© Yifeng Li, 2009

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Brock University Digital Repository

https://core.ac.uk/display/62641854?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Approved for the Committee:

Dr. K. Qiu (Supervisor)

Dr. S. Houghten

Dr. V. Wojcik

Department of Computer Science

ii

..

Acknowledgements

I would like to thank my supervisor Dr. Ke Qiu for suggesting the topic of this thesis,

and giving me lots of valuable comments. He has shown me how to do the research

and provided me with many insightful ideas. He always gives me directions when I

was lost in my research field. I thank him for his patience over past two years.

I would like to thank the members of my supervisory committee, which includes

Dr. S. Houghten, and Dr. V. Wojcik, for their comments, criticisms and suggestions.

Financial support from Department of Computer Science, Brock University is

gratefully acknowledged.

Finally, I would like to thank my parents, Jianpin Li and Peijun Chen for their

love and support. I also wish to thank my dear friends, Liang He, Si Zhang, Fan

Zhang, Xiang Yin, Jing Sun, Jimeng Sun, Yingjie Ji, Yingjue Xu. Without their

help, I could not finish this thesis such successfully.

Thank you very much and I love you all.

III

Co-Authorship

Some preliminary results were reported in the following paper:

1. "A note on broadcasting on the arrangement graph," (with K. Qiu), in Pro

ceedings of 20th lASTED International Conference on Parallel and Distributed

Computing and Systems, (Orlando, Florida, USA) , pp. 141-144, November 2008.

IV

....

Abstract

The (n, k)-arrangement interconnection topology was first introduced in 1992. The

(n, k)-arrangement graph is a class of generalized star graphs. Compared with the

well known n-star, the (n, k)-arrangement graph is more flexible in degree and diam

eter. However, there are few algorithms designed for the (n, k)-arrangement graph

up to present. In this thesis, we will focus on finding graph theoretical properties

of the (n, k)- arrangement graph and developing parallel algorithms that run on this

network.

The topological properties of the arrangement graph are first studied. They in

clude the cyclic properties. We then study the problems of communication: broad

casting and routing. Embedding problems are also studied later on. These are very

useful to develop efficient algorithms on this network.

We then study the (n, k)-arrangement network from the algorithmic point of view.

Specifically, we will investigate both fundamental and application algorithms such as

prefix sums computation, sorting, merging and basic geometry computation: finding

convex hull on the (n, k)-arrangement graph.

A literature review of the state-of-the-art in relation to the (n, k)-arrangement

network is also provided, as well as some open problems in this area.

v

Contents

List of Committee Members

Acknowledgements

Co-Authorship

Abstract

List of Tables

List of Figures

1 Introduction

1.1 Classification of Computer Architectures

1.2 Shared-Memory Parallel Machines.

1.3 Interconnection Networks.

1.4 (n, k)-Arrangement Graph

1.5 Analyzing Parallel Algorithms

1.6 Organization of the Thesis ..

vi

....

ii

iii

IV

V

ix

x

1

2

3

5

13

16

17

2 Literature Review of the Arrangement Graph

2.1 Introduction.

2.2 Properties .

2.3 Algorithms.

--

2.3.1 Neighbourhood Broadcasting and Broadcasting

2.3.2 Prefix Sums

2.3.3 Sorting...

2.3.4 Convex Hull .

3 Broadcasting

3.1 Introduction.

3.2 Cyclic Properties

3.3 Neighbourhood Broadcasting.

3.4 Broadcasting .

4 Routing Problems

4.1 Introduction ..

4.2 Constant Routing I

4.3 Constant Routing II

4.4 Broadcasting Using Constant Routing.

4.5 ASCEND and DESCEND

4.5.1

4.5.2

Embedding Meshes into Arrangement Graph.

Translation and Reversing

5 Algorithms

vii

20

20

20

24

24

25

26

27

29

29

30

33

34

37

37

38

40

43

44

44

48

50

5.1 Introduction

5.2 Prefix Sums Computation

5.3 Sorting Algorithms

5.4 Convex Hull on the (n, k)-Arrangement Graph.

6 Conclusions

Bibliography

viii

....

50

51

52

58

65

68

....

List of Tables

1.1 Interconnection networks and their degrees and diameters .

4.1 Coordinate Ranks (C. R) of nodes in A5,3

5.1 Vertices of 84 with reverse lexicographical order

5.2 Vertices of 84 after exchange

IX

11

46

53

54

-,

List of Figures

1.1 Shared-Memory Parallel Machines (PRAM)

1.2 2 x 2 x 2 Mesh and 3 x 3 Mesh

1.3 A perfect-shuffle interconnection network with n = 8

1.4 Hypercube interconnection network with n = 3 and n = 4 .

1.5 4-Star

1.6 (4,2)-Arrangement Graph

1.7 (4,3)-Arrangement Graph and 4-Star

2.1 A Convex Hull on a Plane

4.1 4 x 3 x 2 mesh on A4,3

5.1 Two common tangent lines between two convex hulls

5.2 External edge and Internal edge

x

4

7

8

9

10

15

16

28

47

59

61

Chapter 1

Introduction

In the past 30 years, parallel computation has become a major area in computer

science. The most primary reason for this is the time efficiency. Using a parallel

system to solve a problem takes less time than using a sequential computer. A general

idea is the more processors the faster. Unlike the sequential computation, there

are two important aspects in parallel computation which are parallel computational

models and parallel algorithms.

Generally, a parallel algorithm is designed for a specific parallel computational

model. Parallel computational models with good properties make it easier to design

efficient algorithms for parallel computation. We can classify the popular models into

two major categories, namely, shared-memory parallel machines and interconnection

networks, depending on how the processors communicate with each other.

In this chapter, we first introduce the basic classification of parallel computer

architectures. We then give an introduction of shared-memory parallel machines fol

lowed by an introduction of the interconnection networks and some common topolo-

1

CHAPTER 1. INTRODUCTION 2

gies. The (n, k)-arrangement graph is defined next. The method to analyze and

evaluate parallel algorithms is also presented. Finally, we give an overview and the

organization of this thesis.

1.1 Classification of Computer Architectures

Depending on how instruction steams interact with data streams during program

execution, we can classify computers into following four categories[23J:

• Single Instruction, Single Data Stream (SISD)

In SISD computers, there is only one control unit and one memory unit. Both

instruction and data work sequentially. A SISD type computer is the general

sequential machine.

• Multiple Instruction, Single Data Stream (MISD)

A MISD computer has multiple processors, each processor has its own control

unit and all processors share one common memory unit. For the same data,

different instructions are executed on it in parallel. Sometimes a pipeline of

processors is considered MISD.

• Single Instruction, Multiple Data Stream (SIMD)

A SIMD computer has multiple processors, all processors are controlled by a

central control unit and each processor has its own memory unit. In each parallel

step, all the processors execute the same instruction on its own data. All the

major parallel models in this thesis are SIMD computers.

CHAPTER 1. INTRODUCTION 3

• Multiple Instruction, MUltiple Data Stream (MIMD)

A MIMD computer has multiple processors, each processors has its own control

unit and memory unit. In each parallel step, all the processors execute the

different instruction on its own data. Therefore, a MIMD computer is more

powerful than other three classes of computers. Examples of MIMD computers

include the Cosmic Cube, nCUBE 2, iPSC, etc[33].

On a parallel computer, processors need to communicate with each other to solve

any non-trivial problems by either through a shared memory or an interconnection

network.

1.2 Shared-Memory Parallel Machines

A Shared-Memory Parallel Machine contains a number of identical processors and a

common memory. All the processors access the shared memory by a memory access

unit (MAU). Since the sequential computer is called the random access machine

(RAM), a Shared-Memory Parallel Machine is also known as parallel random access

machine (PRAM). A PRAM can be seen in Figure 1.1.

Each processor in PRAM reads data from memory by using MAU and uses MAU

again to write the intermediate result and the final result back. Abstractly, all the

processors access the shared memory in parallel. The most serious problem here is

how the processors access the same location in shared memory. It is worth mentioning

that one of the design goals for parallel algorithm design is to avoid such situations,

as they inevitably slow down computation. In [5], four different ways for multiple

processors to read from or write to the same memory location simultaneously are

CHAPTER 1. INTRODUCTION

CONTROL MEMORY

UNIT ACCESS

(PROGRAM) UNIT

(MAU)

PROCESSORS

... -

MEMORY
LOCATIONS

I
CJ
CJ

SHARED

MEMORY

Figure 1.1: Shared-Memory Parallel Machines (PRAM)

listed, which are made possible by the PRAM's repertoire of instructions.

4

• Exclusive Read (ER). In this model, for a memory location, only one proces-

sor can read the data. In parallel, different processors can read from different

memory locations.

• Concurrent Read (CR). In this model, for a memory location, multiple

processors can read the same data simultaneously. ER can be seen as a special

case of CR.

• Exclusive Write (EW). In this model, for a memory location, only one pro-

cessor can write the data to the location.

• Concurrent Write (CW). In this model, for a memory location, multiple pro-

cessors can write to the same location simultaneously. However, conflicts may

CHAPTER 1. INTRODUCTION 5

happen when several processors try to write to the same location at same time.

Many extensions are available to be used with CW to resolve such conflict.

1. PRIORITY CWo Each processor has a priority. It allows only the high

est priority processor to write the data into this memory location.

2. COMMON CW. Comparing the data of all the processors, if they are

of the same value, then they are allowed to write into this location.

3. ARBITRARY CW. A deterministic algorithm is used to decide which

value to save into the memory location.

4. RANDOM CWo A randomly selected processor is allowed to write the

data into the memory location.

5. COMBINING CWo A combined value involving some or all the values

from these processors gets written into the memory location.

Combining different Read and Write options, we can get four different types of

PRAM computers which are Exclusive Read, Exclusive Write (EREW), Exclu

sive Read, Concurrent Write (ERCW), Concurrent Read, Exclusive Write

(CREW), and Concurrent Read, Concurrent Write (CRCW).

1.3 Interconnection Networks

In the last section, all communications in PRAM are done through a shared mem

ory. In the interconnected networks, each processor has its own memory unit and

communicates with the other processors by a topological network. In the network, if

two processors are connected by a two-way communication link, it means they can

... -

CHAPTER 1. INTRODUCTION 6

exchange data simultaneously. Also, two processors directly connected by a link are

said to be neighbours. We can use an undirected graph to describe an interconnection

network. Mathematically, given an undirected graph G = (V, E), where each proces

sor Pi is located at the vertex Vi and there exists a direct communication link between

two processors Pi and Pj if and only if (Vi, Vj) E E. In this thesis, we will use the terms

"processor" and "node", "interconnection network" and "graph" interchangeablely.

Many interconnection networks have been proposed, built, and used as commercial

system. Next, we will briefly introduce some typical networks. We assume the number

of processors is N for the following networks.

Complete Graph: The complete graph is the most powerful network. In a com

plete graph K N , each of the processors is adjacent to the remaining N - 1 processors.

A complete graph is also called a Clique.

Linear Array: The linear array is the simplest way to connect N processors,

Po, PI, ... , PN - I . In this network, all N processors form a one-dimensional array.

Each processor ~ (0 < i < N - 1) is adjacent to its two neighbors ~-I and ~+I'

The first node Po is adjacent to PI and the last node PN - I to PN - 2. Both of them

have only one neighbor.

If we connect Po and PN - I , we get a network called Ring. In this case, every

node has two neighbours.

Tree: In this network, all the N processors form a complete binary tree.

Two-Dimensional Array: A network is obtained by arranging the N processors

into an r x s two dimensional array. The processor in row i and column j is denoted

by ~j, where 0 :S i :S r - 1 and 0 :S j :S s - 1. Each processor Pij has two-way

communication links to its four neighbours P(i+I)j, P(i-I)j, Pi(j+I) and ~(j-I) if they

--

CHAPTER 1. INTRODUCTION 7

exist. Processors on the boundary rows and columns have fewer than four neighbours.

This network is also known as Mesh. A multi-dimensional mesh can be defined

similarly. Such a network is called a d-dimensional mesh, where d ~ 2. Each processor

in a d-dimensional mesh is adjacent to its 2 x d neighbours, except the processors on

the boundary. Figure 1.2 shows a 2 x 2 x 2 Mesh (a) and a 3 x 3 Mesh (b).

(a) (b)

Figure 1.2: 2 x 2 x 2 Mesh and 3 x 3 Mesh

Perfect ShufHe: Let N be a power of 2 (N = 2k) and label N processors as

Po, Pl, ... , PN - l . In the prefect shuffle interconnection network, a one-way shuffle line

links ~ to Pj where

{
2i

J = 2i + 1- N

05,i5,N/2-1

N/2 5, i 5, N - 1
(1.1)

In addition, we switch one-way links to two-way connections. A two-way exchange

link is added between each processor with even label and its successor in the network.

CHAPTER 1. INTRODUCTION 8

Let ik-lik-2 ... ilio be the binary representation of i. The i j shows the ih bit of i's

binary representation, where 0 :::; j :::; k -1. Let ij be the binary complement of ij • In

the prefect shuffle network, the processor Pik-lik-2 ... ilio is adjacent to !1,k-2 ik-3 ... ioik-l

via shuffle line and to Pik-lik-2 ... itio via the exchange line. For example, Figure 1.3

shows a prefect shuffle with N = 8. POOl is adjacent to POlO by a shuffle line and to

P ooo by an exchange line.

Shuffle line: -- Exchange line:

Figure 1.3: A perfect-shuffle interconnection network with n = 8

Hypercube: An n-dimensional hypercube is also known as an n-cube. Let N be

2n for some n 2:: 0 and label all processors as Po, PI, ... , P N - I . In an n-cube, for Pi,

let ioil ... in-2in-1 be the binary representation of i, where 0 :::; i < N. The processors

!1, and Pj are adjacent if and only if the binary representations of the indices i and j

differ in exactly one bit. Figure 1.4 shows a 3-cube and a 4-cube.

The Cube-Connected Cycles network, or CCC for short, is a variation of the

hypercube. A Cube-Connected Cycles topology has similar properties as the n-cube

and has some additional advantage. We can obtain a Cube-Connected Cycles from

CHAPTER 1. INTRODUCTION 9

Q.'.....~
'P ~,p
'" "1" I '" ,il

0-·----······--,-·····0

~+-Q I
Pl '."; ", i P '''-..... "

'0;;-0
(a) Hypercube Wlth n 3

(b) Hypercube: with n ~ 4

Figure 1.4: Hypercube interconnection network with n = 3 and n = 4

a n-cube by replacing each of the 2n nodes with a ring of n processors. More details

about Cube-Connected Cycles topology can be found in [25, 46].

Star: The star graph was proposed to be an attractive alternative to the hy-

percube topology for interconnecting processors in a interconnection network, and

compares favorably with it in several aspects [3]. In a star graph, there are N = n!

processors. We call the network Sn or n-star. Each processor P is a permutation

of n symbols. P and Q are adjacent if and only if Q can be obtained from P by

interchanging the first symbol and ith symbol in P, where 2 ::; i ::; n. For example, in

4-star, processor P1234 is adjacent to P2134 , P3214 and P4231 by interchanging the first

symbol 1 with the second, third and fourth symbol. Figure 1.5 shows a 4-star. More

details of the n-star will be discussed in Section 5.3.

--

CHAPTER 1. INTRODUCTION 10

4231

b

Figure 1.5: 4-Star

There are also many other interconnection networks such as the De Bruijin net

work [50], the mesh-of-the-tree [4], and the pyramid [42], etc.

A number of criteria are used to evaluate network topologies. We now introduce

some of them and then use them to analyze the networks described above.

Definition 1 The degree of a processor is the number of neighbours of this processor.

The degree of network topology is the maximum of all processors' degrees in the

network.

Definition 2 The distance between two processors I{ and Pj is the number of links

on the shortest path from I{ to Pj ; the diameter of the network is the maximum

distance among any two arbitrary processors.

Degree is an important criterion for assessing a topology. For example, the degree

of a clique KN is N - 1, while that of an n-cube is n. For a network, a large de-

CHAPTER 1. INTRODUCTION 11

gree is desirable in terms of diameter, connectivity, and fault-tolerant (defined later).

However, having many neighbors is not only expensive, but may also be infeasible.

Diameter is another important criterion. Since processors need to communicate

among themselves and since the time for a message to go from one processor to an-

other depends on the distance separating them, a small diameter is better than one

with a large diameter in networks [5]. For example, the diameter of a linear array

with N processors is N - 1. Table 1.1 shows the degree and diameter of topologies

we described earlier.

Table 1.1: Interconnection networks and their degrees and diameters

Interconnection network Degree Diameter Precise Diameter

Linear Array 2 O(N) N -1

r x s Mesh 4 O(max(r, s)) (r - 1) + (s - 1)

Tree 3 O(logN) 2llogN J

Mesh of Tree 6 O(log N) 2logN

Pyramid 9 O(logN) ClogN

Shuffie-Exchange 3 O(log N) 2 log N - 1

Hypercube(n-cube) n O(logN) logN

Cube-Connected Cycles of order n 3 o (log N) 2n+ In/2J - 2

n-Star n-l O(logN)
log log N

l3(n2-1) J

Definition 3 The connectivity of a graph G with N points is N - 1 if G is the

complete graph and otherwise is the minimum number of points of G whose deletion

"'-

CHAPTER 1. INTRODUCTION 12

results in a disconnected graph!24J.

In a complete graph KN of N nodes, each node is adjacent to all the other N - 1

nodes and KN has N(N - 1)/2 lines. Therefore, the connectivity of KN is N - 1.

Definition 4 A graph G is f-fault tolemnt whenever f or less than f nodes are

deleted from G, the remaining gr:aph is still connected. The fault tolerance of the

graph G is the maximum number of f for which it is f-fault tolerant.

The difference of connectivity and fault tolerance is 1.

Definition 5 A graph is regular if and only if all nodes in this graph have the same

degree.

Definition 6 A graph G is vertex symmetric if and only if for any arbitrary

vertices v and w, there exists an automorphism of the graph that maps v to w.

Symmetric is very useful for routing in interconnection network because a vertex

symmetric graph allows for all the node to be identical.

The symmetric and fault tolerance properties of a graph are very important when

talking about interconnection networks. They are the basic considerations when

defining and building the commercial parallel interconnection network machines.

Similar to the PRAM, depending on how many neighbours can communicate in

one time unit, we can divide interconnection networks into two models.

• single-port (weak) model, in each unit of time a processor is only allowed to

send data to or receive data from one of its neighbours.

"'.

CHAPTER 1. INTRODUCTION 13

• all-port (strong) model, the processor can communicate with one or more of

its neighbours simultaneously.

Unless specified otherwise, all interconnection networks in this thesis are considered

to be the single-port model.

1.4 (n, k)-Arrangement Graph

As mentioned before, the star graph was proposed to be an alternative to the hy

percube topology for interconnecting processors in a parallel computer and compares

favorably with the hypercube in terms of the degree, symmetry properties, maximal

fault tolerance, etc [2, 22, 44, 52J. Specifically, a star graph of dimension n is a regular

graph with degree n - 1. It has n! nodes, but both its degree and diameter are O(n),

i.e., sub-logarithmic in the number of vertices, while a hypercube with O(n!) vertices

has a degree and diameter of O(log(n!)) = O(nlogn), i.e., logarithmic in the number

of vertices. Other properties include symmetry properties, as well as many desirable

fault tolerance characteristics [3J. However, a major limitation to its feasibility as

a topology in which processors are connected in an interconnection network is the

requirement that the number of nodes in an n-star be n!, resulting in a huge gap

between the n-star and the (n + l)-star. For the very popular hypercube, a similar

problem exists since an n-cube contains 2n nodes while the next one has 2n+1 nodes.

It is for this reason that the (n, k)-star graph [16J and the (n, k)-arrangement graph

[19J are proposed, both generalizations of the star graph.

Definition 7 For 1 :::; k :::; n, an (n, k)-arrangement graph, denoted by An,k, is a

regular graph. The vertex set is the set of all k-permutations over {1, 2" . " n}, that

CHAPTER 1. INTRODUCTION 14

is, {PIP2··· Pk 11 ~ Pi ~ n, and for i =J. j, Pi =J. Pj} such that two nodes are adjacent if

their addresses differ in exactly one position.

We will use i* to represent a node in An,k whose first symbol is i, 1 ~ i ~ n. The

wild card symbol in i * j, i * j *, and *i are defined similarly, where 1 ~ i, j ~ nand

i =J. j.

Let a node P in the (n, k)-arrangement graph be P = PIP2 ... Pk. Let INT(p) be

a internal set of node P defined by INT(p) = {Pl,P2, ... ,pd and EXT(p) be the

external set of P defined by EXT(p) =< n > -INT(p) [19]. A symbol (element)

in the external set is called external symbol (element). In addition, each node P

can also be written as PIP2 ... Pklele2 ... en-k where el < e2 < ... < en-k are external

symbols.

For example, in a (5,3)-arrangement graph, node 123 is adjacent to 423, 523,

143, 153, 124, and 125. {4, 5} is the external set of node 123. Figure 1.6 shows a

(4,2)-arrangement graph.

For each dimension j, 1 ~ j ~ k, each node has (n - k) neighbours that we call

j-neighbours. Therefore, An,k is a k(n - k)-regular graph with n!j(n - k)! number

of nodes. The diameter of An,k is O(k) [19]. In addition, it is both vertex and edge

symmetric, An,l is isomorphic to an n-clique Kn, and An,n-l is isomorphic to the

n-star [19]. In An,n-l, we can assume the external symbol is the first symbol in Sn

and we can treat An,n-l as a n-star by the definition of the n-star. This implies

that n-star is a special case of (n, k)-arrangement graph. (n, k)-arrangement graph

has more flexibility than an n-star when designing the interconnection network in

parallel computation in terms of the number of nodes. Figure 1.7 shows a (4,3)-

CHAPTER 1. INTRODUCTION 15

42

Figure 1.6: (4, 2)-Arrangement Graph

arrangement graph and a 4-Star and the external symbol of the arrangement graph

is in parentheses.

Furthermore, there is an isomorphism between the n-alternating group graph and

(n, n - 2)-arrangement graph[15]. The n-alternating group graph AGn = (V, E) is

defined as follows: Let V = An, and E = {(p, q)lp, q E V, and q = po q for some

9 En}, where An is the set of even permutations of n elements. An even permutation

is a permutation obtainable from an even number of two-element swaps [18]. n is

a generator set for An and 0 is the composition operator. Here, the generator n is

defined as gi- = (12i), gt = (li2) and n = {gtI3::; i::; n} U {giI3::; i::; n}. The

dimension of an alternating group graph is r3; 1- 2 and the degree is (n - 2) [35].

More details about n-alternating group graph can be found in [15, 31, 35].

... -

CHAPTER 1. INTRODUCTION 16

Figure 1. 7: (4, 3)-Arrangement Graph and 4-Star

1.5 Analyzing Parallel Algorithms

When applying a parallel algorithm, the most important three criteria are: running

time, the number of processors used, and cost [5].

The running time of a parallel algorithm is the time required by this algorithm

when executed to solve a problem on a parallel computer. Usually, the running time

of a parallel algorithm algorithm is obtained by counting elementary steps in the

worst case. There are two different types of elementary steps in parallel algorithms:

• A computational step is a basic arithmetic or logical operation performed on

one or two data within a processor. Such operations include adding, comparing,

swapping, etc.

• A routing step is used by an algorithm to send a constant size datum from

CHAPTER 1. INTRODUCTION 17

one processor to another via the shared memory or interconnection network.

We assume that each elementary step takes a constant number of time units. The

standard techniques used in analyzing sequential algorithms are applied also in par

allel algorithms. We use a function t(N) to represent the running time of a parallel

algorithm of input size N.

Another criterion for measuring the performance of a parallel algorithm is the

number of processors used. Since the more processors used the more expensive the

cost of building the computer system is, we have to balance the cost and performance.

It is very important to minimize the number of processors used while maintaining the

same time complexity. We use p(N) to denote the number of processors used by a

parallel algorithm to solve a problem of size N.

The cost c(N) of a parallel algorithm is defined as the product of its running

time and the number of processors and denoted as c(N) = t(N) x p(N). The cost

of a parallel algorithm is an upper bound on the total number of elementary steps

executed. If the cost of a parallel algorithm matches a lower bound which is known

for a sequential algorithm for the same problem, then this parallel algorithm is said

to be cost optimal.

1.6 Organization of the Thesis

Many interconnection networks have been discussed previously and some new net

works are continuously being proposed. The (n, k)-arrangement graph is proposed

in 1992 [19] which is an alternative network to the widely studied n-star graph. As

a new proposed network, some fundamental algorithms for the (n, k)-arrangement

... -

CHAPTER 1. INTRODUCTION 18

have not been studied yet. They include prefix sums, merging, sorting, etc. We will

investigate the (n, k)-arrangement network from both the graph theoretical and the

algorithmic points of views in this thesis.

We will discuss the following topics in this thesis:

1. a literature review of the (n, k)-arrangement graph;

2. cyclic properties;

3. external symbols;

4. designing an optimal neighbourhood broadcasting algorithm for An,kl and using

it to develop an optimal broadcasting algorithm;

5. a routing algorithm that exchanges the contents between two groups of An,k'S

in constant time;

6. embedding mesh on the (n, k)-arrangement graph;

7. fundamental and application algorithms for An,k including:

(a) prefix sums;

(b) sorting and merging;

(c) translation and reversing;

8. basic geometry computation: convex hull problem.

This thesis is organized as follows. Chapter 2 offers a literature review of the (n, k)

arrangement graph. We will also define various problems to be studied in this thesis.

CHAPTER 1. INTRODUCTION 19

In Chapter 3, some graph theoretical properties are studied and an optimal neigh

bourhood broadcasting and an optimal broadcasting algorithm are presented. We

discuss two constant routing algorithms for the (n, k)-arrangement graph in Chapter

4. In Chapter 5, we present several algorithms developed for the (n, k)-arrangement

graph. Finally, our concluding remarks, some open problems and future research

directions are offered in Chapter 6.

.. ,

Chapter 2

Literature Review of the

Arrangement Graph

2.1 Introduction

The (n, k)-arrangement network has received much attention lately. We will offer a

literature review on the (n, k)-arrangement interconnection network. We will review

the network from two aspects: its topological properties and parallel algorithms. All

necessary terms, notations, and problems will be defined accordingly.

2.2 Properties

Definition 8 A set of k-permutations is a set of permutations of the n elements of

< n > taken k at a time.

Definition 9 An edge of An,k connecting two sets of k-permutations p and q which

20

... ,

CHAPTER 2. LITERATURE REVIEW OF THE ARRANGEMENT GRAPH 21

differ only in position i, 1 ~ i ~ k, is called an i-edge [19].

Proposition 1 (n, k) -arrangement graph is a regular graph with degree k(n - k) and

n!/(n - k)! nodes [19].

Proof: By the definition of the An,k. D

Theorem 1 An,k is vertex symmetric and edge symmetric [19].

Vertex symmetric shows that given two vertices, in An,k there exists an automor

phism that maps one vertex into the other. Edge symmetric shows that given any

two edges, there exists an automorphism that maps one edge into the other.

The (n, k)-arrangement graph has a cycle representation. The special node 12 ... k

is called the identity node and is denoted by h [19]. It is always possible to find

a cycle representation for an node p of the (n, k)-arrangement graph using a set of

non-trivial internal cycles and external cycles of length 2 or more such that all the

elements in internal cycles are in I NT(p) and each external cycle contains exactly one

external element. For example, in Ag,7, the node p = 6351792. There are two cycles:

CI = (2,3,5,7), C2 = (4,1,6,9). We can see all elements in CI are in INT(p), it is

therefore an internal cycle. C2 is an external cycle because 4 is an external element

of p.

As a result of the node symmetric property, A path from PI to P2 can be mapped

to a path from pi to h. We can find the path by correcting cycles in p'. For the

previous example, the path for correcting the external cycle is 6351792 --+ 6354792 --+

1354792 --+ 13547.62. And the path for correcting the internal cycle is 1354762 --+

1354768 --+ 1254768 --+ 1234768 --+ 1234.568 --+ 1234561. Let c be the number of

... -

CHAPTER 2. LITERATURE REVIEW OF THE ARRANGEMENT GRAPH 22

non-trivial cycles (both internal and external), m the number of elements in these

cycles and e the number of external cycles.

Lemma 1 The distance D(p) between p and h in An,k is D(p) ~ c + m - 2e [19].

Proof: Suppose C is a external cycle of node p', C = (Xl, X2, ... , x a:), and Xa is the

foreign external element (an external element of node 1). C can be corrected by first

moving its Xl to its correct position which is held by X2, then the second element,

X2, is taken to its correct position which is held by X3. Repeat it until the element,

Xa-l, is corrected to its correct position, making Xa external. Therefore the correction

of an external cycle C containing mi elements requires mi - 1 steps. On the other

hand, correcting an internal cycle C' = (Yl, Y2, ... , Y(3) requires to exchange one of

its elements (say Yl) with any external element, z, then Yl is taken to its correct

position which is held by Y2. Repeat it until all the elements go back to their correct

position, making z external again. The correction of an internal cycle Cj containing

mj elements requires mj + 1 steps. Therefore,

Dis(p) < ml - 1 + ... + (me - 1) + (me+1 + 1) + ... + (me + 1)

c+m-2e D

Theorem 2 The distance D(p) between p and h in An,k is D(p) = c + m - 2e [19].

Corollary 1 The diameter of An,k is l~k J [19].

Proof: Recall from Definition 2, the diameter is max {Dis(p)lp E An,k}. The max-

imum distance between an arbitrary node p and the identity node Ik is c + m - 2e.

The maximum value of the expression is obtained for c = lk/2J, m = k, and e = o.

Therefore the diameter is l ~ k J . D

I
L.

I

I
I
I

... -

CHAPTER 2. LITERATURE REVIEW OF THE ARRANGEMENT GRAPH 23

Definition 10 Let ij be a subgraph of An,k induced by all the vertices with the same

lh symbol i, where 1 :::; i :::; nand 1 :::; j :::; k.

Proposition 2 There are k different ways to decompose an An,k into n node-joint

A n - 1,k-1 's: i j , for 1 :::; i :::; nand 1 :::; j :::; k[19j.

From Definition 7, for any fixed i and j, where 1 :::; i :::; nand 1 :::; j :::; k, there

are (n - l)!/(n - k)! nodes which have symbol i in position j. These nodes form an

A n - 1,k-1. For a fixed j, An,k can be decomposed into n such subgraphs 1j , 2j , ..• ,

nj, thus partitioning An,k into n copies of A n - 1,k-1 [19] and ij is an A n - 1,k-1. For

example, an A4,2 in Figure 1.6 contains four (3, l)-arrangement graphs by fixing the

position 2, which are b, 22 , 32 , and 42 .

This hierarchical structure of An,k is one of the most important properties of the

(n, k)-arrangement graph. We are going to exploit this property in our various algo-

rithms, for example, in our broadcasting algorithm and constant routing algorithm

which will be presented later. In our algorithms we normally use the first position to

do the decomposition.

Another type of partitioning is obtained by fixing an element i instead of a position

j. For a fixed element i, the sub-graphs iI, i 2, ... , i k together with the sub-graph io, of

all nodes which do not have i in any of their k positions, form a partitioning of An,k

into k copies of A n - 1,k-1: iI, i 2, ... , i k , and one copy of A n - 1,k: io. This partitioning

can be done in n different ways [19].

A Hamiltonian cycle in a graph is a cycle that includes all the vertices of the

graph exactly once. If a graph has a Hamiltonian cycle, we call such a graph as

Hamiltonian. Hamiltonian cycle on (n, k)-arrangement graph has been studied in

CHAPTER 2. LITERATURE REVIEW OF THE ARRANGEMENT GRAPH 24

[21] and [30].

Proposition 3 (n, k)-arrangement graph is Hamiltonian, 1 ::; k::; n - 1. [21]

Recently, more research results about the (n, k)-arrangement network have been

discussed by some researchers. For example, the embedding property of An,k is in

troduced in [20, 21] and the fault tolerance and connectivity properties of An,k are

discussed in [29, 38].

2.3 Algorithms

2.3.1 Neighbourhood Broadcasting and Broadcasting

One of important operations on a parallel computer is broadcasting where one node

(source) sends a message to all nodes. A similar problem that has been studied is

the problem of neighbourhood broadcasting which is defined as sending a fixed sized

message from the source node to all its neighbours where in one time unit, a node

can send to or receive from exactly one of its neighbours a datum of constant size

[17]. This problem has been studied for several interconnection networks [12, 17,

26, 27, 49, 47]. Clearly, for any interconnection network with N nodes, the problem

of broadcasting has a trivial lower bound of O(log N) since the number of nodes

receiving the message can at most double after each step. Similarly, the problem

of neighbourhood broadcasting has a trivial lower bound of O(logn) where n is the

degree of the source node.

The problem of broadcasting on the arrangement graph has been considered

previously. In [11], an optimal O(k log n) algorithm was developed for an (n, k)-

CHAPTER 2. LITERATURE REVIEW OF THE ARRANGEMENT GRAPH 25

arrangement graph. The central idea is to utilize different-sized broadcasting trees

for subgraphs that constitute a spanning tree for the graph. Although optimal (and

without message redundancy), this algorithm is fairly complicated and the derivation

is also quite involved. Chen et al. later found a broadcasting algorithm for the (n, k)

arrangement graph in [14] where multiple spanning trees were used. This result was

improved in [37]. For single-port model, neither algorithm is asymptotically optimal.

2.3.2 Prefix Sums

Given a set S = {xo, Xl,···, xn-d and a closed binary associative operation ® defined

over S, the prefix sums are n sums

So Xo

The study of the prefix sums problem is important as the problem is a gener

alization of many problems as these problems are simply special cases of the prefix

sums problems when appropriate binary operations are used. Such problems include

broadcasting, interval broadcasting, and biological sequence comparison [9]. Prefix

sums computation is also used in other applications such as computing the ranks of

elements for sorting, computing carries for carry-lookahead addition, etc. The reader

is referred to [13, 36] for in-depth study of the problem.

It is easy to see that the problem of computing all prefix sums has a lower bound

of n(log N) on an interconnection network with N nodes, where each node holds one

~,

CHAPTER 2. LITERATURE REVIEW OF THE ARRANGEMENT GRAPH 26

element. This can be shown by reducing the problem of broadcasting to the problem

of computing prefix sums as follows. Let the first processor have the message and

let all the other processors have a value "0" (i.e., x ® 0 = x), for any x, and the

operation ® is the usual bit-wise OR. Thus, the lower bound for this problem on An,k

is D(log(n!/(n - k)!)) = D(klogn).

We will develop an optimal algorithm for the prefix sums problems on An,k in

Chapter 5.

2.3.3 Sorting

Given a sequence of elements ei stored in a set of ordered processors Pi with the

ordering relation --<, with each processor holding one element, we say that the sequence

is sorted in nondecreasing order if ~ --< Pj then ei ~ ej. The nonincreasing order is

defined similarly.

Sequentially, D(N log N) number of steps are required to sort N numbers [1]. In

an (n, k)-arrangement graph, N = n!/(n-k)!, which implies an D(log(n!/(n-k)!)) =

D (k log n) lower bound to sort on an (n, k)-arrangement graph. Sorting on n-star has

been studied in [39], [48] and [7]. Since (n, k)-arrangement graph is a generalization

of the star graph, we can get some ideas from these algorithms.

One way to define the order of processors in the (n, k)-arrangement graph is the so

called lexicographic order. For example, the permutations of {I, 2, 3} in lexicographic

order are 123, 132, 213, 231, 312, and 321. We can easily list all the node in the (n, k)

arrangement graph in lexicographic order by fixing the first position. For example,

CHAPTER 2. LITERATURE REVIEW OF THE ARRANGEMENT GRAPH 27

in A4,2 the lexicographic order of nodes are

12 --< 13 --< 14 --< 21 --< 23 --< 24 --< 31 --< 32 --< 34 --< 41 --< 42 --< 43.

Furthermore, another order is called reverse lexicographic order, i.e., lexicographic or

der if we read from right to left. Node in reverse lexicographic order can be generated

by decompositing the (n, k)-arrangement graph on the last position. In this thesis,

without notice, we will use lexicographic order as the order of processors for some

algorithms (prefix sums , sorting, etc) in the (n, k)-arrangement graph.

We will develop two sorting algorithms for the arrangement graph in Chapter 5.

The first one is based on a sorting algorithm for the star graph by Menn and Somani

[39] while the second one is based on a sorting algorithm on n-dimensional mesh by

Kunde [34].

2.3.4 Convex Hull

The problem of finding the convex hull of a set of N points is one of the most

. important problems in computational geometry. It has been well studied for serial

model of computation [45, 10j. Convex hull is widely used to normalize patterns

in image processing, obtain triangulation of sets of points, and topological feature

extraction, etc. [45, 53].

A convex set is a set in a vector space which is defined to contain line segment

between any two points in the set. The convex hull of a set S of points, denoted

hull(S) is defined to be the minimum convex set containing S. Our algorithm is to

find the convex hull of a set of N planar points on the (n, k)-arrangement graph.

Divide-and-conquer is a common strategy to find the convex hull hull(S) of a set

"'-

CHAPTER 2. LITERATURE REVIEW OF THE ARRANGEMENT GRAPH 28

of points S. Figure 2.1 shows a convex hull on a 2-D plane. Given an input size of

N = n! / (n - k)! points, initially distributed one element per processor, we will design

an algorithm to find th econvex hull in Chapter 5 using the divided-and-conquer

technique.

Figure 2.1: A Convex Hull on a Plane

Note that the convex hull problem can be solved sequentially in the optimal

O(N log N) time. On interconnection parallel models, it has been studied in mesh

[43], mesh of trees [41], pyramid [41], hypercube [40, 41] and n-star [6].

Chapter 3

Broadcasting

3.1 Introduction

As we mentioned in the first chapter, in a single-port (weak) model network, a node

can communicate with one and only one of its neighbours in one time unit. This tells

us that the broadcasting problem (BP) in such a model has a lower bound O(1og N),

where N is the number of nodes in the network, and neighbourhood broadcasting

problem (NBP) has a lower bound O(logd), where d is the degree ofthe network. For

the (n, k)-arrangement graph, the lower bound will be O(log(n! / (n- k)!)) = O(k log n)

for BP and O(1og n) for NBP.

In this chapter, we first present cyclic properties of the (n, k)-arrangement graph.

An optimal neighbourhood broadcasting algorithm is then presented by using these

properties. Next, we use this result to design an optimal broadcasting algorithm on

the (n, k)-arrangement graph. These properties and broadcasting algorithms are very

useful in developing efficient parallel algorithms on the (n, k)-arrangement network

29

CHAPTER 3. BROADCASTING 30

in the next two chapters.

3.2 Cyclic Properties

Recall from the definition of the (n, k)-arrangement graph, for each dimension i,

1 :::; i :::; k, each node has (n - k) neighbours that we call i-neighbours. For example,

given a node p = 12 ... (i - l)i(i + 1) ... k in An,k, 1 :::; i :::; k, then its i-neighbours are

12 ... (i - 1)(k + 1)(i + 1) ... k

12 ... (i - 1)(k + 2)(i + 1) ... k

12 ... (i - 1)(n)(i + 1) ... k

Because the An,k is vertex-symmetric, without loss of generality, we assume that

the source node is 12· .. k. For this node, its neighbours are

(k + 1)23 .. · k

(k+2)23 .. ·k

n23 .. ·k

l(k+l)3 .. ·k

l(k+2)3 .. ·k

In3 .. ·k

CHAPTER 3. BROADCASTING

123··· (k - l)(k + 1)

123 ... (k - 1) (k + 2)

123·· . (k - l)n

... -

The cyclic properties are based on the following observations:

31

Observation 1 For any node u and 1 ::; j ::; k, u and its n - k j-neighbours form a

clique K n - k+1 .

Proof: By the definition of the An,k. D

Observation 2 For 1 ::; i, j ::; k and any node u, u, anyone of its i-neighbours, and

anyone of its j-neighbours form a cycle of length six.

Proof: By symmetry, we assume that u = h, and without loss of generality, we

assume that i < j. Then the following 6-cycle contains u, one i-neighbour, and one

j-neighbour, where 1 ::; l, m ::; n - k:

123 ... i ... j ... k +-+

123··· (i -l)(k + l)(i + 1) ... (j -l)j(j + 1)··· k +-+

123· .. (i - l)(k + l)(i + 1) ... (j - l)i(j + 1) ... k +-+

123··· (i - l)j(i + 1) ... (j - l)i(j + 1) ... k +-+

123··· (i - l)j(i + 1) ... (j - l)(k + m)(j + 1)· .. k +-+

123··· (i - l)i(i + 1) ... (j - l)(k + m)(j + 1)··· k +-+

where +-+ represents a bi-directional link (edge) between two nodes. D

"'0

CHAPTER 3. BROADCASTING 32

Observation 3 For any node u, any two 6-cycles formed as in Observation 2 with

distinct 1 ::; i1, j1, i2, j2 ::; k are disjoint except at u.

Proof: Without loss of generality, assume that u = h, i1 < j1, and i2 < h. We can

simply list the two 6-cycles and compare them to see that they are indeed disjoint:

Cycle 1

I23 .. (i1 - l)i1h + 1) .. (j1 - l)j1(j1 + I) .. k +-+

I23 .. (i1 - I)(k + h)(i1 + 1) .. (j1 - l)j1(j1 + I) .. k +-+

I23 .. (i1 - I)(k + h)(i1 + 1) .. (j1 - l)i1(j1 + I) .. k +-+

I23 .. (i1 - l)j1(i1 + 1) .. (j1 - l)i1(j1 + I) .. k +-+

I23 .. (i1 - l)j1(i1 + 1) .. (j1 - I)(k + m1)(j1 + I) .. k +-+

I23 .. (i1 - l)i1(i1 + 1) .. (j1 - I)(k + m1)(j1 + I) .. k +-+

Cycle 2

I23 .. (i2 - l)i2(i2 + 1) .. (j2 - l)j2(j2 + I) .. k +-+

I23 .. (i2 - I)(k + l2)(i2 + 1) .. (j2 - l)h(j2 + I) .. k +-+

I23 .. (i2 - I)(k + l2)(i2 + 1) .. (j2 - l)i2(j2 + I) .. k +-+

I23 .. (i2 - l)h(i2 + 1) .. (j2 - l)i2(j2 + I) .. k +-+

I23 .. (i2 - l)j2(i2 + 1) .. (j2 - I)(k + m2)(h + I) .. k +-+

I23 .. (i2 - l)i2(i2 + 1) .. (j2 - I)(k + m2)(j2 + I) .. k +-+

D

I
I
I
I
/.

I
I

CHAPTER 3. BROADCASTING 33

Note that Observations 1, 2, and 3 allow us to view the source node together with

all its neighbours as a de facto complete graph in the sense that any two nodes are

connected by a path of constant length.

3.3 Neighbourhood Broadcasting

Based on the observations in last section and the technique of recursive doubling

where at each step, we double the number of neighbours with the message by using

a set of disjoint cycles of constant size in An,k, a simple neighbourhood broadcasting

algorithm for An,k can be designed.

Initially, the source node is the only one with the message. In one step, it sends

the message through the direct link to one of its I-neighbours. This I-neighbour

then sends the message to a 2-neighbour of the source node through a 6-cycle. Then

the I-neighbour sends the message to a 3-neighbour and in parallel, the 2-neighbour

sends the message to a 4-neighbour, etc. In o (log k) time, for each 1 :::; i :::; k, there

exists an i-neighbour with the message. Then finally, in parallel, for alII:::; i :::; k, in

O(log(n-k)) time, all nodes in the Kn-k-clique consisting of all n-k i-neighbours will

have the message (done by a standard broadcasting algorithm on K n - k), resulting in a

total time of o (log k + log(n - k)) = o (log n) neighbourhood broadcasting algorithm.

Essentially, after each step, the number of nodes with the message is doubled

(with the possible exception of the last step). For example, n = 6, k = 4 and source

node e = 1234, the neighbourhood broadcasting is done in the following fashion:

• Step 1:

1234 ---+ 5234 (Direct link)

CHAPTER 3. BROADCASTING

• Step 2:

5234 -+ 5134 -+ 2134 -+ 2534 -+ 1534 (Six Length Cycle)

.. Step 3:

5234 -+ 5214 -+ 3214 -+ 3254 -+ 1254 (Six Length Cycle)

1534 -+ 1532 -+ 1432 -+ 1435 -+ 1235 (Six Length Cycle)

• Step 4:

5234 -+ 6234 (Direct Link in K 2)

1534 -+ 1634 (Direct Link in K 2)

1254 -+ 1264 (Direct Link in K 2)

1235 -+ 1236 (Direct Link in K 2)

34

To the best of our knowledge, this neighbourhood broadcasting algorithm is the

first such algorithm for the (n, k)-arrangement graph. In view of the S1(log n) lower

bound, our algorithm is optimal.

3.4 Broadcasting

With our algorithm for neighbourhood broadcasting just developed in the last section,

broadcasting on an (n, k)-arrangement graph can now be done easily. Once again,

without loss of generality, assume that node 123 ... k wants to broadcast a piece of

message. In the first step, the message will be sent to all its neighbours through

neighbourhood broadcasting algorithm in O(log n) time so that all i-neighbours have

the message, 2 :::; i :::; k. We note that for all 2 :::; i :::; k, each i-neighbour of node

123 ... k is adjacent to a node of the form i*, a k-permutation whose first symbol is i.

CHAPTER 3. BROADCASTING 35

Since we want to make sure that at least one node of form i* has the message, one

more step is required. The algorithm proceeds as follows:

Broadcast (An,k)

if k = 1 (the network has become a clique), simply perform a standard

broadcasting algorithm

else the source node 12· .. k performs a neighbourhood broadcasting.

After one more step, we have a node of the form h, 2*, "', and n*,

(e is hand all I-neighbours are (k + 1)*,(k + 2)*, ... n*) with the message

In parallel, do Broadcast(h), Broadcast (21) , ... , Broadcast(n1)'

In the example of A6,4, we know all i-neighbours, 2 :::; i :::; k are 1534 and 1634 (2-

neighbours), 1254 and 1264 (3-neighbours), and 1235 and 1236 (4-neighbours). Each

i-neighbour is adjacent to one node of i* as follows:

• 2 neighbour -t 2*

1534 -t 2534

1634 -t 2634

• 3 neighbour -t 3*

1254 -t 3254

1264 -t 3264

• 4 neighbour -t 4*

1235 -t 4235

1236 -t 4236

CHAPTER 3. BROADCASTING 36

After this step, in every il (an An-I,k-I) at least one node has the message. We can

then broadcast in every sub-graph recursively.

Let t(n, k) be the running time for broadcasting on An,k, then t(n, k) is easily seen

to be:

t(n, k) Clogn + t(n - 1, k - 1)

Clogn + Clog(n - 1) + t(n - 2, k - 2)

Clogn + Clog(n - 1) + ... +

Clog(n - k + 2) + t(n - k + 1, 1)

Clogn + Clog(n - 1) + ... +

Clog(n - k + 2) +CIlog(n - k + 1)

O(log(n!j(n - k)!))

O(k logn),

which is optimal in view of the O(1og(n!j(n - k)!)) lower bound.

Compared with other broadcasting algorithms [14, 37], our novel broadcasting

algorithm achieves optimality but is much simpler. However, we do want to point

out that our broadcasting algorithm does allow message redundancy in that a small

number of nodes receive the message more than once. In the next chapter, another

broadcasting algorithm which is different from all the previous ones will be presented.

This algorithm is based on our constant routing algorithms on the (n, k)-arrangement

graph.

... 1
I

Chapter 4

Routing Problems

4.1 Introduction

In this chapter, we will first present a constant time routing algorithm that routes the

contents of i1 to the processors of jl, i #- j, 1 :S i, j :S n, in a bijective fashion. Then

we extend this algorithm to allow data to be exchanged between two disjoint groups

of An-1,k-l'S. It also runs in constant time. These two constant routing algorithms

help us develop several fundamental algorithms for the arrangement graph in the next

chapter.

Furthermore, other than the broadcasting algorithms mentioned in the last chap-

ter, to the best of our knowledge, no other algorithms have been developed for the

arrangement graph, making our algorithms from this chapter the first such algorithms

for the (n, k)-arrangement graph.

We will discuss two classes of highly parallel algorithms: ASCEND and DESCEND

on the (n, k)-arrangement graph. We also present a way to embed a multidimensional

37

CHAPTER 4. ROUTING PROBLEMS 38

mesh into the (n, k)-arrangement graph. Later, two algorithms, translation and re

versing, will be designed using this ASCEND and DESCEND idea.

4.2 Constant Routing I

Consider the following problem: Given iI, and j1, with i #- j, it is required to exchange

the contents of the processors in i1 with the processors in j1. By exchanging the

contents of i1 with j1 we mean that the content of each processor in i1 (j1) is routed

to a processor in j1 (i1) such that no two processors in i1 (j1) send their contents

to the same processor in j1 (i1). In other words, the mapping defined by such an

exchange is a bijection between i1 and j1. For example, in A4,2, nodes in hare 12, 13

and 14; processors in 21 are 21, 23 and 24. We can view this problem as exchanging

the contents of i1 and j1 to each other in arbitrary order. This can be accomplished

in constant time as shown in Procedure Exchange. Before we discuss the procedure,

we first give the Definition 11 and Lemma 2:

Definition 11 In An,k, for any given pair i,j, i #- j, node ia2··· azja/+2··· ak is the

companion node of node ja2 ... alial+2 ... ak and vice versa with respect to the pair

'l,).

Clearly, a node and its companion node have the same set of external symbols.

Lemma 2 In An,k, nodes i * j* and its companion node j * i* are connected through

a 3-length path.

CHAPTER 4. ROUTING PROBLEMS 39

Proof: By the definition of the (n, k)-arrangement graph, it is not hard to see we

can get a routing between i * j* and its companion node j * i* via a 3-length path:

where x is an external symbol of both i * j* and its companion node j * i*. 0

In our example, 12 and 21 can be exchanged though the 3-1ength path, and other

nodes are adjacent. the exchange can be completed in 3 steps in parallel. Procedure

Exchange is given as follows:

Procedure Exchange (i1,j1)

1. do in parallel for all vertices i* (j*) where

j ~ i* (i ~ j*), send content to its neighbour j* (i*).

2. do in parallel for all other nodes i * j* and its companion node j * i*,

their contents are excahnged through a 3-1ength path. 0

The selection of the external symbol x is not important in this case, since there

are only two An - 1,k-1 's involved. For example, the algorithm could simply use the

smallest external symbol in the routing. It is easy to see from the procedure that if

j E i*, then the node i* and its companion node will exchange their information.

Assume that sending a constant-size datum from one processor to another along

an edge takes unit time. Then in a single-port model, the contents of i1 and j1, i #- j,

can be exchanged in a bijective way in 0(1) time.

... -

CHAPTER 4. ROUTING PROBLEMS 40

4.3 Constant Routing II

We now extend the Constant Routing I to two disjoint groups as follows. Let I =

{ ·1 -2 ·Z} d J - {-I -2 -Z} b fA' h -I -2 -Z 1,1,1,1,- .. ,1,1 an - h,h, ... ,h e two groups 0 n-1,k-1 S were 1, ,1, , ..• ,1"

l, P, ... , l E {1, 2, ... , n} and II U JI = 21, i.e., elements from I and J are all

distinct. It is desired to exchange the contents of iT' with jl' for all 1 :::; m :::; 1.

Without loss of generality, we assume that iT' < jf\ for all 1 :::; m :::; 1. This task can

also be achieved in constant time.

We first consider the special case where i 1 = 1, P = 2, i 2 = 3, j2 = 4, ... , in / 2 =

n-1, jn/2 = n (where, without loss of generality, we assume that n is even). Unlike the

previous case when only one pair of An- 1,k-1'S is involved, the selection of the external

symbols used in the routing is important_ For any node a1a2··· akle1e2· .. en-k E An,k,

where ei < a1 < ei+1. The external symbol used in the routing of this node is

x = max {min S, min T}. That is,

T=0

otherwise.

In our case, it is not hard to prove that for any node (2m - 1) * (2m)* E iT' and its

companion node (2m) * (2m -1)* E jl have the same external symbol because there

is no integer between 2m - 1 and 2m. With this choice for the external symbol used

in the routing, let us examine, for each node, how many other nodes use it in their

routing path (of length 3). For a node (2m - 1)* E iT' such that (2m) ~ (2m - 1)*,

it is routed to (2m)* E jl via the direct link between the two nodes. Otherwise, as

noted before, a node a1a2··· ak = i * (i + 1)* and its companion node (i + 1) * i*,

"'-

CHAPTER 4. ROUTING PROBLEMS 41

where i is an odd number, are on a length-3 path

i * (i + 1)* ~ x * (i + 1)* ~ x * i* ~ (i + 1) * i * .

For any node ala2' .. aklele2' .. eiei+l ... en-k such that ei < al < ei+l, it has n - k

neighbours at the position 1:

Among them, only eia2'" aklele2' .. ei-lalei+l ... en-k has al as its external sym

bol for the routing purpose, assuming that i ~ 1. If S = 0, no node will use

ala2 ... aklei+1 '" en-k as its second node in the routing since no node will have al as

its external symbol used for the routing. Therefore, we can claim that if the routing

algorithm Exchange is used for the group exchange, each node u is used by at most one

other node v in v's routing (as the second node in a length-3 path for v). Of course,

u is the first node in its own routing. Therefore, for the special case, the contents of

nodes in I and J can be exchanged in constant time by procedure Group-Exchange

given below.

Procedure Group-Exchange (1, J)

... -

CHAPTER 4. ROUTING PROBLEMS 42

1. do in parallel for 1 ::; m ::; l

Exchange (ir, Ft)· D

When the elements of I and J are arbitrary, we can do the following:

Let I = {iLi~,··· ,iU and J = {jLj~,··· ,ji} such that i1 < i2 < ... < i l and

i m < jm for all 1 ::; m ::; l. We can define a new linear order

i 1 < j1 < i2 < j2 < ... < il < /.

The selection of the external symbol used for the routing of each node is carried out

with the new linear order. For example, when I = {1, 2, 4, 5} and J = {6, 3, 8, 7},

the new linear order is 1 < 6 < 2 < 3 < 4 < 8 < 5 < 7. For node 13564 E AS,5, its

external symbol is max{min0,min{2,8, 7}} = 2 and has a routing path 1356412 +-+

2356411 +-+ 2351416 +-+ 6351412. Note that for node 63514, its external symbol is also

2. As another example, consider node 87413, which can be written as 874131625 and

its external symbol is max { min {6, 2}, min 5} = max {6, 5} = 5 and has a routing path

8741315 +-+ 5741318 +-+ 5781314 +-+ 4781315. Similarly, for node 478131625, its extended

symbol is also 5. Then the procedure Group-Exchange can be used to exchange the

contents of nodes in I with nodes in J in a bijective way in constant time.

Here, a few words about the running time of the routing algorithms Exchange and

Group-Exchange are in order. If the external symbols have been determined before

the routings, then clearly, both routing algorithms require constant time. However,

the selection of external symbols for all the nodes is not a constant-time operation.

In fact, according to our routing algorithms, these external symbols require O(n - k)

= O(n) time to be found. On the other hand, it is worth pointing out that for many

applications, the pattern of data exchanges is pre-determined, such as the cases for

"'-

CHAPTER 4. ROUTING PROBLEMS 43

all of our algorithms in the next section that are direct applications of the routing

algorithm Group-Exchange. For example, for the broadcasting algorithm in next

section and prefix sums algorithm in next chapter, we will be doing exchanges as

follows:

• 11 to 51

21 to 61

31 to 71

41 to 81 ;

•......

Therefore, the external symbols could be computed before hand by each node in

a pre-processing step. In addition, the computation time required to obtain these

external symbols is negligible compared to the routing/communication steps.

4.4 Broadcasting Using Constant Routing

Broadcasting on (n, k)-arrangement has been studied in the last chapter. The broad

casting algorithm for the arrangement graph is a trivial application of the constant

time routing Group-Exchange.

First of all, the message is broadcast to all other processors in It recursively. Note

that the recursion stops when k becomes 1. In this case the graph becomes a clique

...

CHAPTER 4. ROUTING PROBLEMS 44

Kn-k+l so that broadcasting can be done in O(1og(n - k + 1)) = O(1og n) time. Then

the contents of 11 are copied to the rest of the An,k's by the technique of recursive

doubling and the routing procedure. In other words, the contents of h are copied to

the vertices in 21, the contents of 11 and 21 are subsequently copied to the vertices in

31 and 41 , then the contents of h, 21, 31, and 41 are copied to the vertices in 51, 61,

71 , and 81 . This process continues until the message is broadcast to all the vertices

in the An k. ,

Let t(n, k) be the time complexity of the broadcasting algorithm for An,k, then

t(n, k) = t(n -1, k -1) + clogn, resulting in t(n, k) = O(k log n) which is optimal in

view of the n (k log n) lower bound.

4.5 ASCEND and DESCEND

In this section, we will discuss two classes of highly parallel algorithms: ASCEND

and DESCEND on the (n, k)-arrangement graph. In order to design an ASCEND

and DESCEND algorithm, way to embed a multi-dimensional mesh into an arrange-

ment graph will be introduced first. We then present a coordinate rank of the (n, k)-

arrangement graph which is based on the embedding. Two example algorithms,

Translation and Reversing, will be designed. Finally, we will discuss the general

case of ASCEND and DESCEND.

4.5.1 Embedding Meshes into Arrangement Graph

Definition 12 An embedding of graph G = (VG, EG) into H = (VH' EH) is an one-

to-one function f : VG ::::} VH. G is called a guest graph and H is called a host

... -

CHAPTER 4. ROUTING PROBLEMS 45

graph.

In considering graph embedding problems, two costs, dilation cost and expan

sion cost, are involved [28]. The edge dilation of edge (i,j) E EG is d(f(i), f(j)),

f(i), f(j) E VH . The dilation cost of f is defined as max(i,j)EEG(d(f(i), f(j))). In ad

dition, the expansion cost is the ratio of the size of H to the size of G, i.e., IVHI/!VGI.

In parallel computation, interconnection networks are presented as graphs. One

of the objectives of embedding a guest (source) graph into a host (target) graph is

to simulate a parallel algorithm for the guest graph on the host graph. The guest

graph sometimes represents an existing parallel algorithm and the host graph is an

interconnection network where the algorithm is executed. The difference of running

time for the same algorithm between guest graph and host graph is dependent on the

dilation cost and expansion cost.

The problem of embedding into the (n, k)-arrangement graph has been studied in

[20, 21]. In [20] the problem of embedding meshes, hypercubes, and trees has been

considered and in [21] the problem of embedding cycles is discussed. The results

about embedding meshes in [20] is stated in the following theorem:

Theorem 3 An (n - k + 1) x (n - k + 2) x ... x (n - 1) x n mesh can be embedded

in An,k with unit expansion and dilation 3.

The number of nodes for both the (n - k + 1) x (n - k + 2) x ... x (n - 1) x n mesh

and the (n, k)-arrangement is n!/(n - k)!. The expansion cost is 1. In embedding

an (n - k + 1) x (n - k + 2) x ... x (n - 1) x n mesh, two nodes are connected

though either a direct link or a 3 length path. For example, in A4,3, a node 234 is

connect to node 134, 231, 214, 243, and 324. Nodes 134, 231, 214 are adjacent to

CHAPTER 4. ROUTING PROBLEMS 46

234. Nodes 243 and 324 are the companion nodes of 234 which are connected to 234

by 3 length routing paths. This 3 length path has been discussed in our Constant

Routing algorithm in Section 4.2. Here the Constant Routing II is used and leads

to a constant communication cost with embedding. Therefore the dilation cost of the

embedding is 3. Figure 4.1 show a 4 x 3 x 2 mesh on a (4,3)-arrangement graph.

Table 4.1: Coordinate Ranks (C. R) of nodes in A5,3

C.R A53 C.R A53 C.R A53 C.R A53 C.R A53 , , , , ,

111 123 211 213 311 312 411 412 511 512

112 124 212 214 312 314 412 413 512 513

113 125 213 215 313 315 413 415 513 514

121 132 221 231 321 321 421 421 521 521

122 134 222 234 322 324 422 423 522 523

123 135 223 235 323 325 423 425 523 524

131 142 231 241 331 341 431 431 531 531

132 143 232 243 332 342 432 432 532 532

133 145 233 245 333 345 433 435 533 534

141 152 241 251 341 351 441 451 541 541

142 153 242 253 342 352 442 452 542 542

143 154 243 254 343 354 443 453 543 543

Suppose that all the vertices un, Ul, ... , un!j(n-k)!-l in An,k have been ordered such

that Uk -< Uj if k < j. For each node uP' let Xi be l(i-l)!l(n-k)!J mod i, n-k+l :S i :S n,

and 0 :S Xi :S i -1. Thus, each vertex up, 0 :S P :S (n!)j(n - k)!-l, is associated with

'"'.

CHAPTER 4. ROUTING PROBLEMS 47

143 243 342 432

di,\2 r 123

~dim1

213 312 412

Figure 4.1: 4 x 3 x 2 mesh on A4,3

k unique values Xi, n - k + 1 ::; i ::; n. The coordinate rank of node up in An,k can be

represented as the address XnXn-l ... Xi+1XiXi-l ... Xn-k+1. In this representation, each

Xi, n - k + 1 ::; i ::; n, is a coordinate of the k-dimensional mesh. We call Xi the ith

coordinate of up. Table 4.1 shows the nodes on a (5,3)-arrangement graph and their

coordinate rank.

From the result of the Constant Routing II, we can see that any i nodes with

coordinates XnXn-l ... Xi+1XiXi-l ... Xn-k+2Xn-k+1, Xi = 0, 1,2, ... , i - 1, are "connected"

in a linear array of length i in An,k after a constant time routing, n - k + 1 ::; i ::; n.

We can see these i nodes form a column along dimension i of the k-dimensional mesh.

In A4,3, the coordinate ranks 122, 222, 322, 422 are nodes 134, 234, 324, 423 which

are connected in a linear array along dimension 1.

CHAPTER 4. ROUTING PROBLEMS 48

4.5.2 Translation and Reversing

Suppose that all the vertices Un, Ul, ... , un!!(n-k)!-l in An,k are in lexicographical order

and each node compute its corresponding coordinate rank. Given some integer s,

vertex up has to send its message to uq, where q = (p + s) mod (n!/(n - k)!), for all

p, 0 ::; p ::; n! / (n - k)!. This task is referred to as a translation. The operation

translation is also known as cyclic shift.

In Section 4.5.1 we have defined coordinate rank for the (n, k)-arrangement graph.

Let coordinate rank of up before translation be XnXn-l.··Xn-k+2Xn-k+1 and YnYn-l ...

Yn-k+2Yn-k+1 after the translation. The translation problem can be reduced to cor

recting the value for each coordinate from Xi to Yi. Since we can treat i nodes with

coordinates XnXn-l ... Xi+1XiXi-l ... Xn-k+l, Xi = 0,1,2, ... , i -1, as "connected" in a lin

ear array of length i, a coordinate correction can be obtained after running a sorting

algorithm on each column. A sorting algorithm is executed on ith column and the

value used in the comparisons are Yi, for all i = n - k + 1, n - k + 2, ... , n. The time

of sorting array in size i is O(i). As the result, the running time equals total steps of

sorting all the columns which is O(~i=n-k+1i) = O(k(n + (n - k + 1))/2) = O(nk).

Suppose that the element in An,k, up, is represented as the coordinate rank, 0 ::;

p ::; n! / (n - k)! - 1. The information of node up wants to move to the vertex uq where

q = n!/(n - k)! - p. This problem is called reversing. Similar to the translation, let

XnXn-l ... Xn-k+2Xn-k+l be the original coordinate rank and YnYn-l ... Yn-k+2Yn-k+l the

coordinate rank after reversing. We can use the same method used in translation to

correct each column in each dimension. The time complexity for the reversing is the

same as translation which is O(nk). Reversing is needed when we want to merge two

CHAPTER 4. ROUTING PROBLEMS 49

sorted sequences of the same direction, that is, reversing one sequence into opposite

direction then apply merge. Such a merging algorithm will be discussed in the next

chapter.

Generally, we can see Translation and Reversing as the same type of algorithm.

We can sort coordinate from left to right and from right to left. These kinds of

algorithms are similar to the usual ASCEND-DESCEND algorithms for the hypercube

[46]. The general case is given as follows:

Procedure ASCEND(An,k)

for i = (n - k + 1) to n do

OPER (XnXn-l",Xi+lOXi-l",Xn-k+l,

... ,

Xn Xn-l",Xi+1(i - 1)Xi-l",Xn-k+1)

where OPER could be any computation on i elements on the linear array of length i.

For the dual algorithm DESCEND, the main loop of the algorithm is changed to run

from n to (n - k + 1). In our cases, Translation and Reversing, the OPER is sorting.

These are two similar algorithms using same idea. In these algorithms, each vertex

has a record which includes a non-empty destination. We can use the ASCEND or

DESCEND to match the coordinate from the original vertex by the coordinate of the

destination vertex. Since the size of the longest linear array is n, each OPER can be

done in O(n), the running time is sum of all the OPER which is O(nk).

"'-

Chapter 5

Algorithms

5.1 Introduction

In this chapter, we present several basic algorithms that are fundamental to designing

parallel algorithms on An,k' The algorithms presented here are prefix sums computa

tion, sorting, and computing convex hull on the arrangement graph.

The prefix sums algorithm uses the constant routing algorithms introduced in last

chapter. We will present two sorting algorithms, both of them are based on "mesh"

embedding property of An,k' As a part of sorting algorithm, a merging algorithm is

also presented. Finally, a convex hull algorithm, an important algorithm in compu

tational geometry, on the arrangement graph is presented which will use almost all

algorithms we designed in this thesis.

50

...

CHAPTER 5. ALGORITHMS 51

5.2 Prefix Sums Computation

Once again, for the purpose of computing prefix sums, we define the processor ordering

-< lexicographically, that is, 123··· (k-1)k -< 123··· k(k-1) -< ... -< n(n-1) ... (n

k + 1).

An O(k log n) time algorithm for computing all prefix sums on An,k with respect

to the processor ordering of -<, using procedure Group-Exchange, is given below.

Suppose that we have computed prefix sums for two groups of sub-structures as

follows:

and that each processor holds two variables sand t, for storing the partial prefix sum

computed so far with respect to the substructure it is in and the total sum of values

in the group it is in, respectively. Let the total sum in Group 1 be tl and the total

sum in Group 2 be t 2 • We first use Group-Exchange to send tl to every processor in

Group 2, and t2 to every processor in Group 1, then the prefix sums in processors in

Group 1 remain the same, while the prefix sum s in a processor in Group 2 becomes

s ® t l . The total sum for all the processors in both groups becomes tl ® h All these

steps can be accomplished in 0(1) time. When a group contains only one An-I,k-I,

the algorithm is called recursively. Once again, the recursion stops at k = 1 when

the prefix sums on An- k+1,1 = Kn-k+I, are computed in O(logn) time. This leads to

a running time of O(klogn) for the prefix sums algorithm, which is optimal in view

of the O(k log n) lower bound. It is straightforward to state the algorithm formally.

CHAPTER 5. ALGORITHMS 52

However, care must be taken since n is not necessarily a power of 2.

As discussed in Section 3.2.2, this prefix sums algorithm implies yet another

O(k log n) broadcasting algorithm. In addition, Interval Broadcasting is a spe

cial case of prefix sums. In An,k, m vertices are marked as leaders h, l2' ... , lm' where

li < lj if i < j, and m :=; n! / (n - k)! - 1. In terms of the processor ordering (lexi

cographical ordering), each leader node li has to broadcast its information to all the

nodes between li and li+1. Interval broadcasting can be solved by running prefix

sums. In this special case of prefix sums, initially each leader node holds an index 1

as well as its information, and each non-leader node sets its index to 0 and a blank

message. The binary associative operation of the prefix sums is as follows: the node

with index 0 is assigned to the maximum of two indices and copies the message from

the node with larger index.

It is easy to see that the lower bound of interval broadcasting is the same as prefix

sums on an (n, k)-arrangement graph. Since the problem of prefix sums can be solved

in 0 (k log n), the running time of interval broadcasting is also 0 (k log n). It can be

reduced to the broadcasting problem by having only one leader and one interval.

5.3 Sorting Algorithms

We will develop two sorting algorithms for the arrangement graph in this section.

The first one is based on a sorting algorithm for the star graph by Menn and Somani

[39] while the second one is based on a sorting algorithm for the multi-dimensional

mesh by Kunde [34].

To describe our sorting algorithms, we will first briefly describe the algorithm by

I

I

CHAPTER 5. ALGORITHMS 53

Table 5.1: Vertices of 84 with reverse lexicographical order

4321 3421 4231 2431 3241 2341

4312 3412 4132 1432 3142 1342

4213 2413 4123 1423 2143 1243

3214 2314 3124 1324 2134 1234

Menn and Somani. This will offer us a good idea about why their, and subsequently

Kunde's algorithm, can be adapted to run efficiently on the arrangement graph.

Let 8n - 1 (i) be a sub-graph of 8n induced by all the nodes of the form *i, for

some 1 :::; i :::; n. It can be seen that 8n - 1(i) is an (n - I)-star defined on symbols

{1,2,···,n} - {i}. Thus, 8n can be decomposed into n 8n - 1 's: 8n - 1 (i), 1:::; i:::; n

[3J. For example, 84 in Figure 1.5 contains four 3-stars, namely 83 (1), 83 (2), 83 (3),

and 83 (4), respectively.

For the star sorting algorithm, the processors are ordered in a reverse lexico-

graphical order, that is, n(n - 1)(n - 2) ···321 -< (n - l)n(n - 2) .. ·321 -< ... -<

213··· (n - l)n -< 123· .. (n - l)n.

If we arrange all the vertices in 8n into an n x (n -I)! array in the row-major order

(in terms of the processor ordering), then row i becomes 8n - 1(i) [39J. The vertices

in 84 are given in Table 5.1. From the processor ordering, we can see that all the

vertices in the same column of the n x (n - I)! array (Table 5.1) have the same rank

in their respective 8n - 1 's. For example, vertices 2431, 1432, 1423, and 1324 are all

ranked third in 83 (1), 83 (2), 8 3 (3), and 83 (4), respectively.

In 8n , if we exchange the pt symbol with the nth one in each vertex, we get

"'-

CHAPTER 5. ALGORITHMS 54

Table 5.2: Vertices of 84 after exchange

1324 1423 1234 1432 1243 1342

2314 2413 2134 2431 2143 2341

3214 3412 3124 3421 3142 3241

4213 4312 4123 4321 4132 4231

another n x (n - 1)! array (Table 5.2) in which, by the definition of 8n , each column

is connected to form a simple path, i.e., a linear array of processors [39]. Therefore,

we may consider the vertices in each column of 8n (whose vertices are arranged in an

n x (n -1)! array in row-major order) as "connected" in a path directly without this

constant time transformation.

Given a sequence of elements stored in a set of processors, with each processor

holding one element, we say that the sequence is sorted in the F (Forward) direction

if for any two elements x and y held by processors p and q, respectively, p -< q implies

that x :::; y. The R (Reverse) direction is defined similarly. The n((n!) log(n!)) number

of steps required to sort n! numbers sequentially implies an n(1og(n!)) = n(n log n)

lower bound to sort on 8n . Sorting on 8n was first studied in [39] where an 0 (n 3 log n)

time algorithm was given. This algorithm is based on a sorting algorithm (called Shear

Sort) in [51] for a mesh-connected parallel computer, and is outlined below. In it, we

denote by D the direction of the final sorted sequence, where D can be either F or R.

We use jj to denote the direction opposite to D. Also, whenever we are considering

a k-star, 2 :::; k :::; n, we always think of it as arranged in a k x (k - 1)! array in a

row-major order. See Table 5.1 for an example.

CHAPTER 5. ALGORITHMS 55

Procedure n-Star Sort (D)

• 1. in parallel sort all the odd numbered rows in the direction F and all the

even numbered rows in the direction R recursively.

• 2. for j = 1 to pog n 1 do

1. Starting with row 1, arrange all rows into groups of 2j consecutively num

bered rows (the last group may not have all 2j rows).

2. in parallel sort the columns within each group ofrows in the direction D.

3. in parallel

(a) sort the rows in odd-numbered groups by calling FTG (D);

(b) sort the rows in even-numbered groups by calling FTG (D). 0

Procedure FTG is defined as follows:

Procedure FTG (D)

• 1. If this is not aI-star, do Step 2 and 3, else return;

• 2. in parallel sort all columns in direction D;

• 3. in parallel sort all rows with FTG (D). o

In procedure n-Star Sort, each iteration of Step 2 is the merging process. It

merges two adjacent groups of sorted Sn-l'S. From the above algorithms we can

see that sorting or merging on Sn is reduced to sorting on the columns. Since each

CHAPTER 5. ALGORITHMS 56

column is connected as a linear array, the odd-even transposition sort [32] can be

applied. This means that given two sorted sequences stored in two groups of Sn-l'S:

A: Sn-l(i), Sn-l(i + 1), ... , Sn-l(j)

B: Sn-l(j + 1), Sn-l(j + 2), ... , Sn-l(l)

i < I, (A and B do not necessarily contain the same number of Sn-l'S), such that the

two sequences are in opposite directions, they can be merged into a sorted sequence

stored in

in either direction as follows. We first view Sn-l 's in A and B as an (l- i + 1) x (n -I)!

array. In the first step, each column of length l- i + 1 is sorted. Then procedure FTG

is applied to each row Sn-l (t), i :::; t :::; l. The latter is considered as an (n-l) x (n-2)!

array, in which each row is an (n-2)-star, and each column oflength (n-l) is sorted.

Now, procedure FTG is applied to each row Sn-2(km) (an (n - 2)-star whose nodes

all have km as their last two symbols), 1 :::; k :::; nand k =J. m, i :::; m :::; l. The latter

is considered as an (n - 2) x (n - 3)! array, in which each row is an (n - 3)-star,

and each column of length (n - 2) is sorted. This process is repeated until a I-star

is reached. As we can see, the merging is done by sorting on linear arrays of length

l-i+l, n-l, n-2, ... , 2, 1. Thus the total time is (l-i+l)+(n-l)+(n-2)+···+2

= O(n2).

Let t(n) be the time to sort n! elements on Sn, then

t(n) = t(n -1) + ilognl x O(n2) = O(n3 1ogn).

Obviously, this performance is far from the lower bound O(nlogn).

CHAPTER 5. ALGORITHMS 57

To adapt this algorithm to run on the arrangement graph, we examine whether the

graph has similar structure as the star in terms of the sorting algorithm. As defined

before, the processors are ordered in lexicographic order. Therefore, all processors in

il precede processors in)1 for) > i. We can arrange all processors in An,k as an n

by (n - I)! / (n - k)! array such that rows are h, 21, ... , nl and processors in each

row are also ordered. Now consider each column. For any two nodes i* E il and

(i + 1)* E (i + 1)1 with the same rank in their corresponding A n- l ,k-l, if the node

in il is ia2'" as(i + 1)as+2'" ak, then the node in (i + 1)r with the same rank must

be (i + 1)a2'" asias+2'" ak. Similarly, if the node in il is ia2'" ak (i.e., (i+1) is not

there), then the node in (i + 1h with the same rank must be (i + 1)a2'" ak. This is

so because there is no integer between i and i + 1. This observation shows that any

two neighbouring nodes in each column is connected by a path of length either 1 or 3.

So like the star graph, each column can be considered as a linear array. This shows

that the star sorting algorithm can run on the arrangement graph directly with time

t(n, k) = t(n - 1, k -1) + logn x O(nk) = O(k2nlogn).

Note that Ap ,1 is a p-clique Kp , which can be sorted in O(logp) time.

Since each iteration of Step 2 of sorting procedure is the merging process, as

the result of adapting the algorithm, we can merge two adjacent groups of sorted

A n- l ,k-l 's (in opposite directions) in O(nk) time. In addition, given three groups of

A n- l ,k-l, A, B, and C defined on An,k, C is Merge(A, B). Suppose each element

after merging into C knows its original rank in A or B, the problem of unmerging

is to permute the list to move each element in C back to its original vertex. It can

be solved by running the merging algorithm in reverse order using the given rank

... -

CHAPTER 5. ALGORITHMS 58

information. The operation unmerging also takes O(nk).

In [34J, an efficient sorting algorithm was presented for sorting on a multi di-

mensional mesh. For a r-dimensional mesh of dimensions nl x n2 x ... X nr, its

running time is O(nl + n2 + ... + nr)' With the lexicographical processor order-

ing and the discussion above, for An,k, we know that each column can be viewed as

a linear array. Since each row is an (n - 1, k - I)-arrangement graph, this prop-

erty holds recursively. Therefore, an (n, k)-arrangement graph can be viewed as an

n X (n - 1) x ... x (n - k + 1) mesh (We have shown this embeding property in Section

4.5), thanks to our routing algorithm developed in Section 4.3. Fig. 4.1 shows the

nodes of A4,3 as organized in a 4 x 3 x 2 mesh. Note that the connection between

any two neighbouring nodes is through the routing from Section 4.3. Thus, Kunde's

algorithm implies an O(n + (n -1) + ... + (n - k + 1)) = O(nk) sorting algorithm on

the arrangement graph An,k. Of course, the processor ordering for the arrangement

graph has to be the same as that defined on the corresponding mesh. An O(n2)

sorting algorithm on Sn based on a similar idea was given in [7J.

5.4 Convex Hull on the (n, k)-Arrangement Graph

Given an input size of N = n!/(n - k)! planar points, initially distributed in an arbi-

trary fashion, one point per processor, we first sort the points by their x-coordinates.

Recall that an An,k can be partitioned into n An-1,k-l'S. Therefore, n disjoint convex

hull of (n - l)!/(n - k) can be found recursively in parallel. Then we merge these

hulls repeatedly into a final convex hull.

Procedure CONVEXHULL on An k ,

CHAPTER 5. ALGORITHMS 59

1. do in parallel for 1 :::; i :::; n: CONVEXHULL on An-1,k-l

2. for j = 1 to flog n 1 do

(a) Starting with row 1, arrange all rows into groups of 2j consecutively num-

bered rows.

(b) for all the groups do in parallel: merge two convex hulls within the group.

D

We can see that all the Step 2 does in the procedure is merging. The merging is

discussed below. Let hull(A) and hull(B) be two disjoint convex hulls of two sets of

points A and B. From Figure 5.1 hull(A) and hUll(B) are merged into hull(A U B)

by finding two common tangent lines between hull(A) and hull(B).

!
Common

A

B

Figure 5.1: Two common tangent lines between two convex hulls

We call the points on the hull extreme points and an edge is connected by

two neighbouring extreme points. We also define an edge eA as an external edge in

hull(A) if eA belongs to both hull(A) and hull(A U B); eA is internal edge in hull(A)

... -

CHAPTER 5. ALGORITHMS 60

if eA belongs to hull(A) but not hull(A U B). There are two important observations

which are used to indicate if an edge is external edge or internal edge and to find a

common tangent line.

Observation 4 If hull(A) and hUll(B) are in the same half-plane bounded by the

edge, the edge is a external edge.

Proof: By the definition of the convex hull. o

Observation 5 If an extreme point is shared by an internal edge and an external

edge, the extreme point is on the common tangent line.

Proof: By the definition of internal edge and external edge, the extreme point PA

shared by an internal edge and an external edge of hull(A) is a extreme point which

belong to hull(A U B). In the hull(A U B), two edges share PA. One is the external

edge of Hull(A). Since an internal edge of hull(A) is not a edge of hull(A U B),PA has

to cut off the internal edge and connect to an edge, eA,B, in hull(A U B) shared by

another extreme point of hull(B), PB, which has the same situation as PA. Since eA,B

is a boundary edge of hull(A U B), hull(A) and hull(B) are in the same half-plane

bounded by the edge, eA,B is a common tangent line of hull(A) and hull(B). 0

By the two observations, from Figure 5.2 we can clearly see that el is an external

edge since all points in hull(A) and hUll(B) are in the same half-plane. We notice that

e2 cuts hull(B) and the points are in different half-plane, e2 therefore is an internal

edge. Also for the extreme point v which is shared by el and e2, where el is an

external edge and e2 is an internal edge, we can see that v is on the upper common

tangent line.

CHAPTER 5. ALGORITHMS 61

v

B

Figure 5.2: External edge and Internal edge

However, instead of testing all the vertices of hull(B) with an edge e in hull(A),

we can only test two representatives that are the nearest and farthest extreme points

from hull(B) to e. The following definitions and a procedure Extremal Search are

used to find these two representatives, all angles are measured with respect to the

x-aXIS.

First of all, We want to give the definition of the cousins as follows:

Definition 13 The cousins of a E A in B are two consecutive elements b1 and b2 in

B, such that a lies between b1 and b2 in the sorted list AU B resulting from merging

A and B.

By the definition of cousins, the cousins in B of each element in A can be deter

mined by running merging and interval broadcasting in O(nk) time on the (n, k)

arrangement graph.

Definition 14 The distance of a point to an oriented edge p is the distance from the

point to a line containing p; if the point is to the left (alternatively, right) of p, then

CHAPTER 5. ALGORITHMS 62

the distance is said to be positive (alternatively, negative).

Definition 15 The a-distance of a point to an edge p is its distance to the edge p'

obtained by rotating p by the angle a in a counterclockwise direction around a point.

Let A and B be two convex hulls in the plane, each containing O(m(n-l)!j(n-k)!)

edges stored in groups of m An-1,k-l 's, n-k+ 1 :s; m :s; n-l, given in counterclockwise

order. An extremal search problem ES(A, B, a) is described as follows: For each edge

pEA find a vertex vp E B with the smallest a-distance to p among vertices from B.

vp is called an associated point of p in direction a. It is easy to see that for a = 0

vp is of the smallest distance from p among vertices of B and for a = 7r vp is of the

greatest distance from p among vertices of B.

Proposition 4 Let s(e) denote the angle of an edge e. The associated point vp E B

(in direction a) of an edge pEA belongs to an edge pi E B such that Is (p) + a - s (pi) I

is minimized on B.

The Proposition 4 of associated points shows that the associated point of an edge

in A belongs to an edge that is its cousin in B.

Now we give the procedure ES(A, B, a) as follows:

Procedure ES(A, B, a)

1. In parallel, increase the angles of edges of A by a.

2. Let the edges with minimal angles in A and B be the first vertices of corre

sponding groups of An-1,k-l'S by running translation. (we can do a prefix sums

first to determine how many translations need to do.)

.. -

CHAPTER 5. ALGORITHMS 63

3. Merge A and B into C (needs to reverse B first)

4. Running an interval broadcasting to determine the cousins of every edges in A

5. Unmerge C back to A and B D

In the procedure ES(A, B, a), Step 1 runs in constant time. In Step 2, transla

tion requires O(nk) and the prefix sums requires O(klogn) time, therefore the total

running time is O(nk). Since both edges in A and B are sorted in increasing order,

the merging and reversing both requires O(nk) time. As we discussed in Section 3.4

and Section 5.3, interval broadcasting and unmerge take O(klogn) and O(nk) time.

As a result, after we add up all the steps, the procedure ES(A, B, a) runs in O(nk)

time.

For every edges in hull (A) , procedure ES(hull(A), hull(B), 0) will be executed

first to find the point with the smallest distance in hull(B). Then let a = 7r, every

edge can know the greatest distance point in hUll(B). After 0(1) time, each edge in

hull(A) can determine if it is external edge or internal edge and find out four extreme

points which can form two common tangent lines. We can see that the merging

procedure to merge two groups takes O(nk) time and it is repeated O(logn) times.

For the procedure CONVEX HULL, the recursion stops at k = 1 when An - k+1,l is

a clique K n - k+1. Convex hull problem with n nodes can be solved for EREW PRAM

with n processors in O(logn) time [41]. An algorithm designed for EREW PRAM

can be simulated on a clique with cost O(logn) [8]. Therefore, the base case of finding

convex hull on An,k requires 0(log2(n - k + 1)) time. Let t(n, k) be the time to find

the convex hull of n!/(n - k)! planar points on An,k, then

t(n, k) = t(n - 1, k -1) + O(nklogn) = 0(k2n log n)

CHAPTER 5. ALGORITHMS 64

Therefore the convex hull of n! / (n - k)! planar points can be found on An,k m

o (k2n log n) time.

We have designed a parallel algorithm for computing the convex hull of n!/(n

k)! planar points on An,k and the running time is O(k2nlogn). Since the con

vex hull problem has a lower bound of O(N log N) and can be solved sequentially

in O(N log N) time, on our parallel interconnection network, the lower bound is

o (log N) = O(log(n)!/(n - k)!) = O(klogn). Our result is far from the lower bound.

However, since we have to use the merging operation, this performance matches our

sorting algorithm on An,k which is adapted from n-star using the idea of Menn and

Somani in Section 5.3.

Chapter 6

Conclusions

In this thesis, we have studied the (n, k)-arrangement graph (interconnection network)

which is proposed as an attractive alternative to the n-star network. We found

some useful topological properties of the (n, k)-arrangement graph. We also designed

several parallel algorithms for this network. In particular, we studied:

• finding cyclic properties for An,k, which allows us to view the source node to

gether with all its neighbours as a de facto complete graph in the sense that

any two nodes are connected by a path of constant length;

• developing a single-port neighbourhood broadcasting algorithm for the (n, k)

arrangement network; as a result of this neighbourhood broadcasting algorithm,

we designed a broadcasting algorithm. Both these two algorithms are optimal;

• developing a Constant Routing I algorithm for exchanging the contents of the

processors in two sub-graphs; we then build Constant Routing II which extend

Constant Routing I to exchange contents between two groups of disjoint sub-

65

CHAPTER 6. CONCLUSIONS 66

graphs;

• designing a broadcasting algorithm which is based on Constant Routing 1/11;

this algorithm is different from the one we discussed before and it is also optimal.

• embedding properties of the (n, k)-arrangement graph; we embed an (n - k +

1) x (n - k + 2) x ... x (n - 1) x n mesh into An,k with unit expansion and

dilation 3 and a 2-dimensional mesh;

• prefix sums algorithm for the (n, k)-arrangement graph;

• sorting and merging algorithm for the (n, k)-arrangement graph; we discussed

two sorting algorithms; one based on the 2-dimensional mesh embedding prop

erties of the network and Shear Sort; another one is based on multi-dimensional

mesh structure; neither algorithm is optimal;

• discussing ASCEND-DESCEND algorithms; in particular we designed Trans

lation and Reversing algorithms based on ASCEND-DESCEND idea from the

hypercube;

• designing a basic computational geometry algorithm: convex hull algorithm on

the arrangement graph.

So far, only a few algorithms have been developed for the arrangement graph. We

would like to find algorithms for solving more problems on the network in the future.

Some of them are listed below:

• Designing some basic algorithms such as broadcasting, prefix sums, etc for the

all-port model.

CHAPTER 6. CONCLUSIONS 67

.. The D(((n~!k)!) log((n~!k)!)) number of steps required to sort n!/ (n - k)! numbers

sequentially implies an D(1og(n! / (n - k)!)) = D(k log n) lower bound to sort on

An k in parallel. Although we have designed a sorting algorithm which has a ,

time complexity O(nk), it still does not reach the trivial lower bound. Thus

one open problem is to improve the sorting algorithm on the (n, k)-arrangement

graph .

• In this thesis, some basic data permutation problems, translation and reversing,

run in 0 (nk) time. It remains to find a solution for them to be achieved in

O(klogn) time, or better, in O(n) time.

II The convex hull problem can be solved in O(N log N) sequentially. The lower

bound on the (n, k)-arrangement graph is D(k log n) in parallel. Our convex

hull algorithm does not reach the trivial lower bound. However, a faster merg-

ing algorithm would immediately improve a faster convex hull algorithm. We

believe this could be achieved.

As shown in this thesis, as well as other research work on the (n, k)-arrangement

interconnection network, we know that the (n, k)-arrangement graph is indeed an

attractive alternative to the popular n-star network. The (n, k)-arrangement graph

provides us better flexibility than the n-star in controlling the number of nodes in the

network. Some algorithms the (n, k)-arrangement graph such as broadcasting, prefix

sums and sorting match the performance of those of algorithms developed for the

n-star. In spite of recent research studying on the (n, k)-arrangement graph, much

work still needs to be done to make this network a serious competitor to the n-star.

Bibliography

[1] A. Aho, J. Hopcroft, and J. Ullman, The Design and Analysis of Computer

Algorithms. Massachusetts: Addison Wesley, 1974.

[2] S. Akers and B. Krishnamurthy, "The fault tolerance of star graphs," in 2nd

International Conference on Supercomputing, San Francisco, May 1987, pp. 270-

276.

[3] --, "A group theoretic model for symmetric interconnection networks," IEEE

Transactions on Computers, vol. c-38, no. 4, pp. 555-566, 1989.

[4] S. Akl, The Design and Analysis of Parallel Algorithms. Englewood Cliffs, NJ,

USA: Prentice Hall, 1989.

[5] --, Parallel Computations: Models and Methods. Upper Saddle River, NJ,

USA: Prentice Hall, 1997.

[6] S. Akl, K. Qiu, and 1. Stojmenvlc, "Data communication and computational

geometry on the star and pancake interconnection networks," in Proceedings of

the Third IEEE Symposium on Parallel and Distributed Processing, 1991, pp.

415-422.

68

...

BIBLIOGRAPHY 69

[7] S. Akl and T. Wolff, "Efficient sorting on the star graph interconnection net

work," Telecommunication Systems, vol. 10, pp. 3-20, 1998.

[8] H. Alt, T. Hagerup, K. Mehlhorn, and F. P. Perparata, "Deterministic simulation

of idealized parallel computers on more realistic ones," SIAM J. Comput., vol. 16,

no. 5, pp. 808-835, 1987.

[9] S. Aluru, N. Futamura, and K. Mehrotra, "Parallel biological sequence compari

son using prefix computations," Journal of Parallel and Distributed Computing,

vol. 63, pp. 264-272, 2003.

[10] D. Avis, "On the complexity of finding the convex hull of a set of points," School

of Comput. Sci., McGill Univ., Tech. Rep. FOCS 79.2, 1979.

[11] L. Bai, H. Maeda, H. Ebara, and H. Nakano, "A broadcasting algorithm with

time and message optimum on arrangement graphs," Journal of Graph Algo

rithms and Applications, vol. 2, no. 2, pp. 1-17, 1998.

[12] J. C. Bermond, A. Ferreira, S. Perennes, and J. G. Peters, "Neighborhood broad

casting in hypercubes," SIAM J. Discret. Math., vol. 21, no. 4, pp. 823-843, 2008.

[13] G. Blelloch, "Scans as primitive parallel operations," IEEE Transactions on

Computers, vol. 38, no. 11, pp. 1526-1538, 1989.

[14] Y. Chen, T. Juang, and Y. Shen, "Multi-node broadcasting in an arrangement

graph using multiple spanning trees," in 7th IEEE International Conference on

Parallel and Distributed Systems (ICPADS'OO). IEEE Computer Society Press,

Japan, July 2000, pp. 213-220.

-.

BIBLIOGRAPHY 70

[15] W. K. Chiang and R. Chen, "On the arrangement graph," Information Process

ing Letters, vol. 37, pp. 215-219, 1998.

[16] . W. Chiang and R. Chen, "The (n, k)-star graph: A generalized star graph,"

Information Processing Letters, no. 56, pp. 259-264, 1995.

[17] M. Cosnard and A. Ferreira, "On the real power of loosely coupled parallel

architectures," Parallel Processing Letters, vol. 1, pp. 103-111, 1991.

[18] J. D'Angelo and D. West, Mathematical Thinking: Problem-Solving and Proofs.

Upper Saddle River, NJ: Prentice-Hall, 2000.

[19] K. Day and A. Tripathi, "Arrangement graphs: A class of generalized star

graphs," Information Processing Letters, no. 42, pp. 235-241, 1992.

[20] --, "Embedding grids, hypercubes, and trees in arrangement graphs," in Int.

Conf. on Parallel Processing, no. III, 1993, pp. 65-72.

[21] --, "Embedding of cycles in arrangement graphs," IEEE Transactions on

Computers, vol. 42, no. 8, pp. 1002-1006, 1993.

[22] M. Dietzfelbinger, S. Madhavapeddy, and I. H. Sudborough, "Three disjoint

path paradigms in star networks," in Proc. Third IEEE Symp. on Parallel and

Distributed Processing, Dallas, December 1991, pp. 400-406.

[23] M. Flynn, "Some computer organizations and their effectives," IEEE Trans.

Comput., vol. C-21, pp. 948-960, 1972.

BIBLIOGRAPHY 71

[24] H. Frank, "The maximum connectivity of a graph," in Proceedings of the National

Academy of Sciences of the United States of America, vol. 48, no. 7, 1962, pp.

1142-1146.

[25] 1. FriiS, 1. Havel, and P. Liebl, "The diameter of the cube-connected cycles," In!

Process. Lett., vol. 61, no. 3, pp. 157-160, 1997.

[26] S. Fujita, "Neighbourhood information dissemination in the star graph," IEEE

Transaction on Computers, vol. 49, no. 12, pp. 1366-1370, 2000.

[27] --, "Optimal neighborhood broadcast in star graphs," Journal of Interconnec

tion Networks, vol. 4, no. 4, pp. 419-428, 2003.

[28] J. Hong, K. Mehlhorn, and A. Rosenberg, "Cost trade-offs in graph embeddings

with applications," J. ACM, vol. 30, no. 4, pp. 709-728, 1983.

[29] S. Hsieh, G. Chen, and C. Ho, "Fault-free hamiltonian cycles in faulty arrange

ment graphs," Parallel and Distributed Systems, IEEE Transactions on, vol. 10,

no. 3, pp. 223-237, 1999.

[30] H.-C. Hsu, T.-K. Li, J. J. M. Tan, and L.-H. Hsu, "Fault hamiltonicity and fault

hamiltonian connectivity of the arrangement graphs," IEEE Trans. Comput.,

vol. 53, no. 1, pp. 39-53, 2004.

[31] J. Jwo, S. Lakshmivarahanm, and S. Dhall, "A new class of interconnection

networks based on the alternating group," NETWORKS, vol. 23, no. 4, pp.

315-326, 1993.

...

BIBLIOGRAPHY 72

[32] D. Knuth, The Art of Computer Programming. Massachusetts: Addison-Wesley,

Reading, 1973, vol. 3.

[33] V. Kumar, A. Grama, A. Gupta, and G. Karypis, Introduction to Parallel Com

puting: Design and Analysis of Algorithms. Redwood City, California: The

Benjamin/Cummings Publishing Company, Inc., 1994.

[34] M. Kunde, "Routing and sorting on mesh-connected arrays," in Proc. of the

Aegean Workshop on Computing. LNCS 319, 1988, pp. 423-433.

[35] C. Lai and J. Tsay, "Communication algorithms on alternating group graphs,"

in Proceedings of the 2nd AIZU International Symposium on Parallel Algorithms,

1997, pp. 104-110.

[36] S. Lakshmivarahan and S. Dhall, Parallel Computing Using the Prefix Problem.

New York: Oxford University Press, 1994.

[37] J. Li, Y. Xiang, M. Chen, and Y. Zhou, "Broadcasting in (n, k)-arrangement

graph based on an optimal spanning tree," in Proc. of the First Asia International

Conference on Modelling and Simulation (AMS 2007). IEEE Computer Society

Press, March 2007, pp. 27-30.

[38] R. Lo and G. Chen, "Embedding longest fault-free paths in arrangement graphs

with faulty vertices," Networks, vol. 37, no. 2, pp. 84-93, 2001.

[39] A. Menn and A. Somani, "An efficient sorting algorithm for the star graph inter

connection network," in Proc. International Conference on Parallel Processing,

August 1990, pp. 1-8.

BIBLIOGRAPHY 73

[40] R. Miller and Q. Stout, "Computational geometry on hypercube computers,"

in Proceedings of the third conference on Hypercube concurrent computers and

applications. New York, NY, USA: ACM, 1988, pp. 1220-1229.

[41] --, "Efficient parallel convex hull algorithm," IEEE Trans. Comput., vol. 37,

no. 12, pp. 1605-1618, 1988.

[42] --, "Simulating essential pyramids," IEEE Transactions on Computers,

vol. 37, no. 12, pp. 1642-1648, 1988.

[43] --, "Mesh computer algorithms for computational geometry," IEEE Trans.

Comput., vol. 38, no. 3, pp. 321-340, 1989.

[44] W. Najjar and P. Srimani, "Conditional disconnection probability in star

graphs," Department of Computer Science, Colorado State University, Tech.

Rep. CS-90-105, 1990.

[45] F. Preparata and M. Shamos, Computataional Geomentry. Berlin, Germany:

Springer-Verlag, 1985.

[46] F. Preparata and J. Vuillemin, "The cube-connected-cycle: A versatile network

for parallel computation," Comm. ACM, vol. 24, no. 5, pp. 300-309, 1981.

[47] K. Qiu, "On a unified neighbourhood broadcasting scheme for interconnection

networks," Parallel Processing Letters, vol. 17, no. 4, pp. 425-437, 2007.

[48] K. Qiu, S. Akl, and H. Meijer, "A parallel sorting algorithm on the star

graph," Department of Computing and Information Science, Queens University,

Kingston, Ontario, Canada, Tech. Rep. 90-286, 1990.

--

BIBLIOGRAPHY 74

[49] K. Qiu and S_ Das, "A novel neighbourhood broadcasting algorithm on star

graphs," in 9th IEEE International Conference on Parallel and Distributed Sys

tems (ICPADS'02). IEEE Computer Society Press, Taiwan, 2002, pp. 37-41.

[50] M. Samatham and D. Pradhan, "The de bruijn multiprocessor network: A ver

satile parallel processing and sorting network for vlsi," IEEE Transactions on

Computers, vol. 38, no. 4, pp. 567-581, 1989.

[51] I. Scherson and S. Sen, "Parallel sorting in two-dimensional vlsi models of com

putation," IEEE Transactions on Computers, vol. 38, no. 2, pp. 238-249, 1989.

[52] P. Srimani, "Generalized fault tolerance properties of star graphs," Department

of Computer Science, Colorado State University, Tech. Rep. CS-90-104, 1990.

[53] G. Toussaint, "Pattern recognition and geomerical complexity," in Proc 5th Int.

Conf. Pattern Recognition, 1980, pp. 1324-1347.

