58 research outputs found

    Computer-Assisted Interactive Documentary and Performance Arts in Illimitable Space

    Get PDF
    This major component of the research described in this thesis is 3D computer graphics, specifically the realistic physics-based softbody simulation and haptic responsive environments. Minor components include advanced human-computer interaction environments, non-linear documentary storytelling, and theatre performance. The journey of this research has been unusual because it requires a researcher with solid knowledge and background in multiple disciplines; who also has to be creative and sensitive in order to combine the possible areas into a new research direction. [...] It focuses on the advanced computer graphics and emerges from experimental cinematic works and theatrical artistic practices. Some development content and installations are completed to prove and evaluate the described concepts and to be convincing. [...] To summarize, the resulting work involves not only artistic creativity, but solving or combining technological hurdles in motion tracking, pattern recognition, force feedback control, etc., with the available documentary footage on film, video, or images, and text via a variety of devices [....] and programming, and installing all the needed interfaces such that it all works in real-time. Thus, the contribution to the knowledge advancement is in solving these interfacing problems and the real-time aspects of the interaction that have uses in film industry, fashion industry, new age interactive theatre, computer games, and web-based technologies and services for entertainment and education. It also includes building up on this experience to integrate Kinect- and haptic-based interaction, artistic scenery rendering, and other forms of control. This research work connects all the research disciplines, seemingly disjoint fields of research, such as computer graphics, documentary film, interactive media, and theatre performance together.Comment: PhD thesis copy; 272 pages, 83 figures, 6 algorithm

    3Dactyl: Using WebGL to Represent Human Movement in 3D

    Get PDF

    Interactive Video Game Content Authoring using Procedural Methods

    Get PDF
    This thesis explores avenues for improving the quality and detail of game graphics, in the context of constraints that are common to most game development studios. The research begins by identifying two dominant constraints; limitations in the capacity of target gaming hardware/platforms, and processes that hinder the productivity of game art/content creation. From these constraints, themes were derived which directed the research‟s focus. These include the use of algorithmic or „procedural‟ methods in the creation of graphics content for games, and the use of an „interactive‟ content creation strategy, to better facilitate artist production workflow. Interactive workflow represents an emerging paradigm shift in content creation processes used by the industry, which directly integrates game rendering technology into the content authoring process. The primary motivation for this is to provide „high frequency‟ visual feedback that enables artists to see games content in context, during the authoring process. By merging these themes, this research develops a production strategy that takes advantage of „high frequency feedback‟ in an interactive workflow, to directly expose procedural methods to artists‟, for use in the content creation process. Procedural methods have a characteristically small „memory footprint‟ and are capable of generating massive volumes of data. Their small „size to data volume‟ ratio makes them particularly well suited for use in game rendering situations, where capacity constraints are an issue. In addition, an interactive authoring environment is well suited to the task of setting parameters for procedural methods, reducing a major barrier to their acceptance by artists. An interactive content authoring environment was developed during this research. Two algorithms were designed and implemented. These algorithms provide artists‟ with abstract mechanisms which accelerate common game content development processes; namely object placement in game environments, and the delivery of variation between similar game objects. In keeping with the theme of this research, the core functionality of these algorithms is delivered via procedural methods. Through this, production overhead that is associated with these content development processes is essentially offloaded from artists onto the processing capability of modern gaming hardware. This research shows how procedurally based content authoring algorithms not only harmonize with the issues of hardware capacity constraints, but also make the authoring of larger and more detailed volumes of games content more feasible in the game production process. Algorithms and ideas developed during this research demonstrate the use of procedurally based, interactive content creation, towards improving detail and complexity in the graphics of games

    Exploration of multiple pathways for the development of immersive virtual reality environments

    Get PDF
    The focus of this thesis is the study and recommendation of optimal techniques for developing immersive virtual environments for generic applications. The overarching objective is to ensure that virtual environments can be created and deployed, rapidly and accurately, using commercial off-the-shelf software. Specific subjective and objective criteria have been employed to determine trade-offs between multiple pathways for designing such environments and specific recommendations are made for the applicability of each. The efficacy of the techniques developed as part of this research work has been demonstrated by applying them to three widely differing areas - visualizing arbitrary 2D surface data, synthesis of particle aggregate models from computed tomography and simulation of NASA rocket engine test stands. The objectives of this thesis were obtained by an examination of the current algorithms and software in use for the development of virtual environments. From these currently used methods, general methods were defined. The expansion of these general methods to include the inputs and situations of common applications, allowed for the development of methods for real-world examples. Results were obtained by evaluating these methods against defined measurement criteria. These criteria measured the effectiveness of these methods for increasing the value of virtual reality, while reducing the cost. In this thesis, two virtual environment platforms (vGeo® and Vizard®) were used to develop three applications. These applications were a surface plot, particle visualizations and test stand simulations. In most cases, the results found the open-ended Vizard® to be the better platform. vGeo®, a platform designed for data visualization, worked well for basic data visualization, but was not as effective as Vizard® for developing more complex visualization. This thesis found that in most cases, an open-ended development platform, with functionality for rapid development is ideal. These methods and evaluations can be applied to a more diverse set of application and datasets to build development platforms that are even more efficient

    Interactive natural user interfaces

    Get PDF
    For many years, science fiction entertainment has showcased holographic technology and futuristic user interfaces that have stimulated the world\u27s imagination. Movies such as Star Wars and Minority Report portray characters interacting with free-floating 3D displays and manipulating virtual objects as though they were tangible. While these futuristic concepts are intriguing, it\u27s difficult to locate a commercial, interactive holographic video solution in an everyday electronics store. As used in this work, it should be noted that the term holography refers to artificially created, free-floating objects whereas the traditional term refers to the recording and reconstruction of 3D image data from 2D mediums. This research addresses the need for a feasible technological solution that allows users to work with projected, interactive and touch-sensitive 3D virtual environments. This research will aim to construct an interactive holographic user interface system by consolidating existing commodity hardware and interaction algorithms. In addition, this work studies the best design practices for human-centric factors related to 3D user interfaces. The problem of 3D user interfaces has been well-researched. When portrayed in science fiction, futuristic user interfaces usually consist of a holographic display, interaction controls and feedback mechanisms. In reality, holographic displays are usually represented by volumetric or multi-parallax technology. In this work, a novel holographic display is presented which leverages a mini-projector to produce a free-floating image onto a fog-like surface. The holographic user interface system will consist of a display component: to project a free-floating image; a tracking component: to allow the user to interact with the 3D display via gestures; and a software component: which drives the complete hardware system. After examining this research, readers will be well-informed on how to build an intuitive, eye-catching holographic user interface system for various application arenas

    Analysis of Visualisation and Interaction Tools Authors

    Get PDF
    This document provides an in-depth analysis of visualization and interaction tools employed in the context of Virtual Museum. This analysis is required to identify and design the tools and the different components that will be part of the Common Implementation Framework (CIF). The CIF will be the base of the web-based services and tools to support the development of Virtual Museums with particular attention to online Virtual Museum.The main goal is to provide to the stakeholders and developers an useful platform to support and help them in the development of their projects, despite the nature of the project itself. The design of the Common Implementation Framework (CIF) is based on an analysis of the typical workflow ofthe V-MUST partners and their perceived limitations of current technologies. This document is based also on the results of the V-MUST technical questionnaire (presented in the Deliverable 4.1). Based on these two source of information, we have selected some important tools (mainly visualization tools) and services and we elaborate some first guidelines and ideas for the design and development of the CIF, that shall provide a technological foundation for the V-MUST Platform, together with the V-MUST repository/repositories and the additional services defined in the WP4. Two state of the art reports, one about user interface design and another one about visualization technologies have been also provided in this document

    An Approach To Painterly Rendering

    Get PDF
    An often overlooked key component of 3D animations is the rendering engine. However, some rendering techniques are hard to implement or are too restrictive in terms of the imagery they can produce. The goal of this thesis is to make easy-to-use software that artists can use to create stylistic animations and that also minimizes technical constraints placed on the art. For this project, I present a tool that allows artists to create temporally coherent, painterly animations using Autodesk Maya and Corel Painter. I then use that tool to create proof of concept animations. This new rendering technique offers artists a different avenue through which they can showcase their art and also offers certain freedoms that current computer graphics techniques lack. Accompanying this paper are some animations demonstrating possible outcomes, and they are located on the Texas A&M online library catalog system. The painting system used for this project expands upon an algorithm designed by Barbara Meier of the Disney Research Group that involves spreading particles across a surface and using those particles to define brush strokes. The first step is to infer the general syntax of Painter’s commands by using Painter and its ability to record a painting made by an artist. The next step is to use the commands and syntax that Painter uses in the automated creation of scripts to generate paintings used for the animation. As this thesis is designed to showcase a rendering technique, I found animations made by fellow candidates for the Master of Science and Master of Fine Arts degrees in Visualization bearing qualities accented by a painterly treatment and rendered them using this technique

    Photorealistic physically based render engines: a comparative study

    Full text link
    Pérez Roig, F. (2012). Photorealistic physically based render engines: a comparative study. http://hdl.handle.net/10251/14797.Archivo delegad

    Intuitive visualization of surface properties of biomolecules

    Get PDF
    In living cells, proteins are in continuous motion and interaction with the surrounding medium and/or other proteins and ligands. These interactions are mediated by protein features such as Electrostatic Potential (EP) and hydropathy expressed as Molecular Lipophilic Potential (MLP). The availability of protein structures enables the study of their surfaces and surface characteristics, based on atomic contribution. Traditionally, these properties are calculated by phisicochemical programs and visualized as range of colours that vary according to the tool used and imposes the necessity of a legend to decrypt it. The use of colour to encode both characteristics makes the simultaneous visualization almost impossible. This is why most of the times EP and MLP are presented in two different images. In this thesis, we describe a novel and intuitive code for the simultaneous visualization of these properties. For our purpose we use Blender, an open-source, free, cross-platform 3D application used for modelling, animation, gaming and rendering. On the basis of Blender, we developed BioBlender, a package dedicated to biological work: elaboration of proteins motion with the simultaneous visualization of their chemical and physical features. Blender's Game Engine, equipped with specific physico-chemical rules is used to elaborate the motion of proteins, interpolating between different conformations (NMR collections or different X-rays of the same protein). We obtain a physically plausible sequence of intermediate conformations which are the basis for the subsequent visual elaboration. A new visual code is introduced for MLP visualization: a range of optical features that goes from dull-rough surfaces for the most hydrophilic areas to shiny-smooth surfaces for the most lipophilic ones. This kind of representation permits a photorealistic rendering of the smooth spatial distribution of the values of MLP on the surface of the protein. EP is represented as animated line particles that flow along field lines, from positive to negative, proportional to the total charge of the protein. Our system permits EP and MLP simultaneous visualization of molecules and, in the case of moving proteins, the continuous perception of these features, calculated for each intermediate conformation. Moreover, this representation contributes to gain insight into the molecules function by drawing viewer's attention to the most active regions of the protein

    Adaptivity of 3D web content in web-based virtual museums : a quality of service and quality of experience perspective

    Get PDF
    The 3D Web emerged as an agglomeration of technologies that brought the third dimension to the World Wide Web. Its forms spanned from being systems with limited 3D capabilities to complete and complex Web-Based Virtual Worlds. The advent of the 3D Web provided great opportunities to museums by giving them an innovative medium to disseminate collections' information and associated interpretations in the form of digital artefacts, and virtual reconstructions thus leading to a new revolutionary way in cultural heritage curation, preservation and dissemination thereby reaching a wider audience. This audience consumes 3D Web material on a myriad of devices (mobile devices, tablets and personal computers) and network regimes (WiFi, 4G, 3G, etc.). Choreographing and presenting 3D Web components across all these heterogeneous platforms and network regimes present a significant challenge yet to overcome. The challenge is to achieve a good user Quality of Experience (QoE) across all these platforms. This means that different levels of fidelity of media may be appropriate. Therefore, servers hosting those media types need to adapt to the capabilities of a wide range of networks and devices. To achieve this, the research contributes the design and implementation of Hannibal, an adaptive QoS & QoE-aware engine that allows Web-Based Virtual Museums to deliver the best possible user experience across those platforms. In order to ensure effective adaptivity of 3D content, this research furthers the understanding of the 3D web in terms of Quality of Service (QoS) through empirical investigations studying how 3D Web components perform and what are their bottlenecks and in terms of QoE studying the subjective perception of fidelity of 3D Digital Heritage artefacts. Results of these experiments lead to the design and implementation of Hannibal
    corecore