

http://researchcommons.waikato.ac.nz/

Research Commons at the University of Waikato

Copyright Statement:

The digital copy of this thesis is protected by the Copyright Act 1994 (New Zealand).

The thesis may be consulted by you, provided you comply with the provisions of the Act

and the following conditions of use:

 Any use you make of these documents or images must be for research or private

study purposes only, and you may not make them available to any other person.

 Authors control the copyright of their thesis. You will recognise the author’s right to

be identified as the author of the thesis, and due acknowledgement will be made to

the author where appropriate.

 You will obtain the author’s permission before publishing any material from the
thesis.

http://researchcommons.waikato.ac.nz/

This thesis is submitted in partial fulfillment of the requirements for the
Degree of Master of Science at the University of Waikato.

June 2010

© 2010 Dacre Denny

Interactive Video Game Content
Authoring using Procedural

Methods

Dacre Denny

i

Abstract

This thesis explores avenues for improving the quality and detail of game graphics, in the

context of constraints that are common to most game development studios. The research

begins by identifying two dominant constraints; limitations in the capacity of target gaming

hardware/platforms, and processes that hinder the productivity of game art/content creation.

From these constraints, themes were derived which directed the research‟s focus. These

include the use of algorithmic or „procedural‟ methods in the creation of graphics content for

games, and the use of an „interactive‟ content creation strategy, to better facilitate artist

production workflow.

Interactive workflow represents an emerging paradigm shift in content creation processes

used by the industry, which directly integrates game rendering technology into the content

authoring process. The primary motivation for this is to provide „high frequency‟ visual

feedback that enables artists to see games content in context, during the authoring process.

By merging these themes, this research develops a production strategy that takes advantage

of „high frequency feedback‟ in an interactive workflow, to directly expose procedural

methods to artists‟, for use in the content creation process. Procedural methods have a

characteristically small „memory footprint‟ and are capable of generating massive volumes of

data. Their small „size to data volume‟ ratio makes them particularly well suited for use in

game rendering situations, where capacity constraints are an issue. In addition, an interactive

authoring environment is well suited to the task of setting parameters for procedural methods,

reducing a major barrier to their acceptance by artists.

An interactive content authoring environment was developed during this research. Two

algorithms were designed and implemented. These algorithms provide artists‟ with abstract

mechanisms which accelerate common game content development processes; namely object

placement in game environments, and the delivery of variation between similar game objects.

In keeping with the theme of this research, the core functionality of these algorithms is

delivered via procedural methods. Through this, production overhead that is associated with

these content development processes is essentially offloaded from artists onto the processing

capability of modern gaming hardware.

ii

This research shows how procedurally based content authoring algorithms not only

harmonize with the issues of hardware capacity constraints, but also make the authoring of

larger and more detailed volumes of games content more feasible in the game production

process. Algorithms and ideas developed during this research demonstrate the use of

procedurally based, interactive content creation, towards improving detail and complexity in

the graphics of games.

iii

Acknowledgments

This research and thesis would not have been possible without the help and support of a

number of people and institutions.

I would like to thank The University of Waikato for providing me with an opportunity to

carry out this Masters research. In particular, I would like to thank Bill Rogers of the

Computer Science department, for supervising this research and providing ongoing support

and assistance.

In addition, I would also like to thank staff at the game development studio Sidhe, who

provided me with an opportunity to meet and discuss the themes and objectives of this

research. Tyrone McAuley, Stewart Middleton, Jeremy Burgess and Keir Rice were

particularly instrumental in this discussion, setting aside time in their schedules to talk with

me in person.

Finally, I would like to offer immense and special thanks to my family who provided ongoing

support, throughout the course of this research.

iv

v

Contents

Abstract .. i

Acknowledgments .. iii

Contents .. v

List of figures .. vii

List of tables ... xi

Chapter 1: Introduction ... 1

Chapter 2: Literature review ... 9

Procedural methods ... 9

Elements of procedural methods ... 9

Practical usage ... 11

Advantages of procedural methods (explained via textures) ... 12

Common procedural functions .. 14

Procedural methods in games .. 19

Motivations for procedural methods .. 26

Content creation pipelines ... 27

Summary .. 31

Chapter 3: Project design .. 33

Development constraints ... 34

Industry consultation ... 35

Automated object placement ... 37

Automated object variation.. 41

Chapter 4: Implementation ... 47

Interactive tool chain ... 47

Overview ... 48

Real time content encoder (RTCE) .. 52

Game rendering context (GRC) ... 72

Instancing algorithm ... 100

Structural overview .. 100

Implementation of first pass .. 110

Implementation of second pass .. 128

Object variation algorithm .. 130

Objectives and overview.. 132

Non-uniform deformation .. 133

vi

First tessellation approach .. 142

Second tessellation approach ... 151

Final shader implementation .. 155

Chapter 5: Demonstrations.. 161

Tool chain interaction and material composition .. 162

Real-time generative instancing .. 170

NPD algorithm demonstrations ... 180

Chapter 6: Conclusion ... 187

Future work ... 195

Material composition system ... 195

Real-time generative instancing (RTGI) .. 195

Non-uniform procedural deformation (NPD) .. 197

References ... 199

Appendix A ... 211

Appendix B ... 213

Appendix C ... 215

vii

List of figures

Figure 1 Depicts the „functional nature‟ of PM‟s. Legible‟ procedural data

generation often relies on consistent/contiguous input data 10

Figure 2 Illustrates the different types of data flow through procedural functions 11

Figure 3 Correlation between numerical result and visual representation 12

Figure 4 Quality comparison between procedural and conventional reproduction 13

Figure 5 A procedural tree structure composed in „MapZone‟ ... 14

Figure 6 Grittiness and grime achieved via procedural noise ... 14

Figure 7 Visual representation of Perlin noise. ... 15

Figure 8 Illustrates continuous nature of Perlin noise (1D) when evaluated

against contiguous parameters .. 15

Figure 9 Illustrates a demonstration program that was developed. The „uniform-

grid‟ and „auxiliary vectors‟ which underlie Perlin noise are depicted. 16

Figure 10 Composition of the Gabor kernel.. 17

Figure 11 The noise result achieved by „splatting‟ Gabor kernels 18

Figure 12 Achieving isotropic noise via random distribution of Gabor kernel

orientations ... 18

Figure 13 Illustrates a range of results that can be achieved via GRC noise 19

Figure 14 The Sentinel uses procedural methods to generate a large set of playable

levels ... 19

Figure 15 Quake 3 Arena applied textures via improved capabilities of consumer

graphics hardware ... 20

Figure 16 Illustrates terrain, procedurally generated by Age of Empire‟s level

editor ... 21

Figure 17 Illustrates the result of procedurally based enemy placement and control

in Left 4 Dead. .. 22

Figure 18 Illustrates the use of procedurally generated textures in Roboblitz 24

Figure 19 The interactive shader/material creation offered in Unreal 3‟s tool suite 30

Figure 20 Image of Id Software‟s current game project „Rage‟ .. 33

Figure 21 Image of a forest scene in Fable 2 .. 37

Figure 22 Visualization of the algorithmic instancing concept, showing the

relationship between geometric elements and procedural functionality 38

Figure 23 Visualization of other channels of procedural data in procedural

instancing .. 38

Figure 24 Abstract illustration showing a clear correspondence between a checker

procedural and the instancing outcome .. 39

file:///G:/Thesis.docx%23_Toc263423135
file:///G:/Thesis.docx%23_Toc263423135
file:///G:/Thesis.docx%23_Toc263423136
file:///G:/Thesis.docx%23_Toc263423137
file:///G:/Thesis.docx%23_Toc263423138
file:///G:/Thesis.docx%23_Toc263423139
file:///G:/Thesis.docx%23_Toc263423140
file:///G:/Thesis.docx%23_Toc263423141
file:///G:/Thesis.docx%23_Toc263423142
file:///G:/Thesis.docx%23_Toc263423142
file:///G:/Thesis.docx%23_Toc263423143
file:///G:/Thesis.docx%23_Toc263423143
file:///G:/Thesis.docx%23_Toc263423144
file:///G:/Thesis.docx%23_Toc263423145
file:///G:/Thesis.docx%23_Toc263423146
file:///G:/Thesis.docx%23_Toc263423146
file:///G:/Thesis.docx%23_Toc263423147
file:///G:/Thesis.docx%23_Toc263423148
file:///G:/Thesis.docx%23_Toc263423148
file:///G:/Thesis.docx%23_Toc263423149
file:///G:/Thesis.docx%23_Toc263423149
file:///G:/Thesis.docx%23_Toc263423150
file:///G:/Thesis.docx%23_Toc263423150
file:///G:/Thesis.docx%23_Toc263423151
file:///G:/Thesis.docx%23_Toc263423151
file:///G:/Thesis.docx%23_Toc263423152
file:///G:/Thesis.docx%23_Toc263423153
file:///G:/Thesis.docx%23_Toc263423154
file:///G:/Thesis.docx%23_Toc263423155
file:///G:/Thesis.docx%23_Toc263423156
file:///G:/Thesis.docx%23_Toc263423156
file:///G:/Thesis.docx%23_Toc263423157
file:///G:/Thesis.docx%23_Toc263423157
file:///G:/Thesis.docx%23_Toc263423158
file:///G:/Thesis.docx%23_Toc263423158

viii

Figure 25 Illustrates „local rotation axis‟ for instances. These axes are equivalent

to corresponding surface normals .. 40

Figure 26 Modern games achieve increased realism by populating environments

with many props and objects .. 42

Figure 27 Compares different parameterization schemes for a deformation

procedural function .. 44

Figure 28 Shows how increased levels of „geometric tessellation‟ yield more

legible deformation results ... 45

Figure 29 Visualization of the „painting‟ metaphor when assigning deformation to

geometry .. 46

Figure 30 Screenshot of Maya, highlighting the software‟s „viewport‟ interface

element ... 48

Figure 31 Schematic diagram, illustrating work flow configurations via the

„connection model‟ .. 52

Figure 32 Example of scene representation in Maya 2008 using abstract graph

structure.. 54

Figure 33 Illustrates how improved lighting can be achieved via computations that

use per-vertex normal vectors .. 55

Figure 34 RTCE‟s material hierarchy for showing custom composition of

procedural functions for a material channel ... 61

Figure 35 Illustrates an enhanced surface material via composition of numerous

procedural elements in the RTCE plug-in .. 62

Figure 36 Illustration of DAG structures in Maya ... 63

Figure 37 Schematic of the GRC‟s shader system that supports custom shader

functionality in conjunction with dynamic vertex formats 86

Figure 38 Illustrates the adaptive mechanism which handles the automatic

substitution of parameters for custom shader functions when required 89

Figure 39 Illustrates the GRC‟s shader based material composition system...................... 92

Figure 40 Shows how procedural functions are included/excluded in a procedural

composition during shader compilation ... 93

Figure 41 Illustrates the GRC‟s material structure ... 96

Figure 42 Illustrates integration of „material module‟ and objects of the „scene

module‟ .. 97

Figure 43 Illustrates motion blur as a post-processing effect in Motostorm 100

Figure 44 Illustrates adaptive terrain, where tessellation is a function of view

position ... 101

Figure 45 Sophisticated fluid flow achieved by applying geometry shading to a

particle system ... 102

Figure 46 Illustrates poor utilization of stream via first strategy 109

Figure 47 Schematic diagram illustrates general flow control in the instancing

shader ... 110

file:///G:/Thesis.docx%23_Toc263423159
file:///G:/Thesis.docx%23_Toc263423159
file:///G:/Thesis.docx%23_Toc263423160
file:///G:/Thesis.docx%23_Toc263423160
file:///G:/Thesis.docx%23_Toc263423161
file:///G:/Thesis.docx%23_Toc263423161
file:///G:/Thesis.docx%23_Toc263423162
file:///G:/Thesis.docx%23_Toc263423162
file:///G:/Thesis.docx%23_Toc263423163
file:///G:/Thesis.docx%23_Toc263423163
file:///G:/Thesis.docx%23_Toc263423164
file:///G:/Thesis.docx%23_Toc263423164
file:///G:/Thesis.docx%23_Toc263423165
file:///G:/Thesis.docx%23_Toc263423165
file:///G:/Thesis.docx%23_Toc263423166
file:///G:/Thesis.docx%23_Toc263423166
file:///G:/Thesis.docx%23_Toc263423167
file:///G:/Thesis.docx%23_Toc263423167
file:///G:/Thesis.docx%23_Toc263423168
file:///G:/Thesis.docx%23_Toc263423168
file:///G:/Thesis.docx%23_Toc263423169
file:///G:/Thesis.docx%23_Toc263423169
file:///G:/Thesis.docx%23_Toc263423170
file:///G:/Thesis.docx%23_Toc263423171
file:///G:/Thesis.docx%23_Toc263423171
file:///G:/Thesis.docx%23_Toc263423172
file:///G:/Thesis.docx%23_Toc263423172
file:///G:/Thesis.docx%23_Toc263423173
file:///G:/Thesis.docx%23_Toc263423174
file:///G:/Thesis.docx%23_Toc263423174
file:///G:/Thesis.docx%23_Toc263423175
file:///G:/Thesis.docx%23_Toc263423176
file:///G:/Thesis.docx%23_Toc263423176
file:///G:/Thesis.docx%23_Toc263423177
file:///G:/Thesis.docx%23_Toc263423178
file:///G:/Thesis.docx%23_Toc263423178
file:///G:/Thesis.docx%23_Toc263423179
file:///G:/Thesis.docx%23_Toc263423179
file:///G:/Thesis.docx%23_Toc263423180
file:///G:/Thesis.docx%23_Toc263423181
file:///G:/Thesis.docx%23_Toc263423181

ix

Figure 48 Illustrates the „coverage‟ strategy which is used during instance

generation ... 111

Figure 49 Illustrates what information is known about a triangle at the start of the

instance generation process .. 112

Figure 50 Illustration of sample clipping during iterative sampling of sub triangle 113

Figure 51 Illustrates visual artefacts that resulted in the first implementation of the

instance generation process .. 114

Figure 52 Illustrates the „virtual rectangle‟ which encloses triangles processed by

the instance generation phase ... 115

Figure 53 Illustration of tangent space on arbitrary manifold. Note the orthogonal

nature of this space. .. 116

Figure 54 Illustrates the process of „virtual rectangle‟ computation via tangent

space and orthogonal projection ... 117

Figure 55 Illustrates how texture coordinates ranges influence marching „density‟ 118

Figure 56 Illustrates limitations of instance generation in the second instancing

approach .. 119

Figure 57 Shows how a texture coordinate based „virtual rectangle‟ can be used

for instance generation .. 120

Figure 58 Illustrates the sample transformation process for the final triangle

coverage algorithm ... 122

Figure 59 Schematic of per-instance procedural evaluations .. 124

Figure 60 Illustrates the cookie cutter concept for instance generations........................... 126

Figure 61 Depicting variation between pedestrians in Grand Theft Auto IV

(GTAIV) ... 130

Figure 62 Illustrates object duplication in games .. 131

Figure 63 Variation present within early video games ... 132

Figure 64 Illustrates a variation strategy that is frequently used in games 132

Figure 65 Various tessellation strategies ... 136

Figure 66 Illustrates non-uniform (or adaptive) tessellation ... 137

Figure 67 Quality comparison between tessellation strategies ... 138

Figure 68 Illustrates seam-gap artifacts which occur when levels of deformation

between adjacent triangles differ .. 140

Figure 69 Illustrates the severity of seam artifacts under normal circumstances 141

Figure 70 Illustrates adjacent geometry that is accessible during triangle

processing ... 142

Figure 71 Illustrates the NPD algorithm‟s gap prevention strategy 148

Figure 72 Shows how triangles that require no deformation are copied through

internal passes ... 152

Figure 73 Comparison of parallelism in each NPD algorithm approach 153

file:///G:/Thesis.docx%23_Toc263423182
file:///G:/Thesis.docx%23_Toc263423182
file:///G:/Thesis.docx%23_Toc263423183
file:///G:/Thesis.docx%23_Toc263423183
file:///G:/Thesis.docx%23_Toc263423184
file:///G:/Thesis.docx%23_Toc263423185
file:///G:/Thesis.docx%23_Toc263423185
file:///G:/Thesis.docx%23_Toc263423186
file:///G:/Thesis.docx%23_Toc263423186
file:///G:/Thesis.docx%23_Toc263423187
file:///G:/Thesis.docx%23_Toc263423187
file:///G:/Thesis.docx%23_Toc263423188
file:///G:/Thesis.docx%23_Toc263423188
file:///G:/Thesis.docx%23_Toc263423189
file:///G:/Thesis.docx%23_Toc263423190
file:///G:/Thesis.docx%23_Toc263423190
file:///G:/Thesis.docx%23_Toc263423191
file:///G:/Thesis.docx%23_Toc263423191
file:///G:/Thesis.docx%23_Toc263423192
file:///G:/Thesis.docx%23_Toc263423192
file:///G:/Thesis.docx%23_Toc263423193
file:///G:/Thesis.docx%23_Toc263423194
file:///G:/Thesis.docx%23_Toc263423195
file:///G:/Thesis.docx%23_Toc263423195
file:///G:/Thesis.docx%23_Toc263423196
file:///G:/Thesis.docx%23_Toc263423197
file:///G:/Thesis.docx%23_Toc263423198
file:///G:/Thesis.docx%23_Toc263423199
file:///G:/Thesis.docx%23_Toc263423200
file:///G:/Thesis.docx%23_Toc263423201
file:///G:/Thesis.docx%23_Toc263423202
file:///G:/Thesis.docx%23_Toc263423202
file:///G:/Thesis.docx%23_Toc263423203
file:///G:/Thesis.docx%23_Toc263423204
file:///G:/Thesis.docx%23_Toc263423204
file:///G:/Thesis.docx%23_Toc263423205
file:///G:/Thesis.docx%23_Toc263423206
file:///G:/Thesis.docx%23_Toc263423206
file:///G:/Thesis.docx%23_Toc263423207

x

Figure 74 Illustrates the role of support buffers for data flow in the revised NPD

shader ... 159

file:///G:/Thesis.docx%23_Toc263423208
file:///G:/Thesis.docx%23_Toc263423208

xi

List of tables

Table 1 The typical chronology of visual quality in game franchises................................... 1

Table 2 Unit sales for current generation console hardware as of 2010 3

Table 3 A summary of PM‟s in a range of games ... 25

Table 4 Code excerpt showing features of mesh packaging and transmission

iteration .. 59

Table 5 Material types supported in RTCE ... 60

Table 6 Auxiliary attributes assigned to objects by and for the RTCE plug-in 63

Table 7 Summary of interaction events in Maya that the RTCE responds to 66

Table 8 Development chronology of the RTCE interface ... 72

Table 9 Code excerpt showing typical features of an HLSL shader 78

Table 10 Code excerpt showing main features of a simple shader declaration 82

Table 11 Shows how pre-processing capabilities of HLSL are used to deliver

shaders which are adaptive to arbitrary vertex formats ... 83

Table 12 Code excerpt showing main features of a simple shader declaration in the

GRC‟s shader system ... 88

Table 13 Code excerpt shows how „blocks‟ of code are conditionally introduced to

a shader at compile time, to deliver procedural composition 94

Table 14 Comparison of shader types, showing how geometry shaders facilitate

variable data output, unlike other shader types .. 104

Table 15 Shows how variable output is achieved via flow control and the output

„structure‟ of geometry shaders in HLSL... 105

Table 16 Per-instance parameter structure emitted from instance shader 106

Table 17 Projection equation used by the RTGI algorithm‟s „sub triangle‟

extraction calculation ... 112

Table 18 The marching process exposes this data to the instance generation phase 123

Table 19 Code excerpt from the instance shader implementation, illustrates the

integration of the „cookie cutter‟ feature .. 128

Table 20 Code excerpt from the deformation shader implementation which shows

how adaptive vertex interpolation is achieved in order to compute the

„split vertex‟ ... 146

Table 21 Pass structure of revised NPD shader .. 155

Table 22 Code excerpt showing the „technique structure‟ of the NPD shader 157

xii

1

Chapter 1: Introduction

The global entertainment industry has shown significant growth in recent decades; a trend

that is expected to continue, according to analysts and market researchers (Business Wire,

2007) (The Financial Express, 2007). Consistent with this trend, are significant increases in

consumer spending throughout the entertainment software industry (Riley, 2008). According

to the Entertainments Software Association (ESA), the U.S entertainment software industry

grew 17% between 2003 and 2005. Furthermore, the entertainment software/gaming sector

has shown particular growth compared to adjacent industries; namely the films and music

industries (Anderson, 2007).

These solid industry trends and market projections indicate a clear opportunity for

commercial revenue in gaming software. This yields a competitive commercial climate,

where remaining at the forefront of games technology and development techniques, is

paramount to the success of game development studios. More specifically, improvements to

the quality of game experiences will continue to underpin a game studio‟s success.

Wolfenstein 3D 1992
(id Software: Wolfenstien 3D and

Spear of Destiny, 2001)

Return to castle Wolfenstein 2001
(id Software: Return to Castle

Wolfenstein, 2001)

Wolfenstein 2009

(Wolfenstein | Media, 2009)

Table 1 The typical chronology of visual quality in game franchises

In most games, the visual element is the primary channel through which the game experience

is conveyed. Although elements such as game play, audio and social interaction are

significant components of a game experience, the graphic component is arguably the most

influential, particularly in terms of sales influence, impressiveness and overall impact. Games

graphics continue to serve as a cornerstone for ongoing innovation and development in the

games industry. Thus, the alluded motivations for this are primarily based on “[increased

consumer] expectation for greater realism [in] the visual quality of the game content”

(Scheidt, 2005).

2

Significant improvements in the graphics of games have been evident, particularly in the past

two decades of the games industry. Table 1 shows this trend in Id Software‟s Wolfenstein 3D

video game franchise, which spans over two decades and exhibits considerable improvement

in graphics during this time (Wolfenstein 3D, 2010).

Despite these achievements, prominent figures in the games development industry have

indicated that opportunity still exists for further improvement in visual realism and the

quality of games.

Tim Sweeny, founder and technical director of Epic Games and arguably one of the

industry‟s leading contributors to game technology design and development, suggested in an

interview with Benj Edwards of Gamasutra in 2009 that “[games are] about a factor of a

thousand off from achieving [photo realism] in real-time” (McLean-Foreman, 2001)

(Sweeney, 2009). This estimate indicates significant opportunity for continued research and

development in real-time graphics.

Developing graphics rendering functionality that is consistent with quality standards of

current games however, is already a non-trivial task. Game „rendering functionality‟ is

typically integrated into a „graphics engine‟ subsystem, within the game‟s „engine

technology‟. In addition to geometry rendering, modern graphics engines typically integrate

functionality that delivers special effects and animation.

Common special effects offered by rendering engines typically include „high dynamic range‟

and „motion blur‟, which are simulated in real-time (Rosado, 2008) (Green & Cebenoyan,

2004). Design characteristics which facilitate optimization, hardware acceleration, data

processing and priority management, as well as parallelism, are important in game render

engines. Underlying these staple elements is an emerging requirement for „cross architecture‟

support.

More specifically, the design and implementation of commercial game rendering systems is

often necessary for use on most, if not all, current generation gaming architectures; namely

the PC, Playstation® 3, Wii™, and Xbox360®. The reason for this is usually motivated by

economic factors, given that the increased market exposure which results from multiplatform

game deployment maximizes the product‟s revenue prospects (Simpson, 2009).

As of 2010, the market composition for console gaming hardware indicated a reasonable

balance in the user bases of each of the three current generation console systems (see table 2).

Thus, the motivation for developing multiplatform games and technology is clear, given the

significant user base across each of the console platforms.

3

Playstation® 3 33.5 million (SCEI, 2010)

Xbox360® 40 million (Ingham, 2010)

Wii™ 70.6 million (Nintendo, 2010)

Table 2 Unit sales for current generation console hardware as of 2010

Unfortunately, cross platform development and console game development in general,

hinders progress towards improved visual quality of games. This is because the hardware

specifications of consoles (such as graphics functionality), remain fixed throughout a

console‟s product lifetime. Despite the ongoing pursuit for improvement in the graphics of

games, the overriding economic motivations for console based development confine current

development to the limitations of console hardware.

Hardware specifications for PC‟s are obviously more dynamic and provide greater

opportunity for improved graphics quality. This was emphasised by Tim Sweeny who in

2009, stated that “[PC] video cards, have about 10 times the graphics horsepower of

[today‟s] console” (Sweeney, 2009).Furthermore, the memory/storage capacity of current

PC‟s is significantly higher than that of current generation consoles (see Appendix B).

Despite the potential for improved visual quality via high-end PC gaming systems, a recent

study indicated that the PC platform/market as a whole, only accounts for 16% of total

consumer spending in entertainment software sales (Warman, 2010). Thus, developing games

tailored to high-end PC systems within this small market share is often commercially

unviable, given that the production costs for single platform games average at ~$10 million

(Crossley, 2009).

The „static‟ technological climate of the games industry presents a major challenge for game

developers working towards better graphics quality/realism in games. Although superior

hardware in game platforms that succeed the current generation consoles is beneficial

towards visual improvement in games, it is likely that specifications of future consoles will

also remain static. Note that „step wise‟ improvements to the hardware specifications of

consoles have been characteristic of the seven iterations/generations of console hardware

(Video game console, 2010) (The Home Video Game Console, n.d). Thus, merit exists in

identifying strategies and algorithms that promote further improvement to game graphics,

despite the fixed hardware of target platforms.

4

Compelling visual experiences in games are dependent on the quality of game media and

content that encapsulates the game‟s underlying rendering techniques and technology.

Delivering better game graphics not only requires improved rendering techniques (that

comply with technological constraints), but also complex and highly detailed content, such as

game characters, environments and props. Furthermore, the composition and density of

games content is also fundamental in the delivery of believable game experiences; namely the

placement of props in game scenes.

The creation of digital art and content for modern games is renowned for the huge workload

that it represents in the game production process; this often leads to high proportions of artists

in game development teams.

Larger teams of game artists obviously account for bigger overall game development teams,

which are partly responsible for increasing budgets that typically range between $10-100

million (Crossley, 2009) (Ashrafi, 2008). This tends to oppose economic preferences of game

production which aim to minimize production budgets. Thus, content creation strategies

which make better use of artists‟ time are desirable both economically, and in terms of

prospects for improved visual quality.

The implication of equipping artists‟ with processes and strategies that permit more effective

content creation, in the scope of a fixed production timeline, allows greater opportunity for

refinement of game content and/or the introduction of additional detail. Thus, by providing

artists with efficient techniques that facilitate asset composition in game environments,

namely for increased density/population of objects in scenes, significant reductions to an

artist‟s workload and overhead are anticipated.

Integrating these techniques directly into artist workflows is likely to maximize the impact

they have on the game production process. This was emphasised by Gregor vom Scheidt,

vice president of Computer Graphics at Avid© when he spoke at the 2005 Game Developer

Conference (GDC05) in San Francisco on game content creation; “increasing time and

budgetary constraints [in games] are fuelling the demand for content creation tools that

integrate seamlessly into existing production pipelines and empower game developers to

work more efficiently” (Gregor vom Scheidt, 2005) (Scheidt, 2005).The production and

technical constraints which hinder graphics development in games represent core focal points

of this research. Thus, ideas and algorithms that are developed in this research are inherently

influenced by these two themes.

5

The practical element of this research is the design and development of algorithms that

enable artists‟ to improve visual complexity, detail and realism of game objects and scenes,

in an efficient manner. These algorithms achieve improved artist productivity, while

complying with technical constraints which are relevant to the current technological

landscape of the games industry. Both of these algorithms execute in „real-time‟, making

them suitable for direct integration into a target games‟ rendering technology. Furthermore,

the real-time element of these algorithms makes them suitable for integration in an

„interactive workflow‟, allowing artists to immediately see the outcomes of their work in the

„target game‟. In other words, this real-time characteristic supports the notion of „interactive

content creation‟ that is contextually orientated.

Improvements to content creation in the developed algorithms stem from the notion of an

„interactive content creation‟ paradigm (which Gregor vom Scheidt alluded to at the GDC05).

The essence of interactive content creation, is to expose „interactive production workflow‟ to

artists during content creation; coupling various elements such as game rendering technology,

„immediate feedback‟ to artist interaction and artist collaboration during production. These

elements are evidently gaining prominence in content creation methodologies, technology

and workflows, used by many major game studios.

By integrating this workflow paradigm, the practical research outcomes are consistent with

current trends in the games industry. In addition, this workflow paradigm also provides an

environment that facilitates the introduction of new ideas/concepts which might be

impractical in non-interactive content creation workflows.

The interactive basis of this research aims to makes less conventional data

sources/representations more feasible for use by artists in content creation. In particular, the

use of „procedural methods‟, for game content creation is explored.

Procedural data representations are attractive given that they maintain a low memory

footprint to data volume ratio. This makes data sources based on „procedural mechanisms‟

well suited to current platforms and technologies; namely game consoles, where storage

capacity is a particular constraint. By integrating procedurally based content production

algorithms into an interactive workflow, this research aims to amalgamate the beneficial

characteristics of procedural functions, with a content creation environment that encourages

experimentation and refinement, while imposing minimal workflow „overhead‟ on artists.

This „combination‟ therefore, aims to advance boundaries in the complexity and detail of

6

game graphics by using procedural methods, under artist control, to generate game graphics

data.

As mentioned the algorithms of this research are integrated into an interactive artist

workflow. For reasons that are subsequently discussed, a workflow was designed and

implemented to accommodate research specific algorithms. This „workflow‟ consists of

several software components and is referred to as the „interactive tool chain‟.

The algorithms integrated into this tool chain are essentially abstractions for common classes

of respective content authoring tasks that face artists. The motivation for delivering „abstract‟

algorithms is to provide content creation mechanisms that are capable of covering a wide

range of applications and scenarios for various content authoring tasks. Although a number of

obvious applications for these algorithms exist, the abstract nature of the research‟s

algorithms aims to „free‟ the creativity of artists‟, allowing them to be used for a range of

content/game development scenarios.

This thesis begins with a review of the core elements that underlie the practical outcomes of

this research with the concept of procedurally generated graphics data explored in greater

detail. In addition, the history and usage trends of this concept are reviewed, establishing

precedent for the use of procedural generation. An emerging trend in the application of

procedural methods for other purposes in modern games is also investigated; providing

insight into the diverse nature of procedural data generation. This demonstrates that in

addition to explicit game graphics, procedural data can fulfil other purposes in the delivery of

game experiences. In addition, technologies and strategies used and developed by numerous

game development studios are reviewed; this identifies emerging features of content creation

strategies. These points illustrate the relevance of this research in interactive content creation

scenarios, for artists‟.

Following the review, the project design chapter outlines key points that directed the

investigation and implementation tasks of this research. The chapter provides detail of the

development criteria which underlies subsequent work, in addition to an overview of the

„abstract‟ algorithms which represent methods of improving game graphics, in the context of

an underlying „interactive workflow‟/tool chain.

The specific procedural algorithms developed, namely procedural/algorithmic „geometry

instancing‟ and procedural „geometric object variation‟, are introduced and briefly described.

Accompanying these descriptions are implementation specifications for the algorithms to

7

ensure they meet research objectives, as well as the level of flexibility required by artists

during use.

The largest section of this thesis is the „implementation chapter‟, which consists of three main

sections. The order of these sections reflects the chronology of the implementation process.

The first section describes the tool chain that was developed. Two software components are

covered; a module that integrates into the artist‟s content authoring environment and a game-

like rendering context for displaying artists‟ work/content. Design decisions and features of

the developed tool chain component that integrate with the target „content authoring

environment‟, are also discussed. This provides insight as to how the tool chain compliments

the artist‟s creative process, while maintaining „transparency‟ to encourage an uninterrupted,

fluid process of content creation.

The implementation underlying the game rendering context provides specific detail and

justification for rendering technologies and features used. These are explained in the context

of the objectives for minimized space complexity, as well as high flexibility and

configurability for artists.

The second and third sections of the implementation chapter describe the „procedural

instancing‟ and „procedural object variation‟ algorithms. As indicated, these algorithms

represent the research‟s main strategies for improving the productivity and efficiency that

underlie a common task for artists; namely the population of game scenes with objects.

Often artists are tasked with placing thousands of objects (such as props) throughout scenes

of modern games as part of the creative process, representing an obvious and significant

workload. The section illustrates how procedural instancing aims to minimize this overhead,

while simultaneously abiding to system capacity constraints by the integration of procedural

methods. Unlike „conventional‟ „static‟ object instancing, this implementation of instancing

has a real-time basis, allowing it to respond to artist interaction in real-time via the tool

chain‟s interactive context.

The „object variation‟ section also assumes a similar integration of its algorithm within the

research‟s game rendering interactive/context tool chain. Again, the motivation for this

integration is to yield real-time, responsive feedback to artists that use the variation

algorithm. As the section title suggests, this algorithm aims to achieve (procedurally based)

geometric variation between objects. The motivation for this algorithm is explained in the

literature review and requirements chapters.

8

In addition to describing each algorithm‟s implementation, these sections also provide a brief

overview/discussion of features in modern graphics hardware, relevant to each algorithm. As

is discussed, the motivation for applying these hardware features is to demonstrate that the

ideas presented in this research can be expressed in high performance architectures therefore

making them suitable as resident components of a game‟s rendering technology.

Following this chapter, a number of „game inspired‟ test cases that demonstrate the ideas and

algorithms of this research are showcased in image form. These demonstrations depict the

interactive and „productivity enhancing‟ aspects of the content creation tool chain and

algorithms, that were developed.

9

Chapter 2: Literature review

The following discussion covers a variety of topics relevant to this thesis, expanding on

challenges currently facing game developers; namely production and technical constraints.

This research explores the use of „procedural methods‟ (PM) as an avenue for continued

video game improvement, beginning with a look at previous and current roles of PM‟s in a

number of prominent games. In addition, the implications of PM‟s as a feature of the game-

production process is also explored. Due to the influence that „game content creation‟ has on

the game production process, „game content creation systems‟ that are currently used in

industry, are reviewed. Although varied, each of these systems shares a common

characteristic; a move towards „interactive‟ and „real-time‟ content-authoring to assist game

artists.

This analysis provides a premise of this research which is to amalgamate the benefits of PM‟s

with the game production process. In addition, by making direct use of PM‟s in game

technology, this research considers the implications of smaller memory usage and storage (as

offered by PM‟s) towards the delivery of rich and detailed game experiences.

Procedural methods

This review will begin with a brief introduction to the concept and theory of PM‟s. As the

literature review develops, the introduction will serve as a backdrop for subsequent

discussion of project specific ideas that are based on PM‟s.

Elements of procedural methods

PM's are diverse, abstract concepts that modify „input data‟ to generate results systematically,

via an internal algorithm/ „characteristic‟. Thus, the inherent diversity of PM‟s makes them

applicable to a variety of situations.

Despite the diversity of PM‟s, all are unified by a number of factors; namely, the functional

nature of procedural output. That is, procedural results are a direct side effect of evaluating a

procedural function. In addition, PM‟s are „referentially transparent‟ and thus, should always

yield the same computation result for given „input parameters‟ (Sondergaard & Sestoft,

10

1990). To illustrate referentially transparency, consider the „sine‟ function which is

deterministic for any specified „phase offset‟.

The structure and process of a PM typically involves operation on input data by the

procedural's internal generator or 'descriptor'. This is followed by the return of procedural

results that reflect characteristics of the internal descriptor, as well as the specified input

parameters. The descriptor is essentially the PM‟s implementation and hence, it dictates the

procedural's output.

Input parameters are a typical component of PM‟s. Non-parameterized procedurals do exist

however, which satisfy the formal definition of a PM. These „marginal‟ examples are limited

to two classes of PM‟s; pseudo random generators and constant functions. This limitation

illustrates the functional nature of PM‟s in that they are more flexible when input data is

specified.

The output of a non-parameterized, procedural random generator is however, still

deterministic (or „pseudo‟ random). That is, under equivalent system states the same result

will be produced by the function, therefore maintaining the characteristic of referential

transparency.

PM‟s tend to be most effective for situations where they are parameterized with contiguous

data. The classic example of this is pattern/image generation across screen pixels. When

parameterized with contiguous pixel data, namely the screen coordinates of each pixel, PM‟s

are capable of expressing images/textures results which retain distinct characteristics.

In contrast to this, PM‟s evaluated in the context of „scrambled data‟ will typically struggle to

produce legible results as PM‟s implicitly reflect their incoming data, as well as any

inconsistencies within a parameter „neighbourhood set‟ (figure 1). This will be expanded on

further in subsequent discussion.

Contiguous 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Evaluation

„Scrambled‟ 0.7 0.3 0.6 0.1 0.8 0.5 0.8 0.9 0.4 0.0

Evaluation

 Figure 1 Depicts the „functional nature‟ of PM‟s. Legible‟ procedural data generation often relies

on consistent/contiguous input data

11

Figure 2 Illustrates the different types of data flow

through procedural functions

A B C

Data the amount of data that flows through procedural
functions (boxes) can be, deflated, (B) inflated, (C) or

retained. Note that all procedural functions must

return data.

Another characteristic of PM‟s is that no correlation between the amount of input and output

data is required, as figure 2 shows. A PM can therefore, inflate or reduce the volume of data

that passes through it. To illustrate this, consider a procedural function that generates wave

forms. This function may have a number of parameters, such as amplitude and frequency.

The evaluation of this procedural, processes these parameters, reducing them to a single wave

form offset (i.e. one scalar value). In this

example, the reduction of incoming data during

evaluation, demonstrates the principle of data

volume „independence‟.

One obvious constraint that applies to all PM‟s is

that procedural functions must always return

data following evaluation (see figure 2). This

„axiom‟ reiterates the fundamental nature of

PM's in that they never terminate data but rather

emit or channel it.

Practical usage

The following section discusses the concept of PM‟s in more depth via the use of computer

graphics examples. Consider the previous example where a simple procedural texture was

produced. When PM's are used for texture generation, the procedural function typically

generates colour values for each „texel‟ in the texture. The generated colour values can be

influenced by input parameters that direct the PM.

Perhaps the most common parameter(s) supplied to procedural textures are the coordinates of

each pixel that is processed. These coordinate parameters provide the procedural texture with

contextual information about a pixel‟s position within coordinate space. Hence, this

information is used to direct the procedural‟s output into the texture.

Although coordinate space is arbitrary, texture coordinates are usually normalized between

the range of 0.0 and 1.0. It is therefore convenient for procedural functions to operate on

coordinates that are clamped between these ranges.

Additional parameters can be supplied to the texture PM depending on the function‟s

design/requirements. Additional „auxiliary‟ parameters enable developers and designers to

externally access and control the PM‟s internal behaviour and functionality. Parameters

therefore, represent the diversity of PMs‟ in a different sense. A single PM for example,

12

could be parameterized in different ways; each of which yields different results that makes

the function applicable to a variety of situations.

Examples of simple procedural textures

Consider an example where a gradient texture is procedurally generated. For simplicity, the

function is solely parameterized by the pixel‟s coordinate. To achieve a gradient that sweeps

across the vertical dimension of coordinate space, the descriptor simply returns the fractional

component of the pixels „x coordinate‟. This is illustrated by (A) in figure 3.

Another simple procedural that generates a „stripe‟ texture could be achieved by the „modulo‟

of a pixels „y-coordinate‟. When evaluated across the „y axis‟, the operator would yield

uniform alternation between zero and non-zero. By this interpretation, a final texture

depicting alternating 'stripes' could be achieved (B in figure 3). Returned function results

range numerically between 0.0 and 1.0, and are visually represented by black through shaders

of grey to white.

Advantages of procedural methods (explained via textures)

To illustrate some incentives for using PM‟s, consider the gradient example from the

previous section. As illustrated, this simple PM offers a robust mechanism for delivering

gradient textures. In a video game, this gradient PM could tint the sky of the game

environment for instance, simulating atmospheric effects of the real world. A common,

alternative strategy would be to use a sky gradient texture (image) which would be

„sampled‟/mapped onto the sky‟s surface. As subsequent discussion illustrates, an advantage

of graphics strategies which are based on PM‟s is that their data memory/storage

requirements are minimized.

The resolution characteristics of procedural functions are preferable to equivalent „functions‟

based on discrete data. Consider again the gradient procedural function. In theory, this PM is

capable of delivering an arbitrary level of resolution (quality). This is due to the „decimally

 Coordinate 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

A frac(x × 2) 0.0 0.2 0.4 0.6 0.8 0.0 0.2 0.4 0.6 0.8 0.0

B
step(frac(x ×

6))
0.0 1.0 0.0 1.0 0.0 1.0 0.0 1.0 0.0 1.0 0.0

Figure 3 Correlation between numerical result and visual representation

13

infinite‟ nature of the function; a consequence of its numerical basis (Gowers, 2004). In

practice however, the resolution and quality of a procedural texture is limited by the

arithmetic precision of the underlying hardware/technology used. Although recent graphics

hardware can support high precision processing (64-bit), most hardware functionality is

limited 32-bit number representations (NVIDIA Corporation, 2010) (Brown,

ARB_gpu_shader_fp64, 2010). This precession usually offers a sufficient level of colour

resolution and quality for most graphics situations.

To achieve results with equivalent quality using conventional data storage, an array

containing the full spectrum of 32-bit values between the range of 0.0 and 1.0 would need to

be available for „sampling‟. This would require an array containing 4.2×10
9
 elements to

match the quality of the procedural gradient. Despite this memory consumption, no gains in

final texture quality or resolution would be made.

 In practical situations where storage constraints are

applied, degradation in quality usually occurs. This is

due to the discrete nature of data when stored in

memory. Although „filtering‟ mechanisms exist to

supplement these constraints, limitations and low

resolution tend to still be noticeable. Figure 4

illustrates the effect of filtering on low resolution data.

Composition of procedural functions

Although simple, the previous example illustrated a key benefit behind PM‟s; this being

high-resolution results coupled with a small memory footprint.

In practical applications, procedural textures are typically represented as a composition of

many procedural elements which, when combined appropriately, produce more interesting

final results. The structure of this composition can be represented as a tree or DAG.

Procedural generators/functions typically occur as leaf nodes in these structures and return

data which contributes to the final result. During evaluation of these structures, output from

child/leaf nodes flows towards the structure‟s root via inner/parent nodes (as the arrow in

figure 5 illustrates).

Figure 4 Quality comparison between

procedural and conventional reproduction

Procedural generation
yields no quality

degradation

Stored approach

subject to filtering/

quality degradation

14

(Bathroom, Allegorithmic, 2010)

Figure 6 Grittiness and grime achieved via

procedural noise

Processing inner nodes (that bind the generator nodes) combines procedural results/units such

as colour tuples, in some predetermined manner. Many combination schemes exist; examples

include computing the „multiplication‟, „difference‟ or „average‟ of each component within

input data/units. The results of these operations propagate „up‟ the tree, towards the root node

(see figure 5). These combination schemes provide artists and developers with a powerful

avenue for control over the design and final effect of a procedural composition.

Common procedural functions

Despite many procedural classes existing, those classified as „noise‟ are most often used in

film, simulation and games (Perlin, Making Noise, 1999). Noise procedurals are well suited

to these applications, particularly when natural or

organic effects are required. By taking advantage

of noise within a gaming context, high levels of

detail can be efficiently introduced into game

scenes and objects.

Noise‟s algorithmic quality enables artists to

introduce greater levels of detail into game

content without crafting it by hand. As figure 6

shows, noise is often compounded onto game

objects to introduce an appearance of grime,

grittiness and variation. This producing results

that are more consistent with the real world.

Procedural noise produces „pseudo random‟

results that are similar in nature to the „random

generators‟ previously mentioned (Perlin, Band

(Documentation, MapZone, 2010)

Figure 5 A procedural tree structure composed in „MapZone‟

„Generator Node‟ (Noise)

Final result (root node)

15

Figure 7 Visual representation of Perlin noise.

Visual representation Perlin noise expressed

in a two dimensional image. Note the

structure that is evident in the noise result.

(Misc Perlin Noise, 1999)

... 0.21 0.22 0.23 0.24 0.25 ...

(DeWolf, 2000)

Figure 8 Illustrates continuous nature of Perlin noise

(1D) when evaluated against contiguous parameters

limited repeatable 'random' function, 1999). Procedural noise tends to yield consistent

characteristics such as „structure‟ and „form‟ which are inherit in the final noise result (see

figure 6). In contrast, random generators produce arbitrary results which yield no consistency

or correlation between adjacent „samples‟ of the generator in sample space. When the output

of a random generator is expressed as an image, it

tends to look like „television static‟.

Procedural noise however, yields more

distinguishable results which express and emphasise

unique characteristics of the function. Useful

procedural noise functions are those that possess

natural, seemingly „organic‟ and homogeneous

qualities; namely Perlin noise, as shown in figure 7 .

The distinct characteristics of noise procedurals are

achieved by different combinations of simple

mathematical functions and techniques, including dot

product and clamping/bounding operations, as well as trigonometric functions.

Note that the characteristics of noise implementations are always preserved, regardless of

where the noise function is evaluated in sample/parameter space. Furthermore, noise

implementations must be robust in that a correlation between procedural evaluations exists,

when the procedural is evaluated against contiguous „parameter values‟. For example,

consider the Perlin based wave of figure 8. Although variation is evident, intermediate

consistency between adjacent „segments‟ on the

wave (each of which corresponds to a point on

the contiguous number line), exists. These

characteristics are particularly important for

creative applications where artists and

designers often rely on the preservation of traits

(such as structure), within the procedural result.

Case Study: Perlin Noise

To examine these ideas in further detail, consider „Perlin noise‟. Perlin noise is perhaps the

most commonly used implementation of procedural noise, boasting wide spread usage;

particularly in the films industry (Perlin, Perlin Noise, 1999). It was developed by Ken Perlin

in 1983 and offers a robust method for generating controlled and referentially transparent

noise (Perlin, Controlled Random Primitive, 1999).

16

Figure 9 Illustrates a demonstration program that was

developed. The „uniform-grid‟ and „auxiliary vectors‟

which underlie Perlin noise are depicted.

Perlin‟s noise algorithm is based on computations between the current „position‟ in the

sample space and a „uniform grid‟ of pre-computed auxiliary vectors. In the case of 2D Perlin

noise, the evaluation of noise at each point on the „image plane‟ begins with simple vector

arithmetic. Four directional vectors which extend from the sample position to the closest

intersecting points on the „uniform grid‟, are

computed (figure 9). The dot product is then

calculated between each direction vector and the

corresponding „auxiliary vector‟ from the

„uniform grid‟ that implicitly overlay the noise

result.

Following this, the leftmost scalar products

(with respect to the uniform grid), are

interpolated with their rightmost counterparts.

This interpolation is based on the sample‟s

horizontal position relative to the enclosing

„cell‟ of the uniform grid. Perlin‟s original

implementation based this interpolation on an „S-curve‟ (Perlin, Noise and Turbluence,

2009). The s-curve essentially blends the scalar values to yield a result similar to „Gaussian

blur‟ (Perlin, Algorithm, 1999).

The process concludes by repeating the interpolation process on the pair of „scalar

interpolations‟ previously calculated. This interpolation is based on the sample‟s vertical

position within the enclosing cell. This final interpolation gives the noise sample at this

specified current point in sample space.

An interesting subtlety of this implementation is expressed through a property of the scalar

product. As samples approach „cell‟ corners (or intersecting points of the „uniform grid‟), the

scalar product approaches zero. This observation is an example of „clamping‟ within a noise

procedural.

 Regardless of how well vectors of the scalar product align, the results of this operation near

cell corners will always approach zero. This property produces a „radial falloff‟ around cell

corners which contributes to the isotropic characteristic of structure in Perlin's noise (Perlin,

Controlled Random Primitive, 1999).

Like most procedural functions, Perlin noise functions often expose parameters to influence

the inner noise calculation and thus, the final noise result. Typical parameters include

„amplitude‟ and „threshold‟ (offset) which alter the „brightness‟ of the procedural result. In

17

(Modulation)

~

Figure 10 Composition of the Gabor kernel

Sinusoidal component Gaussian envelope

Gabor kernel

addition, resolution in the uniform grid can be increased, which yields greater „granularity‟ in

the noise result.

Case Study: Sparse Gabor Noise

Another variant of procedural noise is based on the distribution of „Gabor convolutions‟

(Lagae, Lefebvre, Drettakis, & Dutr', The Gabor Kernel, 2009). Like Perlin noise, noise

based on sparse Gabor convolutions (SGC) incorporates „random‟ distribution to achieve

variety (Lagae, Lefebvre, Drettakis, & Dutr', Procedural Noise using Sparse Gabor

Convolution, 2009). The use of a „pseudo random‟ function for spatial distribution of Gabor

samples implies that SGC noise is referentially transparent (Lagae, Lefebvre, Drettakis, &

Dutr', Procedural Evaluation, 2009). This approach differs from Perlin noise, and is achieved

by accumulating the distribution of simple „Gabor convolutions‟. For simplicity, SGC noise

will be explained as a texture in the context of a 2D plane.

Like other noise implementations SGC has characteristics such as structure and „orientation‟.

SGC noise exposes a number of parameters to control these characteristics, enabling a variety

of noise results to be achieved. Most parameters of SGC are directly associated with those of

the Gabor kernel(s). Gabor kernels can also be parameterized either uniformly or on an

individual basis to produce/achieve other

structural characteristics.

In a two dimensional plane, Gabor kernels

represent the modulation between a

sinusoidal/harmonic function and the Gaussian

function (see figure 10). When expressed as

images, Gabor kernels have an appearance of

structure and orientation which is a side effect of

the sinusoidal element.

More specifically, it is the repetition/oscillation of

sinusoidal functions that introduces structure into

the kernel. This is because Gabor kernels usually

incorporate at least one full phase of the sinusoidal element.

Gabor kernels expose parameters for phase offset and frequency, both of which directly

control the kernels sinusoidal element. The orientation of Gabor kernels is manipulated by

rotating the „axes‟ of the sinusoidal function relative to the sample plane. The influence of

18

kernel orientation on SGC noise, in terms of the resulting isotropy, will be explored in

subsequent discussion.

The second component of the Gabor kernel is its Gaussian function. As mentioned, this is

applied to the sinusoidal element as an „envelope‟ around the kernels „origin‟. This produces

the effect of a soft „fall-off‟ that encloses the kernel; a feature which makes the Gabor kernel

suitable for SGC noise.

As figure 11 illustrates, SGC noise is achieved via an accumulated „random‟ distribution (or

„splatting‟) of Gabor kernels throughout the image plane (Lagae, Lefebvre, Drettakis, &

Dutr', Procedural Evaluation, 2009). Note that the scale and orientation of kernels can also be

randomized to achieve different results, as will be discussed. Individual kernels contribute

little to the procedural result and thus, a relatively dense distribution of kernels (small Gabor

kernels most often being used), is required. It is important however, that the sinusoidal

element of a scaled kernel still be perceivable. This is because the sinusoidal element affords

„energy‟ and structure in the resulting noise.

„Direction‟, which can be varied, is characteristic of SGC noise. Direction is achieved when

the orientations of sinusoidal elements in each Gabor kernel partially align throughout the

overall image. By applying wholly random distribution to the orientation/rotation of kernels

D: Dense accumulation

yields final result

A: Sparse,

unidirectional kernels

B: Sparse random

direction kernels

C: Random direction

kernels

Figure 12 Achieving isotropic noise via random distribution of Gabor kernel orientations

(Lagae, Procedural Noise using Sparse Gabor Convolution, 2009)

A B C D

„Splatting‟ Gabor kernels in the “spatial domain” GRC (Lagae, Procedural Noise using Sparse Gabor

Convolution, 2009). Note that a diagonal „grain‟ characteristic emerges as the kernel density increases

Figure 11 The noise result achieved by „splatting‟ Gabor kernels

19

Figure 14 The Sentinel uses procedural methods to generate a

large set of playable levels

(Brooks, 2010)

Figure 13 Illustrates a range of results that can be
achieved via GRC noise

(Lagae, Lefebvre, Drettakis, & Dutr', Procedural

Noise using Sparse Gabor Convolution, 2009)

as shown in figure 12, isotropic SGC noise can be produced by essentially „dissolving‟ any

notion of directional structure in the SGC noise result. The overall affect of misaligned

kernels eliminates any directional structure, therefore producing an appearance similar to

Perlin noise.

The Gaussian „envelope‟ of each kernel is also

significant in terms of contribution to the final

image. This feature maximizes the „entropy‟ of

a kernel, while maintaining „harmony‟ between

neighbouring or partially overlapping kernels in

the image plane (i.e. the „soft‟ kernel envelop

blends with other overlapping kernels). This

also ensures that the contribution of kernels in

the final result is achieved without making

individual kernels distinguishable or noticeable.

Procedural methods in games

During the history of game development, procedural methods (PM) have been applied to

games in a variety of ways with varying degrees of importance. PM‟s were used in games to

deliver volumes of content that were too large to store on distribution media and/or system

memory. In this sense, PM‟s were used as a form of data compression within games.

A well known example of this was

„The Sentinel‟; a game which was

published in 1986 and capable of

providing players with up to 10,000

procedurally generated levels while

running within 64kb of memory (The

Sentinel , 2010). Although the main

motivation for using PM‟s in „The

Sentinel‟ was data compression, other

reasons for this application of PM‟s

may have also existed. By automating the process of content generation, much of the burden

of content creation was transferred from the game‟s developers to the system. Thus, PM‟s

20

present an opportunity for data compression in games, in conjunction with improved game

production processes. These ideas constitute the direction and theme of this research.

In comparison to today‟s video games, „The Sentinel‟s‟ application of PM‟s was central to

the game‟s implementation and delivery. Historically, this option was viable due to the

climate of the game‟s market with lower consumer expectation. PM‟s served as an attractive

and efficient method for authoring games content, given that the approach satisfied

game/production quality milestones. During this era, PM‟s were also used for audio, graphics

and challenges/game play. Hence, PM‟s tended to play a central and highly influential role in

most aspects of the game experience.

In contrast, today‟s games are largely based on (static) content that is manually prescribed by

artists and designers. The transition from generative content to prescribed content started in

the 1990‟s and was based on a number of factors; namely significant improvements to

graphics processing and storage capacity of consumer gaming hardware (Kudler, 2007).

The use of PM‟s in game graphics was consequently replaced with image based „texturing‟ as

graphics hardware became capable of storing and rendering images at reasonable resolutions.

With the advent of 3D graphics acceleration in the mid to late 1990s, painted textures and

hand crafted geometry quickly became staple elements of game art (GeForce 256, 2010)

(GPU, 2010).

As a result, graphics techniques and algorithms orientated around these art forms, were

developed by the industry (Lilly, 2010). One other hardware development played a vital part

in this paradigm shift; namely the widespread adoption of CD/ DVD media. These media

provided significant distribution space for texture and geometry data, making the use of

„prescribed‟ game content more feasible (Optical disc, 2010).

(Quake 3 Arena Screenshots, 2006) (Quake III Arena, 2002)

Figure 15 Quake 3 Arena applied textures via improved capabilities of

consumer graphics hardware

21

Figure 16 Illustrates terrain, procedurally generated by Age of
Empire‟s level editor

(Age of Empires,Features, 1998)

During this transitional period, PM‟s remained a feature of the game production process.

These applications were often in „pre-baked‟ forms however, meaning that the procedurals

were pre-evaluated before being introduced into the game. A common example of this is the

use of procedural functions during the creation of textures. In these situations, procedural

operations are often compounded into a texture result that is crafted by the artist (Ahearn,

2006). Another example is the application of procedural modifiers provided in modelling

packages such as Maya and 3D Studio Max (Matossian, Ms, 2001). These modifiers apply

noise, waves and other distortions to target geometry, and are applicable to a variety of

modelling situations. Despite PM‟s being present in the production process, these are

somewhat „superficial‟ applications because they are compounded into a static form.

This research however, aims to integrate PM‟s so that the benefits of evaluation at runtime,

such as compression, are achieved.

As mentioned, the mid 1990‟s saw a rise in game content that was manually crafted by artists

and designers; an approach that differed significantly from the previous decade. Despite this

significant shift, some game titles still used procedural techniques to achieve effects and

phenomena of their game experience. A typical example was the use of a „noise function‟

(usually a pseudo random number generator) to compute vectors with random orientation

(tr_noise.c, 2005). These vectors can be used to give debris a random initial velocity

following an explosion, resulting in a seemingly natural distribution of debris.

Procedural methods are also used in

„Age of Empires‟ (AOE), a real time

strategy game published by Microsoft

(Age of Empires, 2010). AOE provides

players with causal game modes that

take place in procedurally generated

levels. Although procedural levels are

not part of the games

storyline/campaign, the feature offers

additional game play via algorithmic

map generation. Note that AOE‟s

procedural map generation process is also parameterized by simple criteria such as terrain

type and foliage density (Microsoft Age of Empires, 1998).

These examples show an interesting „relationship‟ between procedural functions and the roles

they fulfil. Although each is expected to yield desirable characteristics, the actual evaluated

outcome is at the discretion of the procedural function itself. Thus, the integration of these

22

procedurals hinges on procedural characteristics being manifested, rather than a specific

„layout‟ of characteristics being produced. In terrain generation for example, a particular

arrangement of hills isn‟t necessarily required provided, that variation across the landscape

exists.

Procedural functions are therefore selected, based on the characteristics that they manifest.

This selection criterion still seems to apply to modern games that use PM‟s. Noteworthy

examples include acclaimed titles such as „Left 4 Dead‟ and „FarCry 2‟, both integrating

PM‟s in sophisticated ways to deliver richer game play experiences (Far Cry 2, 2010) (Left 4

Dead, 2009). Because these games make central use of PM‟s, it is critical that procedurals are

carefully selected, tweaked and integrated, to ensure solid game play and end-user

experiences. The subsequent section examines relevant cases in more detail.

Case study: Left 4 Dead

Left 4 Dead is an action game where players fight against large numbers of „infected

zombies‟ in the aftermath of a “zombie apocalypse” (Left 4 Dead, 2009). High action game

play is achieved in Left 4 Dead by procedurally instantiating enemy zombies beyond the

players‟ line of site via „Structured Unpredictability‟ (Booth, 2009). Thus, by basing the

instantiation and placement of enemy zombies on PM‟s, Left 4 Dead delivers variation in the

game experience.

This is achieved by „The Director‟, a subsystem of the game that coordinates events and

situations to avoid stale and repetitive game play (Left 4 Dead, 2009). An advantage of The

Director is that it minimizes the need for the definition of scripts throughout an entire game.

In a typical game, scripts are usually provided to control the placement and behaviour of

enemies. Thus, the task of scripting is essentially offloaded to The Director, which

incorporates rule systems, scene analysis and various heuristics, to automatically perform

Figure 17 Illustrates the result of procedurally based enemy placement and control in Left 4 Dead.

 (Booth, slide 62, 2009).

23

zombie management (Booth, 2009). The outcome of this procedural system is dynamic

behaviour throughout many aspects of the game, which reduces the need for script

development.

In addition, The Director adds a further dynamic to the game experience, namely difficulty

scaling (Booth, 2009). If the system detects a high error rate by the player for example, The

Director can dynamically respond to this by minimizing the game‟s difficultly at runtime to

suit that particular player.

Case Study: FarCry 2

FarCry 2 uses PM‟s in a different way to achieve unique content generation. The game is

capable of delivering massive and detailed game environments, as well as a huge variety of

game characters/enemies, through the integration of a procedurally based content generation

system (Far Cry 2, 2009).

It is interesting to note the revival of traditional uses of PM‟s in FarCry 2. Recall from

previous discussion the hardware constraints that faced developers of The Sentinel. These

constraints led to PM‟s playing a central role in delivering large volumes of data for the

game. In FarCry 2, this same situation is manifest through its objective to deliver a diverse

population of in-game characters beyond the storage capabilities of gaming hardware

(Breckon, FarCry 2 Preview, 2008). Thus, FarCry 2‟s procedurally driven character

generation system is capable of delivering this variation by dynamically generating game

characters „on-the-fly‟.

The obvious distinction between the use of PM‟s in FarCry 2 and The Sentinel however, is

FarCry 2‟s use of „artist prescribed‟ content. Thus, FarCry 2 merges PM‟s with artist

prescribed content, to deliver a „hybrid‟ character generation system. This strategy allows the

game to achieve a high level of quality, realism and scale, despite being implemented on

game consoles with tight memory constraints (~512mb) (PS3Focus, 2005).

Case Study: Roboblitz

Roboblitz was released in 2006 and is a 3D action game which makes explicit use of PM‟s

for much of its game art (RoboBlitz, 2010). It integrates a variety of procedural functions

such as noise, pattern and shape generators, to compose a variety of textures for effects and

environmental surfaces.

In recognizing a relationship between procedural compositions and the game‟s intended art

style, developers could deliver the product in a 50Mb package (RoboBlitz, 2007).

24

Figure 18 Illustrates the use of procedurally generated textures in

Roboblitz

(RoboBlitz, Gallery, 2006)

Despite its small size, critics have

estimated that Roboblitz offers

approximately 5 hours of game play

(Brudvig, 2007). This is noteworthy

given that comparable games in excess

of 1000Mb typically only offer 8 to 12

hours of game play. Roboblitz‟s size is

attributed to its use of PM‟s as a

substitute for „conventional‟ game

media data.

Roboblitz locally „unpacks‟ the game‟s „procedural data‟ into conventional (uncompressed)

forms, which are then made available to the game. This significantly offsets the game‟s initial

size, while still enabling it to deliver a solid visual and interactive experience.

From a marketing perspective, smaller software sizes are advantageous as this makes

deployment through channels such as the internet, feasible. Roboblitz capitalizes on its small

size, exclusively using digital/internet stores such as „Steam‟ and „Xbox Live Arcade‟ for

marketing exposure and sales (RoboBlitz, 2010).

Although Roboblitz takes advantage of PM‟s to improve distribution prospects, it doesn‟t

apply or evaluate PM‟s for texture generation during runtime. Thus, the small size of PM‟s

does not benefit Roboblitz during runtime and thus, the game is subject to the same „runtime

capacity constraints‟ that face typical games.

The following table summarizes these case studies. It also provides an outline of PM‟s within

other popular games, therefore illustrating the diverse range of functions they fulfil.

Game Title Application Integration

The Sentinel Generative game levels
Procedural functions for level generation are

evaluated at runtime.

Roboblitz
Texture generation for

game surfaces

Procedural functions are deployed with the game but

are expanded /evaluated before runtime. The

unpacking process yields procedurally generated

texture images which are used in a conventional way

during runtime (Postmortem: Naked Sky

Entertainment's RoboBlitz, 2007).

Left 4 Dead
Placement and behaviour

of enemies

Procedural functions are used to position and control

opponents within the game world. These procedural

functions are evaluated at runtime (Booth, 2009).

Left 4 Dead 2 Placement and behaviour Similar to Left 4 Dead.

25

of enemies

Dynamic level

generation

Procedurally driven decision making is used to

dynamically configure levels (Champandard, 2009).

Procedural decision making is evaluated at run time

and is influenced by factors such as player skill.

(Runtime Random Level Generation, 2009).

Far Cry 2 Environment generation

Procedural functions were used during development

to generate massive game environments, with

physically accurate characteristics. This process

however, „bakes‟ the procedural data which is used

by the game at runtime, in a conventional way. This

therefore, represents a static integration of PM‟s in

the game (Far Cry 2, 2009) (Making Far Cry 2's

Africa, 2008).

Dynamic character

generation

The integration of procedural character generation.

Evaluation of these procedural functions to achieve

character variety with minimal memory footprint

(Far Cry 2, 2009).

 Dynamic skies
Procedural functions are used to produced dynamic

skies within game environments of Far Cry 2

(Rossignol, 2008).

.kkrieger

Generative levels,

opponents, textures,

sounds, effects

Procedural functions are deployed and evaluated at

runtime to generate most of the game‟s media.

Spore Character colouration
One of Spore‟s developers stated that “Spore uses a

procedural paint system [for game characters]”

(Hecker, 2009).

 Animation
The game generates animation based on arbitrary

„creatures‟ that are created by players at runtime

(Procedural generation, 2010).

 Music

Spore integrates a software component that is based

on procedural functionality called „The Shuffler‟.

This component “accepts input based on the game’s

parameters [and] can turn even a small combination

of samples into a composition which will never

repeat, no matter how long you will play the game”

(Whiting, 2007).

Quake 3 Arena Special effects
Perlin noise is used to generate animated water

distortion effects (tr_shade_calc.c, 2010).

Table 3 A summary of PM‟s in a range of games

As these examples illustrate procedural functions, namely noise procedurals, serve a variety

of purposes in games. Noise is a characteristic that is inherent at all levels in the real world.

Thus, noise is often manifested in the accumulation of „detail‟ in the world. When

comprehending the levels of detail in characteristics such as dirt, vapour or rust for example,

the compounded effect of these are often perceived as „noise‟.

26

Thus, it is perhaps this observation that explains noises wide spread use in games.

Furthermore, it is the ubiquitous presence of noise in the real world that makes the sensible

application of procedural noise within games, a convenient way for integrating more

convincing and believable elements into a game‟s overall experience.

Motivations for procedural methods

In the current climate of game development, the application of PM‟s as a primary source for

graphics rendering is rare, particularly for high budget titles. As demands for improved visual

fidelity continue to rise, the push to maximize the capabilities of gaming systems is however,

projected to proportionally increase. To accommodate this trend, alternative forms of data

representation (i.e. PM‟s), are more likely to play a pivotal role in the graphics of games.

Key factors in this change are limitation of storage capacity and a growing need for web

based distribution. Despite the current generation of gaming consoles supporting media

capacities from between 9GB (Xbox 360) and 33.4GB (Playstation 3), the issue of

compression and data organization is becoming increasingly important in modern game

projects (Orry, 2005) (Ivan, 2010).

In 2008 Id software‟s lead designer Tim Willits, spoke to this issue directly during an

interview on one of the company‟s current high end game projects called „Rage‟ (Breckon,

id: Rage Content Cut due to Xbox 360 Size Limit, 2008). In this interview Willits mentioned

the negative economic implications of distributing their game across multiple discs for the

Xbox 360. A more recent statement made by game development studio „Naughty Dog‟,

indicated that the Playstaion 3‟s Blu-Ray media had been fully utilized in order to deliver

their latest action game, „Uncharted 2‟ (Bantick, 2009).

Steps towards PM‟s being a viable possibility are being made however, as is evident through

the development of new middleware technologies. This „technological shift‟ places a

particular emphasis on the design and implementation of authoring tools that underlie the

„content creation pipelines‟ for games.

Middleware development and avenues for procedural integration

Given the minimal storage requirements of PM‟s, their widespread application in games

seems imminent, if improvements are to continue in visual quality. At the forefront of this

endeavour are software companies such as Allegorithmic. Allegorithmic has developed a

27

sophisticated set of authoring tools, focused on procedural texture composition, that are

directly used in game graphics (Allegorithmic, About, 2010). One tool in particular being

„MaPZone‟, enables artists to harness the power of PM‟s to create highly detailed and

realistic textures that are completely generative (Allegorithmic, Products, 2010).

Allegorithmic‟s technology evaluates procedural textures at runtime, therefore imposing a

relatively small runtime memory footprint.

Furthermore, MaPZone permits “higher resolution textures”, through its basis of PM‟s (What

is MaPZone?, 2010).

High resolution textures which incorporate high levels of detail are relevant to many games.

Examples include flight simulators and first-person shooters, where high resolution textures

can reduce „texture tiling‟ and/or „texture filtering‟ (blurring), when underlying surfaces are

viewed from certain vantage points.

It is important to note that high resolution textures in games must be complemented by

equivalent levels of geometric complexity in game graphics, in order to unify the game‟s

overall visual delivery.

Content creation pipelines

Achieving increased levels of detail in games obviously introduces a new range of

technological and production challenges for developers. This is particularly true for artists

and modellers, when creating game environments as it significantly increases their workload.

To match current and projected production demands, game studios are realizing the need for

new development strategies; particularly through the optimization of „content creation

pipelines‟.

Given the variable characteristics of game projects, studios tend to place emphasis on

different aspects/strategies of the content creation process. The following section shows some

„pipeline features‟ that are important to the ambitions of game projects and/or companies.

Crytek, ‘LiveCreate’

„Crytek‟ is an industry leader in game/„game technology‟ development and as mentioned is

responsible for developing the infamous first person shooter, „Farcry‟ (Far Cry, 2010). Since

Farcry‟s release in 2004, Crytek has remained a strong and well respected competitor in the

development of its game technology, „CryEngine‟.

The CryEngine is renowned for delivering high quality visual experiences in games

(CryEngine, 2010). One important feature is the engine‟s cross-platform capability

28

(3DVision, 2010). In addition, the company offers a software system called „LiveCreate‟ as

part of a software suite which enables licensee‟s of the technology to easily and efficiently

harness the features of the CryEngine.

In August 2009, Crytek demonstrated LiveCreate at the European Game Developers

Conference (Jube, 2009). LiveCreate was presented as a solution to the issues of content

creation that hinder the game development process, particularly the tedious flow of game data

in production (Jube, 2009).

As the name indicates, LiveCreate enables developers to create game content in a „live‟ and

responsive way. This is achieved by centralizing the role of game engine technology in the

creation process. Thus, the CryEngine‟s real-time renderer is used to provide a live display of

the content being created by artists. The process of „manually‟ transferring art content from

authoring tools into a game engine/project is thus, eliminated.

The low-latency, real-time nature of this system has other positive implications for the

authoring process, particularly „content prototyping‟. Providing a content creation

environment that „connects‟ to the game‟s renderer, provides greater opportunity for artist

experimentation, as well as quality tuning.

LiveCreate‟s real-time feedback is also beneficial for other aspects of production, particularly

shortening project duration. The cumulative effect of efficient data flow in the content

creation pipeline has positive implications towards project deadlines being met.

In addition to these benefits, LiveCreate addresses another major challenge that has plagued

game development studios in recent years, that being cross-platform development.

With the major gaming platforms offered by Sony, Nintendo and Microsoft (as well as the

PC) serving as principal avenues for market exposure, studios often seek to maximize

potential income by ensuring their games are available on most, if not all, platforms. Due to

hardware variation between platforms however, this presents a series of technical challenges

that must be considered by developers in order to preserve the game play experience for all

customers. This has had negative implications on the outcomes of projects, particularly in

terms of production cost, duration and overall quality. LiveCreate‟s cross platform capability

however, simplifies the technical and artistic issues that face developers of high definition,

cross-platform games. By applying LiveCreate in the development process, only a single

development „pathway‟ is necessary to deploy a game across the three major gaming

platforms (PC, Xbox 360 and Playstation 3). LiveCreate eliminates the need for separate

development teams within a studio where each sub-team would traditionally be dedicated to

delivering the same game project on each target platform.

29

The main area of interest in LiveCreate however, is the high level of feedback that it offers to

artists during the content creation process. This aspect of LiveCreate is not only consistent

with trends seen in other game studios, but it is also relevant to the focus of this thesis.

Id Software: ‘IdStudio’

Texas based software company „Id Software‟, also sits at the forefront in the development of

highly integrated content creation pipelines. Id Software has a reputation for innovation

which stems from its introduction of the „first person shooter‟ gaming genre (Cifaldi, 2006).

Since the early 1990‟s, Id Software has remained at the cutting edge of graphics technology

and visual quality in games. The company is responsible for developing the infamous video

game series‟; Doom and Quake (Id Software: Final Doom, 2001) (Id Software: Quake, 2001).

In addition, Id Software is known for innovation in the graphics and development in games.

Thus, Id Software has stated an interest in the use of content creation systems that offer a

high degree of feedback to designers and artists.

„IdStudio‟ is the company‟s proprietary tool set which is deployed with the company‟s

current generation of licensed game engine technology, and is designed “primarily with

artists in mind” (Accardo, 2007). Id Software‟s technical director John Carmack, specifically

states that IdStudio gives artists “as much creative freedom as possible”, during the creative

process (Accardo, 2007). Furthermore, Carmack has indicated the tool‟s ability to allow

artists to “paint” or “scrub out” areas of a game environment in an interactive, in-game

context (Carmack, 2010). In addition, IdStudio places emphasis on artist and designer

collaboration throughout the creative process, thus allowing for parallel and efficient

development.

IdStudio‟s emphasis on collaborative content creation is relevant to an emerging trend of

„large scale‟ and „open world‟ games in the industry. A consequence of this trend is the

increased need for collaboration between teams of artists and designers, in order to keep such

projects feasible. Interestingly, Id Software‟s current project „Rage‟, fits this „open world‟

criteria. Through the use of IdStudio‟s collaborative capabilities, the studio is able to more

effectively develop the title by enabling paralleled development by teams of artists working

on the project.

Like the CryEngine, „production builds‟ of Id Software‟s „tech5‟ engine are capable of

running games across all HD gaming platforms with consistent performance and visual

quality (Carmack, 2010). In contrast however, IdStudio has not demonstrated the ability for

real time development across all HD gaming platforms, as is possible with LiveCreate.

30

Figure 19 The interactive shader/material creation offered in

Unreal 3‟s tool suite

Epic Games: ‘Unreal Engine’

As shown, prominent studios have sought to synthesise game technology and content

authoring to streamline production workflow. Interestingly, each case study shows that

emphasis has been placed on different aspects of the tool chain; namely cross-platform

support and integrated collaboration. Despite these differences, both IdStudio and LiveCreate

are unified by the same underlying concept; that being a deep integration of technology in the

production process. This concept however, is well established in the game industry‟s

timeline.

In 1998 the first person shooter „Unreal‟ debut and was perhaps the first product to

incorporate an integrated tool chain (Unreal, 2010). Unreal was shipped with additional

software on disc; the studio‟s own world/level authoring tool, „UnrealEd‟ (Unreal, 2010). The

addition of UnrealEd was well received by the game modification community and as the

Unreal franchise developed, so too did the accompanying tools.

UnrealEd‟s continued development led to the introduction of a revolutionary concept; a

tighter integration of games technology with authoring tools. In 2003, a significant revision to

the third version of the tool was debut which integrated the games rendering technology into

the level editor‟s interface (UE2:UnrealEd 3, 2008).

This was a notable milestone in game

production processes, which arguably

started a new trend in the

implementation of game development

tools. Over the following decade,

further developments were made to

UnrealEd which included the

introduction of physics simulation and

hardware accelerated graphics

(Golding & Nalezynski, 2010).

The current generation of Unreal‟s tools and technology have harnessed the integrated

concept to its fullest extent, allowing artists and designers to fully play/test levels and content

directly from UnrealEd‟s „viewport‟ (UnrealEd, 2010).

Furthermore, users of UnrealEd for the „Unreal 3.0‟ engine can compose complex materials

and surface textures via the editors „shader assembly‟ system (figure 19). Developers can also

specify and test complex physics simulations directly within UnrealEd, due to its close

integration with the „Unreal 3.0‟ technology.

31

UnrealEd also inherits a series of graphics features from the engine. Through this, complex

lighting effects can be directly manipulated by artists within the UnrealEd interface in real-

time. This demonstrates a new application for accelerated graphics hardware, wherein the

hardware‟s capabilities are focused on enhancing the game production process.

Summary

The topics that have been discussed in this section convey ideas and theory that are relevant

to this thesis. This discussion reviewed the general concept of PM‟s, including a detailed

analysis of common/relevant procedural functions. The discussion outlined the main

characteristics of PM‟s while placing an emphasis on the seemingly natural/organic effects

that certain classes of PM‟s can algorithmically produce.

Further discussion showed the important role of PM‟s throughout the history of games and

notable issues concerning modern game development. In particular, the role and influence of

art/content creation in game development was explored, highlighting an emerging theme of

„interaction‟ in modern game creation strategies.

In addition, this discussion highlighted the opportunity for a feasible and potentially

beneficial integration of PM‟s into the modern game development process. This opportunity

suggests the untapped potential of PM‟s in game content creation.

In keeping with the identified trends of modern game development, this research explores the

integration of PM‟s into interactive game content development. Thus, the motivation is that

PM‟s serve as a mechanism to enhance and automate aspects of content production for

games.

32

33

Chapter 3: Project design

A noted trend in development strategies used by prominent studios of the games industry is

„interactive processes‟ that underlie game art and content creation. The „interactive element‟

gives the artist the ability to visualise production content in the context of game rendering

technology, during the production process. This introduces a high level of „feedback‟ for

artists‟, which enables tailored content creation that suits the game and it‟s rendering

technology. Perhaps the most important implication of this strategy is the potential for gains

in artist productivity. The element of high feedback also provides increased opportunity for

„artistic prototyping‟ which has positive implications towards the final quality of game art.

Given the ongoing goal of improved visual quality and detail in games shared by many

development studios, it is not unreasonable to assume that these „common objectives‟ would

„unify‟ the industry. As the literature revealed however, studios place emphasis on the unique

functions of their own tools and content creation processes.

The highlighted feature of CryTek‟s „LiveCreate‟ tool chain for example, is that it allows

concurrent game content development across all target platforms, in real time. This delivers

responsive, immediate feedback and serves as a valuable indicator to ensure visual

consistency of artwork across different platforms. LiveCreate‟s core authoring capabilities

Figure 20 Image of Id Software‟s current game project „Rage‟

Id Software‟s current game project „Rage‟ depicts large scaled environments, which are likely to

benefit from IdStudio‟s collaborative elements

(Adams, 2009)

34

are however, orientated around the use of its proprietary content authoring software for

creating game environments called „SandBox‟ (CryENGINE® 2 Specifications, 2010).

In contrast to LiveCreate‟s focus on cross platform capabilities, Id Software‟s „IdStudio‟

reportedly places more emphasis on artist collaboration, enabling large teams of artists to

work simultaneously on assets and content within the same project. This therefore,

emphasises the distribution of tasks amongst artists. When considering Id Software‟s current

open environment game „Rage‟, the collaborative features are obviously well suited to this

project. Thus, the game‟s large scale facilitates concurrent development between teams of

artists, given that the game‟s vast environment minimizes risk of artist conflict or interference

during production. It would be difficult to imagine Id Software integrating this functionality

if the game project itself didn‟t justify the need.

Although the solutions are both relevant to the game development process, they are tailored

to the agendas of each studio/company and thus, don‟t fully address a series of emerging and

fundamental challenges which face game developers; namely capacity constraints of target

platforms, in conjunction with focused productivity strategies for content creation.

As mentioned however, the games industry is interested in new and improved approaches to

game development; particularly in content creation. These novel strategies strive to address

bottlenecks that hinder content production by centralizing the role of interaction and feedback

in artists‟ workflow. It appears however, that an opportunity for further development to these

„artist centric‟ content development strategies exists; namely through integration of

automated methods. By combining the interactive element of contemporary content creation,

with procedurally driven mechanisms for automation and enhancement, it‟s plausible that

further gains could be made.

Development constraints

The literature review revealed issues common to many studios, particularly „capacity

constraints‟ that overshadow console development. Numerous studios have commented on

the limitations concerning memory and storage capacity that arise when developing for both

the Playstation® 3 and Xbox 360®. This work aims to address issues that affect all studios.

The goal is that by identifying universal factors, the outcomes of this research may be widely

applicable to most, if not all, game development processes.

35

Another long standing universal problem that has faced software development is that total

project duration tends to exceed deadlines. In the context of game development, this issue

takes on a new dimension as deadlines can be violated by the production of game art/content.

Thus, investigation into strategies that minimize the overhead of content creation is high on

the agenda of this research. Although systems such as „LiveCreate‟ and the Unreal 3 engine

provide responsive content authoring environments that address some issues, there exists an

opportunity for investigation into the integration of responsive work flow with methods that

address the issue of content capacity.

This presents an opportunity for the use of procedural methods in the graphics of games,

which has the potential to address game production constraints and hardware limitations. As

the literature review discussed, PM‟s provide diversity, small memory footprint and the

capability to deliver results with high precision.

However, the perceived shortfall of PM‟s is that their application substitutes the traditional

skill domain of artists (typically based on digital painting and brush strokes), with the

specification and tweaking of procedural parameters. It is conceivable however, that in the

context of an interactive tool chain, a process of parameter tweaking would be acceptable,

given the high level of visual feedback that results. The integration of PM‟s in this way

should reduce the penalty/overhead incurred by iteratively tweaking not only procedural

functions, but also the geometry of game objects. The central theme of this research

therefore, is the integration of PM‟s into a responsive and interactive tool chain.

Industry consultation

As part of the preliminary work for this thesis, programmers and technical artists at

Wellington based game studio „Sidhe‟ were interviewed (Sidhe, 2010). This interview

reiterated that the themes and objectives of this research for improved game graphics via

effective content creation strategies are well aligned with the needs and climate of the games

industry.

Although Sidhe studio doesn‟t currently integrate a responsive/interactive tool chain, the

positive implications that this would have towards Sidhe‟s internal projects was appreciated

by the studio‟s staff. Furthermore, Sidhe‟s positive response to the concept of an interactive

tool chain suggests that the integration of PMs into such a system would also be well

received. This is based on the understanding that the integration of PMs in an interactive tool

chain would permit interactive parameter tweaking/alteration.

36

During this interview, staff at Sidhe also spoke about issues regarding the shortfalls of PM‟s

that were mentioned previously. A number of inherit limitations in PM‟s were discussed;

particularly scenarios where „explicit‟ artist control is required in specific „portions‟ of the

procedural/evaluated results. If for example, an artist requires a grimy „noise-like‟ texture for

a metal panel surface, which consists of details such as „rivet heads‟ and bolts, a noise

procedural would typically not be used, given that noise makes no provision for these

„prescribed‟ details and features.

Hybrid solutions were subsequently discussed, to address these situations. This involved a

combination between artist prescribed „elements‟ and PM‟s to deliver „solutions‟ that retain

the benefits of procedural functions, in conjunction with conventional „artist control‟. The

general consensus between staff at Sidhe was that a hybrid solution such as this would be

sufficient for a range of situations.

In addition, the integration of PM‟s as a mechanism to compliment „conventional‟ game art

was also suggested. The primary example of this involved a combination between „painted

textures‟ and „detailed procedural methods‟ in order to procedurally enhance the resulting

texture.

The underlying theme of this discussion however, was that the level of control offered to

artists and designers via traditional artistic methods, is still highly valued. Furthermore,

Sidhe‟s developers reiterated that the required levels of artistic control offered by traditional

artistic methods, outweighs the negative implications that they may impose on production

fidelity (i.e. greater memory footprint, lower resolutions).

The previous section provided insight into the challenges and needs of the games industry,

revealing an element of tension between these factors. Improving game fidelity requires

„capacity friendly‟ data strategies to deliver richer, more compelling gaming experiences. As

the literature review illustrated, PM‟s have historically served as an attractive option for

delivering large volumes of data to achieve this. In terms of game art/content however,

discussion with industry members showed a significant emphasis is placed on high levels of

„artistic control‟; which PM‟s tend to lack.

An opportunity for further improvement in game development could therefore exist, by

achieving greater synthesis between these game development factors. Through the use of an

interactive development environment that encapsulates „hybrid‟ techniques with „automated‟

content creation strategies, the benefits of PM‟s in game content creation may be better

realized.

37

Automated object placement

Automated content creation strategies provide an opportunity for use of PM‟s in the content

creation process. This section looks at object placement in game scenes. Based on current

trends, the density and complexity of geometry in typical game environments can be

expected to increase far beyond the already high levels of detail in current games. As a

consequence, artists are burdened with the task of highly prescribed or even manual object

placement within scenes; a tedious process which is capable of consuming considerable

production time.

For many of these situations however, it would be satisfactory to automate this process

algorithmically. An example of this might be procedurally driven placement of foliage across

terrain. This would avoid the need for „prescribed‟ and tedious placement of foliage objects,

while potentially retaining a „natural‟ overall appearance.

By coupling such an algorithm with an interactive tool chain that exposes procedural function

parameters, the potential for an accelerated and highly configurable object placement strategy

exists.

Artists would set parameters for a procedural function in order to algorithmically control the

instantiation of objects in a scene. Consider the previous example, where foliage is

distributed across a hill side. Starting with foliage and ground surface geometry, an artist

would associate the foliage asset with the ground.

The system would internally „bridge‟ this association with an artist specified procedural

function, such as Perlin noise (figure 22). This association would avoid the tedious process of

This scene depicts the natural distribution of foliage. By applying procedural
algorithms, this process could potentially be achieved in an automated fashion.

Fable 2, was developed by Lionhead Studios (Lionhead Studios, 2010).

(Woody, 2010)

Figure 21 Image of a forest scene in Fable 2

38

Figure 22 Visualization of the algorithmic instancing concept, showing the

relationship between geometric elements and procedural functionality

manually placing foliage across

the ground surface, by offloading

the task onto the system which

would instantiate foliage at

discrete positions determined by

the noise function. As the

procedural is evaluated across the

ground surface, the evaluations

could be reduced to Boolean values, to „mask‟ the instantiation of foliage at discrete points.

This „mask‟ could yield a non-uniform and thus, seemingly natural distribution of foliage

across the ground. By tweaking parameters of the Perlin noise procedural, the density and

regularity of foliage could be controlled. Because this algorithm is implemented in an

interactive tool chain, parameter changes could be made interactively. This would enable

artists to rapidly identify a suitable configuration which aligns with the artistic vision for the

scene.

Direct access to game rendering technology would play a central role in this concept. This is

because the technology has real-time rendering capabilities which can immediately show the

algorithm‟s results. Thus, the tool chain‟s game renderer should encapsulate the instancing

implementation, therefore yielding responsive, visual feedback to artists during instancing

alteration/crafting. The ideal integration of this algorithm would therefore compute object

instancing „on-the-fly‟ to enable interactive authoring of object instantiation by artists.

The concept of procedural

instancing serves as a

compelling case for using

PM‟s in games. Furthermore,

the concept would naturally

extend to give artists‟ control

over „data channels‟ that

orientate and scale instanced

objects, via procedural

functions.

As an aside, „channels‟ represent a widely understood concept amongst those in digital/game

art communities. Perhaps the simplest and most common example of channels in graphics is

manifest in „colour‟; an accumulation of independent channels that describe intensities of red,

Figure 23 Visualization of other channels of procedural data in procedural
instancing

A

B

Increased realism from standard instancing (A) can be achieved by adding

other channels of procedural data; namely scale and orientation to the

instancing computation/process (B)

39

green and blue. Multiple sources (or „channels‟) of data are often required in graphics

content, to achieve certain effects or rendering results. Figure 23 provides a visualization of

how this „channel extension‟ could work to allow more sophisticated and realistic instancing

results.

In an ideal implementation of this instancing algorithm, artists would be able to specify

unique/independent characteristics for rotation, scaling and masking, amongst a population of

instanced objects.

For most situations where instancing is applicable, the need for artist specification of more

than one instancing „channel‟, is almost always necessary. Consider the foliage instancing

example in figure 23; this depicts a scenario ubiquitous to games. Image (B) shows how the

cumulative effects of variety amongst the orientation and scaling of instances improves

realism compared to image (A).

As discussed in the literature review, procedural functions are inherently abstract and can be

manifested/expressed in many ways. When applied to different information channels

however, procedural functions must be appropriately interpreted. Figure 24 shows how

procedural functionality interpreted as a mask in object instancing, could yield a

straightforward and legible relationship.

This would have positive implications regarding the user‟s/artist‟s comprehension of masking

procedurals in the instancing context.

Expressing the orientation and scale of instances by procedural functions might however,

yield less clarity/correspondence than procedurally driven instance masking. A factor in this

might be that the orientation and scale channels are based on „continuous‟ data; this differing

from a „mask procedural‟ which reduces to a Boolean value.

Figure 24 Abstract illustration showing a clear correspondence between a

checker procedural and the instancing outcome

40

Thus, although these channels enable more variation between instances, it could be difficult

to clearly understand the correlation between procedural functions and their manifestations in

these channels. Figure 24 illustrates this through the application of Perlin noise to foliage

rotation/orientation. Although „variety‟ is evident, it is difficult to discern characteristics of

the noise function in the distribution of foliage orientation.

It is likely that integration in an interactive tool chain would resolve this however. If

parameters of procedural functions were exposed to allow interactive control of these

channels during the authoring process, artists could work by experimentation and iterative

adjustment. Providing this interaction is therefore, an important aspect of this

implementation.

For most situations, arbitrary orientation of

instances about all rotation axes is

inappropriate. When considering trees and

foliage for example, the orientation of each

„instance‟ is essentially constrained about

its „local‟ vertical axis. „Local axes‟ for

„object instances‟ could be derived from the

„orientation frame‟ at points on the

underlying surface. Thus, rotation about the

normal vectors of the underlying manifold

would be suitable (figure 25). The

magnitude of rotation could therefore be dictated by the evaluation of a procedural function.

As earlier discussion suggests, the instancing concept coupled with „channel‟ extensions, can

offer a flexible automated object placement solution for use in a range of content creation

scenarios. Situations exist however, where the proposed solution would be unsatisfactory;

namely where explicit, highly „granulated‟ control over the instantiation of instances on the

„manifold‟ is required. For example, consider generation of dense foliage in a scene

containing elements such as buildings. By applying the algorithm to the ground surface,

„collisions‟ between foliage instances and scene elements are inevitable. These collisions

would permit unnatural intersections between foliage and scene elements, which would be

unacceptable.

In order for instancing algorithms to be applicable to situations like these, the artist would

have to resolve geometric conflicts in one of two ways; identify masking procedural

Figure 25 Illustrates „local rotation axis‟ for instances.
These axes are equivalent to corresponding surface normals

41

parameters that yield no conflicts with other scene elements, or reposition elements to „fit

around‟ instanced foliage. Each of these „solutions‟ is unsatisfactory.

For scenes that contain complex and prescribed arrangements of elements (such as buildings),

it is unreasonable to expect that parameter configurations for a masking procedural, that

comply (avoid „conflicts‟) with the scene elements, exist. Even if parameter configurations

that „complied‟ with a scene‟s elements did exist, identifying these would typically be

impractical, given the large permutation space for possible parameter configurations. Thus,

relying on an optimal „masking configuration‟ that suits a scene‟s elements is impractical.

Alternatively, rearranging scene objects to suit a procedural instancing result, although

seemingly suitable, does not account for the dependency of other game aspects on the

position of scene elements. Depending on the role of scene elements, repositioning may have

negative implications on game production. The layout of scene elements often directly links

with factors such as game play timing and difficulty, as well as the game‟s overall „narrative‟.

Thus, repositioning buildings to comply with the procedural instancing of foliage may

undermine important layout decisions established by the game‟s designers. Resorting to this

means of „conflict‟ resolution between static and instanced elements is therefore likely to

open a new branch of conflict between artists and designers during a game‟s production;

which is obviously undesirable.

To resolve this, a method that allow explicit control over instancing in a game scene, would

be required. The proposed method will be discussed in the instancing algorithm section of the

implementation chapter.

As discussed, procedural instancing automates the tedious task of manual object placement in

game scenes. The implications of this algorithmic approach to object placement are that vast

and complex game scenes become more feasible for developers, both in production and

technically. Harnessing the capabilities of procedural functions in this algorithm, could

therefore provide artists with a mechanism for delivering realistic and dense game settings.

Automated object variation

The idea of „object variation‟, which maintains similar themes to the instancing concept, will

be subsequently explored.

A typical strategy for increasing the realism of game scenes is to populate them with large

numbers of props and entities (see figure 26). Although this approach is reasonable, the

extensive reuse of „prop collections‟ for game scenes often leads to an artificial and

42

unconvincing result. This is an obvious side effect of reusing identical scene props;

particularly those which consist of distinct features and forms.

As discussed in the literature review,

some studios have implemented

„variation‟ systems into games, as a

method of delivering more believable

graphics and game play experiences. A

noteworthy example of this is the game

studio „Ubisoft Montreal‟, which

integrated procedurally based character

variation into FarCry 2. Through this, the

game delivered a unique population of

game characters to better reflect the real

world being depicted. This was a highly

specified system however, that was only suited to achieving variety between game characters.

To achieve generalized variation, many studios have employed „manual‟ approaches to object

variation, to diminish the sense of prop repetition in game scenes. This approach requires

artists to produce numerous versions/variations of a single asset or prop which manifest

uniqueness (i.e. unique damage to the same vehicle). Thus, rather than rely on a single prop

to populate a game scene, variants can be used throughout the scene. The cumulative effect of

this is an element of variety and hence realism, in the scene‟s final composition. Although

this approach tends to yield significant improvement over situations where a single object is

reused, the strategy has numerous shortcomings as will be discussed.

Variations between different objects in game scenes tend to be subtle. Thus, a set of object

variations can essentially be represented by the same „base geometry‟. The implication of this

is that geometric data is mostly duplicated. This obviously adds pressure to the „capacity

constraints‟ of game development in terms of memory usage and/or distribution media.

In addition, the requirement for variations of base geometry imposes additional workload on

artists who must manually craft these variations, which often inflates project duration and/or

requirements for larger teams of artists. Ultimately, this has negative implications on

potential revenue of a game project.

Figure 26 Modern games achieve increased realism by
populating environments with many props and objects

(Banks, 2009)

43

With these negative implications as a premise, the research‟s final objective aims to provide

an „automated‟ and generalized mechanism for object variation. In keeping with the theme of

this research, such a mechanism would transfer the overhead of this process from artists to a

procedurally based algorithm.

Developing systems that generate and apply object variation is already a significant branch of

computer science research; one example being the simulation of growth via L-systems (L-

system, 2010). To deliver a universal solution that covers most variation scenarios for artists‟

and designers‟, a complex solution based on sophisticated rule sets and geometric modifiers

might be required.

Although conceivable, an approach such as this would diverge from an objective of this

concept, to minimize production overhead on artists, whilst retaining artist control and design

in real-time.

A sufficient solution could be to provide artists with a simpler and intuitive method of

applying variation to objects, in the context of an interactive tool chain. The goal of this

would be to develop a simple and intuitive variation technique that can work under a range of

circumstances. Thus, by providing a parameterized and algorithmic object variation system in

an interactive tool chain, an avenue for improved game content production exists.

Furthermore, this variation system should take advantage of the interactive tool chain

context, to provide immediate feedback/response to artist application and parameterization of

algorithmically based object variation.

In this concept, object variation would exclusively apply to a base object‟s geometry. During

the variation process, the base object would be subjected to a series of „temporary‟

alterations. Following variation, rendering would immediately take place and thus, the

„alterations‟ would appear on screen. The alterations to the base object‟s geometry would be

discarded, leaving it available for reprocessing in a subsequent „render cycle‟. These

alterations should take advantage of graphics hardware acceleration, making the deformation

process more feasible in a real-time context. Depending on the amplification of this function,

objects may possess subtle or extreme distortion in accordance with the artist‟s requirements.

Procedural functionality is integrated into the deformation process, by „evaluating‟ the

procedural function at each point on the geometry. Thus, procedural data is returned at all

points on the geometry‟s surface, by implicitly supplying „sample coordinates‟ for the

procedural function that „map‟ to the geometries surface.

44

The objective of the variation system is to yield „authentic/unique variation‟ between

instances of the same base geometry. By definition, procedural functions cannot achieve this

from local coordinate data given that they are referentially transparent. A sufficient level of

variation can be achieved however, by manipulating

the procedural‟s sample coordinates.

Image (A) in figure 27 provides a visualisation of

geometric deformation applied to three objects that

share the same base geometry. Although

deformation is evident, the repetition of features in

the deformation is obvious. This is because the

deformation procedural is evaluated by sample

coordinates that are relative to each object. Because

each „point‟ on the object is unique, the object

exhibits deformity. However, when each object

evaluates the same procedural function with the

same relative „offset coordinates‟, the deformation

effect is consequently identical between instances, yielding a result that is obviously

undesirable.

Thus, by uniquely offsetting the deformation sample for each object, this should produce the

desired inter-object variation. One method for acquiring „unique sample offset‟ between

objects could be to base the offset on the object‟s position in „world space‟, as shown in

image (B), figure 27. Because each object has its own position, this can be used to uniquely

offset the sample coordinates in sample space for a procedural deformation.

An unfortunate side effect of this approach is that movement of the object through its

environment would cause an „animated‟ effect in the object‟s deformation. Thus, this scheme

would require that objects remain static in game scenes. This should however, be sufficient

for a number of game development scenarios.

As discussed, the proposed concept manipulates „base geometry‟ according to a procedural

function, to generate surface variation. To produce good deformation results however, the

„base geometry‟ would require sufficient geometric complexity. For this algorithm, geometric

manipulation means the manipulation of „vertices‟ that comprise the geometry. Thus, for

simple base geometry such as (A) in figure 28, the effects of variation via this approach are

vague and difficult to discern. In contrast, highly „tessellated‟ base geometry, as shown by

B: Universal sample offset (world space)

A: Localized sample offset

Scalar evaluation of

deformation procedural

 Figure 27 Compares different parameterization
schemes for a deformation procedural function

45

(C) in figure 28, yields a clear deformation result. This variation system would therefore, rely

on high levels of geometric complexity in its „operand‟, to deliver the full effect of variation.

A naive implementation of the proposed concept would require that highly tessellated base

geometry is always supplied. This would implicitly require that extra (tessellation) data be

stored within „base-object‟ geometry; an imposition that opposes the system‟s objective of

minimizing space/storage complexity. From this, another implementation requirement is

established; that the variation system must compensate for simple base geometry, by

adaptively tessellating specified geometry during the variation process.

Although promising, the proposed system still lacks a fundamental element of artist

prescribed controls over deformation across a base object. Many situations exist where high

levels of artistic control are required to deliver prescribed game art and content. To keep the

proposed variation system relevant to more content creation situations, the system should

allow artists to control where algorithmic variation occurs in specified „base geometry‟.

Thus, permitting „non-uniform deformation‟ across a base object, would allow greater control

over the integration of variation into games content, rather than enforcing a level of uniform

variation across an entire base object.

Consider the delivery of a post-apocalyptic game setting for example, where a suburban

street is littered with props such as rubbish cans, debris and vehicles. To accurately reflect the

prior events of the scene, these props would appropriately display damage, making them ideal

candidates for the variation system.

For simple props, uniform deformation may be appropriate. Complex props such as vehicles

however, may require a prescribed distribution of deformation. Depending on the scene‟s

narrative, damage/deformation may only be appropriate on certain surfaces of vehicles (i.e.

upward-facing surfaces). Generative „damage‟ could be confined to these selected surfaces

via non-uniform deformation, allowing algorithmically generated variation on the object to

be consistent with the object‟s setting.

Figure 28 Shows how increased levels of „geometric tessellation‟

yield more legible deformation results

A B C

46

To remain „intuitive‟ the variation system could incorporate non-uniform deformation via a

„per-vertex weighting‟ scheme. Vertices in the base geometry would store weighted values

which would indicate the level of tessellation to

apply at respective points. Image (B) in figure

29 shows the result of „higher

tessellation/deformation‟ in the upper corner of

the geometric operand. Note the non-uniform

deformation throughout the overall object in

image (B), and the correlation of deformation

to the „colour weighting‟ in image (A) (where

white areas yield more deformation that black).

From the artist‟s perspective, this concept

could be presented as „auxiliary‟ greyscale

colour in the base geometry as image (A) of

figure 29 shows. Artists would follow the convention of „painting deformation colour‟ onto

the base geometry, at portions of the geometry where tessellation/variation is required.

It is important to note that these per-vertex weightings would bear no influence on the actual

colour of the object during rendering. Rather, the intensity of this colour, as seen in the

artist‟s content authoring environment, would be internally used by the variation system for

tessellation control as described.

Given the interactive tool chain environment, the effects of this painting process would

ideally be immediately visible to artists. This constitutes the final implementation

requirement for the variation system; an adaptive variation scheme that is dictated by per-

vertex weightings in the base geometry.

A B

A. Artist ‘paints’ deformation weighting to corner of
base geometry

B. Deformation system applies adaptive deformation

to corresponding section on geometry operand

Figure 29 Visualization of the „painting‟ metaphor

when assigning deformation to geometry

47

Chapter 4: Implementation

This chapter details the implementation and algorithms which underlie the developed

interactive content creation system. The chapter consists of three sections which cover the

main areas and ideas of this research:

 Development of an interactive tool chain

 Process and implementation of procedural geometry instancing

 Process and implementation of procedurally driven object deformation for unique

geometry generation

The tool chain component provides a platform for the implementation of algorithms

described in the other two sections. This integration allows each feature to inherit the

framework‟s interactive and responsive characteristic. As discussed, the motivation for

basing this work on an interactive context follows from observations in the literature review,

of the qualitative value towards productivity and quality in games production. Thus, the

motivation for this process was to explore the potential implications of generative

functionality towards more effective content creation, when coupled with an interactive

context.

Interactive tool chain

This section presents a detailed discussion of the interactive tool chain that was developed.

The tool chain itself, consists of three main software components; the „communication plug-

in‟, „real-time game renderer‟ and a network library. Each of these software components were

developed as part of this research, to allow practical evaluation of research ideas. The

subsequent sections focus on the „plug-in‟ and „renderer‟ components of the tool chain.

As a foreword, the network library (which underlies the tool chain) uses standard techniques

and communication protocols, namely TCP/IP and threading/queuing. The Winsock 2 library

was used, (through which the TCP/IP protocol is exposed) given that it offers robust, flexible

and efficient data communication (Windows Sockets 2, 2010).

The network library encapsulates Winsock functionally into an asynchronous, thread safe

layer which is invoked by the tool chain. The motivation for an asynchronous layer is to

avoid „blocking‟ in the calling application, which is a side effect of the Winsock functions

48

used (namely „recv()‟) (recv Function, 2010). Thus, a simple queue structure was

integrated into this layer to manage data transfer between the calling application‟s „thread‟, as

well as associated „network activity‟ threads.

Overview

As discussed in the literature review, the interactive tool chain paradigm has been gaining

significant momentum in game development studios in recent years. Although many

integration models exist for interactive content authoring, they share a number of core

elements; namely constant, low-latency feedback during the authoring process. In addition,

interactive tool chains integrate game rendering technology, which provides artists‟ with

access to an „authentic context‟ for displaying content during development.

These tool chains provide artists‟ with visual feedback regarding the appearance of game

content in the context of the „target‟ game. This can be particularly useful for games that use

specialized/optimized lighting systems or unique special effects that may influence the

appearance of the content. Enabling the artist to see and work with content in a „project

specific‟ context therefore, offers benefits in production efficiency, particularly where game

content needs to be „tailored‟ to an established game setting. This tool chain paradigm also

capitalizes on the „real-time‟ quality of game rendering technology, to deliver a creation

environment that is immediately reactive to modifications made by the user/artist(s).

Interactive tool chains: Integrated model

During the planning phase, two interactive tool chain models were considered as a basis for

this project. The first model integrates game rendering technology directly into the content

authoring software used by artists. This

model is essentially used in the „Unreal 3

engine‟s‟ tool chain. Recall that Unreal‟s

real-time rendering technology is directly

integrated into the system‟s proprietary

content authoring environment. A similar

tool chain structure, where Autodesk‟s‟ 3D

modelling application „Maya‟ substitutes

Unreal‟s authoring environment, was

considered for this project (Autodesk: Maya, 2010).

Figure 30 Screenshot of Maya, highlighting the software‟s

„viewport‟ interface element

49

Maya is a popular 3D modelling and animation package which is used by many industries,

particularly the game development industry (Autodesk: Games, 2010). Examples of game

development studios that use Maya include Insomniac Games, Sidhe, and Id Software (Sidhe

Interactive Online, 2009) (Id Software, n.d) (Murdock, 2010). Integrating industry standard

development tools such as Maya make the project inherently relevant to its target industry.

Maya is highly customizable and integrates bindings to two scripting languages; MEL and

Python (Autodesk Maya: Features, 2010). It also exposes API‟s for environment

customization and plug-in development (Autodesk Maya: Features, 2010). In particular,

Maya exposes a software interface (MViewportRenderer) which allows the „modelling

viewport‟ to be re-implemented (MViewportRenderer Class Reference, 2010). As figure 30

illustrates, the viewport element is central to Maya‟s interface and provides the user with a

clear visual representation of the modelling project.

Re-implementing the „MViewportRenderer‟ interface would provide an avenue for

integrating the ideas and rendering algorithms of this research, directly into Maya. In

addition, this integrated approach would see rendering techniques and effects, which are

present in games, also being introduced into Maya. This strategy would allow artists to create

content in a familiar authoring environment, which is directly visible in the context of the

target game‟s rendering technology. Thus, many benefits of „Unreal 3‟s‟ tool chain would be

inherent in this solution. Furthermore, this integrated strategy would provide a platform for

incorporating the algorithms and ideas of this research.

Maya is a cross-platform modelling package with a large user base that extends over all

major computer platforms. To maintain compliance with its user base, the reimplementation

of Maya‟s viewport would ideally adhere to cross platform standards. This would require the

use of „OpenGL‟, a popular cross platform graphics API that exposes hardware acceleration

(Segal & Akeley, 2010) (Neider, Davis, & Woo, 1994).

As discussed, the motivation of this is to introduce game rendering technology directly to the

content authoring context. Using OpenGL for game rendering purposes however, is not

reflective of current trends in the game industry, where Microsoft‟s Direct3D API is

predominantly used (Rosen, 2010). Microsoft offers exclusive support for Direct3D on its

own platform; the „Windows‟ line of operating systems. This is inconsistent with Maya‟s

cross-platform nature and thus, the integration of Direct3D into Maya is problematic.

In addition to widespread use in industry, Direct3D has other advantages over OpenGL;

particularly in terms of cross-vendor functionality. Despite the benefits of OpenGL as an

open platform, this has hindered standardization of the API, presenting a challenge to

50

developers that require modern graphics features in software which can run across hardware

supplied by different graphics vendors (i.e. NVidia and ATI) (NVidia, 2010) (ATI

Technologies, 2010). Although standards are updated to unify OpenGL (vendor)

implementations, the specification of standards has historically lagged behind the

introduction of new graphics features.

In recent years, OpenGL‟s standards/specifications have trailed behind those of Direct3D;

noteworthy to this, was the motivation for the recent OpenGL 4.0 specification which aims to

maintain parity with Direct3D (Bright, 2010).

Thus, utilizing modern graphics features via OpenGL typically requires use of the API‟s

„extension‟ architecture (Kilgard, Section 5.0, 2000). This involves querying the availability

of hardware features (or „extensions‟) at runtime, imposing the need for different code-paths

and/or reduced software compatibility (Kilgard, Section 5.0, 2000). Because most extensions

are vendor specific, graphics applications often become complex when integrating unique

graphics functionality offered by different hardware vendors (Kilgard, Section 3.0, 2000)

In contrast, the Direct3D platform maintains a static and universal „specification‟ per version

release. All hardware vendors must comply with this specification to gain DirectX

certification. Thus, when working with Direct3D (version 10) on certified hardware, the

availability of “Direct3D 10’s base feature set is guaranteed” (Overview of the Major

Structural Changes in Direct3D 10, 2010). This therefore, offloads the burden (which faces

OpenGL developers) of integrating modern hardware capabilities across different

vendors/hardware.

The capabilities of modern graphics hardware play a central role to the delivery of algorithms

and ideas in this research, hence the motivation for using the Direct3D API.

In addition, this model depends on the extensibility of content authoring tools, requiring that

a tool‟s viewport interface element be customizable. However, a review of the API

documentation for Autodesk‟s other popular modelling package, „3D Studio Max‟, indicates

that no developer interfaces exist for custom viewport implementation (Autodesk: 3ds Max

Products, 2010) (3ds Max 2011 SDK, 2010). Thus, if a studio‟s authoring tools do not allow

custom viewport implementation, a tool chain based on the integrated model would be

inapplicable.

51

Interactive tool chains: Connection model

In response to the integrated model‟s shortcomings, the „connection model‟ was selected as

the basis for this project. This „connection model‟ delivers the core functionality of an

interactive tool chain while abiding to the previously mentioned constraints.

In comparison to the integrated model, this approach moves game rendering functionality

from authoring tools (i.e. Maya) into an external, stand alone application. Although this

sacrifices the elegance and simplicity of the integrated model, the approach provides greater

opportunity for artist collaboration, as well as cross-platform support within the tool chain.

What‟s more, the connection model does not depend on viewport extensibility in the selected

authoring software, as is the case with the integrated model.

The connection model naturally extends to offer cross-architecture support as well. This is

similar to that demonstrated by Crytek‟s „LiveCreate‟ content authoring system, which is

based on a connection model.

Recall that LiveCreate enables artists to produce content while maintaining a synchronized

view of the content on the Playstation® 3, Xbox 360™ and PC simultaneously. Achieving

this level of console integration in the integrated model is not possible, due to the rendering

technology of consoles being proprietary to respective manufacturers.

As alluded, the connection model is flexible and can accommodate a variety of

configurations. Because game rendering technology exists in a standalone application, the

tool chain doesn‟t depend on the content authoring software being concurrently active. In this

sense, the model could therefore directly integrate with a studio‟s game project, providing

artists with an authentic context for content prototyping and development. Furthermore, by

integrating elements of the real-time tool chain directly into the game, the project can utilize

the algorithms under normal game play circumstances.

In addition to improving production processes, the project aims to make production of

visually complex games more feasible from a technical perspective.

Integrating procedural algorithms directly into games, aims to offset issues of size complexity

in games content, by taking advantage of the processing power in modern GPU‟s.

Furthermore, by exposing the parameters of procedural functions to artists, the research also

aims to allow better utilization of procedural data generation, promoting more effective

content production. Subsequent discussion will explore these ideas further.

52

This selected tool chain model also supports artist collaboration for shared/concurrent asset

development. The model‟s inherent flexibility makes it capable of hosting many

„connections‟ between artist and „game rendering

instances‟. Thus, configurations where multiple

artists share a single rendering/prototyping context

are possible. Because artists connect to a shared,

remote rendering context, each individual artist

maintains control at their local „authoring‟

workstation. Facilitating multiple artist connections

to an external rendering context is therefore,

feasible.

Thus, by maintaining a connection to the rendering

context, any changes made by artists in their local

authoring environment, are immediately reflected

in the „remote‟ game rendering context.

As figure 31 illustrates, the communication model

has two main components; the „real-time content

encoder‟ (RTCE), which is embedded in an authoring tool and transmits data to the second

component, the „game rendering context‟ (GRC) which displays game content. The following

sections explore each component in more detail.

Real time content encoder (RTCE)

The RTCE is a custom plug-in developed during this research for the Maya modelling

package. The plug-in‟s main function is to provide an interface that encodes and transmits

data/content from Maya to the responsive/interactive tool chain. In addition, the RTCE

allows artists to specify parameters for procedurally based graphics algorithms, in a

production efficient manner; namely the „real-time generative instancing‟ and „unique object

deformation‟ algorithms.

As identified, production efficiency for PM‟s has traditionally been hindered by tool chains

that require slow and tedious content transfer processes (between authoring tools and game

technology). A key objective of this framework is to produce a responsive tool chain system

that performs this process at interactive rates. This requires that all components of the system

perform efficiently to avoid bottlenecks in data flow. The RTCE is arguably the most

important component of the system from a performance perspective.

Additional
rendering

contexts of

different target
platforms

Artist‟s content

authoring

environment

Running
instance of

rendering

context reflects
content creation

Concurrent artist

connections

Optional connection:

(IGN: Crysis Screenshots, 2007)

 Figure 31 Schematic diagram, illustrating work

flow configurations via the „connection model‟

53

To achieve solid performance, the plug-in takes advantage of Maya‟s C++ API. C++ is often

used in situations where high performance is needed, particularly when compared to scripting

languages. For this reason, core functions of the plug-in were built using software interfaces

exposed by the C++ API. In addition to C++, the plug-in also uses the „Maya Embedded

Language‟ (MEL) to construct its user interface.

RTCE characteristics

The following list summarizes the RTCE plug-in components, and serves as an outline for the

implementation discussion:

Functional:

 Cross platform compatible

 Perform at interactive/real-time rates

 Responsive to user interaction in Maya‟s modelling context

 Access, encode and transmit data internal to Maya for use in the respective tool chain

 Add and maintain plug-in specific data to game content/geometry

Interface:

 Maximize consistency with Maya‟s user interface and conventions

 Expose parameters and functionality for research specific algorithms

 Use modelling conventions where possible

Technical development

The RTCE‟s implementation is based on a simple modular code design. Each module

addresses one or more of the listed functional characteristics. A number of factors influenced

this design choice; namely the software interfaces exposed by the Maya API, as well as the

need for code flexibility during development of this „prototype‟.

RTCE structure, data access

Maya is capable of producing and representing sophisticated virtual scenes and objects with

high fidelity. To efficiently maintain, store and access this complex data, Maya internally

uses a graph structure. Interestingly, Maya‟s user interface maintains a close mapping to the

software‟s internal data representation (figure 32).

54

The RTCE plug-in accesses Maya‟s internal data structures, namely DAG‟s (Directed

Acyclic Graphs), to gain access to scene data relevant to user interaction (MFnDagNode

Class Reference, 2010). User interactions in Maya can occur in different software contexts

and with different data types. Thus, Maya‟s internal data structures provide a runtime

efficient mechanism that allows scene data to be accessed, encoded and transmitted in an

interactive timeframe.

Maya has approximately one thousand data types which are collectively referred to as the

„function set‟ (MFn Class Reference, 2010). In Maya‟s API, „data objects‟ are managed by

developers as „handles‟. Casting a Maya handle to a relevant „function set‟ (data type)

exposes the inner functionality and data that the handle implicitly represents. At runtime, the

RTCE plug-in locates data (or „nodes‟) from the scene‟s internal DAG, using a subset of API

class structures („iterators‟) to achieve filtered iteration of certain node types in the current

Maya scene.

To simplify RTCE‟s overall implementation however, a „utility library‟ was developed which

provides methods for DAG access and traversal. These library functions further simplified

the use of the Maya API, avoiding the need for repeated instantiation of „iterators‟, element

looping and key comparison. Such functionality constitutes the „utility‟ library which is a

module within the plug-in‟s structure.

Data types, packet identification

The RTCE accesses and encodes a range of data types; namely „Mesh‟ (geometry), material

and texture data. It also transmits plug-in specific auxiliary data that the RTCE „appends‟ to

scene objects. This project uses a simple identification/key convention, through which

transmitted data is associated with „objects‟ in the GRC. Thus, when a mesh data packet is

sent to the GRC, the plug-in assigns „identification‟ to the packet. When the packet is

received by the server (or GRC), the „identification‟ data is used to channel the packet/data

Figure 32 Example of scene representation in Maya 2008 using abstract

graph structure

55

into the correct „game object‟. In Maya, most DAG nodes (i.e. mesh objects) have a unique

„name‟ value which is suitable for packet identification.

Mesh packet

Mesh packets constitute the main data sent from the Maya plug-in to the GRC. This is

because mesh data typically consists of auxiliary information, in addition to raw geometry.

Examples of auxiliary data include „per-vertex‟ normal vectors, texture coordinates and

colour data. „Per-vertex‟ data associates different „channels‟ of information with each vertex

position, through which a variety of rendering effects are achieved. Real-time lighting for

example, is typically achieved via rendering calculations that rely on per-vertex normal

vectors, in geometry (see figure 33).

To simplify the process of interpreting mesh data at the GRC (for real-time rendering), it is

transmitted from the RTCE in an organized and „interleaved‟ state. The motivation for this is

to take advantage of functions provided by the Maya API, that enable efficient vertex data

interleaving, rather than defer the process to the GRC where interleaving would incur

processing overhead.

In the current implementation, updating an object in the GRC involves accessing and

transmitting all mesh data for the corresponding object in Maya. For large geometric data

sets, this simple approach would represent a performance bottleneck within the system,

which would obviously impact on performance. This is because any modification to the

geometry from Maya would force the entire object to be sent to the GRC. Although this

would be impractical for „real world‟ scenarios that use complex geometry, the approach has

proven sufficient for conceptual development. It leaves however, an opportunity for future

improvement to the system.

An element of optimization is however, present in the RTCE‟s mesh transmission

component. The aim of the optimization is to reduce pressure on the network bandwidth

between Maya and the GRC. As stated, per-vertex data associates extra pieces of information

No per-vertex normals yield

simple „ambient‟ lighting
Per-vertex normals enable

improved lighting results

(Seyringer, 2003)

Figure 33 Illustrates how improved lighting can be achieved via

computations that use per-vertex normal vectors

56

with each vertex of a geometry collection. Thus, interleaving per-vertex data with geometry

effectively multiplies the size of a geometry buffer. The RTCE allows artists to choose the

per-vertex elements that are required for a specific game object(s). This functionality is

encapsulated in the RTCE‟s „mesh transmission‟ function, which is partially listed in table 4

(page 59).

An object‟s „vertex element configuration‟ is also referred to as it‟s „vertex format‟. The

vertex format for an object is used during the mesh transmission process to selectively

interleave elements of required per-vertex data, into the mesh packet. This feature maintains

user interface consistency with well established modelling conventions, as will be

subsequently discussed.

Maya‟s objects‟ usually consist of multiple „materials‟, each of which is bound to a geometry

subset of the object. To reproduce unique material effects across an object, each geometry

subset of a multi-material object is typically rendered under the context of respective

materials. The mesh transmission process takes multi-material scenarios into account; namely

by transmitting multi-material geometry in a series of nested loops. The outer loop of the

encoding process iterates over the materials that are assigned to the object, providing the

inner process with a „material specific‟ context. Thus, the encoding process is adaptive to

arbitrary material configurations in Maya‟s objects.

The inner loop iterates over the polygons/triangles of each material in the object. This inner

loop contains functionality that extracts data (geometry, auxiliary, etc) from the target Maya

object, into a „byte stream‟ which is subsequently transmitted from the RTCE by the network

interface. Note that the „extraction‟ process is dictated by the target object‟s „vertex format‟,

which is assigned by the artist.

The reason for this is to avoid unnecessary object data from being appended to the byte

stream, as previously discussed. The code excerpt in table 4 shows how the extraction

process is adaptive to/dependant on, the object‟s vertex format.

To access subsets of an object‟s geometry based on individual materials, the process makes

use of „mapping‟ functionality provided by the Maya API. Similar mapping functions are

also used to extract texture coordinates, normals, etc, from the object.

In modelling software, an object‟s texture coordinates are usually shared by a variable

number of geometric vertices. Texture coordinates specify a „mapping‟ of an image/texture

across each point on 3D geometry. Thus, texture coordinates for similar/equivalent vertices

of adjacent triangles in the 3D geometry, are often the same. From an artists‟ perspective,

texture coordinate manipulation is greatly simplified when a single coordinate shared by

57

many vertices can be modified, rather than requiring the repeated manipulation of coordinates

for each vertex.

As a result, the number of texture coordinates in an object is not necessarily the same as the

number of geometric vertices. Thus, if the vertex format requires texture coordinates, Maya‟s

mapping functionality is used to correctly assign texture coordinates to vertices in the

transmitted „byte stream‟. Texture coordinate data is then directly interleaved to the byte

stream, as (A) in the code excerpt of table 4 shows. Similar mapping processes to this, are

used to interleave other per-vertex data into vertices of the byte stream.

The code excerpt in table 4 illustrates how bitwise masking is applied to the object‟s vertex

format, during each vertex iteration, to determine the required per-vertex elements (i.e. per-

vertex colour, normals, texture coordinates). This makes dynamic vertex formats of this

project „order dependant‟, requiring consistent use of „element precedence‟ between vertex

elements of the Maya plug-in and GRC.

Mesh Transmission Excerpt

bool Net::Transmit_Mesh(MObject& targetObject,

bool shouldRemove) {

char* pByteStream = NULL;

int sendSize = 0;

int vertexFormat = 0;

MPlug attribute;

...

if(MAYA_FAIL(attribute.getValue(vertexFormat)))

throw tException("Failed to get vertex format.");

...

/*

Iteration through the object’s geometry begins here

*/

MItMeshPolygon polygons(targetObject);

for(uint i = 0; i < partCount; i++) {

...

uint polygonCount = polygons.length();

for(uint j = 0; j < polygonCount; j++) {

 ...

 /*

 At this level of nested iteration, the process is iterating

through vertices of the current object

 */

 int vertexIndicies[3] = {0};

if(MAYA_FAIL(meshObject.getPolygonTriangleVertices(j, k,

vertexIndicies)))

 throw tException("Failed to get polygon triangle

58

vertices.");

uint polyVertexCount = polygons.polygonVertexCount();

for(uint m = 0; m < polyVertexCount; m++) {

...

/*

If per-vertex position data is required in vertex format, then

extract and interlace position data into byte stream

*/

if(vertexFormat & VERTEX_POSITION) {

float position[4];

tVector3* pPosition = (tVector3*)pByteStream;

pByteStream += sizeof(tVector3);

...

pPosition->x = temp[0];

pPosition->y = temp[1];

pPosition->z = temp[2];

}

/*

If per-vertex normal data is required in vertex format,

then extract and interlace normal data into byte stream

*/

if(vertexFormat & VERTEX_NORMAL) {

tVector3* pNormal = (tVector3*)pByteStream;

pByteStream += sizeof(tVector3);

...

pNormal->x = normal.x;

pNormal->y = normal.y;

pNormal->z = normal.z;

}

/*

If per-vertex tangent data is required in vertex format,

then extract and interlace tangent data into byte stream

*/

if(vertexFormat & VERTEX_TANGENT) {

float tangent[4] = {0.0f, 0.0f, 0.0f, 0.0f};

...

tVector3* pTangent = (tVector3*)pByteStream;

pByteStream += sizeof(tVector3);

pTangent->x = temp[0];

pTangent->y = temp[1];

pTangent->z = temp[2];

}

/*

(A)
If per-vertex texture coordinate (0) data is required in vertex

format, then extract and interlace texture coordinate (0) data into

byte stream

*/

59

if(vertexFormat & VERTEX_UV0) {

tVector2* pUV = (tVector2*)pByteStream;

pWriteVertex += sizeof(tVector2);

...

pUV->x = uv0[0][uvIndex];

pUV->y = -uv0[1][uvIndex];

}

...

/*

If per-vertex colour data is required in vertex format,

then extract and interlace colour data into byte stream

*/

if(vertexFormat & VERTEX_COLOUR) {

tVector4* pColour = (tVector4*)pByteStream;

...

pColour->x = colour.r;

pColour->y = colour.g;

pColour->z = colour.b;

pColour->w = colour.a;

}

...

}

...

}

...

}

/*

Send off the geometry data and clean up heap as necessary

*/

if(!VNet::g_Client.SendDataPacket(pByteStream, sendSize,

UPDATE_GEOMETRY))

throw tException("Failed to send geometry data.");

...

}

This function accesses geometry data from the „targetObject „handle‟ and gathers it into data structures that are used by the

tool chain. Because geometric complexity of objects is arbitrary, the „gathering‟ process exists in a variable loop. Note that data

is „interlaced‟ into the byte stream („pByteStream‟) depending on the current „vertexFormat‟ of the object being

transmitted.

Table 4 Code excerpt showing features of mesh packaging and transmission iteration

Material packets

Textures and materials are staple features of game graphics. Hence, they are an integral part

of this project and constitute a major part of the RTCE‟s functionality. As discussed, this

research explores the implications and benefits of integrating PM‟s into games. Following

this theme, a branch of this research explores the conventional use of PM‟s for

materials/texture of games. The objective is not to replace conventional surface textures, but

to supplement the texture with procedurally introduced detail.

60

This integration of material/texture also explores the implications of a responsive tool chain

on the integration of PM‟s in games content. By joining a responsive tool chain with artist

exposure to procedural texture/material composition, the project aims to make the use of

PM‟s within games content, a viable and attractive option.

To achieve this, the RTCE plug-in is responsible for accessing and transmitting data from a

range of „texture types‟ within Maya. In addition to transmitting „raw‟ material data, the

RTCE must associate system specific data with each material packet. This system data

indicates the material‟s „usage‟ in the real-time rendering context.

Textures/materials are used by game rendering systems to achieve a variety of visual results,

as well as special surface enhancement effects. Thus, given that modern games make

extensive use of „auxiliary‟ texture data, similar capabilities have been integrated into this

project. A side effect is that each material packet requires additional data to indicate the

material‟s role in the rendering process.

Materials are also used by the RTCE system for „procedural instancing‟. The procedural

instancing algorithm makes use of procedural materials for up to three different „data

channels‟. Detailed discussion on the procedural instancing algorithm can be found in the

instancing algorithm chapter (page 100).

Table 5 provides a summary of the PM‟s (as well as the raw image source) which are

available in Maya and supported by the RTCE.

The RTCE plug-in closely integrates with Maya‟s internal „material‟ system and its

associated data structures; a design decision which provides a number of benefits. A benefit

Type Grid Perlin Noise Image data

Parameters Colour vectors

Line width

Amplitude

Frequency

Octaves
Threshold

Raw binary data

Type Ramp Wood Checker

Parameters Colour vectors
Sine amplitude

Colour vectors
Ring frequency

Colour vectors
Contrast

Table 5 Material types supported in RTCE

61

of using Maya‟s own data structures is that material information used by RTCE, is saved into

the project file when Maya is shutdown. This use of Maya‟s built-in storage functionality also

advocates project „portability‟, because no dependency on external data is introduced.

Another side effect of this close integration is that Maya‟s conventions for material creation

and composition are inherited by the RTCE. This supports the plug-in‟s objective for

„transparency‟, by permitting the reuse of skills established by Maya users.

Maya‟s materials are complex data structures that host „connections‟ to data sources (i.e.

procedural functions, textures), as determined by the artist. Material connections allow

arbitrary data sources to supply the material‟s „channels‟, such as colour and transparency.

Like most authoring software, Maya supports the notion of „channels‟ in many of its

materials. Channels allow independent control/specification over different characteristics of a

material, usually through assignment of different data sources to each channel. When a

material is „rendered‟, data sources assigned to channels are usually interpreted based on the

channels characteristics. For example, data assigned to the „colour‟ channel is expressed as

the material‟s explicit colour. A data source

assigned to a material‟s „transparency‟

channel however, would typically dictate

the presence of translucency in the rendered

material.

As figure 34 illustrates, the „material node‟

makes provision for these channel data

connections. The RTCE plug-in takes

advantage of Maya‟s „material structure‟ to

enable artist composition of different

surface characteristics in GRC rendered

geometry.

For each material channel in an object‟s hierarchy, the RTCE plug-in automatically creates

and inserts a „LayeredTexture‟ node. Figure 34 shows the position of LayeredTexture nodes

within the hierarchy. Maya‟s documentation states that “the LayeredTexture node can be

used to layer multiple textures on top of one another to produce a single texture result”

(layeredTexture node, 2010). The RTCE however, doesn‟t use the LayeredTexture node for

this purpose but instead, takes advantage of the arbitrary number of connections that it

supports. This property makes LayeredTexture‟s ideal for the system‟s „procedural

Figure 34 RTCE‟s material hierarchy for showing custom
composition of procedural functions for a material channel

Procedural
functions (data

sources) selected

for dynamic
composition

 „LayeredTexture‟
object(s) host

connections from

arbitrary number
of data sources

Maya material

node

Maya geometry

object

transparency

colour

62

composition‟ feature, as the RTCE can interpret these nodes as „containers‟ for procedural

functions. Thus, prior to transmitting a material to the GRC, the plug-in iterates each

connection of a LayeredTexture node, sending the associated texture/procedural function data

at each connection. Because the material hierarchy is built from Maya‟s data structures, this

permits intuitive material composition for artists, while also supporting efficient internal

access to procedural/texture data via DAG traversal.

Other data

As discussed, the RTCE plug-in achieves a high level of integration with Maya‟s conventions

and data structures. Some aspects of the plug-in are unique to the project however, therefore

requiring that data is added to Maya‟s objects. The Maya API supports this with dynamic

object „attributes‟ which provide the mechanism for adding data to nodes in Maya‟s DAG

structures (Maya, 2010). The RTCE introduces a series of custom object attributes through

which system-specific data and materials are associated with objects in Maya. Table 6

provides an outline of this system specific data. Note that at runtime, the RTCE automatically

adds default attribute fields to objects if they are missing.

Attribute Type Purpose

Shader filename(s) String(s) Enables the artist to specify „shader‟(s) that are used

by the GRC to render subsets of (material) geometry

in an object.

Vertex format Byte Bit field that represents the per-vertex elements in the

object‟s vertex-format/structure.

Instanced Boolean Toggles whether the object is available for instancing

by „procedural instancing algorithm‟ (see the

instancing algorithm chapter, page 100).

Figure 35 Illustrates an enhanced surface material via composition of numerous procedural

elements in the RTCE plug-in

Reproduction of material composition in the GCE

63

Figure 36 Illustration of DAG structures in Maya

A typical DAG structure in Maya, which represents the

relationship and hierarchy of scene elements

(Diffuse minus Specular, 2009)

Deformable Boolean Toggles whether the „unique deformation algorithm‟

is applied to the object (NPD, see object , page 130)

Instancing:

 Mask Procedural

 Orientation Procedural

 Scale Procedural

Strings(s) Establishes string based association between the

object and material nodes that are used for instancing.

This association doesn‟t explicitly use node

„connections‟ and therefore, conventional „traversal‟

is not possible.

Instancing „Cookie cutter‟ String Enables the artist to choose an „image‟ to explicitly

mask instancing in the „procedural instancing

algorithm‟ (see the integration of instancing „cookie

cutter‟ section, page 125).

Deformation scale Float Enables artist control over the scale of deformation

amplitude in the object (only available if

„Deformable‟ attribute is true).

Table 6 Auxiliary attributes assigned to objects by and for the RTCE plug-in

Event mechanism

As mentioned, the RTCE plug-in has numerous modules, one of these being the

„synchronization module‟ which is responsible for handling user interaction/events. The

synchronization module underpins the plug-ins „network communication‟ and essentially

invokes all data transmissions to the GRC. The module‟s main functionality exists in „call

back‟ routines, which are bound to Maya‟s

software „events‟. At runtime, the „sync‟

module initializes a special call back that is

invoked when Maya‟s scene graph/DAG is

modified. This call back therefore „captures‟

the events for object addition/removal in a

Maya scene.

Through this, the plug-in receives

notification when an artist introduces

geometry, lights or materials into the scene.

During notification events for object

insertion, the RTCE binds relevant call

64

backs to the new node. Examples include „call backs‟ that are invoked when an artist

modifies properties or data of the particular node.

For example, the plug-in receives notification for events relating to artist interaction with

scene elements such as geometry. Thus, if the artist moves a vertex of a 3D object in Maya,

this triggers a sequence of „events‟, invoking respective RTCE functionality. The high

resolution offered by Maya‟s event system enables the plug-in to transmit data from Maya to

the GRC, in a highly interactive/responsive fashion.

This mechanism ensures that the RTCE can respond to all relevant user interaction events for

each object/node that is inserted by an artist, into a Maya scene. The approach offloads all

interaction monitoring from the RTCE onto Maya, allowing for code that aligns with Maya‟s

extension interfaces.

Maya‟s call back interfaces can be/are invoked for several different „event types‟. The side

effect of this is that simple interactions with Maya can cause several invocations of the same

call back. This is undesirable, given that call backs directly invoke data transmission over the

network interface. To maintain efficient use of network bandwidth, irrelevant event types are

filtered by the plug-in. Table 7 summarizes the events that the RTCE responds to, as well as

the relationship between the „sources‟ of an event (in the context of Maya), and the way that

the system responds to them.

Event Source Interaction/Event Description

Geometry Translation

 Rotation

 Scaling

When a geometric object in Maya is

moved, rotated or scaled, the RTCE

responds to these interactions in real-time

by transmitting the object‟s

„transformation‟ data to the GRC.

Vertex

manipulation

Manipulating a vertex (or triangle) of a

Maya object, triggers the RTCE to

immediately transmit the modified

geometry which results in the changes

being interactively reflected in the GRC.

Texture coordinate

manipulation

Manipulating texture coordinates in Maya

objects, triggers a similar „transmission‟

event as in vertex manipulation. Thus, the

GRC interactively reflects any changes to

texture coordinates of a Maya object.

65

Normal

manipulation

Manipulating normal vectors in Maya

objects invokes a similar „transmission‟

event, as vertex manipulation. The GRC

interactively reflects this type of object

modification.

Light Translation

Rotation

If the artist moves or rotates a light source

of a Maya scene, the RTCE responds to

this interaction in real-time. The

transformation of the corresponding light

source in the GRC is interactively

updated.

Attribute change When attributes of a Maya light source,

such as brightness and colour are

changed, these events are immediately

reflected in the GRC.

Material Channel

Modification

As discussed, Maya‟s materials consist of

different channels. Thus, when a data

source is added, removed or replaced for

a material channel, the new material

structure is immediately transmitted to the

GRC. The side effect of this is that

objects in the GRC which apply the

corresponding material, visually reflect

the channel changes.

Texture Attribute change Table 5 shows the parameters associated

with each texture type, supported by this

tool chain. As „attributes‟ of textures in

Maya are modified by the artist, the tool

chain immediately responds by

transmitting the texture‟s attributes as

„parameters‟ to the GRC. Thus, materials

of the GRC that use the respective texture

as a data source, immediately yield an

updated appearance that reflects the

66

changed attribute.

Scene

Selection changed These events typically occur when

Maya‟s „interaction context‟ changes.

When for example, the artist selects a

different object in Maya this indicates

that the artists‟ current „subject of

interest‟ in the scene has changed. Thus,

the RTCE invokes synchronization

functionality, to ensure that the selected

object‟s „counterpart‟ in the GRC, is

correctly displayed.

DAG changed As discussed, Maya‟s scenes are

internally represented by a DAG

structure. Changes to this structure

usually indicate that a node (i.e.

geometry, material, etc) has been added

or removed from Maya‟s scene. The

RTCE responds to these events, to

maintain consistency between Maya and

the GRC scene. Through this event, all

supported node types, namely geometry,

materials, textures and light sources, are

synchronized with the GRC.

Table 7Summary of interaction events in Maya that the RTCE responds to

User interface

RTCE‟s final module implements the plug-in‟s user interface. This module consists of two

components; initialization/management of the RTCE‟s „user interface scripts‟, and a custom

„message handler‟ that responds to user interactions with the interface.

Most of Maya‟s GUI is written in Maya‟s own scripting language „MEL‟. Thus, for

consistency and integration purposes, the RTCE‟s user interface was also implemented via

MEL script. Because MEL is proprietary to Maya, language specific methods and syntax had

to be studied; this represented a significant overhead in the development process. An iterative

67

approach was taken to development. The following table (table 8) presents a brief summary

of design features and limitations for each of the interface‟s main iterations.

First Design Iteration Discussion

The first iteration represents a highly experimental

development phase. At this stage, the basic concepts of

interface development via MEL are being studied. This early

iteration does however, integrate and expose elements that

are relevant to this research; namely for parameterization of

the „procedural instancing algorithm‟ (see subsection A in

diagram). The motivation for early integration of these

features was to support concurrent

development/experimentation of the „procedural instancing

algorithm‟.

The interface also includes „networking features‟ to support

the tool chain‟s „connection model‟. Layout mechanisms

(provided by MEL‟s interface library) underpin these

features, providing better organization within the interface.

A

68

Second Design Iteration Discussion

A better understanding of MEL‟s user interface library

is manifest in this more sophisticated interface. This

revision is the first to have subsections that

parameterize the core features of the GRC

application/research. The interface subsections that

have been introduced are shown in the accompanying

diagram.

A: Material Composition

These components exposed early system functionality

which allowed the artist to choose and apply materials

to geometry in the tool chain. As shown, this interface

subsection provides visual feedback regarding the

currently bound material. The sub-interface also

makes provision for material „toggling‟ which

represents the earliest stage in material composition

functionality. „Tab‟ panels are introduced into this

section as a means of categorizing similar components

for different „channels‟ of the same material. This

allows artists to specify a procedural function or

texture for up to three material channels (colour,

„normal‟ and „specular‟) (Owen, 1999).

B: Procedural instancing parameters

These components reflect significant development that has taken place in the project‟s

„procedural instancing algorithm‟. The revision to this subsection now integrates the

main features that are required to fully parameterize/utilize the objects that are

instanced by the algorithm; namely a list interface component. The list is populated

with information for scene objects that are available for use in the „instancing

algorithm‟. Upon selection of a list item, the artist is able to toggle and specify

procedural functions that control the object‟s „instancing behaviour‟.

C: Unique deformation parameters

This simple subsection is introduced into the interface to expose basic functionality for

the „deformation algorithm‟. A noteworthy feature is the „Paint‟ button which

C

B

A

69

introduces the notion of „deformation painting‟ into the RTCE plug-in. When invoked,

Maya enters „painting mode‟, which allows artists to interactively „paint‟ black/white

onto the geometry of the scene object. This process adds a new „layer‟ of data to the

geometry, which is used by the „deformation algorithm‟. For more information, see the

object section (page 130).

70

Third Design Iteration Discussion

This iteration focused on improving the „material

composition‟ and „procedural instancing‟ subsections of the

interface. In addition, changes to interface components were

made to improve usability. An example is the increased size

of the „Connect/Disconnect‟ button, which is justified by the

component‟s frequent use. Other additions include

„material/part scrolling buttons‟, shader selection and icons for

vertex format controls. Most additions in this revision were

required by concurrent developments taking place in other

areas of the project.

No changes were made to interface parameters of the

„deformation algorithm‟ at this stage.

A: Material Composition

Significant revision to this subsection was made to enable

artist control over „material composition‟. The design

continues the use of „tab panels‟ as a way of expressing

procedural composition for the „channels‟ of an object‟s

material. Each tab panel in this sub interface now lists

procedural functions that can be used in a composition, with

simple controls to toggle the presence of the procedural

function in a material composition.

B: Procedural instancing parameters

The list component in this design has been simplified to remove „redundancies‟ in the previous

iteration. In this revision, the list is populated with just the names of objects that are available

for instancing. Other data that was previously listed is no longer present. This subsection also

provides control of the selection of „instancing procedurals‟, in a similar way to the „Material

Specification‟ sub section. Finally, the design introduces the „Cookie‟ text field. This allows

artists to specify a „cookie image‟ which invokes cookie cutter functionality in the procedural

instancing algorithm. Details of this functionality are covered on page 125 of the instancing

algorithm section.

A

B

71

Final Design Iteration Discussion

This image represents the current interface of the RTCE plug-in.

The interface now provides parameterization for all features and

algorithms of the interactive tool chain. The design also aims to

improve usability and „transparency‟ of the plug-in within

Maya.

Changes in this iteration introduce notable „graphic

enhancements‟ to several of the interface‟s components. The

motivation for these enhancements is to follow a core principle

in HCI; improved usability via symbolic association/affordance

with interface functionality (Lidwell, Holden, & Butler, 2003).

The design also follows the style of Maya‟s own user

interface(s) (namely those of material and texture creation). This

targets artists/users that are familiar with Maya‟s conventions,

potentially making the functionality of RTCE to be quickly

understood via familiar interfaces. Thus, this revision focuses on

improving the plug-in‟s usability rather than the introduction of

functionality or „parameter controls‟.

A: Material Composition

This material composition interface merges elements from previous interface revisions, to deliver

a flexible and user centric solution. Notable changes include the removal of the „channel‟ tabs,

which have been replaced by a single interface panel. This panel contains high level controls for

each of three configurable material channels.

Interface controls for procedural composition have been transferred from the RTCE‟s main

interface, into a separate dialog box. This simplifies the overall material composition interface,

allowing space for a „swatch‟ display to provide local visual feedback of the material being

composed.

The components for „material scrolling‟ have been moved to this subsection. The motivation was

to clarify the relationship between multi-material objects and the interface‟s material

composition features.

As discussed, Maya‟s „LayeredTexture‟ structure underpins data storage for material

composition in RTCE. Maya already provides user interfaces for configuration of

„LayeredTexture‟s‟ and thus, these were reused to maintain user familiarity. This seems

appropriate, given the plug-in‟s objective of integration and „transparency‟ within Maya. The

A

C

B

72

RTCE now provides „shortcut buttons‟ to give direct access to Maya‟s respective

procedural/texture configuration interfaces. Using the conventions and interfaces that

experienced users of Maya are familiar with, helps to minimize learning overhead.

B: Procedural instancing parameters

This subsection inherits most design elements from the previous design iteration. The layout of

components in this section has however, been reorganized to establish consistency with the

„Material Composition‟ subsection. In addition, the controls which allow selection of procedural

functions for the instancing algorithm have been revised. In previous designs, buttons were

available that opened Maya‟s procedural function „catalogue‟. Because the instancing algorithm

only supports a subset of Maya‟s procedural functions, it is sufficient to provide a drop down list

with just the supported procedural functions. By not presenting the procedural function

„catalogue‟, this improves workflow as only relevant/supported procedural functions are exposed

to the artist.

This revision also allows artists to specify the „texture coordinate set‟ (of an object) to use with

the procedural instancing algorithm. Note that objects can have more than one „texture

coordinate set‟ (or channel). Multiple texture coordinates for objects are supported in this tool

chain by the dynamic vertex format feature. The new control allows the artist to choose the set

which „drives‟ the procedural instancing algorithm. For more information on the influence of

texture coordinates in the instancing algorithm, refer to page 119 of the instancing algorithm

section.

C: Unique deformation parameters

The deformation interface has also been changed by the introduction of „deformation scaling‟.

During software testing, the need for control over deformation „amplitude‟/scale became

apparent. This is mainly because the scale of 3D worlds/scenes is arbitrary. In an effort to

address this, a „scaling‟ parameter of the deformation algorithm was exposed in this subsection

of the RTCE interface. Thus, when procedural deformation is applied to an object, the artist can

interactively adjust the scale/amplitude of deformation to achieve the required result.

Table 8 Development chronology of the RTCE interface

Game rendering context (GRC)

As discussed, this project implements an interactive tool chain that allows artists to apply

PM‟s to a range of authoring processes, to enhance their production workflow. Recall that the

tool chain uses a „connection model‟, with independent content authoring tools and game

73

rendering technology components. This section covers the design and implementation of the

tool chain‟s „game rendering component‟ (GRC).

In a commercial setting, the GRC would ideally be the engine of a studio‟s game project. In

this research however, a custom „prototype renderer‟ has been implemented as a substitute

for the game engine. The main reason for this is to facilitate experimentation with rendering

features in modern graphics hardware, which is relevant to algorithms of this research. This

research explores the possibility of exposing „adaptive‟/customizable procedural elements to

artists, in an interactive environment. This requires that a renderer with specific low level

capabilities, particularly in relation to shader integration, be implemented.

Before an approach via a custom prototype was selected, a survey of available game

rendering/engine technologies was carried out. The survey concluded that features and

functionality offered by „renderer candidates‟, didn‟t fully align with the requirements of the

research; mostly in terms of their lack of Direct3D 10 support. As discussed, Direct3D 10

offers a comprehensive feature set, which provides features specifically required by this

research‟s algorithms. Of the engines surveyed, the majority of these lacked support for

Direct3D 10. Furthermore, those that did offer support were either unavailable (due to

commercial licensing) or limited in terms of extensibility/modification. On this basis, the

custom „prototype‟ framework was implemented. Refer to Appendix A for a summary of the

rendering technology survey.

74

GRC characteristics

The following lists the GRC‟s software characteristics, and introduces some features that will

be fully described in the following sections:

Technological:

 Based on Direct3D 10

 Uses Shader Model 4.0 (SM4.0) (Shader Model 4, 2010)

 Programmed in C++

Functional:

 Shader-based rendering

▫ Multi-pass shader support

▫ Expose data „Streamed‟ from shaders (see page 103)

▫ Support „Hardware Instancing‟ (see page 106)

▫ Real-time procedural/material composition

 „Multi channelled‟ materials

 Dynamic procedural functions

▫ Adaptive shader system

 Variable input data/geometry vertex formats

 Allow custom shader behaviour

 Responsive network interface/tool chain

▫ Update object data interactively:

 Geometry

 Shaders

 Materials

▫ Update object transformations interactively

▫ Update scene lighting interactively

▫ Add/remove objects on demand

 Resource management

▫ Allocate and manage:

 Textures/Material parameters

 Geometry

 Shaders

▫ Material composition management/tracking

▫ Shader management/tracking

 Maintain runtime performance and interactive rate

 Standalone application that is independent from other software components in the

tool chain

GRC structure

Similarly to the RTCE, the GRC has a modular code structure and design. Despite the GRC‟s

iterative development, the „modules‟ that comprise the software have remained consistent

throughout the project‟s duration. The following provides a brief overview of the GRC‟s

modules:

75

Module Description

Window Encapsulates functionality that invokes, manages and displays the application‟s

„window‟. This module is also responsible for basic event handling (namely

mouse/keyboard interaction) which is communicated to the GRC.

Network Represents the communication interface between the internal GRC application

and external „client workstations‟ (i.e. RTCE instances). When network data is

received, this module decodes the data and invokes functionality of relevant,

internal sub-systems of the GRC. The network module is essentially the GRC‟s

„event mechanism‟, given that it handles tool chain related events.

GUI Provides a simple user interface that overlays a portion of the GRC‟s „rendering

canvas‟. This GUI exposes the GRC‟s basic functionality and inherits the

project‟s „visual identity‟.

Core A simple „container‟ that hosts other modules of the GRC, namely the „Scene‟

and „Renderer‟. The core also centralizes event/data handling from the

„Window‟ module, as well as the network interface.

Scene A „container‟ that manages the game objects in the GRC‟s „game scene‟. This

module is responsible for invoking update and rendering functionality on all

registered game objects. In addition, the scene module manages data for any

active light sources in the GRC.

Renderer The GRC‟s most sophisticated module that incorporates an abstract „render‟

interface, through which all rendering functions are invoked. Direct3D 10

functionality is integrated into the GRC via a „D3D10‟ implementation

(implements Direct3D 10 functionality) of this interface. The rationale of this

abstraction is to facilitate extensions to the GRC; namely the future introduction

of a Direct3D 11 based renderer. In addition, the interface is partially

implemented via a Direct3D 9 based renderer. Note that this was implemented in

the initial stages of the research project as a „placeholder renderer‟. The

Direct3D 9 implementation now serves as a „fallback‟ option for system

configurations that lack Direct3D 10 level graphics hardware.

This module also incorporates management of rendering resources/data such as

„auxiliary buffers‟, geometry and textures. A reference counting strategy is used

for efficient memory use and robust resource sharing.

76

Materials In addition to resource management, this module is capable of receiving and

decoding material data from the network interface. Incoming network data is

delivered to the material module in binary form. The module follows project

wide conventions to extract parameters and data from an incoming data stream

(that represent „procedural/texture compositions‟). In addition to updating

materials, this module also manages material objects and integrates a reference

counting scheme to permit data sharing throughout the application.

Rendering module

As mentioned, the rendering module incorporates an abstraction, for future extensibility and

compatibility. However, in keeping with the current requirements, a Direct3D 10

implementation of the interface abstraction has been developed. The following discussion

describes its implementation.

A side effect of „shader based renderers‟ is that two different software architectures are

required; these being the CPU and GPU. This introduces a need for two codebases.

The CPU based component is directly embedded into the application, in this case, the GRC‟s

C++ code implementation. This code exists in the render module, which

integrates/communicates directly with the other modules of the GRC.

The primary responsibility of the render module‟s CPU based component is accommodating

and interfacing with functionality that is executed on the GPU architecture. As indicated,

custom GPU functionality exists in „shaders‟. Traditionally, shaders were simple assembly

programs supplied by developers to control stages of the rendering process (Shader, 2010).

As the need for more sophisticated rendering behaviour has arisen, flexible „human readable‟,

„high level‟ shader languages were consequently developed. Notable languages include

Microsoft‟s „High level shading language‟ (HLSL) for use with modern Direct3D API‟s, as

well as the „OpenGL Shading Language‟ (GLSL), these both consisting of „C‟ like syntax

(HLSL, 2010) (Kessenich, Baldwin, & Rost, 2010).

The code excerpt in table 9 shows the definition of a complete shader written in HLSL. This

excerpt also demonstrates various language features and syntax. Note that HLSL also offers a

„C pre-processor‟; a feature which will be frequently referred to in subsequent discussion

(Preprocessor Directives, DirectX HLSL, 2010).

77

A simple HLSL shader

float4x4 g_matrixWorld;

float4x4 g_matrixViewProjection;

float3 g_vectorLightDirection;

float g_scalarTime;

void GetFastTime(out float time) {

 time = 2.0f * g_scalarTime;

}

void MyVertexShader(

float4 inVertexPosition : POSITION0,

float2 inVertexTextureCoord : TEXCOORD0,

float3 inVertexNormal : NORMAL0,

out float4 outHomPosition : POSITION0,

out float2 outHomTextureCoord : TEXCOORD0,

out float4 outHomColor : COLOR0

)

{

/*

Transforms the vertex postion into homogeneous space

Transforms the vertex normal into world space

Assign texture coordinate to output

Perform basic diffuse lighting for vertex color

*/

float4 worldPosition =

mul(inVertexPosition, g_matrixWorld);

float4 worldNormal =

mul(inVertexNormal, g_matrixWorld);

outHomPosition =

mul(worldPosition, g_matrixViewProjection);

outHomTextureCoord = inVertexTextureCoord;

outColor = saturate(dot(normalize(worldNormal),

normalize(g_vectorLightDirection)));

}

Declaration of shader variables, which

are available for use by the shader.

These remain constant during the
shader‟s execution. They are usually

specified prior to the shader‟s execution

Simple example, showing how „user

defined‟ functions can be defined in an

HLSL shader

Definition of

the custom

vertex shader

Input and output

parameters for

vertex shader

Geometry
transformation

and projection

into homogenous

coordinates, etc

Returning output
from the vertex

shader

A

C

78

void MyPixelShader(

float4 inHomPosition : POSITION0,

float2 inHomTextureCoord : TEXCOORD0,

float4 inHomColor : COLOR0,

float3 outPixelColor : COLOR0

)

{

 /*

 Shows how the custom function is invoked

 */

 float time = 0.0f;

 GetFastTime(time);

 outPixelColor =

inHomColor * (sin(time) * 0.25 + 0.5);

}

technique MyTechnique

{

pass MyFirstPass

{

VertexShader =

compile vs_4_0 MyVertexShader();

PixelShader =

compile ps_4_0 MyPixelShader();

}

pass MySecondPass

{

VertexShader =

compile vs_4_0 MyVertexShader();

PixelShader = NULL;

}

}

Table 9 Code excerpt showing typical features of an HLSL shader

As indicated, the main function of the renderer‟s CPU component is to control and invoke

rendering functionality on the GPU/graphics hardware, to deliver high quality, real-time

rendering. Additional responsibilities of the CPU component include initialization of the

graphics device/hardware. This takes place during the GRC‟s „window creation‟ phase, and is

essentially a „run once‟ process.

At runtime, the CPU component of the renderer is repeatedly invoked (~30 times per second)

during the GRC‟s application loop. One of the CPU component‟s main responsibilities is

„binding‟ required data resources to the graphics device in preparation for rendering. In

D
 Shows the definition of

custom pixel shader
functionality. The

collective image for pixels

of this shader will yield
the appearance of lighting

from a „global‟ light

source. The objects
brightness will also

oscillate according to a

sine wave

Definition of a „shader technique‟.
Shaders can have numerous

„technique‟ blocks however this

shader only has one. A technique
typically associates vertex/pixel

shaders together, in a „pass‟ (or

stage). The following technique
shows a multi-passed shader. Note

that passes can independently assign

shader functionality

A „pass‟ block of the technique
(referred to in this thesis as a stage)

B

79

addition, „shaders‟ are systemically invoked/executed by the CPU component, to render

geometry in the context of customized shader/rendering functionality.

With respect to the GRC, rendering resources include raw geometry and render state

information, as well as texture data. The GRC also makes use of „data binding‟ functionality

to specify parameters that are subsequently used by shader based procedural functions. This

is equivalent to specifying the data for shader variables, such as those shown in (A) of table

9.

The binding process is often referred to as „uploading‟, given that it represents data transfer

from the CPU/host system, to the graphics hardware/GPU. The approach to resource binding

is typically not important, provided that all required resources/parameters are bound prior to

the specific rendering process.

Once the CPU has bound/uploaded a shader and its associated rendering resources to the

graphics device, the CPU then specifies basic information about the rendering task; namely

the number of triangles (or „primitives‟) that must be drawn. Within the GRC process, this

operation takes place during the „render‟ routines of each registered „game object‟.

Given that rendering takes place in the context of a „game object‟, the design elegantly

parameterizes the device with relevant information, internal to that object. The GPU then

immediately carries out the rendering process. This typically causes the GRC game object to

be „rasterized‟ („painted‟ from geometry) to the screen (Rasterisation, 2009).

Note that the GRC incorporates auxiliary functionality which invokes the GPU under

different rendering „configurations‟. The reason for this is to process and yield different types

of data from the GPU, which is used at subsequent stages in specialized rendering processes.

For more detail on this functionality, refer to page 103 of the instancing algorithm section.

The GRC‟s standard geometry rendering process can therefore be summarized as the

amalgamation of rendering data by the GPU, to yield a buffer of pixel colours that represents

all scene geometry in image/bitmap form. This conventional use of rendering hardware is

central to the GRC‟s delivery of real-time rendering.

The notion of „multi-staged‟ rendering is fundamental to two specialized „rendering‟

algorithms which have been developed during this research. Further detail on the

implementation of these algorithms (and their specific application of multi-staged rendering)

can be found in the instancing algorithm section (page 100) and object section (page 130) of

this thesis. Because these algorithms are integrated into the GRC, the rendering module must

therefore, support multistage rendering. Further discussion on multi-staged rendering, as well

as their implication on advanced rendering techniques and effects, can be found on page 101.

80

In summary, multi-stage rendering enables „complex‟ rendering processes that are

represented by a number of intermediate „shading‟ steps. As the „technique‟ (B) in the HLSL

except of table 9 shows, incorporating multiple shader stages or „passes‟ can be

invoked/accumulated to a final rendering result, during invocation of a single technique of an

(HLSL) shading/rendering process.

The CPU component of the GRC‟s renderer supports multi-staged shaders/rendering via a

loop structure, where each loop iteration corresponds to a stage in an HLSL technique. These

shader stages are incrementally invoked during the rendering process of a multi-staged

shader. To achieve this, the GRC queries information from a data structure that encapsulates

the HLSL shader. More specifically, the GRC queries the number of stages in the

shader/technique. This is used to specify the number of loop iterations. In the Direct3D 10

API, the data structure which encapsulates shader code and provides these query functions,

inherits the „Effect‟ interface (Effect System Interfaces, 2010) (ID3D10Query Interface,

2010).

„Effect‟s‟ simplify the use of shaders within a rendering application, essentially encapsulating

functionality for binding shader code and rendering resources to the associated graphics

hardware. When an HLSL shader is compiled by the Direct3D 10 API, an „Effect‟ object is

returned which internally contains shader functionality that corresponds to the specified

shader code (D3DXCreateEffectFromFile Function, 2010).

As indicated, shaders play a central role in the GRC‟s delivery of real-time rendering.

Coincidentally, shaders also underpin other central features of the tool chain; namely

dynamic „vertex formats‟ and „procedural compositions‟. These features are highly influential

towards the implementation and integration of the GRC‟s shaders.

Adaptive vertex format for shaders

As mentioned, the tool chain supports arbitrary „vertex formats‟ in the geometry that it

manages and renders (via the GRC). Recall the motivation for this is to make efficient use of

„data bandwidth‟ at different stages of the tool chain. Efficient bandwidth use is an important

part in the tool chain‟s delivery of an interactive/responsive workflow; particularly given its

basis on a network connection.

As discussed, configurable vertex formats allow artists to arbitrarily select vertex „elements‟

that are „interleaved‟ into the geometry of game objects‟ in the tool chain. Through this, the

transfer and management of redundant vertex information can be avoided. Thus, smaller

geometry buffers are transferred across the network connection that exists between software

components of the tool chain.

81

In addition to improved network bandwidth use, smaller geometry buffers improve „upload‟

efficiency between the CPU and GPU, during the GRC‟s real-time rendering process. Recall

that rendering via the GPU, involves data transfer between the CPU and GPU. Although this

is a reasonably fast process, it often represents an undesirable „time expense‟ relative to the

real-time nature of rendering applications. Thus, by minimizing the net size of data

(geometry) that is uploaded, this aims for faster runtime performance in the GRC.

Shader programs have traditionally been applied to two different parts of the rendering

process. This is illustrated by the HLSL shader structure in table 9, where a „vertex shader‟

(C) (i.e. geometry processing/transformation), and „pixel shader‟ (D) (rasterizing processed

geometry into pixel buffers/bitmaps) are defined.

During the vertex shading process, the shader is applied to each vertex of the geometry buffer

which is subjected to the shader that is bound to the respective graphics device. Following

this, an accompanying pixel shader is invoked which controls the way pixels that represent

the geometry (in bitmap form) are coloured/shaded.

The elements of each vertex (i.e. per-vertex position, normal, texture coordinates, etc) in a

geometry buffer must „align‟ with the declared input parameters of a vertex shader‟s

definition. The code excerpt in table 10 shows the declaration structure for a typical vertex

shader („vertex_shader‟) in HLSL. This vertex shader requires each vertex of the

geometry being „shaded‟ to consist of a position, normal and colour vector, as well as two

texture coordinate „channels‟ (see A, table 10). The shader also assumes that vertex elements

are specified in this „order‟ for data that is being streamed to the shader.

82

Simple vertex shader

void vertex_shader(

float4 vertex_position : SV_Position,

float3 vertex_normal : NORMAL0,

float4 vertex_color : COLOR0,

float2 vertex_texcoord_a : TEXCOORD0,

float2 vertex_texcoord_b : TEXCOORD1,

out float4 transformed_position : SV_Position,

out float3 transformed_normal : NORMAL0,

...

)

{

/* vertex_shader implementation */

transformed_position = ...

transformed_normal = ...

...

}

Table 10 Code excerpt showing main features of a simple shader declaration

As discussed, shader declarations (such as that in table 10) must be compiled prior to being

used in the rendering process; this obviously makes the shader „static‟ and only compatible

with a single vertex format/structure (corresponding to its input parameters). In other words,

when this shader code is compiled into GPU assembly, the resulting shader program will only

operate on a buffer of vertices that match these input parameters.

To facilitate dynamic vertex formats, the input parameters of the GRC‟s shaders must be

adaptable to arbitrary vertex data/structures. This was achieved by taking advantage of HLSL

compilation functionality provided by the Direct3D 10 API, as well as HLSL‟s

language/syntax features.

Recall that the vertex format of an object can be changed by artists during runtime; this

consequently alters the „layout‟ of that object‟s geometry buffer. To handle this, shaders‟ of

the GRC must be adaptable to arbitrary „vertex data‟ formats in the geometry data received

from the RTCE. Furthermore, shaders must be adaptable „on demand‟ during runtime.

If notification of a changed vertex format is received, the GRC updates the HLSL shader that

is associated with the changed geometry. This „update‟ process corresponds to the shader

being recompiled by Direct3D 10‟s HLSL compiler, in order for the shader to „comply‟ with

the revised geometry format. When shader recompilation occurs, in response to an „updated

vertex format‟, this consequently results in the input parameters (A, table 10) of that vertex

shader being added/removed to reflect the format of the underlying geometry.

A

Input parameters of

the vertex shader.
These must „align‟

with the elements

of the associated
vertex that is being

rendered/shaded

Processed data can
be returned from a

HLSL via „output‟

parameters. Note

that the

types/elements of

input parameters do
not have to

correspond to

output data

83

Note that under some circumstances, shader recompilation can be avoided. If for example,

the render module already has a cached instance of the required shader, that particular shader

instance will be reused. The caching system will be briefly discussed in subsequent

discussion.

Vertex shader prior to pre-processing phase Vertex shader following pre-processing

 The PPD list used in this example:

{ VERTEX_POSITION, VERTEX_NORMAL }

void vertex_shader(

#ifdef VERTEX_POSITION

/* Position always required */

float3 in_position:SV_Position,

out float4 out_position:SV_Position

#endif

#ifdef VERTEX_NORMAL

,float3 in_normal : NORMAL

,out float3 out_normal : TEXCOORD5

#endif

#ifdef VERTEX_COLOR

,float4 in_color : COLOR

,out float4 out_color : COLOR

#endif

 ...

/* Other availible parameters (tangent,

uv1, uv2, uv3, uv4, etc) omitted*/

)

{

... /* Implementation */

#ifdef VERTEX_POSITION

 out_position = ...;

#endif

#ifdef VERTEX_NORMAL

 out_normal = ...;

#endif

#ifdef VERTEX_COLOR

 out_color = ...;

#endif

...

}

void vertex_shader(

float3 in_position:SV_Position,

out float4 out_position:SV_Position

,float3 in_normal : NORMAL

,out float3 out_normal : TEXCOORD5

)

{

 /* Implementation */

 ...

 out_position = ...;

 out_normal = ...;

}

Note that the pre-processed shader omits

parameters from the „shader template‟ (left

coloumn) that are not included in the PPD

list.

Table 11 Shows how pre-processing capabilities of HLSL are used to deliver shaders which are adaptive to arbitrary vertex

formats

B

C

A

84

The GRC achieves interchangeable input parameters for its shaders, via the use of pre-

processor definitions (PPD). As shown in table 11, this is achieved by „strategically‟

embedding PPD‟s throughout the definition of a GRC shader (namely in the parameter

declaration). Prior to a shader‟s recompilation, the GRC generates and passes a list of PPD‟s

to the HLSL compiler, which correspond to the artist specified vertex format. Section (B) in

table 11 shows an example of a typical PPD list that is generated by the GRC and passed to

the HLSL compiler. The PPD list directs the pre-processor which in this case, yields HLSL

code that corresponds to (C) in table 11. Thus, table 11 shows how HLSL code is

dynamically generated to yield shader‟s where input parameters and functionality are tailored

to align with the specified vertex format.

Thus, the generation of a PPD list is pivotal to this „dynamic shader system‟. Note that this

functionality resides on, and is executed by, the CPU. As an aside, the performance of the

pre-processing and shader recompilation processes, were found to be adequate. Under typical

circumstances, shader compilation took ~5 seconds. This is reasonable given that the

geometry vertex format is not frequently altered.

The interchangeable „parameter interface‟ (i.e. shader input) described, is fundamental to a

shader‟s compatibility with arbitrary geometry formats in this tool chain. There are however,

other equally significant elements to this „shader system‟; namely a structure that enables a

high level of customization to facilitate the needs of both artists and „technical artists‟. The

objective of this, is to provide a shader system that fulfils artists‟ typical usage requirements,

while also permitting unique rendering behaviour that is often required to deliver distinct

visual experiences in games.

In essence, the system amalgamates the arbitrary shader parameter interface, with a

„structure‟ capable of invoking custom functionality. To deliver this, the structure makes

integral use of „global function declarations‟ within the system. The role and integration of

these functions will be covered in subsequent discussion.

This structure is relevant in a tool chain such as this, where many permutations of „input

parameter‟ configurations exist. From the developer‟s perspective, implementing custom

shader functionality in this tool chain would require manual definition of the custom shader

for all possible parameter configurations. This would be impractical, given that games tend to

consist of many shaders.

85

The shader system counteracts this however, by providing an intuitive development interface

that allows custom shader functionality to be easily implemented, while retaining

compatibility with arbitrary parameter/vertex format configurations. Thus, the system „hides‟

the complexity of „configuration permutations‟ when implementing custom shader behaviour,

requiring that only two functions be implemented. These functions contain the custom

shading behaviour for vertex and pixel shading, respectively.

As mentioned, this system facilitates the needs of two „developer bases‟; the artist, and the

technical artist. Through the system‟s adaptive/runtime characteristic, the needs of artists

during typical usage scenarios, namely the creative process (involving specification of vertex

formats, etc), are fulfilled. In addition, the system also caters to the specification of custom

shader functionality, often required by the studio‟s technical artist(s). Because the

specification of custom shader code is a „less common‟ occurrence however, the tool chain

does not directly expose shader development interfaces in the authoring environment.

Instead, the technical artist provides implementations for the mentioned function pair, via a

text editor. The schematic in figure 37 shows the structure of the shader system that has been

described.

Recall that the artist interface (i.e. Maya plug-in) of this tool chain exposes functionality that

allows an HLSL shader to be assigned to a geometric object. Thus, the „technical artist‟ can

conveniently develop and apply custom shader functionality during runtime, effectively

taking advantage of the system‟s capability for runtime shader recompilation. When a newly

modified shader is applied to an object in Maya, the tool chain „packages‟ the shader code

into a network packet, sending it from the Maya plug-in to the GRC. When the shader is

received by the GRC, the code is unpacked, installed, compiled and applied to the GRC‟s

rendering process respectively. This process occurs interactively during run time, and aligns

with the tool chain‟s objective to provide interactive „development‟, coupled with maximized

developer flexibility.

86

This system effectively „abstracts‟ the notion of conventional shader development. As

discussed, the developer provides custom shader code/implementation for functions that are

globally declared by the shader system (see item C in figure 37).

Note that the shader system being described resides in an HLSL header file, as figure 37

illustrates. Thus, when developing a custom shader for the GRC, the shader‟s source needs to

„include‟ the „shader system‟s‟ header file, as well as implementations for the globally

declared vertex and pixel shading functions („custom_vertex_shader‟ and

„custom_pixel_shader‟). The code excerpt in table 12 shows the source code for a shader,

developed for this system. Item (E) in figure 37 represents a custom shader incorporating the

Figure 37 Schematic of the GRC‟s shader system that supports custom shader functionality in conjunction with
dynamic vertex formats

σ

μ

Shader system invokes custom

shaders. Following the „custom‟

functions, processing results are

returned to corresponding „system

functions‟ (shaders).

system_vertex_shader (, ,)

{

custom_vertex_shader(, , ,);

}

custom_vertex_shader (, , ,)

{

…

}

These functions are invoked by the

underlying shader system during the

shading process. The function

declarations allow developers to

implement custom shading behavior,

by altering the „referenced‟

parameters of these functions.

custom_pixel_shader (, , ,)

{

…

}

 system_pixel_shader (, ,)

{

custom_pixel_shader (, , ,);

}

(E) Custom ‘shader’ implementation

custom_vertex_shader(, , ,);

custom_pixel_shader(, , ,);

Incoming geometry data to be „shaded‟

during the rendering process

Geometry now „shaded‟ and in a

rasterized/image form

Shader system (HLSL header file)

(A
)

T
h

e
sh

ad
er

sy

st
em

p
ar

am
et

er
iz

es

th

e

in
v

o
ca

ti
o
n

o

f
th

e
cu

st
o

m

im
p

le
m

en
ta

ti
o

n

fu
n
ct

io
n

 w
it

h
 d

ef
au

lt
 v

al
u
es

 i
f

n
ec

es
sa

ry

(B
)

T
h

e
p
ar

am
et

er
s

o
f

th
e

v
er

te
x

sh

ad
er

,
as

d
et

er
m

in
ed

b
y

th

e
v
er

te
x

-f
o

rm
at

th

at

th
e

sh
ad

er
 w

as
 „

co
m

p
il

ed
 a

g
ai

n
st

‟

(C
)

 G
lo

b
al

 d
ec

la
ra

ti
o
n

o
f

fu
n

ct
io

n
s

fo
r

cu
st

o
m

sh
ad

in
g

 b
eh

av
io

r

87

function definitions that encapsulate custom shader behaviour. Note that these are invoked by

the underlying shader system.

Semantics and structure required for an HLSL shader, such as the „technique blocks‟ and

passes, are defined in the shader system header that is included. As discussed, the „custom

functions‟ are globally declared (see C in figure 37) in this system‟s header file. Because the

technical artist/developer provides definitions for these global declarations in the subsequent

„custom shader file‟, the system therefore inherently relies on the linking capabilities of the

Direct3D 10‟s HLSL compiler. Note that during compilation, code for the shader system

(which exists in the header file) is „expanded‟ into the custom source file, defined by the

developer.

Recall that items (C) and (D) of the HLSL shader in table 9 (page 78), represent the

vertex/pixel shaders that are executed by the GPU, during rendering/shading. Within this

shader system, these are represented by the „system_vertex_shader‟, (μ) and

„system_pixel_shader‟, (σ), shown in figure 37. For this discussion, these „system_*_shader‟

functions (μ and σ) are referred to as „wrappers‟.

Thus, as figure 37 shows, each wrapper invokes the corresponding „custom shader‟ function

which is explicitly provided by the developer.

Implementing custom shader behaviour in the GRC‟s shader system

#include "lib_system.fxh"

void custom_vertex_shader(

float3 in_position,

float3 in_normal,

float3 in_tangent,

float2 in_uv1, float2 in_uv2,

float2 in_uv3, float2 in_uv4,

float4 in_colour,

float4x4 in_transform,

out tOutput out_data

)

{

/*

Applies custom vertex shading behaviour to ‘warp’ the geometry. This

illustrates how customized vertex manipulation/behaviour is integrated

via the described shader system.

*/

float4 warp_position

= in_position.x + sin(g_time);

88

/*

Prepares vertex data for rasterization, namely by transforming and

projecting vertex positions to homogeneous coordinates.

Assigns input vertex data to shader’s output

*/

out_data.os_position = warp _position;

out_data.normal = mul(in_normal, (float3x3) in_transform);

out_data.tangent = mul(in_tangent, (float3x3) in_transform);

out_data.ws_position =

mul(float4(warp _position,1.0f), in_transform);

out_data.h_position =

mul(float4(warp _position,1.0f),mul(transform,g_viewproj));

...

}

void custom_pixel_shader(

float3 in_os_position,

float3 in_ws_position,

float3 in_ws_normal,

float3 in_ws_tangent,

float2 in_uv1, float2 in_uv2,

float2 in_uv3, float2 in_uv4,

float4 in_colour,

out float4 out_colour

)

{

/*

Applies custom colour manipulation to the pixel shading process

(tinted red in this case). This illustrates how custom pixel shading

behaviour via the described shader system, is achieved.

*/

float4 pixel_colour = in_colour;

pixel_colour.g = 0.0f;

pixel_colour.b = 0.0f;

...

/*

Returns the computed colour for this pixel in the rasterized result.

*/

out_colour = pixel_colour;

}

Table 12 Code excerpt showing main features of a simple shader declaration in the GRC‟s shader system

As discussed, the GRC‟s shader system combines „adaptive‟ shader interfaces with structure

that facilitates custom pixel and vertex shading functionality. Recall the motivation for this is

to simplify the task of implementing custom functionality for technical artists, under an

„adaptive‟ shader context.

89

Achieving this however, requires that „adaptive‟ shader code elements (similar to those used

in the adaptive „shader interface‟) be incorporated into the shader system‟s „wrappers‟.

Shaders of the GRC feature adaptive input parameters, making them compatible with

arbitrary geometry/vertex formats. The following discusses how the arbitrary shader

parameter interface is „assembled‟ with corresponding „custom shading functionality‟ which

itself, consists of a static interface.

The subsequent discussion explains this assembly, in the context of the system‟s vertex

shading capabilities. Note that these „principles‟ are similarly applied to the system‟s pixel

shading functionality.

Item (A) in figure 37figure 38 depicts an „arbitrary‟ set of input parameters for a vertex

shader/wrapper of the system. The wrapper‟s parameters are directly passed to the

corresponding „custom vertex‟ function. As discussed, the definition for this custom vertex

shading functionality is supplied by the developer in the accompanying shader source file.

These „custom‟ shading functions are declared with parameters that correspond to every type

of vertex element that is available in this tool chain. These functions are therefore capable of

„facilitating‟ any set of parameters that correspond to any vertex format that an artist could

specify for an object.

A shader‟s vertex format typically only incorporates some of the available vertex elements,

offered by the tool chain system. Thus, pre-processed shaders will usually only provide some

parameters for the wrapper‟s invocation of the „custom shader‟ function, as figure 38 shows.

Note that the „parameter list‟ of the pre-processed shader (A of figure 38) only natively

supplies some of the parameters required by the „custom shader‟ function.

Under normal circumstances, a compilation error would occur due to the „custom shader‟

function not being fully parameterized. The shader system handles this by introducing

Figure 38 Illustrates the adaptive mechanism which handles the automatic substitution of parameters
for custom shader functions when required

system_vertex_shader (, ,)

{

custom_vertex_shader(, , ,);

}

(B) Available wrapper parameters are
directly substituted into „custom shader‟

function

(C) The system introduces placeholder

variables where parameter data is not
provided by the shader/wrappers „data

interface‟

(A) Arbitrary shader (wrapper)

parameters defined following the pre-

processing phase

90

„placeholder‟ variables into the wrapper‟s body which are used as necessary (see item C in

figure 38). These placeholder variables (initialized to default values) prevent syntax errors

occurring during the shader‟s compilation phase. As mentioned, this placeholder mechanism

is also applied to the shader system‟s „pixel shading‟ stage.

In summary, this aspect of the GRC shader system provides a means for linking custom

shader functionality to an arbitrary data interface for shader parameters. Furthermore, this

system feature is fully automated in that no specialized intervention is required by artists

during the shader compilation process. This represents a significant part of the GRC‟s shader

system structure.

In addition, the GRC‟s shader system consists of another major component, which is also

based on compile time assembly/PPDs, namely shader based procedural material

composition. This „component‟ encapsulates sophisticated procedural functionality in the

context of the shader system, through a suite of high level „combiner‟ functions. These

functions are provided by the system for use by developers/technical artists, when defining

custom shader functionality, using this system.

Shader based procedural composition

The previous discussion illustrates the GRC shader system‟s sophisticated use of HLSL to

deliver „adaptive‟ shaders. Adaptive shaders based on pre-processor based shader

compilation, proved to be robust during initial development and thus, these principles have

been reapplied to deliver interchangeable, shader based „material composition‟.

Recall that the „Maya plug-in‟ (RTCE) provides user interfaces and functionality that permit

material creation via arbitrary composition of procedural functions. In other words, these

RTCE interfaces expose parameters that enable specification of materials which are used in

geometry, during the GRC‟s rendering process. Complex material compositions can amount

to sophisticated calculations which must be evaluated in real-time, for each pixel that

represents the material‟s underlying geometry. For this reason, it is appropriate to harness the

parallel processing capabilities of the GPU, to deliver this process at real-time/interactive

rates.

Because material composition is provided in this „interactive‟ tool chain context, changes to

material compositions during runtime, must be immediately reflected following artist

interaction with the system. Subsequent discussion shows how this was achieved, via the

reuse of established elements of the GRC‟s shader system.

91

Although the majority of the material composition system is based in shader code, some

elements of this component are CPU bound. This is necessary in order for material

parameters to be stored between render cycles of the GRC application.

Recall that rendering processes based on the GPU architecture, require data to be „uploaded‟

to the GPU prior to the GPU based rendering process. Because the shader based material

system is parameter driven, it therefore requires that parameters be specified (uploaded) on

the GPU prior to the material being rendered/applied.

Thus, when a material composition is rendered by the GPU, it is merely a reflection of the

uploaded „parameter/data context‟. Given that parameters are uploaded to the GPU on a per-

frame basis this therefore, underpins the immediate/interactive response of the material

system to parameter changes invoked from the RTCE. This „interactive side effect‟ serves as

another motivation for providing a GPU based material composition system.

Recall that the RTCE permits advanced material composition for use on geometry. In

addition to „composition‟ of procedural functions, the material composition system also

allows artists to specify unique compositions for different „channels‟ of a material. The

material channels that are supported by this system are:

 Colour channel

 Bump channel

 Auxiliary data

Using this system, an artist could for instance, combine the „Perlin noise‟ function with a

texture image, to dynamically compose a „gritty‟ variant of the texture image. The artist can

choose to express this composition via the material‟s „colour channel‟. This would result in

the composition being explicitly visible as colour, across the geometry to which it is applied.

In addition, the tool chain/material system allows artists the option of applying a procedural

composition to the material‟s „bump channel‟. Thus, the material‟s „bump‟ surface

enhancement could for example, be based on a noise procedural composed with a procedural

checker pattern.

Note that the material system is based in the GRC‟s pixel shading stage; this making the

delivery of per-pixel shading effects, such as „bump mapping‟, feasible. Bump mapping

emulates additional surface detail on geometry, by altering the interaction of scene lighting

across geometric surfaces (Elias, 1998). In this system, this „alteration‟ is typically based on

the results of a procedural composition, in the materials bump channel. Because bump

92

mapping occurs on a per-pixel basis, it naturally integrates into this pixel shader based

material composition system.

Thus, the material system takes advantage of this context, to deliver and express data in a

range of ways via different channels.

As indicated, this tool chain natively supports a third „auxiliary‟ channel. The auxiliary

channel provides an additional source of data for use in the development of customized pixel

shading functionality.

An example of the auxiliary channels application could be to specify transparency in the

material‟s rendering result. Thus, the technical artist could implement a shader which

interprets data in the auxiliary channel, to allow artists to procedurally specify the

transparency of geometric surfaces which apply the material/shader.

The schematic in figure 39 provides a visual representation of the GRC‟s multi-channel

material composition system.

Figure 39 reiterates the concept of per-channel procedural composition, as interaction

between items (A) and (B) of the schematic show. Each of the available procedural functions,

as shown in (A), can be used during a composition or „combining‟ process (B) of a material

channel. Item (D) represents the integration of custom pixel shader functionality. Note that

„combining processes‟ for each of the three material channels can be optionally

invoked/incorporated into the „custom‟ implementation of a pixel shader.

Figure 39 Illustrates the GRC‟s shader based material composition system

GRC’s ‘Adaptive’ shader-system

}

B: Composition of procedural

functions for each material

channel takes place
independently in ‘procedural

combiners’

c c c

A: Procedural functions implemented on

the GPU, correspond to procedural

functions exposed by the ‘Maya plug-in’

custom_pixel_shader(…) {

C: Shader-system’s pixel-

stage (as shown in figure 37)

D: Custom implementation of

pixel-shader functionality

integrates channel-combiners
(or material features) as

required

optional/independent use of procedural function in combiner associated combiner

optional/independent use of channel data in material/shader combiner

system_vertex_shader (…) {

…

}

system_pixel_shader (…) {

custom_pixel_shader (…);

}

m

93

Figure 40 Shows how procedural functions are

included/excluded in a procedural composition during

shader compilation

Channel specific PPD‟s control the inclusion of

procedural functions for a „channel composition‟ at
compile time. Through this, shader based procedural

composition can be efficiently achieved

channel_combiner(…) {

+1

+1

+1

=
1

3
 𝑝𝑛2

0

p
0

p
1

p
2

„Combining‟ concludes by averaging the

contribution of each procedural function

}

To achieve arbitrary „procedural compositions‟ in the pixel shader, the system reuses the

concept of pre-processor directed shader compilation. Thus, when an artist specifies a

composition for a material channel, the system responds by recompiling the respective

shader.

As discussed, the recompilation process yields a shader that corresponds to the artist‟s

changes; in this case, a procedural composition that reflects the artist‟s actions in the RTCE.

Thus, shader recompilation underpins the interchangeable/customizable nature of material

compositions in the system.

Note that although material composition could be achieved via composition structure which

is based on „conditional statements‟, there is a major disadvantage to this approach.

Composition based on switches/conditional statements would obviously require invocation to

each procedural function to exist throughout the body of the shader.

Recall however, that HLSL compilation implicitly expands the code that underlies function

calls, into the accommodating shader. Thus, the accumulated effect of a switch based

approach would be the compilation of overly complex shaders. Aside from taking longer to

compile, most of the shader‟s complexity would typically be unutilized.

The approach taken in the GRC‟s shader system, applies PPD‟s to yield smaller and more

concise pixel shader code, which is executed by the GPU during rendering. As in the

„arbitrary parameter interface‟, pre-processor

driven compilation „culls‟ unnecessary code

from the shader source that is passed to the

HLSL compiler. A beneficial side effect of

this, is less computational processing required

at the pixel shading stage of the rendering

process; this having positive implications on

the GRC‟s runtime performance.

When the GRC receives network notification

to update a material, it responds by generating

a list of PPD‟s which correspond to the new

material composition. These PPD‟s instruct

the HLSL compiler‟s pre-processor as to

which „blocks‟ of „procedural functionality‟

to include/exclude from source code that is

complied. The inclusion/exclusion of

94

„procedural blocks‟ constitutes the system‟s ability to arbitrarily combine procedural

functionality in a shader. An abstract illustration of this „block based‟ combination system is

shown in figure 40. Note that systematic organization of source code, coupled with consistent

use of conventions for procedural function definitions, is used to deliver a compiler driven

combination mechanism, in the context of a shader.

Compile time material composition, driven by PPD‟s

float denominator = 0.0f;

float3 result = (float3)0.0f;

...

#ifdef PROCEDRUAL_CHECKER_CHANNEL_COLOUR

sum += Procedural_Checker(coordinates, checkerParam_lv_colour);

 denominator++;

#endif

#ifdef PROCEDRUAL_PERLINNOISE_CHANNEL_COLOUR

 sum += Procedural_PerlinNoise(coordinates, rampParam_lv_colour);

 denominator++;

#endif

#ifdef PROCEDRUAL_GRID_CHANNEL_COLOUR

sum += Procedural_Grid(coordinates, gridParam_lv_colour);

 denominator++;

#endif

...

result /= (denominator == 0.0f ? : 1.0f : denominator);

Table 13 Code excerpt shows how „blocks‟ of code are conditionally introduced to a shader at compile time, to deliver

procedural composition

As the code except in table 13 shows, all procedural functions of the shader system‟s

procedural library, are explicitly incorporated into the source code. Note that this code

represents the implementation of a „combiner function‟ (see channel combiner in figure 40).

The result of each „invocation‟ of a procedural function is accumulated into a single variable

(„result‟) that is declared in the scope of the combiner function. PPD‟s enclose each

procedural function, enabling the provided PPD‟s to dictate which of the available procedural

functions contributes to the „combined‟ result.

Note that functions of this procedural library follow a „contract‟, where the returned (scalar)

values must comply to the range of [0.0 - 1.0]. This convention was selected, as it constitutes

the range of colour intensity that most graphics hardware can express (for red, green and blue

colour channels).

95

Note that the accumulation of most „procedural combinations‟ is likely to yield a result that

exceeds the noted colour range. To yield correct visual results, the combiner function

„averages‟ the contribution of the procedural functions in a procedural combination.

This requires a denominator to „divide‟ the accumulated combinations to a combined

„average‟. Because the complexity of combinations is arbitrary, the denominator is

consequently variable.

The „compiler driven‟ combination function integrates a special code structure to handle this

automatically. The code excerpt in table 13 is taken from the GRC‟s shader system and

shows the main elements of this compile time averaging strategy. Each time a procedural

function is included in the shader‟s source code by PPD‟s, the local „denominator‟ function

is incremented. The accumulation of procedural functions concurrently yields a denominator

value that corresponds to the number of procedural functions involved in the composition. As

table 13 shows, the denominator is used by the combination function to compute the

„average‟ or „combination result‟, of all procedural functions selected for the material

composition.

Test cases and examples of outcomes produced by the discussed shader based material

composition system can be found in the demonstration chapter.

In addition to the objectives of this research, characteristics of this system are inherently

influenced by a variety of sources, namely research material covered in the literature review,

as well as consultation with industry (see page 35 in the project design chapter).

As discussed, the system facilitates a high degree of „runtime configuration‟, enabling

arbitrary geometry „data formats‟, in conjunction with complex material composition and

support for custom shader behaviour. These characteristics align with the research‟s objective

to deliver „artist centric‟ content creation that integrates and exposes the capabilities of PM‟s

throughout the content creation process.

Furthermore, the system integrates PM‟s into the research‟s tool chain, to facilitate more

detail in games content, while abiding with identified constraints that face game developers.

As implied, the procedural functionality that underlies this material composition system

exists in a generalized shader based „function library‟. Part of the motivation for this

generalized library, was to make the procedural functionality usable by other algorithms

developed during this research.

96

c

m

c c

Figure 41 Illustrates the GRC‟s material

structure

This example shows how procedural

functions can be independently combined

across different channels, yielding highly
customizable materials in the GRC

Material/Shader management

Recall initial discussion in the „rendering module‟ section, that reviewed shader integration in

real-time rendering applications; namely for the GRC. Shader based rendering applies the

processing power of GPU hardware to accelerate graphics rendering for interactive graphics

software.

Despite the GPU‟s central use in the GRC‟s rendering process, much of the process is still

underpinned by the CPU. This is because the CPU is responsible for controlling the GPU, as

well as supplying it with resources/data during the rendering process.

The GRC‟s „CPU bound‟ component therefore, plays a central role in the delivery of

„adaptive‟ shaders and material composition. Recall for example, that adaptive shaders rely

on a recompilation process, as well as the generation of PPD‟s, prior to shader recompilation.

This process is carried out on the CPU which is followed by CPU based invocations to the

Direct3D 10 API. As mentioned, the CPU component is specifically responsible for data

management and supply of material/shader parameters during the rendering process. The

following discussion provides a brief overview of shader/material integration in the GRC‟s

CPU component.

In keeping with the tool chains interactive characteristic, the CPU component of the GRC‟s

renderer emphasises external specification of data/parameters through the

design/implementation of internal data structures. The „GRC structure‟ section introduced the

GRC‟s material module, and provided insight into its role in the software. A primary role of

this module is to interface with network traffic streaming from „connected‟ instances of the

RTCE/Maya plug-in, during the content authoring

process. In addition, the module stores material data

which is „uploaded‟ to the GPU during the rendering

process.

Figure 41 shows how materials of this tool chain

represent arbitrary compositions of procedural

functions in up to three separate channels. Thus,

materials can potentially represent sophisticated data

structures.

In an effort to promote tool chain interactivity, the

material module has been designed to minimize network traffic during the specification of

materials/procedural functions from the RTCE. Thus, rather than send entire material

97

Scene module

Material module

Figure 42 Illustrates integration of „material module‟ and

objects of the „scene module‟

Per-object material structure

Scene objects

structures from the RTCE, the RTCE only sends the parameters of individual procedural

functions; thus, deferring procedural function association with material structures, to the

GRC.

The motivation for this is that certain „controls‟ of Maya‟s user interface, which parameterize

procedural functions, are capable of frequently invoking the network interface during artist

interaction. An example of this being „sliders‟, which parameterize certain aspects of „Perlin

noise‟ functions. Because data is interactively transmitted from Maya as the artist drags the

slider interface control, it is preferable to minimize the amount of data that is transmitted by

these events.

In response to this minimized „network data schema‟, the material module is therefore, based

on the storage and management of individual „procedural functions‟, rather than entire

material structures.

As artists modify a material composition which is presented in Maya/RTCE, only modified

„procedural function‟ parameters are transmitted to the GRC‟s material module. Thus,

transmission of the entire material structure is typically avoided.

In addition to making efficient use of network bandwidth, this approach also encourages

shared procedural data in the GRC, as figure 42 shows. The actual material data structures,

which represent the assembly of

procedural functions, are stored in each

„game object‟ of the GRC. This approach

to storing material compositions is

appropriate, given that materials are

unique to game object instances (as

implied by the RTCE). Note however,

that the data which underlies „procedural

functions‟, still remains in the material

module. This data is therefore „externally

referenced‟ by „game objects‟, as required by the object‟s respective material composition.

As an aside, each „procedural function‟ stored in the material module, is associated with a

unique identification. These identifiers are consistent between both the RTCE and GRC,

enabling the tool chain to „target‟ the transmission of data from the RTCE, to specific

modules and data structures on the „remote‟ GRC application.

As table 5 (page 60) shows, each „procedural function‟ consists of arbitrary parameters.

Recall from earlier discussion, the material module‟s network interface „decodes‟ and

98

extracts procedural parameters from a binary stream of network traffic. Given the „arbitrary

nature‟ of procedural parameters/data, achieving this required the „global‟ use of data

structure representations of procedural functions, throughout the tool chain.

Thus, the module „casts‟ the incoming byte stream (network traffic), against a globally

defined „packet header‟. Note that this header is also used by the RTCE when data is

transmitted to the GRC.

This „casting process‟ reveals the key information about the network traffic; namely the

traffic‟s „target identifier‟, as well as data concerning its representation as a procedural

function. Within the material module, additional data is extracted from the stream. This data

identifies the „type‟ of procedural function that the network traffic/stream represents. The

material module defines data structures that correspond to each of the procedural functions

and thus, the extracted data is again, cast to the appropriate material module data structure,

depending on the identified procedural type of the network traffic.

Note that if the data packet‟s identifier matches that of a procedural function already stored in

the material module, the data of that procedural function is replaced. If no matching

procedural function is found, a new procedural „datum‟ is created.

Recall that when the parameters of a procedural function are „replaced‟, the appearance of

objects‟ that refer to the procedural data is immediately updated to reflect the change. This is

due to the parameter driven nature of the shader based material system, as discussed.

The module is also responsible for uploading parameters of procedural functions to the GPU,

prior to the rendering of respective geometry. As mentioned, procedural functions are

expressed in the context of a material structure, as figure 41 (page 96) shows. Thus, when

parameters for a procedural function are uploaded to the GPU, this contextual information

must be provided so that procedural parameters are applied to the correct „material channel‟.

As discussed, material structures are stored in the GRC‟s game objects. Thus, „procedural

parameters‟ are uploaded to the GPU during the game objects „drawing‟ process. Game

objects therefore, explicitly invoke the parameter upload process, given that the game object

internally stores the material structure (or context of the procedural function).

When the material module‟s parameter upload functionality is invoked, it internally links the

procedural function „type‟ with the specified material channel. This data context „maps‟ the

parameters to appropriate „shader registers‟, which correspond to data used by procedural

functions in the shader based material composition system.

99

Similar management strategies are also used for „shaders‟ in the render module. As

mentioned, shaders are „adaptive‟ to the vertex/geometry formats of game objects. Thus,

instances of shaders tend to represent shader code that is specific for a particular game object.

Opportunity exists however, for the sharing of shaders in the GRC; this optimizes memory

use in situations where multiple game objects use the same material structure and vertex-

format.

To take advantage of these situations, the GRC employs similar identification strategies to

shader objects, as applied to procedural functions of the material module.

The render module therefore, associates additional data with shaders; specifically the „vertex-

format‟ and material composition which the HLSL source code template was compiled

against. Thus, prior to any shader recompilation event, the render module searches its internal

„shader record‟, for any shader instances that match the shader „recompilation‟ request. If a

match is found, the cached/found shader is reused. In addition to better memory usage, this

approach also avoids the need for unnecessary shader compilation, which can momentarily

stall the interactive authoring process. As mentioned, a reference counting scheme is

maintained by the „renderer‟ for each shader object. This prevents runtime errors that would

otherwise arise, if a shared shader was „released‟ by a referring object.

The demonstrations chapter provides a series images, depicting software components of the

implemented tool chain, as well as its core functionality.

100

(Motostorm, 2007)

Figure 43 Illustrates motion blur as a post-processing effect in

Motostorm

Instancing algorithm

This section describes the real time generative instancing (RTGI) algorithm. This algorithm

provides „instance‟ generation during the rendering process. Recall that a motivation for real-

time instancing is to achieve better integration with a responsive tool chain that aims to

improve productivity.

The instancing functionality being discussed is primarily implemented on the GPU and is

heavily dependent on functionality that is relatively new to the architecture; namely

„geometry shaders‟ and „hardware instancing‟.

Geometry shaders were introduced in 2006, with the advent of „shader model 4.0‟, while

hardware instancing was introduced via „shader model 3.0‟ in 2004 (Efficiently Drawing

Multiple Instances of Geometry, 2010). The main motivation for choosing the GPU

architecture for development is the potential that it offers for high runtime performance, due

to its inherently parallel nature (Owens, 2007). Subsequent discussion will explain how RTGI

can be elegantly expressed on the GPU.

Structural overview

RTGI is a multi-stage rendering algorithm. Multi-stage (or multi-pass) algorithms are

frequently used in real-time graphics. Examples of multi-staged rendering algorithms include

special effects such as simulated depth-of-field and motion blur (figure 43), as well as

reflections and refraction. Although distinct, these particular examples share a similar „flow

of data‟. That is, data which has been processed by the GPU in one stage circulates through

the GPU in subsequent stages (or

passes). For example, „per-pixel

motion blur‟ is achieved by two

rendering passes; the first „renders‟

an object‟s velocity, with the second

performing „conventional‟ rendering

of the object under the influence of

previously rendered velocity data.

RTGI begins with an „instance generation‟ stage which takes arbitrary geometry („manifold‟)

and computes transformations for other object „instances‟ across the geometry‟s surface. The

second stage renders many „copies‟ or „instances‟ of other geometric objects, where each is

transformed by the previously generated transformation matrices. This is achieved by the use

101

(QuadTerrain LOD: Finished, 2008)

 Figure 44 Illustrates adaptive terrain, where tessellation is

a function of view position

of „instancing‟, which provides an efficient method for rendering large „populations‟ of

objects. Further details on hardware instancing will be provided in subsequent discussion.

Note that stages/passes in RTGI are used in a different way to the special effect examples. In

those examples, passes operate in the „image space‟ domain on a per-pixel basis to produce a

composed rendering outcome. Such multi-pass processes are referred to as „post processing‟

effects using data stored in pixel buffers. In RTGI however, stages are concerned with

processing geometric data. In addition, RTGI does not encode generated data as is the case

with the post processing effects. Passes of post processing effects tend to produce data that

has internal meaning to the algorithm. RTGI differs, in that data emitted during the first stage

is „generalized‟, and can be reused at other points in the application‟s rendering process.

Algorithm specific passes

Each pass of the RTGI algorithm uses different features of the GPU; the first of which is

„geometry shading‟. Geometry shaders introduce functionality to consumer graphics

hardware that enables „geometric data‟ to be generated during the rendering process (NVidia:

GeForce 8800, 2010). This differs from conventional rendering processes, where all

geometric data had to be provided prior to rendering.

Because geometry shaders provide a means of adding geometric complexity during

rendering, they are often used to increase the detail of rendering. In the case of terrain for

instance, high quality results can be efficiently achieved via geometry shaders. Geometry

shaders enable „selective tessellation‟ to be implemented entirely on the GPU, providing

improved visual results with minimal

overhead on the hosting processor.

Selective tessellation means that

primitives/triangles of the terrain that

satisfy a tessellation criteria (such as falling

within a certain vicinity of the viewing

position) are subdivided, yielding a more

convincing visual appearance.

The overall result is tessellation that only

occurs in portions of the terrain where

necessary, avoiding „redundant‟ tessellation at distant or non-visible areas of the scene.

Because the tessellation is a function of the viewer‟s position, it reacts to viewer movement

and thus, as the viewer moves through the scene, portions of the terrain increase and decrease

102

Figure 45 Sophisticated fluid flow achieved by applying

geometry shading to a particle system

(Hagedoorn, 2007)

in detail according to the „tessellation criteria‟. When selective tessellation is implemented

via geometry shaders, it offers a good balance between efficiency and visual quality without

imposition of overhead on the host processor.

Another common application of geometry

shaders is to create or enhance „particle

systems‟. The particle system is a widely

used abstraction that underpins many

special effects in games such as

rain/precipitation, fire, explosions and

fluid. To remain practical for real-time

graphics, particle systems simulate large

volumes of particles by substitution of a

small number of visually complex particles. This trade off (between particle quantity and

quality) tends to require careful optimization by the developer. With the advent of geometry

shaders however, a new „dynamic‟ quality is introduced to particle systems that allows

massive volumes of particles to be added/removed from a system while maintaining CPU

independence. This offsets the mentioned trade off quite significantly, as processing

additional particles is entirely offloaded onto the GPU.

For the instancing algorithm however, geometry shaders are applied in a different way for an

entirely different purpose. Rather than use geometry shaders to enhance the appearance of

rendered geometry/phenomena directly, the algorithm takes advantage of data generation

within the geometry shader, coupling it with „output-streaming‟ functionality (Stream-Output

Stage, 2010). Actual scene enhancement takes place after the geometry shading stage, and

uses the data it generated by the geometry shader for efficient „scene population‟.

The aspect of data generation in geometry shader‟s is specifically used to generate per-

instance information for the subsequent „scene population‟ phase. To achieve this, the

rendering pipeline needs to be configured to enable „output-streaming‟. By default, geometry

shaders propagate any generated data/geometry forward through the rendering process,

towards the final rasterization stage. This happens in the two examples previously discussed,

where generated data is passed forward for immediate onscreen rendering. For this algorithm

however, generated data needs to be channelled „back to the system‟ in order for it to be

reinterpreted/reused as instancing data in the subsequent rendering process.

103

Streaming

As mentioned, RTGI relies on data that is generated by the geometry or „instancing‟ shader,

being accessible to the host system. The streaming capabilities enable data buffers that are

accessible to the host system/CPU, to be filled by the output of geometry shaders. This

requires reconfiguration of the rendering pipeline (Stream-Output Stage, 2010).

As an aside, the pipeline configuration used for RTGI demonstrates the flexibility of the

Direct3D 10 graphics API. Rasterization is not required at the instancing stage of RTGI and

thus, „pixel buffers‟ (or „render-targets‟) are not bound to the device prior to the first pass

(Samyn, 2009). Instead, the pipeline is configured so that render-targets are substituted with

generic data buffers, which are populated with instance data during the streaming process.

Although the geometry shader still „renders‟ the manifold geometry, no visual outcome is

produced. Instead, the „rendering‟ process fills the instance buffer in a similar way to the

rasterization of a render target by a pixel shader.

In comparison to other shader types such as vertex shaders, geometry shaders allow more

control over the population of output buffers; particularly in terms of the amount of data

issued per shader call. This is possible because geometry shaders integrate a „list-like‟ data

structure through which data is output (Stream-Output Object, 2010). This, in conjunction

with hardware based flow control/branching (introduced in „shader model 4.0‟), provides

explicit control over the amount of data that a geometry shader can output (Blythe, The

Direct3D 10 System, 2006). This is the mechanism for variable output data from geometry

shaders.

Other shaders such as vertex shaders impose that a static quantity of data be outputted during

execution. When a geometry shader operates on a triangle however, arbitrary amounts of data

can be independently emitted. Table 14 contains code excerpts written in HLSL, that

illustrate these shader characteristics.

104

Vertex Shader Geometry Shader

void vertex_shader (

...

out float4

out_position:SV_Position,

...

){

/*

shader output ‘fixed’ registers

that have been explicity declared

*/

out_position = position_data;

...

}

void geometry_shader (

...

inout PointStream<data_struct>

shader_output

){

/*

shader output can be ‘appended’

independantly

*/

...

shader_output.Append(data);

...

}

Table 14 Comparison of shader types, showing how geometry shaders facilitate variable data output, unlike
other shader types

Arbitrary data streaming, based on dynamic branching in geometry shaders, lies at the heart

of RTGI. In RTGI, the evaluation of a procedural function is used to decide where objects are

instantiated across the manifold. This function will be referred to as the „Mask‟ procedural.

Instances are emitted or suppressed at discrete points across the manifold, depending on the

Boolean reduction of the mask procedural at that point. Flow control is therefore central to

this aspect of the shader. Table 15 contains the partial definition of a geometry shader which

illustrates the use of flow control for data output in the context of HLSL.

105

Geometry Shader

[maxvertexcount(128)]

void inst_geometry_shader(

...

inout PointStream<inst_type> inst_shader_output

) {

...

inst_type data;

...

if(mask_result) {

/*

Note that the stream structure can only be appended to and not read from, despite

the ‘inout’ semantic in the structure’s declaration

*/

inst_shader_output.Append(data);

}

...

}

Table 15 Shows how variable output is achieved via flow control and the output „structure‟ of geometry shaders in HLSL.

As this definition shows, the „PointStream‟ mechanism is provided to capture data

generated by the geometry shader. The „PointStream‟ is one of three „list‟ representations

available in HLSL geometry shaders (Stream-Output Object, 2010). This list mechanism

enables the output of arbitrary amounts of data via the „Append‟ intrinsic.

HLSL provides three „stream types‟ that are designed to simplify the output of geometric data

from the shader; these being the „PointStream‟, „LineStream‟ and „TriangleStream‟

(Stream-Output Object, 2010). Interestingly, input and output primitive types within HLSL

geometry shaders are independent. This characteristic is particularly useful for RTGI given

that output instance data doesn‟t correspond to input data.

As an aside, note the „maxvertexcount(128)‟ decorator, in the shader declaration of the

previous excerpt. This instructs the HLSL compiler as to how many data output registers

(from a maximum of 1024), should be allocated for the shader (Geometry-Shader Object,

2010).

In terms of instance generation via the geometry shader, any streaming „type‟ can be used to

output data, given that the data is not immediately/directly used for rendering. This assumes

however, that data accumulated from all calls to the geometry shader are correctly „aligned‟

via the selected stream type. Because the RTGI algorithms subsequent rendering stage

106

utilizes „hardware instancing‟, alignment of instance data is crucial. This is because hardware

instancing assumes consistency in the layout of instance data, in order to efficiently „batch‟

rendering of multiple objects. This will be discussed in more detail in the following section.

Instance data provides information that allows similar objects to be uniquely parameterized

as a basis for inter-object/instance variety. Although the instance parameters are defined

according to the needs of an application, they usually include an affine transformation in

order for instances to maintain unique position, orientation and scale (Weisstein, Affine

Transformation., 2010). For these situations, 12 or 16 floating points are required to represent

the transformation of instance.

For the RTGI algorithm however, the specification of 12 floating points can be avoided due

to the algorithms design and implementation. Thus, only 8 floating points are required to

parameterize each instance due to assumptions; namely uniform per-instance scaling and

constrained rotation (about a single axis), being applied to instances of this algorithm. The

motivation for minimizing per-instance data is to make efficient use of capacity and

bandwidth of the graphics hardware. Table 16 shows the per-instance parameter structure that

RTGI generates.

Purpose Components Data type Data size Packet

Instance position x,y,z „float4‟ 16 bytes Per instance description

Instance scale w

Manifold normal x,y,z „float4‟ 16 bytes

Instance rotation (yaw) w

Table 16 Per-instance parameter structure emitted from instance shader

Instancing

As mentioned, „instancing‟ provides a mechanism that efficiently renders the same geometry

multiple times. This efficiency is achieved by minimizing the number of invocations to the

graphics device during the rendering process, than would traditionally be required.

Introducing more geometry into the final scene allows an increased level of realism in the

graphics of games to be achieved. Note that for many situations, quality gains can be made

by redrawing instances of the same geometry, where each instance is subject to unique „per-

instance parameters‟.

Traditionally, rendering multiple geometric instances (prior to hardware instancing) was

avoided, due to the negative implications that this had on runtime performance. To render

geometry multiple times required copies of the geometric data be sent to the GPU from the

107

CPU. The cumulative effect of this was a significant load on inter-processor bandwidth,

consequently hindering runtime performance.

To take advantage of GPU instancing, two data sources are required; an „instance buffer‟

(containing all per-instance parameters) and the base geometry being instanced. As indicated,

an instance buffer is a sequentially organized buffer containing the per-instance data that

describes/parameterizes each object instance. The amount and type(s) of data in an instance

„packet‟ is arbitrary, allowing instancing to cater to many applications.

GPU instancing typically begins by binding and uploading the instance and geometry buffers

to the rendering device. When this data has uploaded from the CPU to the GPU, mass

rendering of instances can be efficiently performed. This is a side effect of all instancing data

being locally available to the GPU in its own memory. Thus, fast iteration of the instance

buffer by the GPU, is possible. For each iteration, the parameters for a single instance are

applied to the base geometry that is also locally cached in GPU memory. The GPU then

immediately renders that parameterized instance geometry. The superior performance gained

by this approach is based on the instancing process occurring solely on the graphics

hardware, without the need for CPU/external intervention.

Due to the ambitions for real-time performance in this research‟s interactive tool chain,

efficient rendering techniques such as this are significant. Furthermore, because hardware

instancing is predominantly used extensively in games, the technique is also relevant to the

tool chain‟s application domain. Hence, the motivation for applying GPU instancing within

RTGI is obvious.

Motivations & considerations

The widespread application of hardware instancing in games, may bring into question the

need for procedurally based instancing in a games engine. Procedurally based instancing

however, retains a distinct and powerful characteristic; that it performs the entire task of

instancing „on-the-fly‟.

Given that this approach generates instancing data in real-time, this makes it inherently

different from typical methods that are based on pre-baked static data. The consequence of

this „standard‟ approach is that the parameters for each instance must be explicitly stored,

thus increasing the game‟s overall size. Furthermore, the standard approach doesn‟t advocate

real-time responsiveness (to parameter change) in the same way that procedurally based

instancing does, given the static nature of underlying data. The implication of „static data‟ is

that the production processes that underlie standard instancing are likely to be tedious and

108

slow due to the process of „baking‟ static instancing data. The „baking‟ process usually

involves manual specification of instances by an artist, or the generation of stored instance

data by a „fixed algorithm‟.

Procedural instancing improves issues related to instance authoring and storage due to its

generative, „on-the-fly‟ characteristic. Given the performance capabilities of current GPU‟s,

coupled with the architectures solid performance increase projections, GPU based real-time

instance generation serves as an increasingly feasible strategy to reduce space complexity and

artist/authoring overhead (Tech ARP, 2010).

Despite the benefits of this generative approach, some memory considerations must still be

taken into account. Furthermore, streaming functionality that offers the levels of flexibility

previously discussed must also be natively available. Due to the way that stream-out

functionality is currently implemented in mainstream graphics API‟s, the algorithm requires

that memory be available upfront and in full during rendering, to store streamed data.

In principle however, instancing data generated by the geometry shader could be passed

directly to an „instancing-like‟ rendering process for immediate rendering. Due to the

capabilities of current graphics APIs, namely Direct3D 10, the use of geometry shaders for

instance generation, requires streaming functionality to be available in order for generated

data to be channelled to a temporary storage buffer.

During the process of data streaming from a geometry shader, current API implementations

require the stream destination buffer be pre-allocated and of a fixed size (Stream-Output

Stage, 2010) (Lichtenbelt, Brown, & Werness, 2008). In OpenGL and Direct3D 10 however,

it is possible to resize the stream-out buffers during runtime, provided that this takes place

outside of the streaming process. This capability is taken advantage of in RTGI to

accommodate varying numbers of instanced objects. A number of strategies are available for

calculating the size of a dynamic buffer used to store stream-out data.

Although crude, the first strategy can be applied to data streaming in both OpenGL as well as

Direct3D 10. Furthermore, it is conceptually simple. The strategy is based on basic

information about the geometry being rendered; namely the number of triangles it consists of.

To render geometry, it is necessary to know the number of primitives/triangles that it consists

of. Graphics API's provide functionality or documentation indicating the maximum amount

of data that a primitive can emit during execution of a geometry shader (Geometry-Shader

Object, 2010). Recall that geometry shaders implemented in HLSL require that data output

size be explicitly declared (Geometry-Shader Object, 2010). Thus, by allocating a buffer for

109

Figure 46 Illustrates poor utilization of stream via first strategy

D
at

a
o
u

tp
u

t
fo

r

ea
ch

 i
n
v
o

ca
ti

o
n

to
 t

h
e

in
st

an
ce

g
en

er
at

io
n

 s
h

ad
er

B
A

cc
u

m
u
la

ti
o

n

o
f

in
st

an
ce

 d
at

a

in
 a

ll
o
ca

te
d

b
u

ff
er

;
n

o
te

 t
h

e

u
n
u

ti
li

ze
d

sp
ac

e

stream-out data by the following equation, the application can guarantee enough buffer space

for every possible streaming scenario.

stream buffer size =

object primitive count × maximum data output per geometry shader

Given that geometry shaders (such as the instancing generation shader) tend to emit variable

amounts of data, the average stream buffer utilization for this approach is poor. Figure 46

illustrates this.

An alternative approach is to

allocate stream-out buffers based on

the exact amount of data emitted

during the geometry shading

process.

Achieving this via Direct3D 10

requires use of the „Asynchronous

Query‟ interface which enables

statistics to be captured at certain stages throughout the rendering process

(ID3D10Asynchronous Interface, 2010). Although this interface can determine the amount of

data emitted (i.e. the number of instances generated), this information is only available after

the shading/streaming process has taken place. Thus, the stream-out buffer can only be

allocated based on the volume of streamed data from the proceeding frame/application loop.

As a consequence, the potential for inter-frame glitches exists. These would come as a result

of stream-out buffers being resized in response to the dynamic number of instances

generated.

In stating this, prediction based strategies could be implemented to avoid these glitches by

minimizing the frequency of reallocating the destination buffers for output streaming.

For situations where the destination buffer is too small, „excess‟ data is simply discarded by

the hardware/API. In addition to „inter-allocation glitches‟, these situations may also arise if

generated data exceeds the memory resources provided by the underlying system. Thus, the

artist must remain conscious of platform limitations when working with this implementation

of the RTGI algorithm.

Obviously, the visual side effect of discarded data in the context of RTGI is that respective

instances are not rendered in the algorithm‟s final stage.

110

Implementation of first pass

The following section describes the essence of the RTGI algorithm, which is predominantly

based in the instance generation geometry shader. Thus, it assumes that a software

environment is present which correctly initializes the instancing geometry shader with

geometric, procedural and other necessary runtime data.

Because this work is of an experimental nature, a number of different implementations for

this algorithm were produced. These implementations were essentially iterations towards a

final algorithm that is presented as the procedural instancing solution.

Although unified shading languages such as HLSL provide rich and flexible instruction sets,

there is no native functionality that directly assists instance generation across a geometric

manifold.

Recall that the RGTI geometry shader operates on triangle primitives. Thus, the instancing

shader‟s primary function is to generate instance data that corresponds to the surface

orientation and position of arbitrary triangles being processed. Furthermore, generated

instance data must reflect the triangle‟s topology in addition to procedural functions that

influence generated data. Figure 47 provides a schematic overview of the process.

Thus, when a triangle is being processed, the shader must evaluate its surface to calculate

where instances will be placed. This process is encapsulated by the „surface coverage‟ stage

in figure 47.

Defining a solution for this stage was a non trivial task, and constituted much of the effort in

developing the algorithm. Interestingly, the „coverage stage‟ has similar functional

characteristics to rasterization, in the sense that „plotting‟ takes place across the triangle

similarly to pixel „plotting‟ across a triangle during rasterization. Rasterization is a complex

Emit instance at corresponding

point on manifold

If procedural mask

true

If coverage process

complete

False

True

Evaluate „mask‟

procedural function

Perform „surface

coverage‟

True

Figure 47 Schematic diagram illustrates general flow control in the instancing shader

False

Manifold triangle

 a

b

a

b

Finish

111

process that often merges sophisticated mathematics with heavily optimized scan line

algorithms (Rasterisation, 2010).

The coverage process required for this algorithm is also inherently complex, due in part to the

arbitrary nature of input geometry. Furthermore, the coverage process must incorporate

custom instance generation functionality that is invoked during each „sample‟ of the process;

this adding another layer of detail to the algorithm. As a foreword, it is important that the

coverage process yields „stable‟ output. That is, instance generation should not be stochastic

between frames.

A „marching‟ mechanism underpins each of the surface coverage solutions that were

explored. Marching begins with an „anchor point‟ on the triangle‟s surface being selected,

from which „stepping‟ across the triangles surface incrementally takes place (see figure 48).

Marching therefore, uses a loop to drive the sample position across the triangle. The sampler

loop also allows the number of samples for a triangle to vary; this being a function of the

triangle‟s surface area.

First revision

The first approach to this coverage problem began with the subdivision of an incoming

triangle into two simple right-angled sub triangles. By performing this dissection, the

resulting right-angled triangles allowed assumptions to be made during the subsequent

processing of the sub-primitives. Using right angled triangles helps to keep the „march based

sampling‟ approach as simple as possible.

The „dissection‟ phase begins by determining the longest edge of the incoming triangle. Once

this edge has been found, the process finds the adjacent vertex (that is not on the triangle‟s

longest side). The process uses this adjacent vertex as the „splitting point‟ for dividing the

initial triangle into two right-angled sub triangles, as shown in figure 49.

Figure 48 Illustrates the „coverage‟ strategy which is used during instance generation

Anchor point

112

Because the incoming triangle is arbitrary, it is

essential that the „selected edge‟ be the longest

side of the triangle. Thus, the „splitting vertex‟

cannot be randomly selected from vertices of

an arbitrary triangle, as doing so could yield

non-right angled sub triangles following the

dissection process.

At this stage in the process, two of the three

vertices for each sub triangle are known. Figure

49 illustrates this, with one of the known vertices being a point on the longest edge, and the

other being the „splitting vertex‟ that is adjacent to the longest edge.

To find the third vertex which is shared by both sub triangles, simple 2D projection is

applied. The following equations show how 2D projection is used to obtain „d‟ in figure 49

(note the shared use of variables between the image and formulae).

𝑣 = 𝑐 − 𝑏

𝑢 = 𝑎 − 𝑏

𝑝 =
𝑣

 𝑣
 ●𝑢

𝑑 = 𝑝
𝑣

 𝑣

Table 17 Projection equation used by the RTGI algorithm‟s

„sub triangle‟ extraction calculation

Projection is used to determine the line that passes through the adjacent „splitting vertex‟ and

is perpendicular to the longest edge. The projection process itself, produces a scalar

magnitude (p) that represents the offset of the intersection along the longest edge. This

intersection point defines the final vertex of the vertex tuples that are the two right-angled sub

triangles.

Once these sub triangles are found, the coverage process takes advantage of the right-angled

characteristic of both sub triangles. The orthogonal sides of each are used to define a „virtual

rectangle‟ that encloses the sub triangle, as shown in figure 50. This rectangle represents the

geometric region that will be iterated by nested loops during the sampling process.

c

d

b

a First know vertex

(„Splitting vertex‟)

Sub triangle

Second known vertex

„Longest edge‟

Figure 49 Illustrates what information is known about

a triangle at the start of the instance generation process

113

The outer loop moves along one edge of the virtual rectangle. The nested loop iterates in the

orthogonal direction, parallel to the other edge of the rectangle. Thus, full coverage of

samples across the space that encloses the sub triangle is achieved.

Iteration based on the „virtual rectangle‟ alone will still produce incorrect results however.

This is because approximately half of all samples will appear beyond the hypotenuse edge of

the sub triangle (see image D in figure 50).

Therefore, a strategy involving line intersection is used to ensure samples are contained

within sub triangles. Each nested iteration computes a position that represents the „sample

position‟. By also computing the sample position of the next iteration, a „delta vector‟ can be

deduced. This represents the change vector between the current and subsequent sample

positions. An intersection test takes place between this delta vector and the sub triangle‟s

hypotenuse. This intersection determines if the coverage/sampling process is bordering the

bounds of the sub triangle. If the hypotenuse is encountered during iteration, the nested loop

is terminated. This prevents samples from exceeding the hypotenuse of the sub triangle.

It should be noted that the hypotenuse is the only edge that requires intersection tests during

this phase. This is because the (nested) iterations are implicitly constrained by the sides of

„virtual rectangle‟, which are directly derived from the orthogonal sides of each sub triangle.

This makes intersection tests with the adjacent/tangent edges of each sub triangle

unnecessary, as images (B) and (C) of figure 50 illustrate.

Marching across the geometry shader‟s incoming triangle is achieved by applying this

coverage process to both sub triangles. This marching scheme provides a means for

extracting uniformly distributed positions from the surface of the triangle. For this instancing

A

„Look-ahead vector‟
doesn‟t intersect

hypotenuse. Sampling

along v continues

„Look-ahead
vector‟ intersects

hypotenuse.

Subsequent samples

along v clipped

v

u

Axis for sampling

iterations

Hypotenuse of a

sub triangle

B C D

Figure 50 Illustration of sample clipping during iterative sampling of sub triangle

114

algorithm, these samples represent the positions

of possible instances that are constrained to the

surface of the underlying manifold geometry.

Although this concept appears to be

theoretically sound, practical testing revealed a

series of weaknesses with this approach.

Perhaps the most severe of these were notable

„alignment artefacts‟ which produced

inconsistencies in the distribution of instances

between sub triangles.

In other test cases, there were artefacts such as visual overlapping of instances or irregular

spacing between instances, along the „seam‟ of both sub triangles. Figure 51 shows a severe

case of „alignment inconsistencies‟ of instances (grass) along sub triangle seams in arbitrary

manifold geometry (terrain).

Because samples were uniformly spaced elsewhere on the sub triangles, this made

inconsistencies along the sub triangle seams particularly apparent. Following extensive

testing with more complex data, another short coming was revealed; inconsistencies between

the distribution of instances on the manifold, and the manifold‟s texture coordinates. Thus,

texture coordinates in the manifold had no influence on the distribution of instances.

It is essential that the final marching scheme accounts for texture coordinate data. As

discussed, texture coordinates within geometry provide a flexible mechanism for mapping

two dimensional data, namely texture images, onto arbitrary geometric surfaces. Because the

concept of instancing over a geometric manifold is analogous to „texture mapping‟, the

integration of texture coordinates into the sampling process is appropriate. Integrating texture

coordinate data into the sampling process enables artists to harness instancing in a similar

way to texture mapping. The advantage is that artists are able to reapply existing texture

mapping skills, enabling them to quickly take advantage of the instancing concept.

Furthermore, a correlation between the marching process and manifold texture coordinates is

also relevant to the integration of PM‟s in the instance generation process. In order to achieve

consistent integration of PM‟s, texture coordinates must be present in order to parameterize

the PM‟s during evaluation. Although PM‟s can be evaluated in this context without texture

coordinates, this would impose limitations on the artist, therefore diminishing the capabilities

of this concept.

Figure 51 Illustrates visual artefacts that resulted in

the first implementation of the instance generation

process

Inconsistencies in instance distribution
along sub triangle „seam‟

115

Second revision

The first approach introduced the core elements and necessary considerations for the instance

sampling procedure. In the second approach, the sample triangle „marching‟ idea remains.

Alterations have been made however, that eliminate the „distribution uniformity‟ issues that

affected the first approach.

The previous method subdivided each incoming triangle

into two right angled triangles. By extracting right-angled

elements from the initial triangle, a simple nested loop

process could easily „march‟ across each primitive.

In practice, this yielded instance distributions which were

noticeably inconsistent around the sub triangle seam.

To address this issue, a method that avoided triangular

subdivision was explored. The new method differs to the

previous in that it immediately computes a „virtual

rectangle‟ that encloses the incoming triangle (figure 52).

By computing this „virtual rectangle‟, the marching

„boundaries‟ for the subsequent sampling are therefore

established.

As previously illustrated, another side effect of computing the „virtual rectangle‟ is that the

axes by which triangle marching is based, are implicitly supplied (see „u‟ and „v‟ in figure

52). This therefore, eliminates the need for subdivision of the incoming triangle and thus, the

noted sampling inconsistencies are avoided.

Computing the virtual rectangle begins by calculating two orthogonal vectors from the

incoming triangle; known as the bitangent and tangent vectors (Weisstein, Binormal Vector,

2010). These two vectors form as basis vectors of a Euclidean space referred to as „Tangent

Space‟ (Tangent space, 2010). Tangent space represents the orientation of the surface at a

given point (Tangent space, 2010).

For 3D geometry, tangent space is described by three basis vectors. Two of the basis vectors

lie in the manifold surface at a specific point. The third basis vector is equivalent to the

surface normal at that manifold point.

The concept of tangent space is not novel to game development, having been used in industry

for many years. Perhaps the most notable application of tangent space is its use in achieving

surface enhancing effects for real-time rendering. Examples of such effects include „normal

mapping‟ and „parallax mapping‟ which simulate additional surface detail on simple

Figure 52 Illustrates the „virtual
rectangle‟ which encloses triangles

processed by the instance

generation phase

v

u

Incoming triangle

„Virtual rectangle‟

116

geometry via the use of tangent space

(Normal Map, 2010). Figure 53 illustrates

the basis vectors of tangent space, with

respect to a manifold surface.

Thus, bitangent and tangent vectors define

the vectors underlying the sides of the

triangle‟s „virtual rectangle‟ (see figure 52). Although tangent space is orthogonal, orientation

of the space about the normal vector is essentially arbitrary. That is, the bitangent and tangent

vectors can arbitrarily rotate about the normal vector, while remaining orthogonal.

In the context of 3D graphics, it is often necessary to maintain consistency in tangent spaces

throughout the manifold. Thus, bitangent and tangent vectors are typically aligned to texture

coordinates in the 3D manifold geometry.

A benefit of tangent space based on a manifold‟s texture coordinates, is that it can be

computed algorithmically (Mittring, 2006). For most applications in real-time rendering,

tangent space basis vectors are typically computed and stored for each vertex of a geometric

object. Computing this space information has usually been an „offline‟ process that occurs

prior to runtime. This is because the algorithm requires vertex adjacency information (i.e.

information about neighbouring vertices within the geometry), information that has typically

been unavailable at runtime.

With the advent of Direct3D 10 and its revised shader specifications, this adjacency

information can now be made available at the geometry shader stage in the rendering process

(Shader Stages, 2010). Tangent space can therefore, be determined directly in the instance

generation geometry shader, for use in the triangle marching process. For more information

about computing tangent space within this context, see Appendix C.

As noted, the orientation of tangent space is influenced by the texture coordinates of the

manifold geometry. In this sense, the sampling process satisfies the requirement to integrate

texture coordinate data into the sampling process. The objective is to achieve instancing

distributions that can be manipulated by artists during the modelling process, via adjustment

to the texture mapping/coordinates.

t

b

n

Figure 53 Illustration of tangent space on arbitrary manifold.

Note the orthogonal nature of this space.

n

Manifold geometry

b

t

: bitangent at surface point

: tangent at surface point
: manifold normal at

surface point

117

The process continues by calculating the „extent‟ of the virtual rectangle about the subject

triangle. A series of „point-line‟ projections are computed between the triangles vertices, and

the „side vectors‟ of the enclosing rectangle. As image A of figure 54 shows, each vertex of

the triangle is projected orthogonally onto each „side vector‟ (bitangent, tangent vectors).

Each projection produces a scalar value which represents the offset of the project point from

the side‟s origin. Through this, maximum and minimum projection bounds can be determined

trivially. Via simple vector arithmetic, the corners of the enclosing rectangle can be computed

by the following equations:

𝐶𝑎 = 𝑣𝑉𝑝𝑟𝑜𝑗𝑚𝑖𝑛 + 𝑢𝑈𝑝𝑟𝑜𝑗𝑚𝑖𝑛

𝐶𝑏 = 𝑣𝑉𝑝𝑟𝑜𝑗𝑚𝑖𝑛 + 𝑢𝑈𝑝𝑟𝑜𝑗𝑚𝑎𝑥

𝐶𝑐 = 𝑣𝑉𝑝𝑟𝑜𝑗𝑚𝑎𝑥 + 𝑢𝑈𝑝𝑟𝑜𝑗𝑚𝑖𝑛

𝐶𝑑 = 𝑣𝑉𝑝𝑟𝑜𝑗𝑚𝑎𝑥 + 𝑢𝑈𝑝𝑟𝑜𝑗𝑚𝑎𝑥

Where:

𝐶𝑎 ,𝐶𝑏 ,𝐶𝑐 ,𝐶𝑑 corners of the enclosing rectangle

𝑢 , 𝑣 tangent/bitangent vectors

𝑈,𝑉𝑝𝑟𝑜𝑗𝑚𝑖𝑛 ,𝑚𝑎𝑥 maximum and minimum projections onto 𝑈,𝑉 from each vertex

The process uses the „virtual rectangle‟ in a similar way to the previous surface

coverage/marching approach. That is, the enclosing rectangle is a geometric representation of

the area that is iterated during the marching phase. Nested iterations are used to march the

sampling position over this rectangular space, incrementing the sample position by scaled 𝑢

and 𝑣 vectors.

The scale of increments along the 𝑢 and 𝑣 vectors are influenced by the texture coordinates

of the manifold geometry. If for example, the texture coordinates are „small‟, the sampling

Uprojmax

C

„Origin‟ (illustrative)

Figure 54 Illustrates the process of „virtual rectangle‟ computation via tangent space and orthogonal

projection

Uprojman

Vprojmax

Vprojmin

Uprojmax

v

u

A B

Uprojman

Vprojmax

Vprojmin

v

u

118

1.5

Figure 55 Illustrates how texture coordinates ranges influence
marching „density‟

Texture coordinates:

Marching increment:

Marching steps:

Input triangle(s)

4.0 0.0

0.67 ~ (1.0 / 1.5) 0.25 ~ (1.0 / 4.0)

0.0

reflects this by relatively large increments, giving a smaller number of samples in the

rectangle. „Larger‟ texture coordinates yield smaller increments and thus, „condensed‟

samples/marching. Refer to figure 55 for a visual illustration of this concept.

As with the previous approach,

iterating the enclosing rectangle

requires „clipping‟ of instances that

fall outside of the triangle. If no

clipping were to take place, the

sampling procedure would produce

instances both inside and outside of

the triangle. To resolve this, a ray

casting variant of the „Point in

Polygon‟ algorithm is used (Haines, 1994). This algorithm determines if a point is contained

within a polygon by counting the number of intersections between edges of the polygon and

an overlapping ray-segment. An odd number of intersections indicate that the point is

contained within the arbitrary polygon and an even number indicates no containment (Haines,

1994).

This elegant algorithm lies at the heart of the stepping process‟s „clipping‟ solution. The

process applies the „point in polygon‟ algorithm for each sample of the marching process.

The algorithm‟s „ray-segment‟ is substituted with any vector that defines an edge of the

„enclosing rectangle‟. For each sample step that is iterated, the ray-segment‟s origin is offset

to the sample‟s position in the enclosing rectangle. Intersection tests between the offset

segment and all edges of the enclosed triangle are then performed. If an even number of

intersections occurs, the sample is determined to be outside the triangle and is immediately

clipped. If an odd number occurs, the sample is used to generate instance data.

This approach is a significant improvement of the predecessor. Not only does it integrate

texture coordinates into the marching process, it also addresses the „seam inconsistencies‟

that occurred in the first approach.

Despite its improvements however, a series of issues were discovered during subsequent

testing. Again, these were related to the process‟s interpretation of texture coordinates in the

manifold geometry. Unpredictable results were produced under circumstances where skewed

or tapered texture coordinates were assigned to the manifold geometry. This is due to an

assumption that texture coordinates „match‟ the topology of the „virtual rectangle‟ (i.e.

uniform, right angled). As Error! Reference source not found. shows, the distribution of

119

Skewed texture
coordinates

This instance generation approach is dependent on

uniform/ „orthographic‟ texture coordinates in the

manifold (right), to yield a correct instance distribution

„Orthographic‟/uniform
texture coordinates

Figure 56 Illustrates limitations of instance generation

in the second instancing approach

amples across a triangle containing „irregular‟

or skewed texture coordinates, is inconsistent

with the triangle‟s topology.

This assumption cannot be made, based on the

requirements of artists. Many techniques

involve the clever manipulation of texture

coordinates, which can optimize both

production and runtime efficiency of

game/game content. Thus, to deliver a

powerful and flexible instancing solution that

is based on geometric as well as texture coordinate data, a solution that correctly handles

these situations is required.

Final implementation

The final revision to this sampling process amends all of the issues discovered in previous

attempts and delivers a robust method of mapping instance samples across arbitrary triangles.

As an aside, it is encouraging to see that many elements from initial revisions of the sampling

process are still present in this final implementation. This indicates a good initial

understanding of the problem and the direction that subsequent exploration would need to

pursue.

The developed algorithm is fundamentally based around the manifold‟s texture coordinates,

unlike the previous approaches that primarily base sample distribution on the manifold‟s

geometry. This approach serves as a robust and generalized solution that yields correct

sample distribution for all valid manifold configurations. This general robustness is arguably

due to the solution‟s basis in abstract mathematics, namely linear algebra, as the following

discussion shows.

The process utilizes linear transformations to distribute instance samples that correspond to

the incoming manifold‟s geometry and texture coordinates. Again, the „virtual rectangle‟

concept is used in this process. Rather than apply it to the geometric coordinates in „object

space‟ as in previous revisions, the enclosing rectangle is applied to the manifold‟s „texture

space‟ coordinates, as shown in figure 57. The implication of this is that iterative „sample

marching‟ now takes place with respect to texture space, instead of „object space‟.

120

B Triangle represented in
2D space (relative to

texture coordinates)

A Triangle in 3D

 space

Figure 57 Shows how a texture coordinate based

„virtual rectangle‟ can be used for instance generation

The „virtual

rectangle‟ used in

previous approaches

existed in 3D space

This approach uses a

„virtual rectangle‟

defined in 2D space

Texture coordinate based samples, that are

deemed to be „valid‟, are transformed to object

space via a series of intermediate

transformations. The advantage of „sample

marching‟ in texture coordinate space is that

any skewing, orientation and/or translation of

texture coordinates across the 3D geometry, is

implicitly represented in a normalized plane;

that being 2D texture space. Consider the

triangle in image (A) of figure 57. For an

arbitrary geometric triangle that consists of texture coordinates, a linear transformation exists

to express its corresponding form in 2D texture coordinate space (i.e. image B of figure 57).

By inverting this linear relationship, the sampling/marching process can reflect arbitrary

transformation and arrangement of texture coordinates when distributing samples across the

triangle‟s geometry. What‟s more, this mechanism is robust enough to handle arbitrary

texture coordinate „ranges‟ (as illustrated in figure 55, page 118), which influences

sparse/condensed marching behaviour across a triangle.

The algorithm begins by establishing the minimum and maximum bounds of the texture

coordinates assigned to the manifold geometry. As mentioned, this produces an enclosing

rectangle in 2D texture space. To achieve sample coverage across the triangle, nested

iterations increment the sample position through each dimension of this sample space.

Because iteration occurs in texture space, tangent and bitangent vectors are not required to

direct the sampling position this stage in the process.

The „point-in-polygon‟ algorithm is still used to determine if a sample in texture space is

contained within the triangle that is defined by the texture coordinates of the manifold

geometry. Samples that are outside of this triangle are immediately clipped, ensuring that no

instance is generated.

For samples that are contained in the „texture space triangle‟, information about the

geometric context, as well as the texture coordinate that represents the sample position, are

used for subsequent transformations. The goal here is to transform a two dimensional texture

coordinate (i.e. the current contained coordinate) into a corresponding three dimensional

position on the manifold geometry. Thus, a mapping is required to a point on the object‟s

surface from a coordinate in the object‟s underlying texture coordinates. The

mapping/transformation will be illustrated by breaking it into two logical stages.

121

First, consider the concept of texture space. In real-time graphics, the visual representation of

coordinates in this space is that they „wrap‟ around the associated 3D manifold. Thus, for

each coordinate in this space, there exists a corresponding three dimensional point (or points)

on the manifold surface. It is possible to acquire this information by introducing an

intermediate transformation that maps texture coordinates to coordinates in tangent space.

As previously discussed, tangent space represents the „frame of orientation‟ for a given point

on the manifold geometry. Recall that, of the three axes of tangent space, one is already

known to be the surface normal. Given that this axis is already known, the intermediate

mapping only needs to orientate two basis vectors in tangent space; the tangent and bitangent.

The orientation for both of these vectors is obtained from texture coordinate vectors derived

from the respective triangle.

Consider a Euclidean matrix with two basis vectors defined by two sides of the triangle‟s

representation in texture coordinates/space. Using this matrix, coordinates in tangent space

can be transformed into texture space. As an aside, this matrix underpins the process‟s ability

to correctly represent arbitrarily skewed and orientated texture coordinates in the final

sampling result. By transforming coordinates from tangent space to texture space, based on

the axes defined by the triangle‟s texture coordinates, there exists no dependence on right-

angled compositions or strict orientations of texture coordinates. Rather, this transformation,

which is based on an arbitrary composition of texture coordinates, provides a robust and

elegant mapping between tangent and texture space.

This is sufficient for orientating/skewing tangent space coordinates to texture space.

However, it does not account for the translation of the triangle‟s texture coordinates in texture

space. Thus, the described Euclidean matrix should be encapsulated within an affine

transformation to account for coordinate translation. The translation component of this affine

transformation is based on the texture coordinate that is shared by both „texture coordinate

sides‟ that were used to define this matrix.

As noted, this affine transform represents a mapping from tangent space to texture space. By

inverting this matrix, a mapping from texture space to tangent space is acquired. This enables

the iteration process that is based in texture space to express valid samples as coordinates in

tangent space.

122

To conclude the overall mapping process, a transformation that maps coordinates from

tangent space to model/triangle space is required. Acquiring this transformation is trivial

given that tangent space is orthogonal. Because this transformation is consistent with the

overall „direction‟ of the mapping process, inversion of this transformation is not required.

To construct this transformation, basis vectors are identified which constitute the triangle‟s

„space‟ (see image C in figure 58). Because this space aligns with the triangle‟s surface, two

of the three basis vectors are defined by geometric sides of the triangle. Note that this basis

pair must correspond to the „sides‟ of the triangle that were used to derive the „tangent to

texture space‟ transformation.

The third basis vector of this space is represented by the normal vector of the triangle‟s

geometry as image (C) in figure 58 illustrates. Note that this triangle space is not orthogonal.

The side effect of this is that coordinates from tangent space are appropriately „warped‟ to the

geometric topology of the triangle (space). This is illustrated between images (B) and (C) in

figure 58, where the sample position is „warped‟ into the geometric bounds of the triangle.

Within the actual implementation, both of the mentioned transformations are constructed and

then composed into a single transformation. This combined transformation represents the

entire mapping process and is illustrated by the following equations.

n

A Triangle’s representation

in 2 space (texture space)

An instance sample from
the „marching‟ process

that takes texture space

C Triangle space is consistent with

triangles geometric topology

Sample is transformed into

tangent space

Basis vectors
for triangle

space

n

B

Sample is transformed

into tangent space

Tangent space, w.r.t triangle’s

representation in 3D space

Basis vectors

for triangle
space

Figure 58 Illustrates the sample transformation process for the final triangle coverage algorithm

123

𝑀𝑐 = 𝑀𝑡𝑜 ⋅ 𝑀𝑡𝑡
−1

c𝑜 = 𝑀𝑐 ∙ c𝑡

Where:

𝑀𝑐 Mapping composition

𝑀𝑡𝑚 Tangent space to model/triangle space

𝑀𝑡𝑡 Tangent space to texture space

𝑐𝑜 Coordinate in model/triangle space

𝑐𝑡 Coordinate in texture space

Integration of procedural methods

As mentioned, a central motivation of this algorithm is to expose PM‟s to game artists in new

and novel ways. In this section, the full integration of the mechanism for instance/sample

distribution is described. Thus, the following discussion is concerned with the instancing

shader‟s generation of parameters that represent „generated instances‟. Note that this

generation process takes place, following a „valid sample‟ of the previously described

marching process.

The marching process was designed to calculate and provide data that specifies the position

of instances on the manifold geometry (in 3D space). In addition, it provides information that

is required to parameterize the PM‟s, invoked during the sample/instance generation. Table

18 provides an overview of the data that is provided in this context.

Input Data Dimensions Space

Sample Position 3 Object (Affine)

Manifold normal 3 Object (Euclidean)

Texture Coordinate 2 Texture

Output Data

Data Stream (List) - Object (Affine)

Table 18 The marching process exposes this data to the instance generation phase

As mentioned, the algorithm aims to achieve as much „transparency‟ as possible for the artist

during the creative process. The motivation is to avoid unnecessary learning overheads, by

maintaining consistency with techniques and concepts familiar to artists. For this reason,

124

effort was made to preserve the conventional interpretation of texture coordinates in manifold

geometry, yielding greater control over the use of PM‟s for instancing.

The primary purpose of the sampling process is to choose positions for instances on the

manifold geometry. However, for reasons that will be discussed, it is also useful to have

texture coordinates available for each sample, with respect to the triangle of the manifold

geometry.

Fortunately, these texture coordinates are actually computed as part of the process for

choosing the instance sample positions and therefore, no extra computation is necessary. The

texture coordinates of an „instance sample‟ are the interpolation of texture coordinates

explicitly assigned to the three vertices of the manifold triangle. These interpolated

coordinates enable procedural functions to be evaluated at any intermediate point on the

manifold geometry. This provides intermediate data values over the surfaces that can be used

for evaluation of procedural functions. Importantly, this doesn‟t add significant complication

when integrating procedural functions.

Although up to three procedural functions can be involved in the generation of an instance,

provision has only been made for two functions to specify instance parameters (note that the

third function is applied as the instancing „mask‟). In this experimental implementation, the

two procedural functions are used to parameterize the orientation and scale of an instance

(see figure 59), each of which utilizes the interpolated texture coordinates mentioned.

Procedural functions generate a single scalar value which can range between 0.0 and 1.0.

Recall from the project design chapter that the parameterization of an instance‟s orientation is

achieved by scaling this „range‟ between 0.0 and 2π. This implementation only alters

orientation about the normal vector at that point on the manifold‟s surface. In games,

orientation about this axis alone is sufficient for most situations where instancing is used.

Figure 59 Schematic of per-instance procedural evaluations

Instance Scale

Instance Orientation

Function Library

(see „

material packets‟ section, page 60)

Procedural Switch:

Selects a procedural

function to evaluate

Instance Mask

Instance sample S

S

Fully

Parameterized
Instance

S

S

S

125

The algorithm takes advantage of this „convention‟ by only specifying the magnitude of

rotation around this axis. As discussed, minimizing the instance data makes more efficient

use of data bandwidth between the GPU and hosting system during the algorithm‟s „stream

out‟ phase, improving overall space/time efficiency.

To demonstrate the scope of the instancing concept, the implementation allows different

procedural functions to be specified by artists for each instance „parameter‟. This is achieved

via switches which are integrated into the instance generation stage of the shader. These

switches are controlled by the hosting application, and specify which procedural function to

evaluate for a particular instance parameter. If the „Perlin noise‟ procedural were selected for

instance masking for example, the shader would evaluate that procedural function using

appropriate procedural parameters. A similar process is followed for orientation and scaling,

for which procedural functions are independently evaluated.

Integration of instancing ‘cookie cutter’

PM‟s allow the application of RTGI to a range of scenarios. Recall initial discussion on

procedural instancing in the automated object placement section of the project design chapter

which demonstrated how PM‟s could greatly contribute to the realism of algorithmic

instancing. Despite this, procedurally driven instancing still lacks an important level of

„control‟ that is required for a number of scenarios. Thus, for many situations, the previously

described algorithm would be insufficient. To elaborate, consider the example in automated

object placement section (page 37) where algorithmic instancing is used to populate a ground

surface with foliage.

Typically, a procedural mask is applied in situations like this, to add variety to foliage

distribution. In many cases, this would provide a sufficient level of „artist control‟ over the

resulting algorithmic instancing.

Scenarios exist however, where instance distribution based on a procedural function is

insufficient; namely for situations where specific „features‟ in the distribution of instances are

required. If for example, buildings and other prescribed elements were added to the scene

containing procedurally instanced foliage, intersection (conflicts) between these elements

would be inevitable. As the density and complexity of foliage/instancing increases, the

likelihood of conflicts between scene elements and instances also obviously increases. Given

the pursuit of realism in game graphics, intersections between instanced geometry and other

elements of a scene are unacceptable.

126

The cookie cutter image, mapped to
the manifold geometry. Under

normal circumstances, this is not

explicitly visible.

The corresponding
result of „cookie cutter‟

based instancing

Figure 60 Illustrates the cookie cutter concept for instance

generations

Note that this issue is consistent with findings from the industry consultation section (page

35) of the project design chapter. Staff at Sidhe emphasised the importance of „artist control‟

during the content authoring process. The use of procedural functionality to replace

„meticulous‟ authoring tasks is therefore avoided by Sidhe‟s developers, due to the limited

control that PM‟s tend to offer. Conflicts between instanced objects and scene elements, is

obviously a side effect of automated instancing based solely on procedural functions. As the

interview with staff at Sidhe illustrates however, „hybrid‟ strategies exist; these can be

employed to supplement the limited control that PM‟s naturally offer.

This hybrid strategy merges „conventional game art‟ with PM‟s to provide artists with

explicit control over where the instanced geometry can appear on the manifold. Through this,

the RTGI algorithm can be used in scenarios such as the described scene, without conflicts

occurring between instances and „obstacles‟ that exist on manifold geometry.

The solution introduces another mask into the RTGI implementation, referred to as the

„cookie cutter‟. This mask enables artists to explicitly define regions on the manifold where

geometry instantiation can occur. Note that the algorithms underlying procedural instancing

behaviour is still maintained.

The cookie cutter (or cookie) introduces a high level override that controls instantiation of

instances, regardless of the algorithm‟s normal behaviour. The cookie offers a level of control

to the instancing process which is equivalent to „per-pixel‟ painting in an image.

The cookie „image‟ is implicitly mapped over the manifold geometry. Placement of „features‟

of the cookie dictate where instances

can appear on the manifold. The

cookie image is typically applied to

the manifold geometry in the same

way that textures are applied to

geometry. Note that the concept of

mapping image/texture data to 3D

geometry is well established amongst

the digital/game art community.

The RTGI algorithm „samples‟ the

cookie image during the instance

generation process. Each sample

corresponds to the position of an

instance in the cookies image

127

(„texture space‟). In other words, this process yields the cookie „colour‟ that a particular

instance „sits upon‟ on the manifold. If the colour value matches or exceeds a threshold (in

this implementation the threshold is 1.0 or white), the instancing process continues as normal.

If this criterion is not satisfied, the particular instance is suppressed.

Integrating the cookie feature into the final RTGI implementation was a straightforward

process. As discussed, the instancing process involves iterative „marching‟ across the surface

of each triangle that comprises the manifold. Recall that texture coordinates are provided in

the context of each instance iteration of the manifold geometry. In the context of shader

programming, image/texture sampling requires the specification of texture coordinates to

„direct‟ the sampling process (HLSL:Sample, 2010) (OpenGL, 2010). Accordingly, at each

„instance iteration‟, the texture coordinates for that point on the manifold are used to sample

the cookie image. Conceptually, the sampling result can be viewed as the „pixel colour‟ that

„sits below‟ an instance on the manifold. As mentioned, the sampled colour must satisfy the

predefined criteria, in order for an instance to be generated at that point on the manifold.

Integrating the cookie feature into RTGI was a trivial process. This is due to shader

languages, namely HLSL, readily exposing texture sampling functionality. The code excerpt

in table 19 shows how the revised algorithm integrates the cookie feature via texture

sampling (HLSL:Sample, 2010).

Instancing Shader

[maxvertexcount(128)]

void gs_instancing(...)

{

/* Initialization and sample marching iteration */

...

{

/*

This code is executed for a marching sample that is ‘valid’ w.r.t. the current

triangle, etc

*/

/* Interpolated texture coordinates for sample on triangle */

float4 sample_texcoord = float4(x, y, 0.0f, 1.0f);

/*

The cookie cutter texture is sampled, colour ‘beneath’ marching

sample is returned (tex2Dlod is a texture sampling function in HLSL)

*/

float4 sample_cookiecolor = tex2Dlod (g_cookie, sample_texcoord);

128

float sample_cookievalue = (float) sample_cookiecolor;

/*

If the cookie cutter sample satisfied criteria, or cookie cutter

feature inactive, generate the marching sample’s instance

*/

if(sample_cookievalue >= 1.0f || g_cookieexists == false) {

...

GenerateInstance(sample_position, x, y, n);

}

}

...

}

Table 19 Code excerpt from the instance shader implementation, illustrates the integration of the „cookie cutter‟ feature

As illustrated, the „cookie cutter‟ takes advantage of sampling functionality that is native to

the shader architecture, to deliver an elegant solution for the „conflict‟ problem previously

described. Furthermore, given that texture/image sampling is a relatively efficient process on

graphics hardware, this solution is well suited to the algorithm‟s „real-time‟ nature.

As the shader excerpt in table 19 shows, „cookie cutting‟ has been integrated into the RTGI

algorithm as an optional feature. The system only invokes the feature when a cookie image

has been specified by the artist during runtime. Although this feature offers a considerable

level of control over the instancing outcome, artists must take into account space/capacity

issues when using the feature. This is because the cookie represents a bitmap image and thus,

the storage of a cookie cutter(s) has the potential to introduce significant memory use.

Low resolution cookies should be used where possible, to preserve the algorithms ambition

of minimal memory/capacity utilization. For situations where a high level of instancing

„granularity‟/control is required, it is recommended that artists manually place these objects

to avoid the need for a high resolution cookie.

Implementation of second pass

The previous discussion provides a detailed overview of the RTGI implementation‟s first

shader pass. The purpose of this pass is to generate data which can be used in subsequent

stages of the rendering process for instanced rendering. As discussed, the second pass applies

„hardware instancing‟ to efficiently draw geometric objects that correspond to the generated

instance data. The following section briefly describes the implementation of the second pass

in the context of this research project.

129

Recall that „hardware instancing‟ utilizes special purpose GPU functionality to efficiently

render large „batches‟ of the same geometry (Instanced Geometry, 2010). To achieve this,

the GPU is supplied with two sources of data; the geometry being „instanced‟, as well as the

data that describes each unique instance.

Because this project is based on the Direct3D 10 API, invoking hardware instancing

functionality is relatively straight forward. As discussed, the Direct3D 10 API exposes

functionality for rendering geometric primitives (Myers, 2007). In addition, Direct3D 10

introduces a similar subset of rendering functions that explicitly exposes instanced rendering

to developers (Input-Assembler Stage, 2010). These functions are therefore, invoked during

the second phase of the RTGI algorithm.

As discussed, the instance generation pass is executed in the context of a rendering pipeline

that is configured for data „output-streaming‟. Output-streaming exposes instance data

generated in the algorithm‟s first pass, making it available for use in the second, independent

rendering stage. The concept of „streamed‟ data is typically represented as the flow of shader

generated data, from GPU to CPU memory via the connecting data bus. The accessibility of

streamed data to the CPU enables it to be used across multiple rendering stages. For RTGI,

streamed data is „rebound‟ to the graphics device as instancing data for hardware instancing.

In practice, the „flow‟ of data across the noted data bus may not necessarily occur. This is

because Direct3D 10 effectively exposes buffers as pointers, which are used and manipulated

by the CPU during interaction with the rendering device (Resource Types, 2010). Between

each pass of the algorithm, the implementation‟s CPU bound component, unbinds and

rebinds the same „instance data‟ pointer to the graphics device.

Thus, it is conceivable that „streamed‟ instance data generated by the first pass, remains

resident in GPU memory for direct use in the second pass. The transfer of instance data

across the data bus could potentially be avoided, therefore having positive implications on

runtime performance.

With the exception of „instancing‟ draw routines that are invoked, much of the RTGI‟s

implementation for the second stage is indistinguishable from the project‟s standard

rendering process. Instance rendering in the algorithm‟s second stage is essentially equivalent

to the rendering process described on page 76 of the interactive tool chain chapter. Some

additions were made however, to shader code that underlies standard geometry rendering.

The purpose of these additions was to provide a separate „shader code path‟ that facilitates

and processes the instance data supplied prior to instance rendering.

130

Page 170 of the demonstrations chapter illustrates the core functionality of the final RTGI

algorithm, via the implementation that was integrated into this research‟s tool chain.

Object variation algorithm

As mentioned in the project design chapter, this research explores the use of PM‟s to achieve

variation in game content, without placing excess burden on artists. Ideally, total

development effort for artists producing varying content should be that only a single „base

object‟ need be made.

In addition, use of PM‟s reduces storage requirements necessary for delivering object

variation. This is because duplication of any data isn‟t needed, as is the case with traditional

object variation schemes. The simplest and most common strategy for „geometric variation‟

between game objects is to produce multiple copies of an asset where each has subtle/unique

geometric variation. If variation for an object is created by an artist, each „version‟ of the

asset is then deployed via the game‟s distribution medium, for use in the game. The proposed

algorithm substitutes data duplication with a procedural function which generates variety

between different instances of the same geometric „base object‟.

The literature review identified the use of PM variation techniques in commercial games. For

example, Far Cry 2 integrates a procedurally based „character generation system‟ into its

game engine technology (Breckon, FarCry 2 Preview, 2008). This system

generates/constructs characters at runtime, delivering realistic crowd scenes. By basing this

system on PM‟s, pseudo random character generation can be achieved. The „randomness‟

must be bound however, given that systems such as this require that sensible parameters are

generated, ensuring correct and in this case, believable characters. By using PM‟s to specify

Invalid source

specified.
Figure 61 Depicting variation between pedestrians in Grand Theft Auto IV (GTAIV)

131

(Wagner, n.d)

Figure 62 Illustrates object duplication in games

Duplication of props is common in games such as Half-life
2 (above). Props such as these serve as good candidates for

the use of a geometric variation algorithm

character parameters, developers can tune the presence of desirable variety traits in a

population of generated characters.

Because PM‟s are referentially transparent, the data they yield retains „consistent

characteristics‟ for any specified input parameters. This offers artists/designers a level of

„bound control‟ which in this case, guarantees against undesirable outcomes in character

generation. PM‟s therefore, provide a robust and reliable mechanism to deliver „controlled

variety‟, in contrast to generative variety

based on runtime probability systems,

which could yield erroneous parameters (or

a biased distribution of parameters). These

„variation systems‟ therefore, enable games

to better reflect the settings/environments

being simulated; an obvious benefit to

player experience.

Like many variation systems however, Far

Cry 2‟s variation system is engineered

towards a specific application (i.e. character

variety). The concept being proposed aims

to generalize the notion of „generative variation‟ in game objects while also substituting

conventional variation techniques. Keeping with the theme of this research, this proposed

system also aims to deliver artist specified variation, in an interactive content creation

context. The idea should be suitable for yielding algorithmic variation between most game

assets/objects, rather than specific asset types as with Far Cry 2‟s variation system.

The proposed system achieves generalized variation by altering the geometric form of „base

object‟s‟ that it operates on. It should be noted that the algorithm implemented focuses on

geometric variation between target objects, rather than variation of other „embedded‟ object

data, such as colour and/or materials. The reason for this is expanded in following section,

„objectives and overview‟.

Like other algorithms of this thesis, PM‟s play a central role in delivering this concept. As

with procedural based instancing, the variation system reuses procedural functionality which

was implemented for the project‟s material system (see Perlin noise in table 5 on page 60).

The system implementation uses a feature of modern graphics hardware; namely the

geometry shader. A motivation for this is to maximize real-time responsiveness of the

system, in the context of an interactive tool chain. Thus, the algorithm remains within the

interactive tool chain paradigm, computing geometric variation for objects in real time via the

132

(Mackie, 2008)

Figure 63 Variation present

within early video games

GPU. This algorithm therefore enables artists to create and develop content with associated

content variation, in an interactive development environment.

Objectives and overview

As mentioned, this variation system focuses on geometric modification to alter the form of

3D objects. Although other types of variation in game objects is possible, alterations to

geometry are arguably more novel within the current climate of game development.

The concept of variation is not new to games and for many years, games have incorporated

dynamic variety between objects via comparatively trivial

methods. For example, dynamic colour and material composition

on the same „base content‟. Strictly speaking, techniques such as

this have been present in games dating back to the era of

Pacman, where variation between the visual appearances of

„ghost‟ opponents was achieved by altering the colour of each

ghost instance (figure 63) (DeMaria & Wilson, 2003). Although

the idea‟s sophistication developed in games over subsequent

decades, the fundamental concept still remains a popular method

for integrating variety into games.

This technique for example, was and still is used in the Grand Theft Auto (GTA) franchise

which debuted in 1997 (Grand Theft Auto 1, 2010). Since the first version of GTA, the game

has been capable of delivering variety in vehicles via dynamic colour/material composition.

The likely implication of this game feature, from an artist‟s perspective, is that enabling new

versions of a vehicle would only require the creation of an additional „colour mask‟ for that

vehicle.

Colour masks are usually black and white

images (see figure 64), where white pixels

permit „dynamic qualities‟ (variety) in the

composed „template‟. The convention

follows with black pixels of the mask

preventing dynamic appearance in the

composition.

In terms of overall production for GTA,

having this mask substitutes the manual

production of many cars for each colour

Material Composition:

Dynamic composition of

material and/or color

Vehicle Variation Vehicle graphic

C

Color Mask

C

Figure 64 Illustrates a variation strategy that is frequently

used in games

133

variant required. As figure 64 shows, the mask is modulated with an arbitrary colour hue to

yield dynamic car colouration between instances of the car „template‟ graphic. Note that

black portions of the mask, such as the car‟s windshield, produce no variation in the final

composition. This obviously offloads „duplicative‟ production overhead to the underlying

game technology.

As mentioned, the system being developed takes advantage of features in modern graphics

hardware to deliver variation via similar principles, which are instead manifested in the

geometry of assets/objects. This solution aims to remain as transparent to the content

authoring process as possible, by encouraging the use of common modelling concepts while

minimizing additional workload for asset variation.

To satisfy these criteria, a series of modelling scenarios, where this algorithm might be

applicable, were considered. This led to an interesting insight; that the proposed algorithm is

intrinsically similar to variation strategies based on material and colour variety.

As figure 64 shows, concepts such as „colour masks‟ are provided in variation systems to

give artists additional control over variation in game objects. Similarly, geometric variation

in the proposed algorithm must expose a suitable level of control for artists. The „variation

system‟ must allow artists to selectively subject portions of a complex 3D object to the

variation process. This selective variation will be referred to as non-uniform geometric

deformation.

Non-uniform deformation

Non-uniform object deformation is an essential feature in a viable, procedurally based

content „variation system‟, as most situations only require subsections of target geometry to

exhibit variation.

Recall the „post apocalyptic game scene‟ concept that was presented in the automated object

variation section of the project design chapter. In this setting, variety and „damage‟ is

procedurally added to scene objects, in accordance with the scene‟s narrative. The scene‟s

narrative suggests certain characteristics in the way „damage‟ should be manifested in props.

Non-uniform object deformation would naturally apply to these props, enabling artists to

specify areas that are procedurally deformed in a consistent fashion with the scene‟s

narrative. If the algorithm only enabled uniform variation across a target object, its use in this

situation would yield visual results that were inconsistent with the scene‟s narrative, reducing

134

realism. Non-uniform deformation however, keeps the algorithm relevant to a wide range of

situations.

This algorithm aims to maximize the level of control that artists have over non-uniform

procedural variation in „base geometry‟. Thus, non-uniform variation was introduced at an

„atomic‟ level in the algorithm‟s „data context‟, via vertices of the base geometry.

As mentioned, the integration of non-uniform deformation in this algorithm employs the

sample principle as the masking technique, illustrated in figure 64. The obvious exception

however, is that pixels in the masking technique are substituted with vertices of base

geometry in this geometrically orientated system.

Applying, representing, and integrating variation data

Two major implementation strategies were explored during development of the variation

system, each requiring different data and structures. Aspects common to the two strategies

will be explained first, followed by details of each of the two approaches being covered.

In keeping with maximum artist control, the variation system requires independent and

controllable levels of object variation across manifold geometry, to provide artists with

control over the extent and location of deformation. Both versions of the algorithm subdivide

or „tessellate‟ the „base geometry‟. As discussed in the automated object variation section of

this thesis (page 41), tessellating base geometry adds geometric resolution to the object. This

added resolution allows more recognizable/detailed geometric variation in the processed

result. Storing deformation data in each vertex of the base geometry allows flexible

distribution of deformation data throughout the object. Furthermore, storing per-vertex

deformation as continuous/floating point data, allows „variable‟ levels of deformation in the

base geometry.

As discussed in the interactive tool chain section (page 66), familiar/intuitive content

authoring techniques exist which allow artists to easily assign deformation data to base

geometry. Given that modern games contain objects consisting of thousands of triangles and

vertices, it is essential that deformation data can be applied to geometry in a simple and

flexible way. As mentioned, the proposed variation system uses the „painting metaphor‟. This

metaphor exists in many modelling tools and is used by digital/game artists for a variety of

authoring situations; namely assignment of per-vertex material/colour data to geometry and

geometric sculpting/shaping. Several tools that are heavily used in industry, such as

135

Autodesk‟s 3D Studio Max, XSI (available in „ICE‟ attributes) and Blender, natively

integrate vertex-painting functionality (Matossian, 3DS Max for Windows, 2001) (ICE

Attribute Reference, 2009) (Doc:Manual/Materials/Vertex Paint, 2009). Given the concept‟s

widespread inclusion in a range of relevant tools, the algorithm‟s dependence on per-vertex

colour data, painting conventions and the painting metaphor is reasonable.

This metaphor introduces additional „colour‟ information to manifold geometry, which the

system numerically interprets as a „deformation weighting‟. The algorithm‟s interpretation of

„deformation weighting‟ will be detailed in subsequent discussion. With respect to the

authoring process, this colour data can be displayed to artists in the modelling environment,

as a monochrome „intensity‟ on base geometry. The intensity or „brightness‟ represents the

degree of geometric tessellation and vertex offset that will be applied at specified portions of

the geometry, when the object is rendered in the game engine. Thus, „colouration‟ constitutes

an intuitive representation of this abstract idea, for artists working in the context of a content

authoring environment.

The implication of per-vertex deformation weighting is that an auxiliary „colour channel‟ is

introduced into the vertex structure of base geometry. Thus, deformation data is held

throughout the geometry. The deformation colour channel is exclusively used by the

algorithm, to control the non-uniform variation process. Note that the „colour deformation‟

channel doesn‟t replace other „conventional‟ per-vertex colour channels, which can

simultaneously exist in the geometry of this tool chain.

Achieving variety

Like the procedural instancing algorithm, the variation system is primarily implemented in a

geometry shader. The motivation for this is that the shader/GPU architecture can offer good

runtime performance, making this system suitable for integration in game rendering

technology and interactive tool chains.

The tessellation and deformation process takes place in the context of individual triangles that

comprise the target/base geometry. Per-vertex deformation data is encountered by the

algorithm when the vertices of each triangle are accessed. Depending on the „tessellation

criteria‟, the algorithm responds to the cumulative deformation data of a triangle by either

tessellating the triangle, or preserving its original form. „Preserving‟ the triangle obviously

yields no variation to the „area‟ of the manifold that is enclosed by the triangle. If tessellation

is applied however, new vertices are introduced to the original (incoming) triangle, producing

the effect of triangular tessellation. Note that further detail on the tessellation approach that is

used for this system, is provided in subsequent discussion.

136

Long inter-

triangular edges

yield topological
„tension‟

 Figure 65 Various tessellation strategies

Mid-edge

Mid-face

Replicated

„stable‟

topology

Typically, geometric deformation is applied to vertices that are introduced during the

tessellation process. The algorithm‟s deformation effect is achieved by offsetting the position

of target vertices, by the triangle‟s scaled normal vector. The magnitude of this scaling is

controlled by two factors, these being the variation system‟s associated noise procedural

function, and the user specified „amplitude‟ factor. Note that the amplitude factor comes from

„deformation amplitude‟, which was introduced during discussion of the tool chain‟s

interface implementation (table 5, page 60 and table 8 page 72).

This „vertex offset‟ mechanism constitutes the system‟s strategy for geometry deformation.

Although this deformation approach is sufficient for many situations, it is important to note

that scenarios exist where the „offset‟ approach is inadequate. For example, situations that

require severe or highly specified alteration to the form of target geometry may not be

achievable via this approach. This is because the offset method is inherently limited by the

original form and features of target/base geometry. Consider the situation where objects in a

game scene have been subjected to a powerful

explosion. To yield the impression of a local explosion

amongst damaged variants, portions of „object

varieties‟ might be removed from the underlying „base

geometry‟. Achieving variation of this nature is beyond

the scope of the proposed system. Situations like these

are reserved for future research and/or the use of

„conventional‟ approaches to object variation. For

situations where object variation preserves the features

and underlying form of „base geometry‟, the proposed

solution is a good candidate, allowing for space

efficient, scalable variety amongst game objects. The

term of „generalized deformation‟ therefore applies to

variation situations where variation retains the base object‟s form.

Triangle tessellation

As illustrated, triangle tessellation is central to the deformation process. Because a number of

tessellation strategies exist, exploration into the most appropriate strategy for non-uniform

procedural deformation (NPD) was necessary. Interestingly, the two predominant tessellation

methods identified are both inherently recursive. These are referred to as mid-edge and mid-

137

Requires deformation

N
o

n
-u

n
ifo

rm
 tessellatio

n

 U
n

ifo
rm

 tessellatio
n

Figure 66 Illustrates non-uniform (or

adaptive) tessellation

face tessellation (see figure 65). The use of recursive tessellation enables algorithms such as

NPD, to be elegantly expressed via recursion.

To illustrate this, consider NPD where mid-edge tessellation is applied to a triangle of the

manifold geometry. The algorithm typically responds by tessellating the triangle into four sub

triangles as illustrated in figure 66. Because the algorithm supports variable levels of

deformation, sub triangles themselves, can also be tessellated. The overall deformation

process tends to produce optimized tessellation across arbitrary manifold geometry. This is

because the algorithm adaptively expands „recursive sub trees‟ (tessellates), depending on the

deformation criteria. This criterion is checked on a per triangle basis and determines whether

tessellation is suppressed or applied to that triangle. Note that tessellation can apply to

triangles at any level in the „recursive‟ tree. In addition to the recursive nature of mid-edge

tessellation, it also maintains „stable topology‟ making it a good „tessellation candidate‟ for

this algorithm (see figure 65).

Subdivision topology

The tessellation strategy used for this algorithm must preserve the „outer boundary‟ of each

original input triangle. This ensures that the processed geometry maintains structural fidelity

with the original base geometry. This means that inner angles of tessellated and un-tessellated

triangles are inherited from the original triangle.

Furthermore, to prevent other rendering artefacts (such

as holes and seams), sub triangles that are introduced

during tessellation must be packed together within the

bounds of the original input triangle (see figure 66). As

figure 65 shows, both mid-edge and mid-face

tessellation, satisfy this „geometric criteria‟.

Any complex polygon can be represented by a

combination of simpler polygons or triangles

(O'Rourke, 1994). For a given „combination‟, this can

be referred to as a „topological representation‟ of the

polygon. It is good practice to maintain sound

„triangular topology‟ when working with polygons in 3D geometry; namely by avoiding

elongated, „degenerate‟ triangles (Simmons, 2008). Good topology tends to produce robust

objects, which are better suited for situations like animation and arbitrary warping. If

animation is applied to a poorly structured polygon, „visual artefacts‟ such as those shown in

138

image (A) of figure 67 may result, as the polygon‟s surface is subjected to arbitrary warping

and tension.

The NPD algorithm aims to achieve high quality rendering results and thus, sound triangular

topology is desirable for geometry processed and tessellated by the algorithm.

Good geometric topology is often achieved by minimizing the elongation of triangles (i.e.

degenerate-like triangles), that comprise a complex polygon. As figure 65 (page 136) shows,

mid-face tessellation introduces imbalanced „tension‟ along the boundaries of adjacent sub

triangles. In contrast, the mid-edge tessellation scheme illustrates a „stable‟ form of

tessellation, with „uniform tension‟ along sub triangle boundaries.

Mid-edge tessellation also encourages continuity between adjacent triangles. This is because

vertices that are introduced when an edge is „split‟ tend to be „matched‟ by equivalent „split

vertices‟ on adjacent triangles. When the deformation procedural is applied to adjacent „split

vertices‟, the boundary between adjacent triangles (of the original manifold geometry),

remain indistinguishable. In contrast, mid-face subdivision fully preserves the outer edges of

triangles being subdivided, as figure 65 illustrates. Although mid-face tessellation maintains

consistency between adjacent triangles, the effect of edge preservation in the context of

deformation unfortunately reveals the „triangular substructures‟ of tessellated geometry (see

figure 67).

For these reasons, mid-edge tessellation was consistently used for both approaches to the

NPD algorithm.

Data interpolation

As discussed, tessellation is fundamental to this algorithm. Recall that this tool chain system

integrates „variable vertex structures‟ through which arbitrary data/data channels can be

A (Mid-face)
Poor topology reveals

triangular substructure

following deformation

B (Mid-edge)

This subdivision topology

yields no visual/noticeable
artifacts

First

tessellation

Figure 67 Quality comparison between tessellation strategies

Second

tessellation

Third

tessellation

139

interleaved in object geometry. As figure 65 illustrates, sub triangle vertex positions are

„interpolated‟ across the edge of a triangle during the mid-face tessellation process. Because

other data typically exists in vertex structures, the NPD algorithm must also interpolate this

data in a similar way to interpolation of vertex positions.

Thus, when a triangle‟s edge is subdivided, any per-vertex data associated with vertices of

that edge is interpolated and assigned to the introduced „mid-vertex‟. Most per-vertex data of

the mid-vertex can be expressed as the average of per-vertex data in vertices that define the

edge. This assumption holds, because mid-edge tessellation subdivides edges exactly halfway

across the face of the triangle, as figure 68 (page 140) shows. For some per-vertex data

however, averaging alone is insufficient and thus, additional processing is necessary.

Per-vertex „normal‟ vectors for example, must be re-normalized following the tessellation

process. This is because „vertex normals‟ must maintain unit length, to ensure correct surface

response to light sources during the final rendering phase. If the normal vector of a mid-

vertex were not normalized, incorrect lighting effects would result, given that vertex

averaging would yield non-unit normals under many circumstances.

Applying data interpolation during the tessellation process preserves consistency between

triangle data values supplied to the shader as input, and the tessellated sub triangles that are

generated by the NPD algorithm.

Vertex adjacency and non-uniform deformation

Maintaining data consistency of internal triangle tessellation is essential to ensure that correct

geometric visual results are produced by the NPD algorithm. Similarly, the process must also

yield correct external/inter-triangle consistency between primitives of the base geometry.

Because the algorithm supports non-uniform distribution of tessellation throughout base

geometry, inconsistencies can arise between adjacent triangles that have different levels of

tessellation/deformation.

As discussed, shader programs operate on individual primitives independently. This makes

GPU based shader algorithms autonomous. The main advantage of „autonomous‟ data

processing architectures, is that they provide a robust basis for scalable parallelism. The GPU

architecture achieves this by limiting „accessible data‟ to the current primitive that is being

processed. Random access of the entire manifold geometry is not possible, from the context

of a shader.

To achieve seamless deformation across the boundary of primitives with different levels of

tessellation, „autonomous‟ shaders need to be „aware‟ of the local geometry neighbourhood

140

for a given triangle. This presents a problem which is also seen in other GPU based algorithm

implementations. The shadow volume algorithm presents a classic example of a situation in

which neighbouring/adjacency information is useful. Dynamic shadows are achieved by

„extruding‟ back surfaces of occluding objects into/through the remaining scene, where

shadows are required (Everitt & Kilgard, 2002). Adjacency information is required to

identify the occluding objects „silhouette edges‟, where extrusion is applied (Everitt &

Kilgard, 2002). Implementing shadow volumes in a shader required that information about

adjacent triangle vertices be made available in the context of a vertex shader. To make

adjacency available in this context, additional vertex shader complexity as well as duplicate

data in the manifold geometry, is required. Note that if the vertex shader determines a vertex

to be on the silhouette edge, the vertex‟s „extrusion‟ is typically computed by the shader.

Similarly, this algorithm also requires that adjacency information be available at runtime. In

contrast to shadow volumes however, this algorithm operates on triangles and thus, requires

information about adjacent triangles during execution.

A feature of geometry shaders, as introduced by the latest graphic API‟s, is exposure of

„adjacency information‟ in the context of shaders (Shader Stages, 2010) (Brown,

EXT_geometry_shader4, 2009). To take advantage of this functionality in Direct3D 10, the

manifold/base geometry must be passed to the GPU in conjunction with its corresponding

indice data (buffer). Indice buffers are arrays of integers that typically map triangles and

polygons from a buffer of vertices. During the geometry shading process, this data is used by

the graphics API‟s to efficiently expose adjacency information in the context of the geometry

shader, without the need for data duplication, etc.

Adjacency information is used in this algorithm to avoid „seam inconsistencies‟ between

adjacent triangles that have different levels of tessellation. (D) of figure 68 illustrates the

visual „gap artefacts‟ that result when adjacent tessellation is not correctly accounted for.

These „gap artefacts‟ are unacceptable, given the algorithm‟s objective of visual quality. (B)

α δ Manifold geometry

Figure 68 Illustrates seam-gap artifacts which occur when levels of deformation between

adjacent triangles differ

D

C

B

A

141

in figure 68, shows the presence of non-uniform tessellation in simple manifold geometry,

without the effects of „vertex offset‟/deformation. When the procedural function „offsets‟

internal vertex positions (C, figure 68), „gap artefacts‟ result along the seam of the original

manifold primitives. This side effect is caused by a number of factors that derive from

different „geometric resolution‟ between adjacent primitives (δ and α, figure 68). Because the

procedural function for vertex offset is autonomously applied to geometry, primitives

„implicitly assume‟ that neighbouring primitives are tessellated to the same extent.

Given the continuous nature of procedural functions, namely Perlin noise, more refined

reproductions of procedural functions can be produced when applied to tessellated geometry,

as figure 69 shows. In addition, this image also shows the implications of a continuous

procedural function being used to deform triangles with different levels of tessellation.

As mentioned, tessellated sub triangles that lie along edges of the original manifold geometry

are independently subjected to procedural offset, regardless of matching/non-matching

tessellation in the adjacent geometry. Recall that procedural functions of this project are

parameterized and evaluated by texture coordinate data, which is associated with vertices of

manifold geometry. As mentioned, the interpolation of vertex data takes place during the

tessellation of triangles into smaller sub triangles. This interpolation applies to per-vertex

texture coordinates and thus, unique procedural noise/geometric offset can occur at

intermediate points along the original manifold geometry edge.

To avoid gap artefacts along the boundaries of inconsistent primitives, the NPD algorithm

makes use of „deformation weightings‟ in both the current manifold triangle, as well as

triangles in the local geometric neighbourhood (see figure 70).

No deformed manifold geometry

Non-uniform deformed geometry can yield seams

Figure 69 Illustrates the severity of seam artifacts under normal circumstances

„Cross-section‟ of Perlin

noise along seam

Intermediate noise evaluations

yield geometric gaps

142

2

3

6

Adjacent triangles in local manifold
neighborhood (numbers represent the

levels of tessellation that have been

calculated for triangles)

The current „triangle operand‟

Figure 70 Illustrates adjacent geometry that is

accessible during triangle processing

In essence, the need for tessellation (as determined

by a „tessellation criteria‟) is computed for the

current and adjacent triangles which are supplied to

the NPD shader by Direct3D 10‟s „input assembler‟

(Input-Assembler Stage, 2010). Through this, the

algorithm can „detect‟ the deformation weightings in

neighbouring triangles and thus, compute the levels

of tessellation in adjacent geometry. Typically, if the

tessellation level of an adjacent triangle is less than

the current triangle, the tessellation of the current

triangle is conformed to the lowest adjacent

tessellation level.

As mentioned, two approaches were taken when implementing the NPD algorithm; each

consisting of unique implementation characteristics to handle these tessellation scenarios.

Further discussion on the implementation details of each approach is provided in the

following sections.

First tessellation approach

As discussed, the NPD system requires non-uniform, mid-face tessellation. Multiple levels of

tessellation can be elegantly expressed via recursion and thus, the algorithm was

implemented recursively. For this approach, the deformation/tessellation algorithm was

directly implemented into a „single pass‟ shader. A motivation for this was that a single pass

shader would easily integrate into the project‟s rendering framework.

Unlike single pass algorithms, multi-pass algorithms require more intervention from the host

system to control the execution and order of each pass, performed on the GPU during

rendering. In addition, a multi-pass implementation of NPD would also require allocation of

additional buffers, to temporarily store tessellation data between passes. This would impose

extra responsibilities on the host system in terms of resource allocation and management, as

well as resource „binding‟ (to the graphics device). Thus, an NPD implementation that is

encapsulated in a „single pass‟ shader was attractive.

Unfortunately, recursion is not natively supported in HLSL (Function Declaration Syntax,

2010). It is possible however, to implement a customized stack data structure, in a shader to

simulate recursion (Fryazinov & Pasko, 2008). This underpins the first

implementation/approach of NPD.

143

The shader begins by allocating a static array of data structures which represent the „recursive

stack‟. In a similar way to other stack implementations, this data array is traversed during the

recursion process. „Traversal‟ of the stack is tracked by a „stack index‟ (or „stack pointer‟).

The stack pointer represents the current position of the algorithm/shader within the „recursion

tree‟. Due to HLSL‟s syntactical similarity to other languages, the stack‟s core

implementation is relatively straight forward.

As figure 66 (page 137) shows, each „level‟ of the recursion represents a sub triangle in the

tessellation process. The first recursive level processes the triangle that is passed to the NPD

shader. The algorithm calculates the tessellation level of the current triangle from

deformation data in the triangle‟s vertices. A triangle‟s tessellation level is represented as the

average „deformation weighting‟ of each vertex. If the tessellation level for the current

triangle is greater than the current level of recursion, tessellation of the current triangle takes

place. This represents the „tessellation criteria‟ for this approach of the NPD algorithm.

As discussed, this involves the interpolation (averaging) of vertices on each side of the

triangle. The newly interpolated vertices provide the corners of four „sub triangles‟ to the

current triangle (see figure 66). Recursion continues by traversal of the four sub triangles,

where each sub triangle is stored/assigned to the stack (relative to the current stack

index/pointer). The stack pointer is then updated to point to the „top‟ of the stack following

these assignments. The stack pointer will increment and decrement through the stack, as the

recursive sub trees for each sub triangle are traversed.

For each level/triangle of the recursive process, the algorithm maintains an additional

variable which „tracks‟ the sub triangles that have and haven‟t been recurred/processed.

When a sub triangle has been recursively processed in full, the tracker variable that is

associated with its parent triangle is incremented. Given that tessellation yields four sub

triangles, the algorithm checks this tracker variable following recursion of a sub triangle. If

the tracker equals four, the algorithm knows that the current triangle has been fully processed

and the stack pointer decrements.

If the current triangle‟s tessellation level is less than or equal to the current level of recursion,

then the triangle is immediately „emitted‟ (returned) from the shader. Thus, triangles that

require no further tessellation are recognized as primitives that constitute the final tessellation

result. If the recursion process reaches a level beyond the „depth‟ that the pre-allocated stack

can hold, then the current triangle is also emitted and the recursive process „decrements‟.

Recall that data which is emitted from HLSL geometry shaders is „appended‟ to an output

list, which is exposed in the shader‟s context. A side effect of this algorithm‟s

144

implementation is that the order of sub triangles emitted from the NPD shader is essentially

arbitrary. The arbitrary order of triangles in this list (representing the tessellated base

geometry) yields no irregularities in the subsequent rendering (rasterization) outcome.

As shown in the demonstrations chapter (page 180), the NPD algorithm achieves non-

uniform levels of tessellation via that tessellation which occurs variably, on a „per-triangle‟

basis. As mentioned, the interpolation of per-vertex data is an integral part of „edge splitting‟

in the tessellation process. Recall that deformation data exists in each vertex throughout the

manifold geometry. When an edge is split, a new vertex is introduced which represents the

split (mid) point. As discussed, most data assigned to the split vertex is the interpolation (or

average) of values in the vertices that define the edge being subdivided. The per-vertex

deformation value that is assigned however, represents the minimum deformation value

between the „edges‟ vertex pair.

This has the effect of „conservative‟ tessellation, given that smaller deformation weighting‟s

yield lower tessellation levels for sub triangles. As a side effect, the tessellation criterion is

less likely to be satisfied during subsequent recursion, therefore minimizing overall

tessellation.

Size and compile time

As mentioned, the GPU is a parallel architecture that is capable of delivering high processing

performance. Thus, the architecture is an attractive platform for algorithms such as NPD,

where real-time operation is required.

Recall that the NPD‟s integration into this GRC application requires that the algorithm be

executed in real-time during the hosting application‟s „render cycle‟. The algorithm‟s real-

time performance enables NPD to be applied to game objects/geometry dynamically and

interactively. Despite the performance advantages of this architecture, some aspects of

GPU/shaders are limited. As noted in the tool chain implementation section, the interactive

tool chain temporarily stalls when a shader is recompiled during runtime. As discussed,

shader recompilation is necessary during runtime following a number of artist interaction

events; namely when geometry (vertex) formats are reconfigured (page 80) and/or procedural

material compositions are changed (page 90). Recall that the tool chain allows artists to

independently configure „vertex formats‟ for game objects/geometry. The NPD algorithm

integrates with this feature of the tool chain and thus, requires that artists activate

„deformation weightings‟ in an object‟s vertex-format in order to take advantage of the NPD

system. This requires that artists‟ invoke functionality on the tool chain‟s interface, which

145

was previously discussed in the „real time content encoder (RTCE)‟ section on page 66.

Given the tool chain‟s responsive nature, the object‟s associated shader is recompiled to

include NPD functionality following the specification of „deformation‟ in the object‟s vertex

format. Unfortunately, recompilation of this NPD shader is nontrivial for Direct3D 10‟s

HLSL compiler. This is mostly due to the recursion stack, which is central to the shader

consisting of complex flow control, nested in a conditional loop.

Compiling shaders that integrate deformation functionality therefore, took approximately 2 –

2.5 times longer to compile, than compilation of their non-deformation counterparts. Note

however, that the specification of deformation functionality is a „low frequency‟ interaction

event and thus, delays that result from these shader recompilations are somewhat acceptable.

In addition, the output of a typical deformation shader introduces over 200 more instructions

than the „non-deformation‟ equivalent. The specifications for shader model 4.0 (used for

NPD) require that graphics hardware offer at least 65536 usable instruction slots, essentially

removing the shader size limitations of prior „shader models‟ (Blythe, The Direct3D 10

System, 2006). Larger shaders however, tend to incur longer compile times which obviously

hinders the fluidity sought in this interactive tool chain.

In addition, the number of micro instructions used by an NPD shader correlates to the

complexity of the specified vertex-format. As mentioned, shaders of this system are

adaptable to arbitrary vertex structures. Because interpolation is central to triangle

tessellation/subdivision, the NPD shader must correctly interpolate all per-vertex data. For

implementation readability, this adaptive interpolation behaviour was encapsulated into a

single HLSL function, as the code excerpt in table 20 demonstrates.

Deformation Shader

void edgeInterpolation(

tDefVertex vertexA,

tDefVertex vertexB,

out tDefVertex vertexSplit

) {

/*

Initalize deformation vertex to default values

*/

vertexSplit = (tDefVertex)0.0f;

/*

This function is specific to deformation and thus, it is safe to

assume that per-vertex deformation data is present in the vertex

structure.

*/

146

vertexSplit.deformation.xyz = ...

vertexSplit.deformation.w =

min(vertexA.deformation.y, b.deformation.y);

/*

Systematically check the vertex format being compiled against, include

shader instructions to interpolate per-vertex data as necessary.

Note that ‘lerp(a,b,s)’ is an HLSL intrinsic function that

interpolates input parameters (a,b) by a scalar (s)

*/

#ifdef VERTEX_POSITION

vertexSplit.position =

lerp(vertexA.position , vertexB.position, 0.5f);

#endif

#ifdef VERTEX_COLOUR

vertexSplit.colour =

lerp(vertexA.colour, vertexB.colour, 0.5f);

#endif

#ifdef VERTEX_UV1

vertexSplit.uv1 =

lerp(vertexA.uv1, vertexB.uv1, 0.5f);

#endif

#ifdef VERTEX_UV2

vertexSplit.uv2 =

lerp(vertexA.uv2, vertexB.uv2, 0.5f);

#endif

...

/*

Per-vertex normals and tangents require normalization

*/

#ifdef VERTEX_NORMAL

float3 interpolatedNormal =

lerp(vertexA.normal, vertexB.normal, 0.5f);

vertexSplit.normal =

normalize(interpolatedNormal);

#endif

#ifdef VERTEX_TANGENT

float3 interpolatedTangent =

lerp(vertexA. tangent, vertexB.tangent, 0.5f);

vertexSplit.tangent =

normalize(interpolatedTangent);

#endif

}

Table 20 Code excerpt from the deformation shader implementation which shows how adaptive vertex

interpolation is achieved in order to compute the „split vertex‟

147

This function is invoked three times (for each triangle side) during each iteration of the

shader‟s loop based recursion. Unfortunately, the HLSL compiler resolves (non-intrinsic)

function calls, by „inlining‟ the function‟s „body‟ in the shader. The implications of this for

the NPD shader are that micro instructions underlying the subdivision function (shown in

table 20), are duplicated three times throughout the NPD shader‟s loop. Thus, the

„edgeInterpolation‟ function quickly becomes larger as vertex structures gain

complexity, therefore increasing the shader‟s total instruction count and compile time.

Adjacency considerations for non-uniform deformation

By default, non-uniform deformation yields „gaps‟ along the seams of adjacent manifold

triangles that have different levels of tessellation. To solve this, per-vertex „support‟ variables

are introduced to this NPD implementation. These support variables provide „contextual

information‟ about a vertex, with respect to its tessellated geometric „neighbourhood‟. As

tessellation takes place, the vertices of sub triangles inherit geometric context from the

triangle being tessellated. This context is initially obtained from „adjacency information‟

which is provided by the Direct3D 10 API. Because recursive tessellation steps in this

algorithm are independent, triangles need to „deduce‟ the level of tessellation present in

surrounding triangles. By deducing adjacent tessellation, the algorithm can determine where

„vertex offset‟ (procedural deformation) is appropriate, therefore avoiding „gaps‟ in the final

tessellation result. Through this, adaptive tessellation is achieved over arbitrary manifold

geometry configurations, without geometric artefacts/gaps occurring.

To elaborate, consider the scenario depicted in figure 71 , which shows the use of per-vertex

tessellation context through three levels of adaptive subdivision.

148

If subdivision for the current triangle is required, recursive tessellation occurs as images (A)

to (C) in figure 71 shows. Before the process beings however, the tessellation level of

adjacent triangles is stored in the vertices of the current operand. Image (A) of figure 71

shows the storage of tessellation context in the topmost vertex of the shaded triangle

(operand). This vertex stores the level of tessellation in adjacent triangle „a0‟ which, in this

example is 1 (f:1). The operand of image (A) is tessellated into four sub triangles, given that

its target level of tessellation is 2 (f:2). Newly created sub triangles (i.e. δ, in image B, figure

A

Figure 71 Illustrates the NPD algorithm‟s gap

prevention strategy

f:1, d:1

f:2,d:0

 d:0

a0:1

a1:1

...

a0

B

‘unmatched’ vertices

(d = a0 …) conform δ

 to a0

d:2

a0:1

a1:1

...

f:1, d:1

f:2,d:2

δ

d:1

a0:1

a1:1

...

f:1, d:1

f:2,d:1

δ

(d < a0 and d < a1) tessellate
operand

C

f : triangles target tessellation level
d : triangles current tessellation/recursion level

a0,”a1” : tessellation levels in adjacent triangles

 : current operand being processed

149

71) are now autonomous; relying on inherited contextual information to deduce surrounding

triangle tessellation.

During recursive tessellation, each sub triangle tracks its current level of tessellation via the

variable d. When an operand tessellates, the values of d for its sub triangles are incremented

from d of the current operand. Therefore, as a triangle is processed, the value of d is tested

against context variables that store adjacent tessellation levels (i.e. a0, a1). If adjacent

tessellation levels are greater than d then the algorithm deduces that tessellation is

appropriate. Otherwise, tessellation is suppressed as illustrated by sub triangle δ, between

images (B) and (C) of figure 71.

Where sub triangles have different levels of adjacent tessellation, the tessellation/deformation

situation must be handled differently. This requires sub triangles (i.e. δ) to negotiate between

differences in adjacent tessellation, by „adaptively suppressing‟ the effect of procedural

vertex offset. If a sub triangle detects differences in adjacent tessellation, it will simply

tessellate „towards‟ its own target level of tessellation. This introduces „unmatched‟ internal

vertices which exist on seams/boundaries between the current triangle and adjacent triangles

with lower tessellation (see image C of figure 71). To avoid gap artefacts, procedural offset is

not directly applied to unmatched vertices. Rather, unmatched vertices are „clamped‟,

aligning them to the offset that will result in the adjacent tessellation.

Thus, the algorithm handles this „negotiation‟ by maintaining its own tessellation level, while

adaptively suppressing „vertex offset‟ (deformation) of introduced vertices, as deemed

necessary by contextual tessellation data. „Conformance‟ to adjacent triangles with greater

levels of tessellation is not required. This is because they too are subjected to „conservative‟

tessellation and thus, will conform to the tessellation level of this triangle. By uniformly

applying conformance in „one direction‟, simple and robust inter-triangular deformation was

achieved.

An interesting effect of this „contextual data‟ is that, conformance to adjacent tessellation is

„generalized‟ for all sub triangles. Thus, the same context driven tessellation behaviour

applies to all sub triangles, regardless of their position, with respect to the original manifold

geometry. For example, sub triangles that exist on the boundary of original manifold triangles

employ the same tessellation functionality as „inner‟ sub triangles of tessellated manifold

geometry.

150

Limitations and issues

From a functional perspective, this NPD implementation fulfils its core requirements. In

addition to delivering non-uniform deformation, this algorithm delivered adequate runtime

performance on a range of test scenes, on midrange graphics hardware. Unfortunately, the

full extent of geometric deformation could not be achieved with this first implementation

approach. This is due to fixed limitations relating to emitting/streaming data from geometry

shaders.

Recall that geometry shaders can currently emit up to 2048 bytes of data via output-streaming

(Stream-Output Stage, 2010). This presents a fundamental problem to the NPD algorithm

described. As discussed, the recursive algorithm is implemented in a single pass geometry

shader. This was advantageous because it simplified the integration of NPD into the project‟s

rendering system. The consequence of this approach however, is that it assumes the stream-

out capacity of geometry shaders is sufficient to capture all tessellated output data. Following

tests, it became obvious that the capacity of data streaming in geometry shaders would be

insufficient to deliver the full scope of tessellation resolution sought.

To elaborate, consider a vertex structure consisting of per-vertex position, normal and colour

vectors, as well as a texture coordinate channel. The minimum size for this vertex structure

would be approximately 48 bytes:

𝑣𝑒𝑟𝑡𝑒𝑥𝑠𝑖𝑧𝑒 = 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑥𝑦𝑧 + 𝑛𝑜𝑟𝑚𝑎𝑙𝑥𝑦𝑧 + 𝑐𝑜𝑙𝑜𝑢𝑟𝑟𝑔𝑏 + 𝑐𝑜𝑜𝑟𝑑𝑖𝑛𝑎𝑡𝑒𝑠𝑥𝑦

𝑣𝑒𝑟𝑡𝑒𝑥𝑠𝑖𝑧𝑒 = 3 + 3 + 3 + 2 × 4

𝑡𝑟𝑖𝑎𝑛𝑔𝑙𝑒𝑠𝑖𝑧𝑒 = 𝑣𝑒𝑟𝑡𝑒𝑥𝑠𝑖𝑧𝑒 × 3

𝑡𝑟𝑖𝑎𝑛𝑔𝑙𝑒𝑠𝑖𝑧𝑒 = 144 𝑏𝑦𝑡𝑒𝑠

Assuming a standard vertex structure such as this, in conjunction with the stream-out

limitations, each manifold triangle processed by the NPD geometry shader would only be

capable of tessellating (emitting) approximately 14 sub triangles. Thus, only one level of

tessellation could be achieved (as one level requires 4 triangles and two levels require 4×4

triangles etc). Recall that if a geometry shader expends its stream-out capacity, excess data is

discarded by the hardware. The consequence of this, in the context of NPD, is that discarded

triangles yield the appearance of „holes‟ throughout the final deformation geometry.

Obviously tessellation applied to geometry consisting of more sophisticated vertex structures

(i.e. per-vertex tangent space, additional texture coordinates) will yield larger vertex/triangle

sizes, therefore further limiting the shader‟s tessellation capabilities.

151

Perhaps the most useful scenarios/applications for NPD are those where target „base/manifold

geometry‟ consists of large, planar surfaces. Examples of these that arise in many game

objects/props include crates, containers, buildings and vehicles. By generating high levels of

tessellation and deformation algorithmically, the potential for increased deformation detail,

with minimal time investment by artists, exists. Given that the stream-out limitations hinder

the quality and „granularity‟ of variation detail in these „cases‟, an alternative method for

implementing NPD was explored. As the following section illustrates, the new approach

avoids the mentioned limitation, therefore enabling higher levels of tessellation and thus,

more detailed object variation.

Second tessellation approach

This approach shares many features with the preceding implementation, in particular the use

of recursive tessellation. As mentioned, the shader architecture‟s stream-out limitations

hindered the previous NPD implementation. In order to resolve this, the design has a

significantly revised structure. The new structure can be elegantly expressed on the

GPU/shader architecture. A number of other benefits and issues arise from this revision,

which will be subsequently discussed.

Structure and simplicity

As with the first revision, the majority of this NPD algorithm exists in a geometry shader. A

notable distinction in this shader implementation however, is the absence of a „stack‟. Recall

the first approach implemented a stack to emulate shader based recursion. This was necessary

as current programmable hardware does not support recursion (Function Declaration Syntax,

2010). Although recursion was achievable, the simplicity that was originally sought after

through the use of recursion was undermined by the complexity of implementing a stack.

Furthermore, the addition of „gap elimination‟ functionality in this custom stack, led to a final

implementation that was difficult to maintain and debug (despite debugging capabilities of

shader authoring tools such as PIX) (PIX, n.d.).

152

Deformation shader performs no
processing. Input triangle

copied directly to output.

Pass: n

Figure 72 Shows how triangles that

require no deformation are copied

through internal passes

Pass: 1

Pass: 2

Pass: 3

Multi-pass

result

In this approach, the „recursion stack‟ is replaced by this shader‟s multi-pass structure which

is illustrated in figure 72. Each „pass‟ of this multi-pass solution represents a level of

tessellation in the „recursive tree‟.

In contrast to the first implementation, passes of this

solution constitute smaller, simpler and more

manageable code modules. Each shader pass emits a

fixed volume of data; either one or four triangles. Recall

that the previous NPD shader was designed to emit a

variable number of triangles from a single shader pass.

By minimizing the volume of streamed data from each

invocation of the NPD shader however, the algorithm

avoids the stream capacity constraints which hindered

the first approach. Multi-pass tessellation requires that

geometry emitted from a shader be streamed directly into

temporary storage, in between passes. The role of this

storage (buffer) will be elaborated in subsequent

discussion.

As figure 72 indicates, this geometry shader operates on

single triangles. Thus, the emission of four triangles from

a geometry shader represents tessellation in this NPD

solution. The geometry shader is also capable of emitting

a single triangle, being a duplicate of the input triangle.

Emitting a single triangle involves no intermediate

processing and thus, incurs little overhead on the GPU.

Via these two forms of output, the NPD shader delivers

non-uniform tessellation. The cumulative effect of these behaviours is shown between passes

one and three of figure 72. Note that triangles independently tessellate throughout the multi-

pass process.

As illustrated, mid-edge tessellation is applied to input triangles of the NPD shader that are

eligible for tessellation. Similarly to the previous implementation, the tessellation applies

interpolation to vertex data to deliver subdivision. This interpolation process possesses some

unique characteristics however, which will be expanded in later discussion.

153

As noted, this NPD implementation maintains key differences to the first approach; that

shader instances emit less geometric data while also reducing variation in the volume of data

emitted from each execution instance. As well as greater functional flexibility, the following

section illustrates how consistent data output has positive implications for the shader‟s

runtime performance.

Parallelism and load balancing

Modern GPU‟s achieve massive parallelism by simultaneously executing shader code across

hundreds of „cores‟ (What is GPU Computing?, 2010) (Hwu, 2009). At runtime, cores are

assigned work/tasks based on the shading context. For example, during the pixel shading

process, the graphics hardware would assign „cores‟ to pixels, therefore allowing batches of

pixels to be concurrently processed.

This NPD implementation capitalizes on the GPU‟s parallelised architecture, via its

„modularized‟ and multi-pass structure. „Instances‟ of the shader operate on individual

primitives/triangles of the manifold geometry. When the algorithm is applied to complex

manifolds, the hardware can naturally distribute NPD processing to all available cores,

achieving parallel execution that is typical of good, GPU orientated algorithm

implementations.

The NPD shader‟s core implementation is similar to that of a single level of recursion in the

„first‟ NPD approach. As the following discussion illustrates, this represents a „generalized‟

shader (and functionality), which is reused by multiple passes, during an NPD shader‟s

execution. Data that is emitted during an NPD pass typically circulates through other

instances of the same NPD shader, in subsequent passes. This is illustrated in figure 73,

where each „arrow‟ in the diagram can be interpreted as an instance of NPD shader execution.

Figure 73 Comparison of parallelism in each NPD algorithm approach

Tessellated output geometry

Input geometry

Parallel shader execution

…

A: First approach

B: Second approach

154

Figure 73 illustrates how parallelism is utilized in each NPD approach. The parallelism

illustrated for the „first approach‟ (A), shows parallelism that is achieved as a consequence of

implementing an algorithm on the GPU. This is because the first approach assigns „cores‟ to

triangles of the base geometry, which then serially perform the tessellation process.

In contrast, image (B) of figure 73 shows how the second approach makes better utilization

of the GPU architecture‟s parallelism. As the geometry tessellates (in the second

implementation), many instances of the shader operate on emitted sub triangles. The

approach scales well, via the cumulative effect of „branching‟ smaller processing tasks,

which run concurrently.

As a result, this design allows improved „load balancing‟ amongst cores, in comparison to the

previous implementation. Parallel systems achieve high performance by allowing multiple

processing tasks to be carried out simultaneously. Unfortunately, the performance benefits of

parallel systems can be hindered when synchronization between parallel processes is not

achieved.

Consider a situation where „cores‟ of a synchronized parallel system are assigned different

processing workloads. The implication of this is that some cores will complete processing

before others. To maintain synchronization, all cores must wait until each workload is

complete. Thus, varied workloads obviously cause some cores to idle during the concurrent

process, which represents unutilized processing capacity; this obviously being undesirable.

Thus, „load balancing‟ is an important consideration for parallel development.

The second NPD approach improves task distribution, given that the „workload‟ of each task

has only one of two values; that either one or four triangles are generated and emitted.

In contrast, the implementation of the first NPD algorithm used flow control by means of a

„variable loop‟, through which arbitrary volumes of triangle data were emitted. Thus, the

opportunity for significant variation in runtime duration existed.

155

Final shader implementation

The shader itself is divided into six individual passes. Table 21 summarizes this structure.

Pass Name Purpose

1 Initialization Prepares „generic‟ geometry for use in subsequent

tessellation passes, namely by adding „support data‟ to

manifold geometry which enables correct non-uniform

tessellation.

2 Tessellate These passes typically granulate incoming geometry to

a higher tessellation. If no tessellation is required, the

incoming triangle is directly copied to the shader‟s

output.

3

4

5

6 Transformation

& rasterization

Transforms/projects final tessellation geometry and

renders this to the active pixel buffer/render target

Table 21 Pass structure of revised NPD shader

Recall that the first NPD approach achieved non-uniform deformation, using per-vertex

support variables in the vertex structures. As discussed, this enabled autonomous operation

on primitives, each retaining an „awareness‟ of local/adjacent geometric tessellation. With

this context information, the algorithm could determine when to apply procedural offsets to

vertices, or when to conform local vertices to adjacent deformation. This system was

necessary to avoid „gap‟ artefacts along edge boundaries of manifold geometry, where levels

of tessellation differ.

The first step in the „gap prevention‟ mechanism is initialization of per-vertex „context data‟.

The initialization takes advantage of triangle adjacency information provided in Direct3D 10.

This context data is interlaced into a copy of the manifold geometry that is created during the

initialization pass, to be used in subsequent passes.

In contrast to the first NPD shader, this shader uses only two context (support) variables in

each vertex of the manifold geometry. Recall that the first NPD shader introduced one

variable to track the vertex‟s tessellation level, in addition to variables that store the

tessellation level of each adjacent triangle.

For this approach, one variable tracks the current level of tessellation for the respective

triangle and the others hold „adjacency tessellation/context‟. The insight behind this

156

simplification was that only the lowest level of tessellation in adjacent triangles, needed to be

„carried‟ with a vertex.

„Conservative tessellation‟ of the first NPD algorithm limits subdivision to the lowest level of

tessellation in local and adjacent geometry. The revised algorithm performs this calculation

once, during the shader‟s initialization pass. Therefore, the lowest adjacent tessellation of a

manifold vertex is propagated through the subsequent tessellation process. The use of

additional per-vertex support variables therefore becomes unnecessary. Importantly, the same

„gap prevention‟ behaviour (which depends on this context information) is maintained. An

obvious side effect of this is a simplified NPD implementation, which only compares/tests a

single „tessellation context/support variable‟.

As before, tessellation occurs if the triangle‟s „cumulative tessellation value‟ is greater than

the „pass index‟ (and less than adjacent tessellation). Again, this represents the tessellation

criteria for the NPD implementation. Note that cumulative tessellation is the sum of artist

assigned deformation weightings (per-vertex) for a given triangle.

Because triangular tessellation is autonomous, the implementation needs a way of

determining a triangle‟s current „level‟ in the recursive (tessellation) tree. To achieve this, the

NPD shader took advantage of another feature of HLSL; allowing generalized shader

functionality which is „implicitly aware‟ of the tessellation level. HLSL shaders consist of

„technique blocks‟ which group/encapsulate shader passes (Effect Technique Syntax, 2010).

The code excerpt in table 22 shows how the NPD shader takes advantage of this structure;

explicitly declaring shader passes for each level of tessellation that can be achieved with this

implementation.

NPD Shader Structure

technique10 Shader_Technique

{

#ifdef VERTEX_DEFORMATION

pass pass_initialization {

SetPixelShader(NULL);

SetVertexShader(CompileShader(vs_4_0,vs()));

SetGeometryShader(

ConstructGSWithSO(

CompileShader(gs_4_0, npd_initialize()), SO_FORMAT));

}

/*

Tessellation passes do not rasterize and thus, no pixel shader function is assigned.

157

Geometry shaders are assigned and are stream out capable (‘ConstructGSWithSO’). Each

tessellation pass invokes the same, generalized tessellation functionality

(‘npd_tessellate’). Note that each invocation to ‘npd_tessellate’ is parameterized

with a value that corresponds to the pass index.

*/

pass pass_tessellation_level_1 {

SetPixelShader(NULL);

SetVertexShader(CompileShader(vs_4_0,vs()));

SetGeometryShader(

ConstructGSWithSO(

CompileShader(gs_4_0, npd_tessellate(1.0f)),SO_FORMAT));

}

pass pass_tessellation_level_2 {

SetPixelShader(NULL);

SetVertexShader(CompileShader(vs_4_0,vs()));

SetGeometryShader(

ConstructGSWithSO(

CompileShader(gs_4_0, npd_tessellate(2.0f)),SO_FORMAT));

}

...

pass pass_tessellation_level_4 {

SetPixelShader(NULL);

SetVertexShader(CompileShader(vs_4_0,vs()));

SetGeometryShader(

ConstructGSWithSO(

CompileShader(gs_4_0,npd_tessellate(3.0f)),SO_FORMAT));

}

pass pass_rasterize {

SetPixelShader(CompileShader(ps_4_0, npd_ps()));

SetVertexShader(CompileShader(vs_4_0,vs()));

SetGeometryShader(NULL);

}

#else

/*

Non-deformation shader equivalent goes here.

*/

...

#endif

}

Table 22 Code excerpt showing the „technique structure‟ of the NPD shader

158

As table 22 shows, the tessellation function („npd_tessellate‟) is invoked at each pass of

the shader and is parameterized with the pass index (or tessellation level). The pass index is

accessed by the „generic‟ „npd_tessellate‟ implementation, and is internally used to

determine if triangular tessellation should be applied or suppressed.

If the pass index value is less than a triangle‟s cumulative tessellation, the shader function

proceeds to tessellate the incoming triangle. Like the previous implementation, vertex data is

interpolated to yield mid-edge vertices.

Geometric deformation is applied to tessellated geometry in a similar way to the first

approach. That is, deformation is applied to sub triangles as permitted by the triangles context

information. If for example, the context information indicates a lower tessellation in an

adjacent triangle, then generated sub triangles are clamped to adjacent geometry. If adjacent

deformation is greater than or equal to the current triangle, then geometric deformation by

means of „vertex offset‟ is applied. Recall from earlier discussion that offset is achieved by

evaluating a noise procedural function. The evaluated result is used to move a vertex position

along the normal vector of the associated triangle.

Note that this structure requires explicit declaration of passes, which imposes a static „upper

bound‟ on the NPD‟s maximum tessellation level. This limit however, is not particularly

problematic as four levels of recursive tessellation tend to yield sufficient levels of geometric

resolution. Strategies which involve dynamic NPD shader construction prior to shader

recompilation could potentially be integrated, to provide a variable level of maximum

tessellation.

The final pass shown in table 22 („pass_rasterize‟) is responsible for transforming and

rasterizing the final geometric tessellation of the NPD process. Thus, it incorporates

functionality that is similar to standard shaders. The pass‟s vertex shader projects the NPD‟s

tessellation geometry to homogenous (screen) coordinates in preparation for rasterization.

The pass concludes with invocation of an assigned pixel shader („npd_ps()‟), through

which rasterization of each triangle in the tessellation result is achieved. The distinction

between this pass, and that of a non-deformation („standard‟) shader, is that it processes the

„vertex-structures‟ from the NPD process.

Supporting structure and related details

As explained, the revised NPD implementation has several differences to the original NPD

implementation. These changes were motivated by a serious limitation in the first solution‟s

functional capacity which limited data streaming. The revised multi-pass solution overcomes

159

this issue, while also making better use of parallelism in the GPU architecture. Aside from

shader reimplementation, this change also required significant revision of the CPU code

which operates and supports the NPD shader.

As discussed, the single pass implementation could be executed by the same „CPU support

code‟ used to execute standard rendering shaders. Thus, the CPU simply bound geometry to

the hardware device, prior to the rendering (and tessellation) phase. The shader tessellated

bound geometry accordingly, and streamed the tessellation result into the GPU‟s rasterization

unit. Thus, the entire tessellation process could be achieved by a single call to

„DrawAuto()‟; a function exposed by Direct3D 10‟s „draw API‟ (DrawAuto Method,

2010).

In contrast, the multi-pass approach is less independent and requires greater intervention by

the host system/CPU to function. The CPU must iterate and invoke each pass of the shader

independently which imposes data management/manipulation responsibilities on the CPU. As

discussed on page 76 in the „interactive tool chain‟ section, the tool chain‟s game rendering

context (GRC) facilitates „standard‟ multi-pass shader rendering by default.

The main hindrance in the revised approach, is its dependence on auxiliary „resource buffers‟

(managed by the CPU), which are required to temporarily store inter-pass tessellation data.

Recall that the algorithm achieves deformation/tessellation by conditionally breaking

triangles into four sub triangles. By reapplying this process to emitted triangle data, high

levels of tessellation/deformation resolution are achieved. Each pass of the algorithm

however, must channel generated tessellation data back into subsequent NPD shader passes.

C: Tessellation ‘n+1’

γ γ α α

δ

A: Initialization

s δ s

α γ

δ s

B: Tessellation ‘n’

Figure 74 Illustrates the role of support buffers for data flow in the revised NPD shader

δ: „generic‟ buffer containing manifold geometry

α,γ: support buffers

s:NPD shader pass

160

As figure 74 shows, the multi pass NPD algorithm requires two data storage buffers (α,γ) to

support the deformation process. The role of these buffers allows „data circulation‟ between

passes of the tessellation process.

Recall that the shader begins with an „initialization‟ pass. As image (A) in figure 74 shows,

this pass is compatible with „generic‟ manifold geometry data and is responsible for inserting

NPD specific data (i.e. „tessellation context‟ information) into a duplication of the manifold

geometry. Following this, the CPU invokes the first tessellation pass

(„pass_tessellation_level_1‟ of table 22) that operates on the output of the

initialization pass. Note that tessellation shader passes are only compatible with geometric

data that has been pre-processed by the initialization pass.

To achieve this inter-pass flow of data, the initialization pass (image A, figure 74) streams

output data into the first available „support buffer‟ (α). Once this data has been captured, the

destination buffer (α) is then bound to the hardware device in preparation for the next pass. In

addition, the second support buffer is bound as the destination buffer for streamed data. The

previously streamed data now acts as the data source for the subsequent tessellation pass

(image B, figure 74). Upon completion of this tessellation pass, the second buffer (γ) is

bound to the device as the data source (image C, figure 74). The first support buffer (α) is

again bound to the device to capture the next „batch‟ of tessellation data. This „alternating‟

process repeats until all passes of the NPD shader have been executed.

This illustrates added overhead on the host application/CPU in contrast to the first NPD

implementation. This is because the host application must store and manage the support

buffers. In this tool chain, the GRC‟s rendering module (page 76) maintains responsibility for

allocating and maintaining these buffers. In addition, the render module alternates the support

buffers between shader passes, during the NPD rendering process.

The dependence on storage buffers effectively limits the tessellation approach to memory

capacity of the hosting hardware/system. Because these storage resources are used

exclusively by objects during the tessellation process however, this represents better

utilization of the underlying memory, thus allowing for higher levels of

tessellation/deformation detail.

Given that high visual quality is a fundamental objective in this research, the revised

approach is presented as the final NPD implementation. Page 180 of the demonstrations

chapter illustrates the functionality and application of this NPD algorithm, in the context of

this research‟s tool chain.

161

Chapter 5: Demonstrations

This chapter shows functionality of the interactive tool chain that was developed for this

research. Each of the core functions in the tool chain are illustrated; namely procedural

material composition, real-time generative instancing and non-uniform procedural

deformation. These algorithms are demonstrated through different examples that could be

appropriate for computer games.

Images in the leftmost column represent the artist‟s view of a game scene/content in the

context of the tool chain‟s authoring environment (Maya/„real-time content encoder‟). They

show views and media which are visible at various stages during the authoring process.

The rightmost column shows the reproduction of corresponding content in the tool chain‟s

„Game Rendering Context‟ (GRC). These images show how the system responds to artist

interaction in the tool chain. As discussed, the GRC incorporates specialized functionality

which allows rendering of content in a real-time, game specific rendering context. The

images in this column exhibit the implementation of the procedural methods used.

162

Tool chain interaction and material composition

Basic geometric manipulation of game content in the GRC is illustrated by the following

diagrams. The sequential organization of these images demonstrates the interactive and

responsive nature of the tool chain. The example shows how content can be built and

manipulated in the tool chain.

The initial images show „terrain‟ being built in the „context‟ of an existing game content (i.e.

a tree).

 RTCE (Maya) GRC (Game renderer)

1

 Existing „scene element‟ is loaded into Maya. The GRC immediately synchronizes with the RTCE‟s state. The

GRC renders the tree as it would appear in the game.

2

 The RTCE transmits geometry during it‟s insertion into

the scene, by the artist (ground plane).

The geometry being inserted is interactively shown in the GRC.

In addition to geometry, the tool chain synchronizes other „channels‟ of game object data.

The following shows how content in the GRC immediately reflects an artist‟s assignment of

texture data and texture coordinates, in the RTCE.

163

3

 The RTCE responds to the association of texture data

with geometry by transmitting relevant data to the GRC.

The relationship between texture data and the ground surface is

immediately displayed in the GRC context.

4

 As mentioned, the tool chain responds to artist

manipulation of texture coordinates. This shows the

artists‟ view of the ground geometry‟s texture
coordinates in Maya.

The „mapping‟ of the ground‟s texture image corresponds to the

ground‟s underlying texture coordinates. Note the „scale‟ of the

ground surface texture.

5

 From Maya, the artist has increased the scale of the

texture coordinates which underlie the ground geometry.

The GRC interactively responds to these changes. Note that the

texture image on the ground surface appears to have

„condensed‟.

The tool chain is robust and facilitates direct/explicit modification of game objects. As

mentioned, modifications to game objects are immediately reproduced in the GRC. The

following images demonstrate the tool chain‟s interactive response when an artist removes

geometric elements from the tree object.

164

6

7

 The artist selects and removes elements of the game
object in the context of the RTCE/Maya.

The highlighted region shows how the interactions manifest in the
GRC‟s rendered result.

8

 The changes are consistently and interactively displayed.

165

The next example demonstrates the use of the tool chain‟s material composition feature. An

abstract example is presented which shows the sequence of artist interactions required when

composing a simple material. Practical examples of the composition feature are shown

subsequently.

1

 A geometric surface is created in Maya to facilitate the
composition demonstration.

2

166

3

 This shows a portion of the RTCE‟s „material composition‟

interface. Material composition starts by „enabling‟ the

colour channel. Following this, the RTCE‟s „Quick Edit‟

feature is invoked, to assign a noise procedural to the

material‟s colour channel.

The GRC immediately reflects changes to the material‟s

composition. Perlin noise is now displayed across the

geometric surface. Note that the noise is interpreted as

„colour‟ across the geometry.

4

 A „checker‟ procedural is then introduced to the colour
channel, again via the RTCE‟s material composition

functionality.

The GRC interactively combines the noise and checker
procedurals producing a result that corresponds to the

specified „material composition‟.

5

 Changes made to parameters of the composition‟s procedural

functions are interactively transmitted.

These parameter changes (i.e. checker colour) are

immediately reflected in the GRC.

167

6

 The „normal channel‟ is activated in the RTCE. Procedural

functions can now be interpreted as „surface normals‟ to

allow different surface characteristics to be achieved.

The GRC reproduces the new material composition. The

surface now exhibits characteristics that simulate surface

contour by manipulating corresponding surface normals by
the assigned procedural function.

7

 Changes made to parameters of the noise procedural assigned

to the material‟s „normal channel‟, are interactively
transmitted to the tool chain via the RTCE.

The surface‟s material updates, to reflect the parameter

changes, increasing the noise‟s granularity (or „octaves‟).

Additional surface detail can be achieved in game scenes via the tool chains procedurally

based material composition system.

1

168

2

 Procedural noise is added to the „normal channel‟ of

the ground geometry‟s material.

Visual reproduction of the ground surface changed by the influence of

the noise function assigned to the ground material‟s „normal‟ channel.

 The artist increases the noise function‟s „frequency‟
and „depth‟ (granularity) parameters. The RTCE

detects these changes and immediately transmits the

corresponding data from Maya. These interfaces are
built in to Maya and reused by the RTCE.

Changes to the noise‟s „frequency‟ and „depth‟ parameters are
reflected by the GRC‟s reproduction of the ground material. Note the

enhanced appearance of „bumps‟ across the ground surface, which

results from the noted parameters changes.

1 2 3

These images show how material composition can be applied to other aspects of the scene. Here the feature is applied to the tree
trunk to achieve a more detailed and realistic final appearance in the GRC‟s rendered result.

169

170

Real-time generative instancing

The following images demonstrate the use of the procedurally based, real-time instancing

algorithm that was integrated into the tool chain (RTGI). In this demonstration, the algorithm

is used to introduce overgrown grass in an industrial setting.

 RTCE (Maya) GRC (Game renderer)

1

 An existing, partially constructed scene is loaded into Maya.

Elements of this scene are transmitted to the GRC as

determined by the artist.

This image shows the first items of the scene that have been

sent to the GRC from the RTCE.

2

 A grass object represents the geometry that will be used in the

instancing process. The object is „assigned‟ for instancing, via
the RTCE‟s interface. Note that the geometry can exist in the

context of the whole Maya scene.

All scene objects have now been sent. The GRC does not

render the grass object because it is reserved for instancing.

171

3

 The artist „enables‟ instancing of the grass object via the

RTCE.

The GRC immediately responds, distributing the grass object

across the targeted ground geometry of the scene.

4 A „custom shader‟ developed by the artist is assigned to the

„grass object‟ via the RTCE interface. This shader integrates

into the tool chain‟s shader system. The shader expresses an
„alpha channel‟ in the grass to clip portions of the grass object.

The effects of this shader are immediately shown in the GRC.

5

 Via the RTCE interface, a noise procedural function is
activated („Enabled‟) for the RTGI‟s „mask channel‟. This

controls the placement of grass instances via evaluation of the

noise procedural function.

The distribution of grass instances is now „irregular‟ and has
a more „natural‟ appearance. This distribution corresponds to

the noise procedural function that was applied to the „mask

channel‟ of the RTGI‟s application.

6

 As the artist modifies parameters of the mask procedural,

these changes are interactively propagated through the tool

chain.

Changes to the mask procedural‟s parameters are

immediately shown in the distribution of grass across the

scene‟s ground surface.

172

7

 These images show the instancing result following further refinement to the parameters of underlying procedural functions.

In addition, these images show how variety can be achieved via procedural functions that are assigned to the scale and

orientation channels of the RTGI algorithm.

173

The following example demonstrates the RTGI algorithm‟s robust and flexible integration

into the interactive tool chain. These images show how instanced geometry can be

manipulated in the context of the interactive tool chain, providing a powerful content creation

mechanism for artists.

8

 This image represents the game scene in Maya. Note
that both of the highlighted grass objects are now

being instanced via the RTGI algorithm.

This shows the GRC‟s ability to instance multiple object „types‟
across a surface. Here the two grass objects selected in Maya, are

instanced across the scene‟s ground surface.

9

 The RTCE captures and transmits all modification

made by the artist to the grass geometry. Here, the

grass object‟s geometry is being modified.

The GRC interactively responds to this modification. The changes

are immediately displayed throughout all instances of the grass

object. The corresponding grass object is now visibly taller.

174

10

 Artist interactions and modifications to the grass
objects are consistently transmitted during runtime.

Grass that is instanced by the RTGI algorithm continues to reflect
the artist‟s interactions during runtime.

The following sequence shows how the RTGI‟s „cookie cutter‟ feature can be used to prevent

geometry from instantiating at specific regions on the manifold surface. The feature is

demonstrated in the context of a „forest scene‟. In this situation, the scene‟s terrain consists of

artist prescribed pathways. The „cookie cutter‟ feature is used to prevent trees from

„violating‟ the scene‟s pathways.

 Maya (RTCE) GRC (Game renderer)

1

 Terrain that underlies this scene is created in the context of

this research‟s tool chain (via Maya). The image shown is
the texture image which is directly mapped onto the scene‟s

terrain geometry.

This image shows the GRC reproduction of the scene

geometry created in Maya.

175

2

 Tree objects that will constitute the forest of the game scene, are also created in Maya. These tree objects will be instanced

by the RTGI algorithm to generate the forest automatically.

3

 Again, the tool chain‟s RTGI functionality is invoked. The
tree object is assigned to the scene‟s terrain geometry. Note

that procedural noise has also been assigned to dictate scale

and masking of tree instances.

The GRC immediately renders the corresponding RTGI
configuration for instancing. In this instancing example, the

density of instancing has been maximized. Note the „wavy‟

appearance of instanced trees. This is a manifestation of the
noise function that is assigned to „scale‟ each tree instance.

4

 Here, the artist increases the „frequency‟ parameter of
procedural noise function that is assigned to the RTGI

algorithm‟s „scale channel‟.

The GRC immediately reflects this parameter change. Note
that the „frequency‟ of scale variation between tree instances

is visibly greater.

176

5

 The RTGI‟s „cookie cutter‟ feature is invoked to prevent

trees from instantiating over „pathways‟ which exist on the

terrain‟s surface texture. This image has been created and
specified by the artist as the „instancing cookie‟. Note that it

corresponds to pathways in the original terrain texture.

The GRC immediately responds to the specified cookie

data/image. Note that the instancing of tree‟s now corresponds

to the supplied cookie cutter.

 These images show the effect of the cookie cutter image in this scene from different vantage points.

6

 To add atmosphere to the scene, a customized „fog shader‟

(which again uses the tool chain‟s shader system) is applied
to the scene‟s geometry. Note that this shader is

developed/implemented by the artist.

The results of this fog shader are immediately reproduced in

the GRC.

The following images provide further illustration of the RTGI algorithm‟s cookie cutter

feature. Two different tree objects/types are instanced across the terrain‟s surface via the

RTGI algorithm. Each „tree type‟ is subjected to different procedural function parameter

177

configurations. These images also show how the cookie cutter feature can be applied to

different instancing objects.

Two tree types are instanced via the RTGI algorithm. Note that each tree type is instanced by distinct „procedural parameters‟.

This causes each tree type to be uniquely distributed.

Note that the rectangular feature of the cookie cutter image is manifest in the GRC‟s rendered result. Furthermore, both tree

types are subjected to the cookie cutter image, as determined by the artist.

178

179

180

NPD algorithm demonstrations

The following images show the sequence of interactions that are required in order for artists‟

to take advantage of the tool chain‟s procedurally driven, geometric deformation algorithm

(NPD). The initial images show how NPD can be used to algorithmically generate variety

amongst props that could be used to add detail to a game scene (i.e. rubbish).

 RTCE (Maya) GRC (Game renderer)

1

 The RTCE‟s deformation functionality has been activated. Maya

enters into the „vertex painting‟ mode. Note that the assignment of

„black‟ (or „zero‟) deformation to the geometry, suppresses
tessellation during the NPD process.

This shows the corresponding geometry in the GRC.

The GRC‟s renderer has been set to „wireframe

mode‟ in order to show the geometric tessellation
which results from the NPD process.

2

 The artist assigns a dark shade of grey to a vertex on the geometry.

As discussed, the brightness of colouration dictates the level of
tessellation. As the following images show, tessellation in the GRC‟s

reproduction of the geometry, corresponds to the brightness and

distribution of „deformation weightings‟ (colour) in Maya‟s view of
the geometry.

The GRC‟s reproduction of the geometry

algorithmically „tessellates‟ geometry about the
vertex that was „coloured‟. Note the non-uniform

distribution of tessellation in the geometry.

3

4

181

At this stage, the algorithm detects a high enough deformation weighting to permit actual

deformation to the tessellated geometry. Tessellated portions of geometry in the GRC are

visibly offset from their original positions.

5

6

7

8

 The RTCE‟s interface allows the artist to specify the amplitude of
geometric deformation. For demonstration purposes, the amplitude

has been maximized.

The GRC interactively reproduces this change,
causing the geometric deformation to increase.

9

Under normal circumstances, the GRC renders geometry in „non-wireframe‟ mode. This

image shows how procedurally deformed rubbish/newspaper would appear. Note that the

NPD algorithm introduces additional geometry (tessellation) to the prop‟s original geometry

(shown in Maya). The following images show how the NPD algorithm was applied to other

„rubbish‟ props. Note that variation between instances of the rubbish is evident, despite the

original „base geometry‟ being identical.

182

This example demonstrates the integration of NPD into a game scene, via props and scene

elements. Images 10 to 14 of this sequence show stages in the construction of a game setting/

context which apply NPD.

10

11

12

14

 Image 14 represents the final game context.

183

15

 The newspaper/rubbish prop that was previously developed is
inserted into Maya‟s instance of a game scene.

The tool chain responds to this interaction, immediately
inserting a corresponding „rubbish object‟ into the GRC.

16

 Deformation weightings (colour) are painted uniformly across

the newspaper prop via Maya/RTCE functionality.

The tool chain interactively displays the effect of the

deformation weightings. The newspaper now exhibits

geometric variation.

17

184

18

 Images now show the same rubbish prop being duplicated
throughout Maya‟s instance of the game scene.

The GRC interactively responds to this, inserting game
objects that correspond to the interactions in Maya. Note that

each instance of the newspaper in the GRC exhibits unique

geometric variation, which is driven by the NPD algorithm.

18

19

 A „shipping container‟ prop is constructed and introduced into
the game scene. This prop serves as a good candidate for the

NPD algorithm as „geometric damage‟ can be algorithmically

simulated across the object.

185

20

 The RTCE‟s deformation painting functionality is again

activated to apply algorithmic deformation to the „container

prop‟. The process begins with no deformation being assigned

to the object (i.e. the „black‟ overlay).

The GRC‟s reproduction of the shipping container

corresponds to the low deformation weightings assigned in

the RTCE. Thus, the original „form‟ of the prop is preserved.

21

 The artist „digitally paints‟ high deformation weightings to the
upper portion of the shipping container, via the RTCE/Maya.

The tool chain responds to the artist‟s interactions in real-
time. Deformation is interactivity introduced to the shipping

container. Note that the distribution of geometric

deformation corresponds to the distribution of deformation
weightings in the RTCE.

186

187

Chapter 6: Conclusion

This research aimed to contribute towards the trend of increased quality and realism in

computer game experiences via content creation strategies based on procedural methods

(PM). The introduction illustrated a number of emerging constraints currently limiting

improvement in game graphics. In particular, the space complexity constraint was noted for

becoming increasingly important due to significant growth in the console gaming market.

This is because consoles have static hardware specifications and thus, technological

limitations become significant especially towards the end of a consoles lifetime.

As identified in the literature review, a correlation between improvements in game graphics

and increased volumes of underlying graphics data is evident. This indicates a requirement

for larger volumes of graphics data to improve the visual quality of games. The literature

review discussed how increased data is not only difficult due to capacity constraints of

gaming hardware, but also showed how it tends to significantly increase the game artists

production workload.

If the trend for increased graphics quality/data extrapolates, production milestones will

inevitably exceed feasible workloads for standard production timelines. The implications of

this are longer production cycles for games and/or larger game development teams; both of

which are economically unfavourable for developers.

An „artist centric‟ content creation workflow was developed during this research, which

incorporated algorithms and concepts tailored to counteract these emerging constraints. To

achieve this, the tool chain integrated procedural functionality which played a central role in

the delivery of the „tool chain‟s‟ results, namely „real-time generative instancing‟ (RTGI) and

„non-uniform procedural deformation‟ (NPD). As discussed in the literature review,

procedural functions have a number of attractive qualities, such as a low memory to data

output ratio. In addition, PM‟s are capable of delivering a diverse range of characteristics in

generated data, via parameterization.

The literature review chapter illustrated how this is achieved, by investigating the

implementation of „Perlin‟ noise; a prominent procedural function which algorithmically

generates data with „seemingly natural‟ characteristics. The „functional‟ nature of PM‟s was

also noted. This provided a basis of understanding, explaining the suitability of PM‟s in this

research, which is based on the parallelized GPU architecture.

188

Because the implemented algorithms (i.e. RTGI and NPD) operate on the GPU in real-time,

any changes that are made to parameters of underlying procedural functions can be

immediately reflected in accordance with artist interaction. Through this, the tool chain

essentially achieves „real-time interaction‟. Thus, artists can interactively refine procedural

parameters to alter the manifestation of procedurally generated data in these algorithms. This

avoids „overhead penalties‟ during the process of „refinement‟, which is characteristic of

„traditional‟ content creation workflows. Thus, the amalgamation of GPU technology with

PM‟s not only aligns with the constraints/themes of this research, but also compliments the

level of interaction/feedback sought in an artist‟s tool chain.

GPUs represent a massive processing resource, which is well established and „local‟ to all

modern gaming hardware. Thus, it was appropriate to utilize this processing bandwidth by

implementing the algorithms of the tool chain in this technological context.

The literature review also identified qualitative characteristics of the interactive tool chain

paradigm, which are beneficial towards artists‟ workflow, through „context relevant‟ visual

feedback.

As indicated, traditional workflows are based on the „manual‟ propagation of games

content/data through a series of content authoring tool(s), to the target game/engine. This

hinders both the production process, as well as the extent to which „visual feedback‟ is

provided to artists during content production. In these workflows, interactive visual feedback

is limited to that provided by the content creation tool (i.e. Maya‟s „modelling viewport‟).

In response to this, a core premise of the research was derived; that artist centric, „interactive

content workflows‟ can improve the efficiency, capacity and quality of an artist‟s content

production via real-time flow of content data between authoring tool(s) and game rendering

technology.

Such a workflow allows artists to view the content in a „technologically relevant context‟ (i.e.

the game renderer). Furthermore, the low penalty of viewing content modifications in a

relevant rendering context via this workflow encourages refinement to games content during

creation, while also promoting „content prototyping‟. These characteristics therefore make

the integration of procedurally driven content creation strategies more feasible in an artists‟

workflow. Procedural parameters can be interactively altered, thus yielding real-time

feedback in the results of corresponding algorithms of the tool chain.

Autodesk‟s „Maya‟ was selected as the authoring tool on which to base the „artist interface‟

of this research‟s tool chain. This was motivated by a number of factors, namely Maya‟s

mainstream use in the games industry (Autodesk: Autodesk In Games, 2010).

189

Many prominent game studios have integrated Maya into their development processes, due to

the software‟s vast array of functionality and “wide variety of features” (Price, 2008)

(Insomniac Games, 2008) (Terminal Reality, 2009). Maya also maintains a highly extensible

developer interface, making it possible to integrate functionality specific to this research.

The interactive tool chain chapter section illustrated how Maya‟s development interfaces

were used to implement this research‟s custom tool chain functionality into the modelling

package. As demonstrated, this effectively „bridged‟ Maya‟s advanced modelling and content

authoring capabilities, to an external „game rendering context‟.

This research also extended Maya‟s standard functionality, by providing artists with

„interactive‟ access to algorithms/functionality specific to this research. Emphasis was placed

on the „reuse‟ of interface and interaction conventions native to Maya, to maintain

transparency and familiarity for experienced Maya users.

Not only did the practical outcome of this provide a basis for experimentation and testing

through development, it also demonstrated how the ideas proposed in this research can

integrate with „industry standard‟ content authoring tools.

The developed tool chain was based on the „connection‟ model, consisting of two core

software components. This model was selected because of its flexibility, permitting different

workflow configurations for individual and/or collaborative production by artists, in an

interactive content authoring context. In addition, the connection model can facilitate

interactive content authoring across different „architectures/platforms‟, making it attractive

for cross platform game development projects. Selecting this model therefore demonstrates

how algorithms and outcomes of this research could benefit a wider range of game

development situations. In addition, the interactive tool chain section established that this

model is suited for integration with other content authoring tools in addition to Maya.

Content data is associated and synchronized between the model‟s two software components

via a real-time communications link (TPC/IP based), through which „interactivity‟ and

responsiveness is delivered.

The tool chain‟s first software component is the RTCE which as mentioned, integrates into

the content authoring tool (Maya). The RTCE provides artists‟ with access to

parameters/controls specific to the tool chain‟s functionality, namely the NPD and RTGI

algorithms. Furthermore, the RTCE integrates with Maya‟s built-in user interfaces,

particularly those for creating and specifying procedural functions and materials.

190

The RTCE internally associates Maya‟s built-in controls with corresponding parameters of

the NPD and RTCE algorithms. This association is made via Maya‟s „event mechanism‟, in

conjunction with the tool chain‟s „network interface‟. Through this, artists harness the

„procedural authoring‟ functionality provided by Maya, to interactively control and refine

game content/scenes that employ the tool chain‟s RTGI, NPD and material composition

algorithms. As a result, PM‟s can be explicitly used by artists, through this interactive tool

chain, for a variety of content authoring tasks.

The

event mechanism section explained how the RTCE binds to Maya‟s event system, allowing

the tool chain to immediately respond to and process relevant artist interactions. Thus, when

a „registered event‟ took place in Maya, corresponding RTCE functionality was invoked

which typically resulted in scene data being transmitted to the tool chain‟s „rendering

component‟ (GRC). The functional side effects of this responsiveness were illustrated in the

sequential diagrams of demonstrations chapter. Thus, simple editing interactions by the artist

in Maya are interactively reproduced in real-time, in the GRC.

As discussed, the RTCE‟s design adopts data representations that are native to Maya. This

influenced the way „procedural material composition‟ and parameters of the NPD and RTGI

algorithms were exposed in the RTCE‟s user interface. Thus, conventions such as „material

channels‟ and „vertex structure‟ were integrated with the RTCE‟s interface and functional

implementation. Note that these „data conventions‟ are common to most modelling packages.

The interactive tool chain section showed how the RTCE‟s interface underwent an iterative

development process, which aimed to expose all required parameters/controls, to artists.

Recall that a major outcome in the RTCE‟s final design iteration was the integration of

Maya‟s own internal material structures, which provided a basis for the RTCE‟s material

composition feature.

This RTCE implementation therefore, demonstrated that a correspondence between Maya‟s

data conventions/representations could be maintained when „reproducing‟ data in the

„rendering component‟ of the tool chain. If for example, an artist assigned a procedural

function to the „colour channel‟ of a material structure in Maya, the materials reproduction in

the GRC would be rendered in a consistent fashion.

The RTCE‟s direct integration into Maya therefore, exposed the tool chain‟s unique

functionality (RTGI, NPD, material composition) to artists, encouraging the use and resulting

benefits of these algorithms in the content authoring process.

191

The second software component that was developed for this tool chain was the „game

rendering context‟ (GRC). Recall that a custom renderer was built as a substitute for the

game/engine renderer that would ideally be used in an interactive tool chain. The primary

reason for this „customized‟ renderer was the project‟s requirement for GPU based

procedural functionality, in conjunction with „low level‟ Direct3D 10 API access. A survey

of open source/usable rendering engines showed that none fully satisfied these requirements

(see Appendix A). Thus, the GRC was programmed directly on Microsoft‟s Direct3D 10

rendering API.

As illustrated in the game rendering context (GRC) section, Microsoft‟s Direct3D is the

predominant API used by the games industry for accelerated graphics rendering. To maintain

relevance to current technology, Direct3D 10 was selected as the GRC‟s interface to graphics

hardware. Direct3D 10 also provided access to modern GPU/shader functionality, which was

required for this research‟s „GPU based‟ RTGI and NPD implementations.

As mentioned in the implementation chapter, these algorithms use a number of hardware

acceleration features available on Direct3D 10 certified graphics hardware, namely „geometry

shaders‟, „data output-streaming‟ and „hardware instancing‟. Aside from the assumed

performance benefits, this GPU based „implementation pathway‟ was also motivated by an

interest in the features and characteristics of the GPU architecture.

The custom framework that was developed provided a high level of flexibility for the

development process and was well suited to the iterative and experimental nature of these

framework elements. This „framework‟ served as an ideal platform for

experimental/conceptual ideas that constituted the research‟s RTGI, NPD and material

composition algorithms.

In keeping with the tool chain‟s interactive nature, the GRC application was designed to

immediately respond to network traffic, transmitted from connected RTCE „instances‟.

Because the GRC is a real-time rendering application, „response‟ to network traffic was

handled in the GRC‟s application loop. Responding to network traffic at each „loop interval‟

delivered the necessary level of „responsiveness‟ to artist interaction/network traffic in the

GRC.

Recall that most of the functionality that drives algorithms in this tool chain is „shader/GPU

based‟. The implication of this was the need for a software structure that would support

initialization and execution of these shader based algorithms. Most of this shader support

structure existed in the GRC‟s „renderer‟ and „materials‟ modules. These modules also

192

integrated functionality capable of dynamically responding to network traffic which

originates from RTCE instances.

A key feature of the GRC‟s rendering module was its integration of a flexible and

customizable shader framework. This shader framework was developed to support dynamic

shader generation/assembly in response to artists‟ interaction with the tool chain at runtime.

If for example, the artist made changes to the „vertex structure‟ of a game object from the

RTCE (Maya), the rendering module would respond by recompiling the game object‟s shader

to facilitate the new geometry/vertex format.

In addition, the rendering module rebuilds shaders associated with game objects when the

composition of an object‟s material structure is modified by the artist, or when shader based

RTGI/NPD functionality is requested for a shader, via the shader assembly mechanism. For

example, if an artist invokes such functionality from the RTCE, the GRC responds by

embedding corresponding shader functionality into shaders of the respective game objects.

The shader system that was implemented into the GRC, demonstrated dynamic shader

assembly via the use of pre-processor directives (available in Microsoft‟s HLSL shader

language). As shown, this strategy provided a robust mechanism for dynamically building

„adaptive‟ and arbitrary shaders.

It was established however, that the shader recompilation process tended to incur a brief

„delay‟ in the fluidity of the GRC‟s interaction, particularly when NPD or RTGI functionality

were embedded into a shader. Although acceptable, possible solutions to minimize the

duration of shader compilation are explored in the following section.

The shader system however, successfully offloaded development overhead on artists, that

typically results from arbitrary „vertex formats‟ in game geometry, via the use of pre-

processor directives and specialized shader structure. In addition, extensions were

implemented in the tool chain‟s shader system which allowed „technical artists‟ to provide

custom shader code. The system not only manages the association of custom shader

functionality with arbitrary „geometry formats‟, but its design also makes procedural material

composition functionality available for use in custom shaders. This therefore demonstrated

the integration of a shader system that merged automated, adaptive shader assembly with

customization and procedural elements, in the context of an interactive tool chain.

The instancing algorithm section described how shader based functionality was developed to

generate „instance data‟ across an arbitrary „manifold surface‟ specified by the artist. The

algorithm combines this data with GPU based „hardware instancing‟, to efficiently render

193

many „instances‟ or copies of a specified object. Due to the algorithms GPU based

implementation RTGI could harness the parallel processing capabilities of the architecture, to

deliver instance generation interactively and in real-time.

Procedural functionality was incorporated into the RTGI algorithm to dictate the distribution

of generated instances and/or their unique parameters. Through this, the algorithm enabled

parameterization of rotation and scale for instanced geometry across a manifold surface,

based on the evaluation of associated procedural functions. In addition, the RTGI algorithm

allowed a procedural function to be supplied at runtime, to control the distribution of

instances across the manifold surface.

Following investigation into RTGI based instancing strategies for games and discussion with

professionals in the games industry, it was clear that explicit control over instancing would be

required in some applications. Thus, provision for a „cookie cutter‟ image mask was

integrated into the tool chain and RTGI algorithm, to provide „hybrid‟ object instancing that

merged control (offered by conventional image based art forms) with procedural

functionality.

This implementation of RTGI was designed to take advantage of the interactive tool chain

context and thus, was largely based on parameterized, procedural functionality. The

algorithm is parameterized in real-time, enabling it to immediately respond to artists‟

instigated parameter changes. Thus, changes to the algorithms visual result, which

correspond to artist interaction, are shown by the tool chain‟s game renderer.

Because the level of control offered by RTGI‟s procedural functionality corresponds to that

provided by Maya‟s built-in content authoring interfaces, this tool chain algorithm delivers a

high level of configuration and control over the distribution of instanced objects. This

therefore, improves upon „static‟ (un-parameterized) implementations of procedural object

placement, which are typical of many „game environment‟ authoring tools.

The final major component of this research was the NPD algorithm. The NPD algorithm was

designed to provide a procedurally based strategy for unique geometric variation in objects.

The motivation for this was to better facilitate the delivery of geometric variety between

similar objects, while minimizing both artist workload and the game‟s overall data size.

Game objects/props are often reused in game scenes as a method for increasing detail and/or

reflecting characteristics of game environments. Unfortunately, visual repetition can have a

negative effect on the overall realism of game scenes. The NPD algorithm was therefore

developed to counteract this.

194

By interpreting evaluations of procedural functionality as deformation, the NPD algorithm

achieved geometric variety between instances of the same „base geometry‟.

The NPD implementation maximizes artist control over the presence of procedurally driven

variation in base geometry, permitting „non-uniform‟ distributions of geometric deformation.

Non-uniform deformation was based on a per-vertex „weighting‟ scheme. From the artist‟s

working environment, the application of variation to base geometry was achieved by the

„painting‟ metaphor, which allowed intuitive and fast application of „deformation weightings‟

to base geometry.

The NPD algorithm also demonstrates the use of triangular tessellation through which better

deformation/variation results could be manifest in simple base geometry. Because

deformation weightings can be arbitrarily distributed across base geometry, NPD tessellation

is therefore adaptive, which avoids unnecessary tessellation of the base geometry. In addition,

the variable nature of weights was used to allow different levels of tessellation and variation

in NPD processed based geometry.

Similarly to the RTGI algorithm, the NPD system operates in real-time and thus, coincides

with the interactive tool chain paradigm. Due to the NPD‟s implementation in the context of

this research‟s interactive authoring environment, artists‟ can easily harness procedural

functionality to specify object variation via fluid and real-time visual feedback.

This research has demonstrated a series of novel and compelling applications of procedural

methods, for content creation in games. The motivation for this was to deliver strategies

which promote further improvement in the detail and complexity of games graphics thus,

increasing the realism of visual experiences in games.

Concepts and algorithms which build upon this objective have been integrated into an artist

centric, interactive content creation workflow, to take advantage of the interactive paradigm‟s

benefits.

This research has therefore successfully demonstrated the integration of procedural methods

into relevant content creation processes and algorithms, which enhance the prospects of

quality, detail and realism in games content and graphics.

195

Future work

The following section outlines some possible avenues for future work in aspects of this

research.

Material composition system

As discussed, the material composition system is primarily implemented on the GPU and

thus, is written in HLSL (High Level Shader Language). Recall that shaders of this tool chain

which integrate „material composition‟ functionality require recompilation when the artist

alters the material‟s composition. Shader recompilation however, incurs a short „delay‟

during the tool chain‟s otherwise seamless responsiveness during runtime.

An approach to reducing and/or eliminating interaction delays might involve the use of

„Dynamic Shader Linking‟; a feature of „Shader Model 5.0‟ which is available in Direct3D11

(Direct3D 11 Features, 2010) Note that implementations of Direct3D11 for graphics

hardware started to emerge during this research. „Dynamic Shader Linking‟ appears to

provide functionality similar to the pre-processor based shader assembly feature that

underlies this research‟s material composition and shader system. Because „Dynamic Shader

Linking‟ is native to Direct3D11 however, it is likely that a composition system based on this

feature would deliver more rapid response.

The current implementation of the material system achieves composition by „averaging‟ the

contribution of active procedural functions in the material. Although this „procedural

combination‟ computation is sufficient for many situations, it would be useful if the system

allowed artists to „combine‟ procedural functions via other combination operations; for

example „multiplication‟ or „difference‟. From an artists‟ perspective, this would offer more

flexibility in the tool chain as a wider range of composition results could be achieved. This

would require the integration of respective „combination operations‟ in both the tool chain

interface (RTCE), as well as the material system‟s shader code.

Real-time generative instancing (RTGI)

The RTGI concept is expressed on the GPU architecture in order to achieve high runtime

performance. As discussed, the GPU implementation is limited by some aspects of the

current GPU architecture, as well as current graphics API‟s.

The GPU based implementation of RTGI uses „data streaming‟ and „GPU instancing‟ and

thus, must be expressed as a multi-stage rendering algorithm. The consequence of this, is that

196

intermediate storage of instance data is required between stages, limiting the number of

instances to the amount of memory allocated for these buffers (or the memory available on

the hosting system), as well as data bandwidth between the GPU/host system processor.

Ideally, future graphics API‟s would allow this algorithm to be expressed in a single pass,

avoiding the need for intermediate data storage. This could enable „uncapped‟ volumes of

procedurally driven geometry instancing in games, with instancing data only existing „on-the-

fly‟ during rendering.

Other improvement could be made to the RTGI implementation‟s runtime efficiency. An

extra layer of processing could be added to the algorithm‟s „instance generation‟ shader;

„frustum culling‟. Frustum culling would integrate into the instance generation stage,

preventing the generation of instances that fall outside of the camera‟s „field of view‟ or

„view frustum‟.

Frustum culling is an optimization technique that „culls‟ non-visible geometry/objects prior to

the rendering process (Bourke, 2000). The process begins by computing a „view volume‟ (i.e.

view perspective) which corresponds to a volume that encapsulates all visible portions of the

3D scene (Bourke, 2000). The culling process involves „view planes‟ being extracted from

the view volume (Hartmann & Gribb, 2010). If an „object being rendered‟ falls on the outer

side of a view plane, that object is culled from the subsequent rendering process. The view

volume is a product of „view‟ and „projection‟ transformations, that represent the scene‟s

view perspective (Hartmann & Gribb, 2010). Because these transformations are available in

the context of the RTGI‟s instancing shader, integrating this form of culling into the instance

generation shader, to avoid the generation of unnecessary/non-visible instances, would be

feasible.

Furthermore, improvements could be made to the integration of the RTGI algorithm‟s

„cookie cutter‟ feature. Recall that the „cookie cutter‟ is an auxiliary „image mask‟ which

maps over manifold geometry to explicitly control areas where instancing can occur. As

discussed, this offers artists a high level of control over the behaviour/results of instancing.

This control however, comes at the expense of undesirable memory overhead. Currently, this

RTGI implementation uses an uncompressed bitmap image to deliver „cookie cutter‟ data to

the shader. The image uses a four channelled colour format at 32-bits per pixel. Thus, the

opportunity exists for reducing memory overhead by simplifying the cookie image‟s data

precision to a „single bit‟ per pixel. This precision would be sufficient, given that the cookie

data is interpreted as a Boolean value by the instancing shader. Other memory conservation

197

strategies could include compression schemes such as „run length encoding‟, to efficiently

represent the cookie image in system/GPU memory. This would require that a GPU based

decompression/decoding operation be integrated into the RTGI‟s instancing shader.

Non-uniform procedural deformation (NPD)

The NPD implementation allows artists‟ to specify „unique‟ procedurally driven geometric

variation across many instances of the same „base‟ geometry. Currently, only a single

„procedural noise‟ function can be used to deliver unique geometric variation between

objects. Although this single function has proven to be sufficient for many situations, it may

be useful if the artist could select different procedural functions to drive geometric

deformation. Furthermore, these developments could integrate with the „procedural

composition‟ mechanism that was used in the research‟s material system, to deliver more

flexibility and control over the procedural deformation result.

Another avenue for improvement would be to support more extensive variation between

objects. As discussed, geometric variation is limited by the „form‟ of the base geometry.

Geometric variation is achieved by modifying the position of vertices in the base geometry

via the procedurally based, „vertex offset‟ mechanism. Thus, the NPD algorithm could be

extended to allow variation between objects, where portions of geometric structure/form of a

processed base object (geometry) are omitted from the rendered result; this providing more

„substantial‟ variation.

198

199

References

3ds Max 2011 SDK. (2010, Febuary 5). Retrieved May 16, 2010, from Autodesk, Inc:

www.autodesk.com/3dsmax-sdk-docs

3DVision. (2010, March 1). Retrieved April 17, 2010, from Crytek To Demo CryENGINE 3

in Stereoscopic 3D at GDC 2010: http://3dvision-blog.com/tag/livecreate/

Accardo, S. (2007, August 7). id Software's New Title: Rage. Retrieved April 3, 2010, from

gamespy: http://au.pc.gamespy.com/pc/id-tech-5-project/810525p1.html

Adams, B. (2009, December 15). Bethesda To Publish RAGE. Retrieved June 2010, 3, from

EBA: http://epicbattleaxe.com/wp-content/uploads/2009/12/RAGE_screen1.jpg

Age of Empires. (2010, April 23). Retrieved April 28, 2010, from Wikipedia:

http://en.wikipedia.org/wiki/Age_of_Empires

Age of Empires,Features. (1998). Retrieved June 3, 2010, from Microsoft:

http://www.microsoft.com/games/aoeexpansion/features.htm

Ahearn, L. (2006). Mr. In L. Ahearn, 3D Game Textures: Create Profession Game Art Using

Photoshop (p. 103). Oxford, UK: Focal Press.

Allegorithmic, About. (2010). Retrieved April 23, 2010, from Allegorithmic.:

http://www.allegorithmic.com/?PAGE=ABOUT

Allegorithmic, Products. (2010). Retrieved April 13, 2010, from Allegorithmic:

http://www.allegorithmic.com/?PAGE=PRODUCTS

Anderson, N. (2007, August 30). Video gaming to be twice as big as music by 2011.

Retrieved May 11, 2010, from ars technica:

http://arstechnica.com/gaming/news/2007/08/gaming-to-surge-50-percent-in-four-years-

possibly.ars

Ashrafi, R. (2008, May 1). GTA IV Budget Revealed. Retrieved May 19, 2010, from Digtial

Battle: http://www.digitalbattle.com/2008/05/01/gta-iv-budget-revealed/

ATI Technologies. (2010, May 12). Retrieved May 16, 2010, from Wikipedia:

http://en.wikipedia.org/wiki/ATI_Technologies

Autodesk. (2010). Retrieved May 16, 2010, from Autodesk, Inc:

http://usa.autodesk.com/industries/media-entertainment/games

Autodesk. (2010). Retrieved May 16, 2010, from Autodesk, Inc:

http://usa.autodesk.com/adsk/servlet/pc/index?siteID=123112&id=13567410

Autodesk. (2010). Retrieved May 13, 2010, from Autodesk, Inc:

http://images.autodesk.com/adsk/files/fy11_games_brochure_us.pdf

Autodesk Maya. (2010). Retrieved May 16, 2010, from Autodesk, Inc:

http://usa.autodesk.com/adsk/servlet/pc/index?siteID=123112&id=13583239#channels_Pipel

ine Integration

Banks, M. (2009, May 3). CoD4 Patch Bends Cheaters Over a Table. Retrieved May 27,

2010, from Loot Ninja: http://loot-ninja.com/wp-content/uploads/2008/03/map3.jpg

200

Bantick, M. (2009, August 31). Uncharted 2 could not be achieved on Xbox 360. Retrieved

March 13, 2010, from iTWire: http://www.itwire.com/your-it-news/entertainment/27331-

uncharted-2-could-not-be-achieved-on-xbox-360

Bathroom, Allegorithmic. (2010). Retrieved March 15, 2010, from Allegorithmic:

http://www.allegorithmic.com/?PAGE=GALLERY.demos

Blythe, D. (2006). The Direct3D 10 System.

Blythe, D. (2006). The Direct3D 10 System. (p. 2). Microsoft Corporation.

Booth, M. (2009, October 27). The AI Systems of Left 4 Dead. Retrieved March 22, 2010,

from Valve Software:

http://www.valvesoftware.com/publications/2009/ai_systems_of_l4d_mike_booth.pdf

Bourke, P. (2000, November 18). Frustum Culling. Retrieved May 18, 2010, from Western

Australian Supercomputer Program (WASP):

http://local.wasp.uwa.edu.au/~pbourke/miscellaneous/frustum/

Breckon, N. (2008, May 28). FarCry 2 Preview. Retrieved March 24, 2010, from

ShackNews: http://www.shacknews.com/featuredarticle.x?id=880

Breckon, N. (2008, September 16). id: Rage Content Cut due to Xbox 360 Size Limit.

Retrieved March 22, 2010, from ShackNews: http://www.shacknews.com/onearticle.x/54778

Bright, P. (2010, March 11). OpenGL 4 spec arrives with Direct3D 11 feature parity.

Retrieved May 16, 2010, from Ars Technica:

http://arstechnica.com/software/news/2010/03/opengl-4-spec-arrives-with-direct3d-11-

feature-aars

Brooks, T. (2010, March 10). Sentinel level. Retrieved May 24, 2010, from Wikipedia:

http://upload.wikimedia.org/wikipedia/en/9/9a/Sentinel_level.png

Brown, P. (2010, 3 23). ARB_gpu_shader_fp64. Retrieved March 18, 2010, from OpenGL:

http://www.opengl.org/registry/specs/ARB/gpu_shader_fp64.txt

Brown, P. (2009, December 14). EXT_geometry_shader4. Retrieved May 12, 2010, from

OpenGL: http://www.opengl.org/registry/specs/EXT/geometry_shader4.txt

Brudvig, E. (2007, December 7). RoboBlitz Review. Retrieved March 25, 2010, from IGN

AU Edition: http://au.xboxlive.ign.com/articles/749/749898p1.html

Business Wire. (2007, August 20). The Global Entertainment Industry is Expected to Show

an Annual Growth of 10% in the Next Four Years and That Growth Will Be Driven by China.

Retrieved May 12, 2010, from BNet:

http://findarticles.com/p/articles/mi_m0EIN/is_2007_August_20/ai_n19452832/

Carmack, J. (2010). Rage PC Interview - Carmack on Rage, Doom, and Gaming

Development. Retrieved June 4, 2010, from GameSpy:

http://au.pc.gamespy.com/dor/objects/926419/id-tech-5-

project/videos/carmack_spy_080408_part1.html;jsessionid=4pdlp0f6uebq3

Champandard, A. J. (2009, November 6). Procedural Level Geoemtry from Left 4 Dead 2:

Spying on the AI Director. Retrieved March 25, 2010, from aigamedev.com:

http://aigamedev.com/open/discussion/procedural-level-geometry/

Cifaldi, F. (2006, September 1). The Gamasutra Quantum Leap Awards: First-Person

Shooters. Retrieved April 4, 2010, from Gamasutra:

http://www.gamasutra.com/features/20060901/quantum_01.shtml

201

Crossley, R. (2009, May 26). Interview: Krome’s Robert Walsh. Retrieved May 19, 2010,

from develop: Intent Media ©: http://www.develop-online.net/news/33625/Study-Average-

dev-cost-as-high-as-28m

CryEngine. (2010, Feburary 26). Retrieved April 12, 2010, from Wikipedia:

http://en.wikipedia.org/wiki/CryENGINE

CryEngine 3.0. (2010, April 20). Retrieved May 1, 2010, from Wikipedia:

http://en.wikipedia.org/wiki/CryEngine_3

CryEngine 3.0. (2010, April 20). Retrieved May 1, 2010, from Wikipedia:

http://en.wikipedia.org/wiki/CryEngine_3#cite_note-4

CryENGINE® 2 Specifications. (2010). Retrieved May 28, 2010, from CRYTEK©:

http://www.crytek.com/technology/cryengine-2/specifications/

Current Technology - Unreal Engine 3. (2010). Retrieved May 1, 2010, from

UnrealTechnology: http://www.unrealtechnology.com/technology.php

D3DXCreateEffectFromFile Function. (2010, April 7). Retrieved May 21, 2010, from

MSDN: http://msdn.microsoft.com/en-us/library/bb172768(v=VS.85).aspx

Delta3D - Features. (n.d.). Retrieved May 1, 2010, from Delta3D:

http://www.delta3d.org/article.php?story=20051209133127695&topic=docs

DeMaria, R., & Wilson, J. L. (2003). High Score!: The Illustrated History of Electronic

Games, Second Edition. McGraw-Hill.

Development of Spore. (2010, May 1). Retrieved June 3, 2010, from Wikipedia:

http://en.wikipedia.org/wiki/Development_of_Spore

DeWolf, I. (2000). OCTAVE SUMMING. Retrieved May 24, 2010, from Martian Labs:

http://martian-

labs.com/martiantoolz/htmldocs/algorithm/fourier_analysis/Octave_Summing/octave_sum.ht

ml

Diffuse minus Specular. (2009, Jun 16). Retrieved June 1, 2010, from open salon:

http://static.open.salon.com/files/picture_21245167244.png

Direct3D 11 Features. (2010, April 5). Retrieved May 8, 2010, from MSDN:

http://msdn.microsoft.com/en-us/library/ff476342(VS.85).aspx

Direct3D 9 to Direct3D 10 Considerations. (2010, April 5). Retrieved May 17, 2010, from

MSDN: http://msdn.microsoft.com/en-

us/library/bb205073(VS.85).aspx#Removal_of_Fixed_Function

Doc:Manual/Materials/Vertex Paint. (2009, September 25). Retrieved March 13, 2010, from

Blender: http://wiki.blender.org/index.php/Doc:Manual/Materials/Vertex_Paint

Documentation, MapZone. (2010). Retrieved March 12, 2010, from MapZone:

http://www.mapzoneeditor.com/index.php?PAGE=DOCUMENTATION.IvyLeaf

DrawAuto Method. (2010, April 5). Retrieved May 16, 2010, from MSDN:

http://msdn.microsoft.com/en-us/library/bb173564(VS.85).aspx

Effect System Interfaces. (2010, April 5). Retrieved May 19, 2010, from MSDN:

http://msdn.microsoft.com/en-us/library/bb205110(v=VS.85).aspx

Effect Technique Syntax. (2010, April 5). Retrieved May 16, 2010, from MSDN:

http://msdn.microsoft.com/en-us/library/bb205053(v=VS.85).aspx

202

Efficiently Drawing Multiple Instances of Geometry. (2010, April 7). Retrieved June 1, 2010,

from MSDN: http://msdn.microsoft.com/en-us/library/bb173349(v=VS.85).aspx

Elias, H. (1998, March 1). Bump Mapping. Retrieved May 22, 2010, from

http://freespace.virgin.net/hugo.elias/graphics/x_polybm.htm

Everitt, C., & Kilgard, M. J. (2002, March 12). Practical and Robust Stenciled Shadow

Volumes for Hardware-Accelerated Rendering. Retrieved May 12, 2010, from Nvidia:

http://developer.nvidia.com/attach/6831

Far Cry 2. (2009, July 18). Retrieved March 24, 2010, from Procedural Content Generation:

http://pcg.wikidot.com/pcg-games:far-cry-2

Far Cry 2. (2009, July 18). Retrieved March 23, 2010, from Procedural Content Generation:

http://pcg.wikidot.com/pcg-games:far-cry-2

Far Cry 2. (2010, April 28). Retrieved May 2010, 2, from Wikipedia:

http://en.wikipedia.org/wiki/Far_Cry_2

Far Cry. (2010, April 2). Retrieved April 22, 2010, from Wikipedia:

http://en.wikipedia.org/wiki/Far_Cry

Features, Ogre3D. (2009). Retrieved May 1, 2010, from Ogre3D:

http://www.ogre3d.org/about/features

Fryazinov, O., & Pasko, A. (2008). Interactive ray shading of FRep objects. International

Conferences in Central Europe on Computer Graphics, Visualization and Computer Vision

(p. 5). Bory: WSCG.

Function Declaration Syntax. (2010, April 5). Retrieved May 13, 2010, from MSDN:

http://msdn.microsoft.com/en-us/library/bb509607(VS.85).aspx

Gebhardt, N. (2009). Features. Retrieved May 1, 2010, from Irrlict - An open source 3d

engine: http://irrlicht.sourceforge.net/features.html

GeForce 256. (2010). Retrieved May 24, 2010, from NVidia:

http://www.nvidia.com/page/geforce256.html

Geometry-Shader Object. (2010, April 5). Retrieved March 23, 2010, from MSDN:

http://msdn.microsoft.com/en-us/library/bb509609(VS.85).aspx

Geometry-Shader Object. (2010, April 5). Retrieved March 23, 2010, from MSDN:

http://msdn.microsoft.com/en-us/library/bb509609(VS.85).aspx

Get Windows Vista: System requirements. (2010). Retrieved May 31, 2010, from

Microsoft©: http://www.microsoft.com/windows/windows-vista/get/system-

requirements.aspx

Golding, J., & Nalezynski, R. (2010). Unreal Physics Asset Tool (PhAT) User Guide.

Retrieved April 21, 2010, from Unreal Developer Network:

http://udn.epicgames.com/Three/PhATUserGuide.html

Gowers, T. (2004). Real numbers as infinit decimals. Retrieved April 2, 2010, from

Department of Pure Mathematics and Mathematical Statistics - University of Cambridge:

http://www.dpmms.cam.ac.uk/~wtg10/decimals.html

GPU. (2010). Retrieved May 24, 2010, from NVidia: http://www.nvidia.com/object/gpu.html

Grand Theft Auto 1. (2010). Retrieved May 3, 2010, from wikia:

http://gta.wikia.com/Grand_Theft_Auto_1

203

Green, S., & Cebenoyan, C. (2004). High Dynamic Range Rendering. Retrieved May 27,

2010, from NVidia:

http://download.nvidia.com/developer/presentations/2004/6800_Leagues/6800_Leagues_HD

R.pdf

Gregor vom Scheidt. (2005). Retrieved May 19, 2010, from Xing:

http://www.xing.com/profile/Gregor_vomScheidt

Hagedoorn, H. (2007, July 27). Radeon HD 2400 XT and 2600 XT review. Retrieved June 1,

2010, from Guru3D: http://www.guru3d.com/article/radeon-hd-2400-xt-and-2600-xt-

review/16

Haines, E. (1994). Point in Polygon Stratergies. In P. Heckbert, Graphics Gems IV (pp. 24-

46). Academic Press.

Hartmann, K., & Gribb, G. (2010, June 6). Fast Extraction of Viewing Frustum Planes from

the World-View-Projection Matrix. Retrieved May 18, 2010, from Raven Software:

http://www2.ravensoft.com/users/ggribb/plane%20extraction.pdf

Hecker, C. (2009, May 8). My Liner Notes for Spore. Retrieved June 3, 2010, from

ChrisHecker: http://chrishecker.com/My_Liner_Notes_for_Spore

HLSL. (2010, 4 5). Retrieved March 15, 2010, from MSDN: http://msdn.microsoft.com/en-

us/library/bb509561(VS.85).aspx

HLSL:Sample. (2010, April 5). Retrieved May 3, 2010, from MSDN:

http://msdn.microsoft.com/en-us/library/bb509695(VS.85).aspx

Hwu, W.-m. (2009, August 3). Many-core Computing. Retrieved May 27, 2010, from

Gigascale Systems Research Centre: http://www.mpsoc-forum.org/2009/slides/Hwu.pdf

ICE Attribute Reference. (2009, July 15). Retrieved March 13, 2010, from The Softimage

Wiki: http://softimage.wiki.softimage.com/index.php/ICE_Attribute_Reference

id Software. (2010, May 16). Retrieved May 19, 2010, from Wikipedia:

http://en.wikipedia.org/wiki/Id_Software

Id Software. (n.d). Retrieved May 16, 2010, from Id Software:

http://www.idsoftware.com/business/jobs/index.php

Id Software: Final Doom. (2001). Retrieved May 31, 2010, from Id Software:

http://www.idsoftware.com/games/doom/doom-final/

Id Software: Quake. (2001). Retrieved May 31, 2010, from Id Software:

http://www.idsoftware.com/games/quake/quake/

id Software: Return to Castle Wolfenstein. (2001). Retrieved May 19, 2010, from id

Software: http://www.idsoftware.com/games/wolfenstein/rtcw/images/full08.jpg

id Software: Wolfenstien 3D and Spear of Destiny. (2001). Retrieved May 19, 2010, from id

Software: http://www.idsoftware.com/games/wolfenstein/wolf3d/images/full01.jpg

ID3D10Asynchronous Interface. (2010, 4 5). Retrieved April 3, 2010, from MSDN:

http://msdn.microsoft.com/en-us/library/bb173500(v=VS.85).aspx

ID3D10Query Interface. (2010, April 5). Retrieved May 19, 2010, from MSDN:

http://msdn.microsoft.com/en-us/library/bb173823(VS.85).aspx

IGN: Crysis Screenshots. (2007, October 9). Retrieved June 1, 2010, from IGN:

http://pcmedia.ign.com/pc/image/article/825/825955/crysis-20071009011856623_640w.jpg

204

Ingham, T. (2010, April 23). Xbox 360 sales storm past 40m. Retrieved May 10, 2010, from

CVG: http://www.computerandvideogames.com/article.php?id=243971

Input-Assembler Stage. (2010, April 5). Retrieved May 5, 2010, from MSDN:

http://msdn.microsoft.com/en-us/library/bb205117(v=VS.85).aspx

Insomniac Games. (2008). Retrieved May 14, 2010, from Autodesk, Inc:

http://images.autodesk.com/adsk/files/insomniacgames_customerstory_maya.pdf

Instanced Geometry. (2010, April 7). Retrieved May 9, 2010, from MSDN:

http://msdn.microsoft.com/en-us/library/bb173349(VS.85).aspx

Ivan, T. (2010, January 6). Blu-Ray Storage Capacity Increased. Retrieved March 23, 2010,

from Edge - Online: http://www.edge-online.com/news/blu-ray-storage-capacity-increased

Jube. (2009, August 11). CryEngine LiveCreate Showcase at GDC Europe. Retrieved April

14, 2010, from Voodoo Extreme: http://ve3d.ign.com/articles/news/49541/CryEngine-

LiveCreate-Showcase-GDC-Europe

Kessenich, J., Baldwin, D., & Rost, R. (2010, March 10). The OpenGL® Shading Language.

(J. Kessenich, Ed.) Retrieved May 21, 2010, from OpenGL:

http://www.opengl.org/registry/doc/GLSLangSpec.4.00.8.clean.pdf

Kilgard, M. J. (2000, July 10). All About OpenGL Extensions. Retrieved May 16, 2010, from

OpenGL: http://www.opengl.org/resources/features/OGLextensions/

Kilgard, M. J. (2000, July 10). All About OpenGL Extensions. Retrieved May 16, 2010, from

OpenGL: http://www.opengl.org/resources/features/OGLextensions/

Kudler, A. (2007). Timeline: Video Games (1985 - 1995). Retrieved November 12, 2009,

from infoplease: http://www.infoplease.com/spot/gamestimeline3.html

Lagae, A. (2009, May 5). Procedural Noise using Sparse Gabor Convolution. Retrieved May

24, 2010, from YouTube: http://www.youtube.com/watch?v=1_Ss2dUvaW8

Lagae, A., Lefebvre, S., Drettakis, G., & Dutr', P. (2009). Procedural Noise using Sparse

Gabor Convolution. ACM SIGGRAPH , 2.

Lagae, A., Lefebvre, S., Drettakis, G., & Dutr', P. (2009). Procedural Noise using Sparse

Gabor Convolution. ACM SIGGRAPH , 3.

Lagae, A., Lefebvre, S., Drettakis, G., & Dutr', P. (2009). Procedural Noise using Sparse

Gabor Convolution. ACM SIGGRAPH , 5.

Lagae, A., Lefebvre, S., Drettakis, G., & Dutr', P. (2009). Procedural Noise using Sparse

Gabor Convolution. ACM SIGGRAPH , 7.

layeredTexture node. (2010). Retrieved April 30, 2010, from Autodesk:

http://download.autodesk.com/us/maya/2010help/Nodes/layeredTexture.html

Left 4 Dead. (2009, October 18). Retrieved Febuary 22, 2010, from Procedrual Content

Generation: http://pcg.wikidot.com/pcg-games:left4dead

Left 4 Dead. (2009). Retrieved November 22, 2009, from L4D:

http://www.l4d.com/game.html

Lichtenbelt, B., Brown, P., & Werness, E. (2008, August 17). NV_transform_feedback.

Retrieved March 26, 2010, from OpenGL:

http://www.opengl.org/registry/specs/NV/transform_feedback.txt

Lidwell, W., Holden, K., & Butler, J. (2003). Universal Principles of Design. Beverly:

Rockport Publishers.

205

Lilly, P. (2010). Voodoo to GeForce: The Awesome History of 3D Graphics. Retrieved

Feburary 10, 2010, from MaximumPC:

http://www.maximumpc.com/article/features/graphics_extravaganza_ultimate_gpu_retrospec

tive

Lionhead Studios. (2010). Retrieved May 28, 2010, from Lionhead Studios:

http://lionhead.com/ContactUs.aspx

L-system. (2010, May 29). Retrieved May 30, 2010, from Wikipedia:

http://en.wikipedia.org/wiki/L-system

Mackie, D. (2008, October 29). Blink, Pinky, Inky and Clyde: Smater Than You Think.

Retrieved June 2, 2010, from back of the cereal box:

http://2.bp.blogspot.com/_1I7KiCuAU4k/SQVqoynvQJI/AAAAAAAACLs/csfFdlJjMhQ/s4

00/pac-man_ghosts_blinky_inky.jpg

Making Far Cry 2's Africa. (2008, May 28). Retrieved March 22, 2010, from Kotaku:

http://kotaku.com/5011462/making-far-cry-2s-africa

Matossian, M. (2001). 3DS Max for Windows. In 3DS Max for Windows (p. 393). Berkeley:

Peachpit Press.

Matossian, M. (2001). Ms. In M. Matossian, 3DS Max for Windows (pp. 382 - 386).

Berkeley, Califronia: Peachpit Press.

Maya. (2010). Retrieved May 16, 2010, from Autodesk, Inc:

http://usa.autodesk.com/adsk/servlet/pc/index?id=13577897&siteID=123112

Maya. (2010, April 26). Retrieved April 30, 2010, from Wikipedia:

http://en.wikipedia.org/wiki/Autodesk_Maya

McLean-Foreman, J. (2001, April 6). An Interview with Epic Games' Tim Sweeney. Retrieved

May 18, 2010, from Gamasutra:

http://www.gamasutra.com/view/feature/3093/an_interview_with_epic_games_tim_.php

MFn Class Reference. (2010). Retrieved May 17, 2010, from Autodesk, Inc:

http://download.autodesk.com/us/maya/2010help/API/class_m_fn.html

MFnDagNode Class Reference. (2010). Retrieved May 17, 2010, from Autodesk, Inc:

http://download.autodesk.com/us/maya/2010help/API/class_m_fn_dag_node.html

Microsoft Age of Empires. (1998). Retrieved April 22, 2010, from Microsoft:

http://www.microsoft.com/games/empires/features_more_features.htm

Misc Perlin Noise. (1999). Retrieved March 15, 2010, from GRAFNET:

http://www.grafnet.com.pl/photoshop-filters-

description.php?kolekcja=filtry/Filter_Forge&filtr=Misc_Perlin_Noise.jpg

Mittring, M. (2006). Triangle Mesh Tangent Space Calculation. In W. Engel, Shader X4 (pp.

77 - 89). Hingham: Charles River Media, Inc.

Motostorm. (2007, December). Retrieved July 1, 2010, from Videogameblogger.com:

http://www.videogamesblogger.com/wp-content/uploads/2007/12/motorstorm-ps3-

screenshot-big.jpg

Murdock, K. L. (2010). Case Study: Resistance 2 Graphics Tools and Pipeline. Retrieved

May 16, 2010, from gamedev.net:

http://www.gamedev.net/reference/art/features/resistance2case/

MViewportRenderer Class Reference. (2010). Retrieved May 16, 2010, from Autodesk, Inc:

http://download.autodesk.com/us/maya/2010help/API/class_m_viewport_renderer.html

206

Myers, K. (2007). Using D3D10 Now. Game Developers Confrence, (pp. 66-67). San

Francisco.

Neider, J., Davis, T., & Woo, M. (1994). OpenGL Programming Guide. Reading,

Massachusetts: Addison-Wesley Publishing Company.

Nintendo. (2010, March 31). Consolidated Financial Highlights. Retrieved May 10, 2010,

from Nintendo: http://www.nintendo.co.jp/ir/pdf/2010/100506e.pdf#page=23

Normal Map. (2010, May 4). Retrieved April 15, 2010, from Polycount:

http://wiki.polycount.net/Normal_Map

NVidia. (2010). About Us. Retrieved May 16, 2010, from NVIDIA:

http://www.nvidia.com/page/companyinfo.html

NVIDIA Corporation. (2010). High-Precison Effects. Retrieved April 8, 2010, from Nvidia:

http://www.nvidia.com/object/feature_HPeffects.html

NVidia: GeForce 8800. (2010). Retrieved June 1, 2010, from Nvidia:

http://www.nvidia.com/object/8800_faq.html

OpenGL. (2010, March 16). Retrieved April 20, 2010, from GLSL Sampler:

http://www.opengl.org/wiki/GLSL_Sampler

Optical disc. (2010, April 26). Retrieved May 1, 2010, from Wikipedia:

http://en.wikipedia.org/wiki/Optical_disc

O'Rourke, J. (1994). Computational geometry in C. In J. O'Rourke, Computational geometry

in C (pp. 32-44). New York: Cambridge University Press.

Orry, J. (2005, April 7). Team Ninja chief concerned by Xbox 360 DVD media capacity.

Retrieved May 31, 2010, from videogamer.com:

http://www.videogamer.com/news/team_ninja_chief_concerned_by_xbox_360_dvd_media_c

apacity.html

Owen, S. G. (1999, September 6). Phong Model for Specular Reflection. Retrieved May 20,

2010, from ACM SIGGRAPH:

http://www.siggraph.org/education/materials/HyperGraph/illumin/specular_highlights/phong

_model_specular_reflection.htm

Owens, J. (2007). GPU Architecture Overview. Siggraph, (p. 11). San Deigo.

Perlin, K. (1999). Algorithm. Retrieved April 23, 2010, from Noise Machine:

http://www.noisemachine.com/talk1/15.html

Perlin, K. (1999). Band limited repeatable 'random' function. Retrieved April 21, 2010, from

Noise Machine: http://www.noisemachine.com/talk1/14.html

Perlin, K. (1999). Controlled Random Primitive. Retrieved April 14, 2010, from Noise

Machine: http://www.noisemachine.com/talk1/6.html

Perlin, K. (1999). Making Noise. Retrieved April 5, 2010, from NoiseMachine:

http://www.noisemachine.com/talk1/12.html

Perlin, K. (2009). Noise and Turbluence. Retrieved April 22, 2010, from NYU Media

Research Lab: http://mrl.nyu.edu/~perlin/doc/oscar.html#noise

Perlin, K. (1999). Perlin Noise. Retrieved April 25, 2010, from Noise Machine:

http://www.noisemachine.com/talk1/12.html

PIX. (n.d.). Retrieved May 15, 2010, from MSDN: http://msdn.microsoft.com/en-

us/library/ee417062(v=VS.85).aspx

207

Postmortem: Naked Sky Entertainment's RoboBlitz. (2007, January 17). Retrieved March 26,

2010, from Gamasutra:

http://www.gamasutra.com/view/feature/1737/postmortem_naked_sky_.php

Preprocessor Directives, DirectX HLSL. (2010, April 5). Retrieved May 21, 2010, from

MSDN: http://msdn.microsoft.com/en-us/library/bb943993(VS.85).aspx

Price, T. (2008). Insomniac Games Uses Autodesk Maya and Autodesk MotionBuilder to Re-

imagine Recent American History in Resistance 2. (I. Autodesk, Interviewer)

PS3Focus. (2005, May 20). Xbox360 vs PS3: System specs comparison. Retrieved March 20,

2010, from Wikipedia: http://www.ps3focus.com/archives/40

QuadTerrain LOD: Finished. (2008, June 7). Retrieved June 2, 2010, from XNA Creators

Club Online: http://forums.xna.com/forums/t/15397.aspx

Quake 3 Arena Screenshots. (2006, May 11). Retrieved May 24, 2010, from Softpedia®:

http://linux.softpedia.com/screenshots/Quake-3-Arena_1.jpg

Quake III Arena. (2002, October 7). Retrieved May 24, 2010, from id Software:

http://www.idsoftware.com/games/quake/quake3-arena/

Rasterisation. (2009). Retrieved May 21, 2010, from Graphics Acedemy:

http://www.graphicsacademy.com/what_rasterisation.php

Rasterisation. (2010, March 8). Retrieved March 23, 2010, from Wikipedia:

http://en.wikipedia.org/wiki/Rasterisation

recv Function. (2010, May 14). Retrieved May 16, 2010, from MSDN:

http://msdn.microsoft.com/en-us/library/ms740121.aspx

Resource Types. (2010, April 5). Retrieved May 5, 2010, from MSND:

http://msdn.microsoft.com/en-us/library/bb205133(v=VS.85).aspx#Buffer_Resources

Riley, D. M. (2008, January 31). 2007 U.S. Video Game And PC Game Sales Exceed $18.8

Billion Marking Third Consecutive Year Of Record-Breaking Sales. Retrieved May 11, 2010,

from The NPD Group: http://www.npd.com/press/releases/press_080131b.html

RoboBlitz. (2010, March 19). Retrieved March 24, 2010, from Wikipedia:

http://en.wikipedia.org/wiki/RoboBlitz

RoboBlitz. (2010, March 19). Retrieved March 22, 2010, from Wikipedia:

http://en.wikipedia.org/wiki/RoboBlitz

RoboBlitz. (2007). The Game. Retrieved March 26, 2010, from RoboBlitz:

http://www.roboblitz.com/HTML_SITE/game/game.shtml

RoboBlitz, Gallery. (2006). Retrieved June 3, 2010, from RoboBlitz:

http://www.roboblitz.com/HTML_SITE/gallery/Game%20Screens/tn_RoboBlitz01.jpg

Rosado, G. (2008). Chapter 27. Motion Blur as a Post-Processing Effect. Retrieved May 27,

2010, from NVidia: http://http.developer.nvidia.com/GPUGems3/gpugems3_ch27.html

Rosen, D. (2010, January 8). Why You Should Use OpenGL And Not DirectX. Retrieved

Maya 16, 2010, from Gamasutra:

http://www.gamasutra.com/blogs/DavidRosen/20100108/4051/Why_You_Should_Use_Ope

nGL_And_Not_DirectX.php

Rossignol, J. (2008, May 29). Technical Demonstration: Far Cry 2. Retrieved May 3, 2010,

from RockPaperShotgun: http://www.rockpapershotgun.com/2008/05/29/technical-

demonstration-far-cry-2/

208

Runtime Random Level Generation. (2009, July 21). Retrieved March 24, 2010, from

Procedural Content Generation: http://pcg.wikidot.com/pcg-algorithm:runtime-random-level-

generation

Samyn, K. (2009, May 8). DirectX9 Rendertarget. Retrieved June 1, 2010, from knol:

http://knol.google.com/k/directx9-rendertarget

SCEI. (2010). UNIT SALES OF HARDWARE (SINCE APRIL 2006). Retrieved May 11,

2010, from Sony Computer Entertainment Inc.:

http://www.scei.co.jp/corporate/data/bizdataps3_sale_e.html

Scheidt, G. v. (2005, March 2). Avid to Showcase Game Content Creation and Asset

Management Solutions at GDC 2005. Retrieved May 19, 2010, from The3DStudio.com:

http://www.the3dstudio.com/product_details.aspx?id_product=4161

Segal, M., & Akeley, K. (2010, March 11). The OpenGL Graphics System: A Specification

(Version 4.0 (Core Profile)). Retrieved May 16, 2010, from OpenGL:

http://www.opengl.org/registry/doc/glspec40.core.20100311.pdf

Seyringer, D. H. (2003, December 11). Lighting and Materials . Retrieved June 1, 2010, from

NatureWizard: http://www.naturewizard.com/Tutorials/Tutorial01/images/image013.jpg

Shader. (2010, March 4). Retrieved May 20, 2010, from Wikipedia:

http://en.wikipedia.org/wiki/Shader

Shader Model 4. (2010, April 5). Retrieved May 20, 2010, from MSDN:

http://msdn.microsoft.com/en-us/library/bb509657(VS.85).aspx

Shader Stages. (2010, April 5). Retrieved April 23, 2010, from MSDN:

http://msdn.microsoft.com/en-us/library/bb205146(VS.85).aspx

Shader Stages. (2010, April 5). Retrieved May 12, 2010, from MSDN:

http://msdn.microsoft.com/en-us/library/bb205146(VS.85).aspx

Sidhe. (2010, April 17). Retrieved March 12, 2010, from Wikipedia:

http://en.wikipedia.org/wiki/Sidhe_(game_developer)

Sidhe Interactive Online. (2009). Retrieved May 16, 2010, from Sidhe Interactive:

http://www.sidhe.co.nz/091126.htm

Simmons, B. (2008, July 29). Degenerate. Retrieved May 25, 2010, from Mathwords:

http://www.mathwords.com/d/degenerate.htm

Simpson, D. (2009, September 8). Multiplatform Games vs. Exclusives: What's the

Difference Between Me and You? Retrieved May 18, 2010, from The Gamer Access:

http://www.thegameraccess.com/articles/multiplatform/multiplatform-games-vs-exclusives-

whats-the-difference-between-me-and-you

Sondergaard, H., & Sestoft, P. (1990). Referential transparency, definiteness and

unfoldability. Retrieved April 17, 2010, from The University of Copenhagan, Copenhagan,

Denmark: http://www.itu.dk/people/sestoft/papers/SondergaardSestoft1990.pdf

Source (game engine). (2010, April 29). Retrieved May 1, 2010, from Wikipedia:

http://en.wikipedia.org/wiki/Source_(game_engine)

Stream-Output Object. (2010, April 7). Retrieved June 1, 2010, from MSDN:

http://msdn.microsoft.com/en-us/library/bb509661(v=VS.85).aspx

Stream-Output Object. (2010, 4 5). Retrieved March 24, 2010, from MSDN:

http://msdn.microsoft.com/en-us/library/bb509661(VS.85).aspx

209

Stream-Output Stage. (2010, 4 5). Retrieved 3 13, 2010, from MSDN:

http://msdn.microsoft.com/en-us/library/bb205121(v=VS.85).aspx

Sweeney, T. (2009, May 26). Epic's Sweeney: Games Are 'Factor Of 1000' Off From

Graphical Realism. (B. Edwards, Interviewer) Gamasutra.

Tangent space. (2010, May 6). Retrieved April 14, 2010, from Wikipedia:

http://en.wikipedia.org/wiki/Tangent_space

Tech ARP. (2010). Desktop Graphics Card Comparision Guide. Retrieved April 13, 2010,

from Tech ARP: http://www.techarp.com/showarticle.aspx?artno=88&pgno=7

Terminal Reality. (2009). Retrieved May 14, 2010, from Autodesk, Inc:

http://images.autodesk.com/adsk/files/customerstory_ghostbusters_3ds_max_maya.pdf

The Financial Express. (2007, December 16). Media and entertainment industry growth to

double soon: study. Retrieved May 12, 2010, from The Financial Express:

http://www.financialexpress.com/news/media-and-entertainment-industry-growth-to-double-

soon-study/252134/

The Home Video Game Console. (n.d). Retrieved May 27, 2010, from thegameconsole.com:

http://www.thegameconsole.com/

The Sentinel . (2010). Retrieved April 12, 2010, from Wikipedia:

http://en.wikipedia.org/wiki/Procedural_generation

tr_noise.c. (2005). Quake III Arena GPL source release , Lines 25- 96. Dallas, Texas, United

States: id Software.

tr_shade_calc.c. (2010, May 24). Quake III Arena GPL source release . Dallas, Texas,

United States: id Software.

UE2:UnrealEd 3. (2008, November 22). Retrieved April 23, 2010, from Unreal Wiki:

http://wiki.beyondunreal.com/UE2:UnrealEd_3

Unreal. (2010, April 24). Retrieved April 22, 2010, from Wikipedia:

http://en.wikipedia.org/wiki/Unreal

UnrealEd. (2010). Retrieved April 13, 2010, from Unreal Engine:

http://www.unrealtechnology.com/features.php?ref=editor

Video game console. (2010, May 16). Retrieved May 18, 2010, from Wikipedia:

http://en.wikipedia.org/wiki/Video_game_console

Wagner, A. (n.d). barrels in videogames. Retrieved June 2, 2010, from Armin Wagner:

http://www.arminbwagner.com/crates_and_barrels/barrel_ep1barrel.jpg

Warman, P. (2010, March 5). Newzoo Games MarketReport. Retrieved May 18, 2010, from

Newzoo: http://corporate.newzoo.com/press/GamesMarketReport_FREE_030510.pdf

Weisstein, E. (2010). Affine Transformation. Retrieved March 25, 2010, from MathWorld:

http://mathworld.wolfram.com/AffineTransformation.html

Weisstein, E. (2010). Binormal Vector. Retrieved April 12, 2010, from Mathworld:

http://mathworld.wolfram.com/BinormalVector.html

What is GPU Computing? (2010). Retrieved May 27, 2010, from NVidia:

http://www.nvidia.com/object/GPU_Computing.html

What is MaPZone? (2010). Retrieved May 31, 2010, from Allegorithmic:

http://www.mapzoneeditor.com/?PAGE=FEATURES

210

Whiting, M. (2007, January 16). Brian Eno Doing Spore 'Soundtrack'. Retrieved June 3,

2010, from 1UP: http://www.1up.com/do/newsStory?cId=3156407

Windows Sockets 2. (2010, May 13). Retrieved May 16, 2010, from MSDN:

http://msdn.microsoft.com/en-us/library/ms740673.aspx

Wolfenstein | Media. (2009). Retrieved May 19, 2010, from Wolfenstein:

http://cdn.wolfenstein.com/wolfenstein/media/50/image_003_lrg.jpg

Woody. (2010). Woodland. Retrieved May 28, 2010, from Lionhead Studios:

http://lionhead.com/media/p/3462182.aspx

211

Appendix A

 Name Support Citation Notes

Delta3D OpenGL 2.0 (Delta3D -

Features)

Irrlicht Direct3D 8.1

Direct3D 9.0

OpenGL 1.2 – 3.x

(Gebhardt,

2009)

Ogre3D Direct3D

OpenGL

(Features,

Ogre3D, 2009)

Latest API versions

require custom

implementation

Source Engine

(Valve)

Direct3D

OpenGL

OpenGL ES 2.0

(Source (game

engine), 2010)

CryEngine (3.0) Direct3D 9.0

Direct3D 10

Direct3D 11

(CryEngine 3.0,

2010)

Free version

announced April

12, 2010

(CryEngine 3.0,

2010)

Unreal Engine 3

(Free version

announced late

2009)

Direct3D 9.0

Direct3D 10

Direct3D 11

(Current

Technology -

Unreal Engine

3, 2010)

C
o
m

m
er

ci
al

O

p
en

 S
o

u
rc

e

212

213

Appendix B

 Xbox 360 Playstation 3 PC

512 MB (GDDR3) 256 MB (XDR)

256 MB (GDDR3)

Assuming a mid-range, modern

PC is running Windows Vista,

deduce PC system memory to be

greater than or equal to 512mb

(Microsoft Windows Vista (Basic)

requires 512 MB of system

memory (Get Windows Vista:

System requirements, 2010)

20-250GB None – 250GB 20GB required for Windows Vista.

Storage capacity averages >

500GB

S
to

ra
g
e

ca
p
ac

it
y

M
em

o
ry

214

215

Appendix C

The following pseudo code extracts tangent space from a triangle with texture coordinates.

This code is adapted from material on page 82 of „Shader X
4
: Advanced Rendering

Techniques‟ (ISBN 1-58450-425-0):

 The triangle is represented by three 3D points/vertices:

pA,pB,pC

 2D texture coordinates at each triangle vertex are represented by:

uvA,uvB,uvC

 3D vectors that define the triangle‟s tangent space are represented by:

T, B, N

vA = pB – pA

vB = pC – pA

dU1 = uvBx – uvAx

dU2 = uvCx - uvAx

dV1 = uvBy – uvAy

dV2 = uvCy – uvAy

div = (dU1 × dV2 – dU2 × dV1)

if(div != 0.0) {

a = dV2/div

b = -dV1/div

c = -dU2/div

d = dU1/div

T = normalize(vA * a + vB * b)

B = normalize(vA * c + vB * d)

N = cross(T, B)

}

	Title page.pdf
	Thesis.pdf

