100,370 research outputs found

    Double symbolic joint entropy in nonlinear dynamic complexity analysis

    Full text link
    Symbolizations, the base of symbolic dynamic analysis, are classified as global static and local dynamic approaches which are combined by joint entropy in our works for nonlinear dynamic complexity analysis. Two global static methods, symbolic transformations of Wessel N. symbolic entropy and base-scale entropy, and two local ones, namely symbolizations of permutation and differential entropy, constitute four double symbolic joint entropies that have accurate complexity detections in chaotic models, logistic and Henon map series. In nonlinear dynamical analysis of different kinds of heart rate variability, heartbeats of healthy young have higher complexity than those of the healthy elderly, and congestive heart failure (CHF) patients are lowest in heartbeats' joint entropy values. Each individual symbolic entropy is improved by double symbolic joint entropy among which the combination of base-scale and differential symbolizations have best complexity analysis. Test results prove that double symbolic joint entropy is feasible in nonlinear dynamic complexity analysis.Comment: 7 pages, 4 figure

    Increment entropy as a measure of complexity for time series

    Full text link
    Entropy has been a common index to quantify the complexity of time series in a variety of fields. Here, we introduce increment entropy to measure the complexity of time series in which each increment is mapped into a word of two letters, one letter corresponding to direction and the other corresponding to magnitude. The Shannon entropy of the words is termed as increment entropy (IncrEn). Simulations on synthetic data and tests on epileptic EEG signals have demonstrated its ability of detecting the abrupt change, regardless of energetic (e.g. spikes or bursts) or structural changes. The computation of IncrEn does not make any assumption on time series and it can be applicable to arbitrary real-world data.Comment: 12pages,7figure,2 table

    Nonlinear trend removal should be carefully performed in heart rate variability analysis

    Get PDF
    \bullet Background : In Heart rate variability analysis, the rate-rate time series suffer often from aperiodic non-stationarity, presence of ectopic beats etc. It would be hard to extract helpful information from the original signals. 10 \bullet Problem : Trend removal methods are commonly practiced to reduce the influence of the low frequency and aperiodic non-stationary in RR data. This can unfortunately affect the signal and make the analysis on detrended data less appropriate. \bullet Objective : Investigate the detrending effect (linear \& nonlinear) in temporal / nonliear analysis of heart rate variability of long-term RR data (in normal sinus rhythm, atrial fibrillation, 15 congestive heart failure and ventricular premature arrhythmia conditions). \bullet Methods : Temporal method : standard measure SDNN; Nonlinear methods : multi-scale Fractal Dimension (FD), Detrended Fluctuation Analysis (DFA) \& Sample Entropy (Sam-pEn) analysis. \bullet Results : The linear detrending affects little the global characteristics of the RR data, either 20 in temporal analysis or in nonlinear complexity analysis. After linear detrending, the SDNNs are just slightly shifted and all distributions are well preserved. The cross-scale complexity remained almost the same as the ones for original RR data or correlated. Nonlinear detrending changed not only the SDNNs distribution, but also the order among different types of RR data. After this processing, the SDNN became indistinguishable be-25 tween SDNN for normal sinus rhythm and ventricular premature beats. Different RR data has different complexity signature. Nonlinear detrending made the all RR data to be similar , in terms of complexity. It is thus impossible to distinguish them. The FD showed that nonlinearly detrended RR data has a dimension close to 2, the exponent from DFA is close to zero and SampEn is larger than 1.5 -- these complexity values are very close to those for 30 random signal. \bullet Conclusions : Pre-processing by linear detrending can be performed on RR data, which has little influence on the corresponding analysis. Nonlinear detrending could be harmful and it is not advisable to use this type of pre-processing. Exceptions do exist, but only combined with other appropriate techniques to avoid complete change of the signal's intrinsic dynamics. 35 Keywords \bullet heart rate variability \bullet linear / nonlinear detrending \bullet complexity analysis \bullet mul-tiscale analysis \bullet detrended fluctuation analysis \bullet fractal dimension \bullet sample entropy

    Maximum approximate entropy and r threshold: A new approach for regularity changes detection

    Get PDF
    Approximate entropy (ApEn) has been widely used as an estimator of regularity in many scientific fields. It has proved to be a useful tool because of its ability to distinguish different system's dynamics when there is only available short-length noisy data. Incorrect parameter selection (embedding dimension mm, threshold rr and data length NN) and the presence of noise in the signal can undermine the ApEn discrimination capacity. In this work we show that rmaxr_{max} (ApEn(m,rmax,N)=ApEnmaxApEn(m,r_{max},N)=ApEn_{max}) can also be used as a feature to discern between dynamics. Moreover, the combined use of ApEnmaxApEn_{max} and rmaxr_{max} allows a better discrimination capacity to be accomplished, even in the presence of noise. We conducted our studies using real physiological time series and simulated signals corresponding to both low- and high-dimensional systems. When ApEnmaxApEn_{max} is incapable of discerning between different dynamics because of the noise presence, our results suggest that rmaxr_{max} provides additional information that can be useful for classification purposes. Based on cross-validation tests, we conclude that, for short length noisy signals, the joint use of ApEnmaxApEn_{max} and rmaxr_{max} can significantly decrease the misclassification rate of a linear classifier in comparison with their isolated use

    Nonlinear heart rate variability features for real-life stress detection. Case study : students under stress due to university examination

    Get PDF
    Background: This study investigates the variations of Heart Rate Variability (HRV) due to a real-life stressor and proposes a classifier based on nonlinear features of HRV for automatic stress detection. Methods: 42 students volunteered to participate to the study about HRV and stress. For each student, two recordings were performed: one during an on-going university examination, assumed as a real-life stressor, and one after holidays. Nonlinear analysis of HRV was performed by using Poincaré Plot, Approximate Entropy, Correlation dimension, Detrended Fluctuation Analysis, Recurrence Plot. For statistical comparison, we adopted the Wilcoxon Signed Rank test and for development of a classifier we adopted the Linear Discriminant Analysis (LDA). Results: Almost all HRV features measuring heart rate complexity were significantly decreased in the stress session. LDA generated a simple classifier based on the two Poincaré Plot parameters and Approximate Entropy, which enables stress detection with a total classification accuracy, a sensitivity and a specificity rate of 90%, 86%, and 95% respectively. Conclusions: The results of the current study suggest that nonlinear HRV analysis using short term ECG recording could be effective in automatically detecting real-life stress condition, such as a university examination
    corecore