Symbolizations, the base of symbolic dynamic analysis, are classified as
global static and local dynamic approaches which are combined by joint entropy
in our works for nonlinear dynamic complexity analysis. Two global static
methods, symbolic transformations of Wessel N. symbolic entropy and base-scale
entropy, and two local ones, namely symbolizations of permutation and
differential entropy, constitute four double symbolic joint entropies that have
accurate complexity detections in chaotic models, logistic and Henon map
series. In nonlinear dynamical analysis of different kinds of heart rate
variability, heartbeats of healthy young have higher complexity than those of
the healthy elderly, and congestive heart failure (CHF) patients are lowest in
heartbeats' joint entropy values. Each individual symbolic entropy is improved
by double symbolic joint entropy among which the combination of base-scale and
differential symbolizations have best complexity analysis. Test results prove
that double symbolic joint entropy is feasible in nonlinear dynamic complexity
analysis.Comment: 7 pages, 4 figure