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Highlights

• A new approach for regularity changes detection using ApEn is proposed.

• We propose the use of the maximum ApEn and its r value to discern between
dynamics.

• Better discrimination capacity can be accomplished using this method.

• The combined estimators are more robust against noise than using them individu-
ally.
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Abstract7

Approximate entropy (ApEn) has been widely used as an estimator of regularity in many scientific fields.

It has proved to be a useful tool because of its ability to distinguish different system’s dynamics when there

is only available short-length noisy data. Incorrect parameter selection (embedding dimension m, thresh-

old r and data length N) and the presence of noise in the signal can undermine the ApEn discrimination

capacity. In this work we show that rmax (ApEn(m, rmax,N) = ApEnmax) can also be used as a feature to

discern between dynamics. Moreover, the combined use of ApEnmax and rmax allows a better discrimination

capacity to be accomplished, even in the presence of noise. We conducted our studies using real physio-

logical time series and simulated signals corresponding to both low- and high-dimensional systems. When

ApEnmax is incapable of discerning between different dynamics because of the noise presence, our results

suggest that rmax provides additional information that can be useful for classification purposes. Based on

cross-validation tests, we conclude that, for short length noisy signals, the joint use of ApEnmax and rmax

can significantly decrease the misclassification rate of a linear classifier in comparison with their isolated

use.

Keywords: Non-linear dynamics, Approximate entropy, Chaotic time-series.8

1. Introduction9

The concept of changing complexity has proved to be helpful to characterize and assess different phe-10

nomena in areas such as seismology, economy, mechanics, physiology, etc. [1, 2, 3, 4]. In the last 30 years11

this challenging endeavor has led researchers and practitioners to develop different methods conceived to12
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estimate and understand such complexity changes and their relationship with physical and biological sys-13

tem dynamics. In the early nineties, Lipsitz et al. reported that the process of natural aging is attached to a14

decrease of complexity in the dynamics of physiological functions [5]. This results in a loss in the capacity15

of the organism to adapt to stress, making it more vulnerable to diseases.16

Approximate entropy finds its origins in Kolmogorov-Sinai Entropy (K-S Entropy), defined as the mean17

rate of information generated by a process [6, 7]. This measure is recognized for being a meaningful18

parameter to describe the behavior of dynamical systems. In [8] Grassberger and Procaccia provided an19

algorithm to calculate a lower bound for the K-S Entropy from a finite time series. Takens [9] and Eckmann20

and Ruelle [7] modified this approach to directly evaluate the K-S Entropy. Motivated by Eckmann-Ruelle21

Entropy, Pincus introduced the ApEn [10], providing a statistic to assess complexity from noisy short-length22

data. For an N-dimensional time series, ApEn depends on two parameters: the Embedding Dimension (m)23

and the Threshold (r). ApEn(m, r) and ApEn(m, r,N) can be seen respectively as a family of parametric24

statistics and estimators, designed to measure the regularity of a system. ApEn has been widely used as a25

non-linear feature to classify different dynamics, for example epileptic seizures [11, 12, 13] and sleep apnea26

[14].27

Because of the bias introduced by counting self-matches and the finite data length (N), in [15, 16] the28

authors assert that the estimator ApEn(m, r,N) lacks of consistency. To overcome this limitation, Richman29

et al. proposed the Sample Entropy (SampEn) as a more consistent regularity measure [16]. However, both30

ApEn and SampEn are highly dependent on the set of chosen parameters (m, r). Chon et al. [17] assert31

that neither ApEn nor SampEn are accurate in measuring the signal’s complexity when the calculations are32

made with the values of m and r recommended in the literature [18]. Instead, the use of ApEnmax, i.e.33

the maximum value of ApEn(m, r,N), with fixed m and N was proposed as a more consistent estimator of34

system’s complexity [17, 19, 20].35

The signal’s noise level has an important influence on ApEn(m, r,N) estimation and therefore ApEnmax36

is also affected. Pincus asserts that the reliability in the calculations could be seriously undermined when37

the Signal to Noise Ratio (SNR) is below 3 dB [18]. To overcome this issue, some authors have proposed38

a pre-processing step, in which, techniques such as Empirical Mode Decomposition (EMD) [21, 22] or39

Dyadic Wavelet Transform (DWT) [23] have been used.40

In this paper, we will show that rmax (r value at which ApEn(m, r,N) = ApEnmax) brings useful in-41

formation and can be also used as a feature for classification purposes. Furthermore, the use of ApEnmax42
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combined with rmax can provide a more consistent method to discern between different dynamics even in43

presence of noise.44

The remainder of this paper is organized as follows. In Section 2 we briefly recall the main approaches45

used for ApEn parameter selection and we present the methodology used in our simulations. In Section 346

the obtained results are summarized and discussed. Finally, in Section 4 the conclusions are presented.47

2. Methods48

In order to estimate ApEn(r,m,N) for an N-dimensional time series {u1, u2, . . . , uN}, given the parame-49

ters m, τ ∈ N, and r ∈ R+, the m-dimensional embedded vectors xm
i =

[
ui, ui+τ, ui+2τ, . . . , ui+(m−1)τ

]
, with50

1 ≤ i ≤ N − (m − 1)τ, have to be considered. Then, the ApEn is defined as [10]:51

ApEn (m, r,N) = φm (r) − φm+1 (r) ,

where:

φm (r) = 1
N−(m−1)τ

N−(m−1)τ∑
i=1

ln Cm
i (r),

Cm
i (r) = 1

N−(m−1)τ

N−(m−1)τ∑
j=1

θ
(
d
(
xm

i , x
m
j

)
− r

)
,

θ (y) =


0 if y > 0,

1 otherwise,

and

d
(
xm

i , x
m
j

)
= max

{∣∣∣ui+kτ − u j+kτ

∣∣∣
}
, 0 ≤ k ≤ m − 1.

The ApEn measures the logarithmic likelihood that two points (xm
i , xm

j ) that are close (within a distance52

r) in a m-dimensional space, remain close in a (m + 1)-dimensional space. Greater (lesser) likelihood of53

remaining close produces smaller (larger) ApEn values [24]. It is important to recall that ApEn(m, r) was54

not conceived as an approximate value of E-R Entropy, therefore it can not certify chaos. However, its55

scope relies on its ability to compare different types of dynamics [10]. Pincus asserts that, for a given56

system, ApEn values can vary significantly with m and r [18]. For this reason, it can not be seen as an57

absolute measure. Moreover, this situation emphasizes the importance of the parameters’ selection to draw58

conclusions from ApEn estimations. In order to make this paper self contained, we will review some results59

for parameter selection.60
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2.1. Embedding dimension (m)61

The main purpose of embedding a time series is to unfold the projection to a state space that is represen-62

tative of the original system’s space, i.e. a reconstructed attractor must preserve the invariant characteristics63

of the original one [25]. Takens’ embedding theorem gives sufficient conditions to accomplish this task64

using any m bigger than twice the Hausdorff dimension of the chaotic attractor. The idea is to estimate the65

minimum embedding dimension since a bigger m will lead to excessive computational efforts. Kennel et al.66

proposed a parametric algorithm to determine the minimum embedding dimension, named False Nearest67

Neighbours [26]. Its main disadvantage is that the results highly depend on the choice of the algorithm68

parameters. A slightly different approach was proposed by Cao [27]. This method does not rely upon69

subjective parameters other than the embedding lag.70

Pincus has suggested to set m = 2 or m = 3 [15, 18]. That advice arises from the fact that, once N is set,71

high m values conduct to poor ApEn(m, r) estimations. This is due to the bias introduced by self-counting72

and the decreased number of vectors xm
i available to estimate Cm

i (r). The aforementioned approach may be73

convenient when low-dimensional systems are studied. However, when the dimension is high, this criterion74

will lead to a poor reconstruction of the process’ dynamics [28, 29], causing inconsistencies in presence of75

noise.76

It is worthwhile noting that typical applications with ApEn have been conducted using the previously77

mentioned values of m. Aletti et al. set m = 2 to assess congenital heart malformation in children using78

Heart Rate Variability (HRV) signals [30]. Zarjam et al. use m = 2 and 3 to calculate ApEn(m, r) from elec-79

troencephalogram (EEG) signals to investigate changes in working memory load during the performance of80

a cognitive task with varying difficulty levels [31].81

2.2. Embedding Lag (τ)82

The objective of selecting τ is to maximally spread the data in the phase space, removing redundancies83

and making fine features more easily discernible [29]. In most ApEn applications τ is set to one. Kaffashi84

et al. [32] concluded that, for time series generated by nonlinear dynamics and whose Autocorrelation85

Function decays rapidly, τ = 1 is sufficient to provide a good estimation of signal complexity. However, for86

signals with long range correlation, a τ equal to time occurrence of the first local minimum of the Mutual87

Information Function or to the time occurrence of the first zero crossing of the Autocorrelation Function88

can provide additional information [29, 32].89
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2.3. Threshold (r)90

As it was afore mentioned, the statistics ApEn(m, r) can vary significantly with r. Pincus suggests that91

r should lie between 0.1 − 0.2 times the standard deviation (SD) of the raw signal [33, 34]. The r value92

should be large enough, not only to avoid significant contribution from noise, but also to admit a reasonable93

number of xm
i vectors being within a distance r. This would ensure an acceptable estimation of the Cm

i (r)94

probability [18]. However, with too large r values, ApEn(m, r) is unable to perform fine process distinctions95

and consequently, the r value selection will greatly depend on the application [15].96

Although the later approach has been broadly applied [35, 36, 37], some authors assert that sometimes97

this methodology leads to an incorrect assessment of complexity [17, 19, 20]. They proposed the use of98

ApEnmax as a better complexity estimator. One main issue arises from the fact that the calculation of99

ApEnmax requires high computational efforts. To overcome this limitation, a set of equations was proposed100

to calculate a parameter r̂max as an approximation to rmax [17, 20]. Supported on experimental results with101

HRV signals, Castiglioni et al. concluded that the use of ApEnmax seems to be a reasonable approach,102

because this choice would allow the time series complexity to be better quantified than any other choice of r103

[38]. On the other hand, Liu et al. observed that ApEnmax was incapable of distinguishing between groups104

of healthy and heart failure subjects, in experiments with HRV signals. Further, since they found that r̂max105

fails in estimating rmax for the Logistic map, they asserted that care must be taken when using r̂max [39]. In106

a recent study, Boskovic et al. [40], present some evidence of ApEnmax instability. They observed that for107

two time series, the estimated ApEnmax value suggests opposite results when data length decreases. There108

are other algorithms conceived to reduce the computational effort of calculating the whole profile of ApEn109

as a function of m and r [41, 42].110

2.4. Simulations111

In the presence of noise, the estimator ApEnmax could be incapable to discern between different dynam-112

ics. Here we address the hypothesis that rmax provides additional information valuable for the discrimination113

process. In other words, the use of both ApEnmax and rmax would increase the ability of discerning between114

different complexities in the case of noisy time series. To assess this hypothesis four simulations were115

conducted: three of them with synthetic signals and the last one with an EEG record.116

As a first case the Mackey-Glass delay-differential equation was used [27]. Our aim is to assess these117

estimators on time series from a high-dimensional system [43]. This system have been used not only118

to study the behavior of complexity estimators on high-dimensions [8] but also to model the dynamics119
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Model Equation Model Parameters ApEn Parameters

Mackey-Glass dx/dt = bx + (ax̃)/(1 + x̃c)

x̃ = x(t − ∆)

c = {4.5, 6}
a = 0.9

b = 0.3

∆ = 80

∆t = 1

m = {2, 3, . . . , 20}
r =

{
0, 5 × 10−5, . . . , 0.035

}

τ = 83

N = 5000

Shilnikov’s type
dx/dt = y

dy/dt = z

dz/dt = µx − y − εz − ax2 − bx3

a = {0.008, 0.2217}
ε = 0.55

µ = 0.65

b = 0.65

∆t = 0.2

m = {2, 3, . . . , 20}
r =

{
0, 5 × 10−5, . . . , 0.035

}

τ = 10

N = 5000

Table 1. Simulations models and parameters. ∆t stands for the time step used to obtain the numerical

solutions. The upper bound of the r range is equal to the SD of the normalized signal.

of physiological control systems like the neurological system [43], the respiratory system [44] and the120

hematopoietic system [44].121

Two sets of 240 realizations were produced for each value of the c parameter (see Table 1). Each realiza-122

tion with 25000 points has a different initial condition, randomly chosen from aU(0, 0.01) distribution. In123

order to avoid the influence of transients, the first 20000 points of each realization were discarded. The re-124

sulting signals (with length N = 5000) were normalized to have unitary energy. For two randomly selected125

signals, one from each set, its Mutual Information Function was calculated. Then, the lag correspond-126

ing to each first local minimum was selected, and the τ parameter was fixed as the largest between these127

values. ApEn(m, r,N) was calculated for each signal, with m and r taking the values listed in Table 1 and128

ApEnmax and rmax were found from the ApEn(m, r,N) functions. Additionally an estimator of the minimum129

embedding dimension was calculated for all signals using Cao’s algorithm [27].130

With the goal of analyzing synthetic data from a system that resembles a particular physiological dy-131

namics, a Shilnikov’s type chaos model was considered as a second case. The same methodology as in the132

first case was adopted for the Shilnikov’s type model using two values of the a parameter (see Table 1),133
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Fig. 1. EEG signal: (a) First pre-ictal and ictal episodes. (b) Second pre-ictal and ictal episodes.

which allow simulating EEG signals recorded during a seizure of petitmal epilepsy [45]. The initial condi-134

tions for each realization were selected from a U(0, 0.01) distribution and the x variable was used for the135

calculations.136

In order to evaluate our method in presence of noise, white Gaussian noise was added to each signal137

(Mackey-Glass and Shilnikov) with SNR= 5 dB and SNR= 0 dB. Then, all realization were normalized to138

have unitary energy and both ApEnmax and rmax were calculated as previously described. Table 1 summa-139

rizes the models and the parameters values used to obtain the time series as well as the parameter values140

used to calculate the ApEn.141

A real physiological signal recorded using stereo electroencephalography (EEG) with eight multilead142

electrodes (2 mm long and 1.5 mm apart) was studied. It was filtered and amplified using a 1-40 Hz band-143

pass filter. A four-pole Butterworth filter was used as anti-aliasing low-pass filter. This signal was digitized144

at 256 Hz through a 10 bits A/D converter. A physician accomplished the analysis of pre-ictal and ictal data145

by visual inspection of the EEG record. According to the visual assessment of the EEG seizure recording,146

the patient presented an epileptogenic area in the hippocampus with immediate propagation to the girus147

cingular and the supplementary motor area, on the left hemisphere. In Fig. 1, the EEG signal of two ictal148

and two pre-ictal episodes corresponding to a depth electrode in the hippocampus is presented. All these149

episodes contains 3000 data samples. The first pre-ictal and ictal episodes comprise the signal portions for150
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Fig. 2. Mackey-Glass model: mean and 95% confidence interval. Noiseless: (a) ApEnmax. (b) rmax. With

SNR= 5 dB: (c) ApEnmax. (d) rmax.

n ∈ [1500, 4500] and n ∈ [5000, 8000] data points respectively. The second pre-ictal and ictal portions151

were selected for n ∈ [18000, 21000] and n ∈ [21400, 24400] respectively. Each of the data sets were152

normalized to have unitary energy and the τ parameter was selected as described above among the four153

signals. ApEnmax and rmax were then calculated for 2 ≤ m ≤ 20. Additionally, white Gaussian noise was154

added to the raw EEG signal with SNR= 5 dB (the actual SNR of the EEG signal is unknown) and ApEnmax155
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and rmax were calculated again.
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Fig. 3. Shilnikov’s type chaos model: mean and 95% confidence interval. Noiseless: (a) ApEnmax. (b) rmax.

With SNR= 5 dB: (c) ApEnmax. (d) rmax. In (b) an enlarged view for m = 2 is presented.

156

3. Results and Discussion157

Fig. 2 summarizes the results obtained for the Mackey-Glass model simulations. The ApEnmax and158

rmax mean and 95% confidence interval (CI) are presented as functions of m for two different c parameter159
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Fig. 4. SNR= 5 dB, ApEnmax vs rmax plot: (a) Mackey-Glass model m = 2. (b) Mackey-Glass model

m = 12. (c) Shilnikov’s type model m = 2. (d) Shilnikov’s type model m = 12.

values. The CIs were empirically obtained by sorting the ApEnmax and rmax values calculated from the 240160

realizations and taking the 2.5% and the 97.5% quantiles as the lower and upper bound respectively. In161

Fig. 2a, it can be noticed that the curves of ApEnmax become closer as m increases, achieving the maximum162

distance at m = 2. On the contrary, in Fig. 2b it can be observed that the distance between the rmax curves163

becomes larger as m increases. Figs. 2c and 2d show the effect of noise over ApEnmax and rmax estimations.164
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First, notice that, compared to noise free figures, the mean values of ApEmax and rmax are increased due to165

the addition of noise. Additionally, in both cases, the CIs are reduced. Finally, the ApEnmax and rmax curves166

for different c parameter values are closer to each other than in the case without noise. It is important to167

remark that, in presence of noise, while rmax is still able to discern between dynamics, the discrimination168

capacity of ApEnmax is highly reduced. In conclusion, these results suggest that rmax can bring useful169

information even in presence of noise.170

Shilnikov’s type chaos model results are presented in Fig. 3. In Fig. 3a, it can be noticed that it is171

impossible to distinguish the two dynamics using ApEnmax calculated with m = 2. Nevertheless, embedding172

the system in a higher dimension such as m = 3 (minimum embedding dimension), distinctions between173

dynamics can be made. However, in Fig. 3b, it can be seen that for m = 2, rmax indicates a difference174

between dynamics. The added noise has the same above mentioned influence over both ApEnmax and rmax175

(see Figs. 3c and 3d). However, in this case the rmax curves are closer than those corresponding to the176

Mackey-Glass system. From this simulation we can conclude that using ApEnmax or rmax independently177

can be inconvenient for classification purposes. Instead, we propose to study the combined use of both178

estimators for this task.179

In order to illustrate the advantages of this new approach, Fig. 4 shows scatter plots of ApEnmax vs rmax180

for both models with noise (SNR= 5 dB), using m = 2 and m = 12. In the presence of noise, it is enough181

to set m = 2 and to use only ApEnmax to correctly differentiate the two dynamics from the Mackey-Glass182

model (see Fig. 2c). However, in Fig. 4a it can be noticed that rmax provides additional information that can183

make easier the classification process. A slightly different situation can be appreciated for the Shilnikov’s184

type dynamics. Fig. 4c shows that it is not possible to discern between classes using ApEnmax calculated185

with m = 2. Nevertheless, with the information brought by rmax, the two classes can be separated in a more186

suitable way. As presented before, when there is noise in the signal, the assessment of ApEnmax using an m187

value equal or larger than the minimum embedding dimension could be more accurate and robust than just188

setting m = 2. Cao’s algorithm suggests that the minimum embedding dimension for both models should189

be m ≈ 12. Such large m value is the result of noise influence in the estimation of the systems’ minimum190

embedding dimension. The issue is that, for the Mackey-Glass model, ApEnmax losses its discrimination191

capacity for high m values. Nonetheless, as can be appreciated in Fig. 4b, the two classes can be still192

successfully separated using only rmax. On the other hand, Fig. 4d shows that for m = 12, the two different193

dynamics from the Shilnikov’s type model can be more conveniently clustered using ApEnmax than using194
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rmax. These results remark the importance of using both estimators together instead of each one individually.195

In addition to the Mackey-Glass and the Shilnikov’s systems we introduce calculations of ApEnmax196

and rmax using dynamics from the Logistic map, xn+1 = Rxn(1 − xn), in two chaotic regimes (R = 3.75,197

R = 3.95) with and without white Gaussian noise. ApEnmax and rmax were evaluated using the procedure198

aforementioned for 2 ≤ m ≤ 20 with τ = 1 and N = 5000.199

With the goal of quantitatively verify the proficiency of ApEnmax and rmax as classification features,200

we perform a 10-fold cross-validation using linear support vector machines (SVMs). We choose a linear201

classifier given that its simplicity will disclose the real quality of the features. The basic idea behind the202

SVMs is to separate the classes using the optimal hyperplane (the linear decision function that maximizes203

the distance between the closest points of different classes to the hyperplane) [46]. In Fig. 5 the Misclassi-204

fication Rates (MR) for three classifiers as functions of m and different noise levels (noiseless, SNR= 5 dB205

and SNR= 0 dB) are presented. The first classifier uses only ApEnmax as input feature, the second one uses206

only rmax, and the third one uses jointly both estimators.207

For the noiseless Mackey-Glass system, it can be seen in Fig. 5a that the MR of the first classifier208

increases with m, achieving its maximum (0.065) for m = 19. Further, the second classifier presents a non-209

zero MR only for m ≥ 15. The MR for the third classifier is zero for 0 ≤ m ≤ 14 with a maximum value210

of 0.006 at m = 15. A similar behavior can be observed for the Mackey-Glass model immersed in noise211

(SNR= 5 dB). In contrast with the noiseless case, in Fig. 5b it is shown that the MR of the classifier which212

uses only ApEnmax has been greatly increased. Additionally, using only rmax, the classifier has non-zero213

MR for 2 ≤ m ≤ 4. Nevertheless, the MR of the classifier that uses both estimators still remains equal to214

zero for 2 ≤ m ≤ 4 values. For the case in which the SNR= 0 dB (Fig. 5c), it can be noticed that the MR215

of the third classifier is always below or equal to the lowest MR between the other two classifiers. The last216

results attest that, as an ensemble, ApEnmax and rmax provide features that are robust against noise.217

Regarding the results for the noiseless Shilnikov’s model, it is shown in Fig. 5d that, for 3 ≤ m ≤ 11 the218

MR of the first classifier is lower than the second classifier’s MR. For m = 2 as well as for 12 ≤ m ≤ 20,219

the last statement is reversed. However, the MR for the third classifier remains below the MR of the other220

two ones, being zero for 4 ≤ m ≤ 11 and for 16 ≤ m ≤ 20. Additionally, from Fig. 5e it can be noticed that221

for all m values the MR of the third classifier is always below or equal to the lowest MR value between the222

other two classifiers, being zero for 8 ≤ m ≤ 10 and 0.004 for m = 12. For the SNR= 0 dB case, it can be223

observed in Fig. 5f that for m ≥ 8 very low MR values are achieved by the first and third classifiers, being224
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Fig. 5. 10-fold cross-validation misclassification rate with a linear SVM classifier. Mackey-Glass model:

(a) noiseless. (b) SNR= 5 dB. (c) SNR= 0 dB. Shilnikov’s type model: (d) noiseless. (e) SNR= 5 dB.

(f) SNR= 0 dB. Logistic map: (g) noiseless. (h) SNR= 5 dB. (i) SNR= 0 dB.
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zero for 10 ≤ m ≤ 15.225

Very similar results were achieved with the logistic map (Figs. 5g, 5h, 5i). The MR of the classifier that226

uses in conjunction ApEnmax and rmax is zero for all m values in the noiseless case and for m ≥ 3 in the227

SNR=5 dB case. From Fig. 5i it can be seen that the MR of the third classifier is below the MR of the other228

classifiers for all m values, being zero for m = 8 and m = 9 and achieves a very low values for m ≥ 5. This229

results lead us to think about the usefulness of these estimators to discriminate dynamics from discrete-time230

non-linear systems.231

It is important to notice that when these three systems were immersed in high levels of noise (see232

Figs. 5c, 5f and 5i) the worst results were achieved for low m values (specially for m = 2). This suggests that233

increasing the embedding dimension could be beneficial for the discrimination process. As a conclusion,234

these results highlight the complementary relationship between both estimators and the benefits of being235

used together. It is also important to observe that the use of both estimators enlarges the range of m values236

that can be selected to achieve a good classification performance in presence of noise. Nonetheless, using237

an estimate of the minimum embedding dimension can be a wise choice (see Fig. 5c and 5f for m = 12).238

There is an interesting fact in these results concerning the presence of noise in the time series. As it was239

discussed before, the addition of noise not only decreases the distance of ApEnmax and rmax curves between240

different dynamics but it also reduces both estimators’ CI. The trade-off between these two phenomena is241

more evident as the SNR is reduced. In Figs. 5b and 5c, it can be seen that for m ≥ 4 the MR of the first242

classifier is larger for SNR= 5 dB than for SNR= 0 dB. As a consequence of this trade-off, the distributions243

of ApEnmax values for two different dynamics are more overlapped in the case with SNR= 5 dB than when244

SNR= 0 dB. The last statement can be verified comparing the Battacharyya coefficient (Bc) [47] between245

the ApEnmax distributions of different dynamics for different SNRs. For two density functions p and q over246

the same domain X, this coefficient is defined as Bc (p, q) =
∑

x∈X

√
p(x)q(x), 0 ≤ Bc ≤ 1, being zero if247

p(x) and q(x) do not overlap. The Bc coefficients between ApEnmax distributions (m = 19) for SNR= 5 dB248

and SNR=0 dB are 0.91 and 0.53 respectively. This fact explains why the MR of this classifier is lower249

for SNR= 0 dB than for SNR= 5 dB when high m values are used with systems like Mackey-Glass and250

Shilnikov’s.251

An important topic that must be considered in the calculation of ApEnmax and rmax is the data length.252

When the time series is short, the choice of large m and τ values can be harmful because the estimation of253

conditional probabilities becomes unreliable [10, 15]. However, there is another issue that can alter their254
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Fig. 6. Misclassification rate as a function of the data length. Mackey-Glass model: (a) noiseless. (b) SNR=

5 dB. (c) SNR= 0 dB. Logistic map: (d) noiseless. (e) SNR= 5 dB. (f) SNR= 0 dB.

estimation and it is related to the use of small m values.255

It is known that poor state space reconstructions are obtained when the system is embedded with a m256

value smaller than the system’s minimum embedding dimension, and such situation brings to the occurrence257

of false neighbours [28], i.e. points that are close due to a low embedding dimension rather than because of258

the system’s dynamics. Given that the estimation of conditional probabilities is based on counting neigh-259

bours’ occurrences, an appropriate selection of the m value demands to take into account an estimation of260

the minimum embedding dimension [29]. With the aim of assess the behavior of our method as a function261

of the data length, the next simulation was conducted over the Logistic map and the Mackey-Glass system.262

Two sets of 30 realizations were built. Each set was obtained using a different value of the R parameter263

for the Logistic map and, of the c parameter for the Mackey-Glass system. Each signal of these sets were264

normalized to have unitary energy. For the Logistic map ApEnmax and rmax were estimated with m =265

[2, 3, 8, 20], τ = 1 and N = [0.5, 1, 2, 3, 4, 5, 8, 10]×103. For the Mackey-Glass system these estimators were266

15



evaluated with m = [2, 3, 12, 20], τ = 83 and N = [1, 2, 3, 5, 8, 10, 15, 20] × 103. Then, the misclassification267

rate of a linear SVM classifier that uses both estimators as features was computed using Leave one Out268

cross-validation. Additionally, the same procedure was used over the same signals contaminated with white269

Gaussian additive noise (SNR= 5 dB and SNR= 0 dB). It is important to mention that the values of m = 8270

and m = 12 were suggested by the Cao’s algorithm [27] as minimum embedding dimensions for the noisy271

signals (SNR= 0 dB) from the Logistic map and, from the Mackey-Glass system respectively. For the272

Mackey-Glass system the calculations with m = 20 were made for all N values except N = 1000.273

In Fig. 6 it is shown the misclassification rate calculated for both systems as a function of N and the274

noise level. In Fig. 6a are shown the results for the noise free Mackey-Glass system. It can be observed275

that for small data length values the biggest errors are achieved using m = 20 (N = 2000) and m = 12276

(N = 1000); this is a consequence of the reduced amount of information available to estimate the conditional277

probabilities. Nevertheless, as N is increased, the error for all m values goes to zero. It must be noticed that278

for m = 2 and m = 3 the error is zero for all N values.279

On the other hand Fig. 6b shows that, compared with the noiseless case, for m = 2 (at N = 1000) and280

m = 3 (at N = 2000) the error has increased its value from zero, whereas the error for m = 12 and m = 20281

has decreased its values to zero for N = 2000. Observe that the error is zero from N ≥ 3000 regardless the282

value of m. From Fig. 6c it can be seen that, excluding the error (equal to 0.48) for m = 12 at N = 1000, the283

biggest error is accomplished using m = 2 followed by the one obtained with m = 3 for 1000 ≤ N ≤ 8000.284

However, the error for m = 12 and m = 20 is always lesser or equal to the error achieved with m = 2 or285

m = 3, moreover, it is zero starting from N = 3000. Comparing Figs. 6a and 6c for m = 2 and m = 3 it is286

clear that, for small N values, a poor state space reconstruction added to the presence of noise deteriorates287

the discrimination capacity of ApEnmax and rmax.288

For the noiseless Logistic map (Fig. 6d) it can be observed that for N = 500 the biggest error (0.08)289

belongs to the estimators calculated with m = 20 followed by the error calculated with m = 2 (0.017).290

However, for m = 3 and m = 8 the error is zero. Moreover, as N is increased, the error remains equal to zero291

for all m values. It can be seen Fig. 6e that the biggest error is achieved with m = 2 for all N values except292

N = 10000. Instead, for m = 8 the error is equal to zero for all N values. It is worth to mention that for all293

N values the error obtained with m = 8 and m = 20 is always below or equal the error attain with m = 2 and294

m = 3. From Fig. 6f it can be noticed that using m = 2 produces the worst classification error regardless the295

value of N and the best results are accomplished using m = 8 and m = 20 for almost all N values.296
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Based on these results we can conclude that in the ApEnmax and rmax estimation’s process it is highly297

recommended to keep in mind that there exists a trade-off between m and N, and special attention is needed298

in the presence of noise. When data length is short and there is not noise in the signal, relative small299

m values provides the best performance. However, in presence of noise, it would be wise either to use an300

estimation of the system’s minimum embedding dimension whenever it is possible, or to use a value as close301

as possible to it when the data length is a limitation. It must also be considered that in real applications,302

such as epileptic seizures’ detection, the duration of some events is only of a few samples: for example303

absence seizures often last less than 5 seconds [48], which corresponds to 1280 samples using a standard304

sampling frequency of 256 Hz. Although for small N values there is not guarantee of an accurate estimation305

of ApEnmax nor rmax with relative high m values. The results here presented show that using m values above306

2 or 3 can increase the discrimination capacity of these estimators, specially in presence of noise.307

The studies conducted on the EEG recording provided similar results to those obtained with the previous308

simulations. In Fig. 7 are presented the ApEnmax and rmax curves as functions of m for two ictal episodes and309

their respective pre-ictal segments. The distances (relative to the scale) between the ApEnmax curves of each310

ictal and its corresponding pre-ictal episodes are small for all the m values, as can be observed in Fig. 7a.311

On the contrary, Fig. 7b suggests that rmax can be used to discriminate between dynamics. Decreasing the312

SNR tends to reduce the distance between ApEnmax and rmax curves (see Figs. 7c and 7d). However, for313

high m values, the information given by rmax can be useful to distinguish between dynamics.314

It is worth to mention that, for this signal and with these estimators, it is difficult to separate the ictal and315

pre-ictal episodes as isolated groups. However, it is possible to state differences between an ictal episode316

and its corresponding pre-ictal one. This result leads us to think that a suitable approach to detect ictal317

episodes from EEG signals, using these estimators, should be one in which their temporal evolution could318

be evaluated.319

In order to assess this idea, we corrupted the EEG signal with white Gaussian noise (SNR= 5 dB) and320

we considered sliding windows of length N = 1000, shifted 128 data points. Each window was normalized321

to have unitary energy. ApEnmax and rmax were estimated using τ = 10 for 2 ≤ m ≤ 6. With these322

results we proceed as follows: first, we built the matrices CA and CR, where the entry CA
k,i was the value of323

ApEnmax calculated with the i-th value of m for the k-th window. The matrix CR was built alike with the324

rmax values. Each matrix was statistically normalized (zero mean and unitary SD) by columns. Observe that325

the temporal evolution of ApEnmax and rmax calculated with the i-th m value can be evaluated by looking326
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Fig. 7. EEG signal. Two ictal episodes and their respective pre-ictal segments. Raw signal: (a) ApEnmax.

(b) rmax. SNR= 5 dB: (c) ApEnmax. (d) rmax.

the i-th column of the CA and CR matrices respectively. A third matrix named CAR was conformed by327

the horizontal concatenation of the above mentioned matrices: CAR =
(
CA |CR

)
. Next, we performed328

a Principal Component Analysis (PCA) over each matrix. The first principal component (1stPC) can be329

thought as a summary that best represents the information collected by these estimators through all m330

values. Finally, an algorithm for detection of abrupt mean changes (CUSUM) was applied on the 1stPC of331
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Fig. 8. Icatal episodes detection using ApEnmax and rmax from an EEG signal with additive noise (SNR=

5 dB): (a) EEG signal. (b) CUSUM over the first PC on the CA, CR and CAR matrices. The ictal episodes

can be found between vertical dased lines.

each matrix [49]. The target mean and the reference value were fixed as the average of the first twenty data332

points and two times their SD, respectively.333

In Fig. 8 are presented the EEG signal with the four ictal episodes marked between vertical dashed334

lines (Fig. 8a) and the results of the CUSUM algorithm applied over the 1stPC of each matrix (Fig. 8b). It335

can be observed in Fig. 8b that all ictal episodes can be detected using the information contained in each336

matrix. Nevertheless, while some ictal episodes are better detected with ApEnmax, others are better detected337

with rmax. On the other hand, a more consistent identification of ictal episodes can be achieved using in338

conjunction both estimators. These results suggest that, with the information provided by both ApEnmax339

and rmax for different m values, the ability to discriminate between different dynamics can be increased (even340

in presence of noise), since changes that can not be identified in the temporal evolution of one estimator341

could be identified in the temporal evolution of the other one. It must be remarked that these findings only342

suggest the suitability of jointly use both estimators to detect ictal episodes from EEG signals. Further343

experiments with a large data base will be conducted in future works to statistically assess the performance344

of the proposed method to detect complexity changes in real signals.345

4. Conclusions346

The Approximate entropy has been recognized by its ability to distinguish between different system’s347
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dynamics when short-length data with moderate noise are available. However, it is also known that high348

noise levels and incorrect parameter selection can undermine its discrimination capacity. In order to over-349

come these difficulties, in this paper we have proposed a method based on the use of rmax along with350

ApEnmax to discern between different dynamics. Using signals from real physiological and from simulated351

low- and high-dimensional systems, with and without noise, we have studied the behavior of ApEnmax352

and rmax as functions of the embedding dimension, the data length and the noise level. The results indi-353

cate that, even in presence of noise, rmax provides valuable information that can be used for classification354

purposes. Furthermore, as these estimators vary with m, there is a complementary relationship between355

them, which strengthens the idea of using ApEnmax combined with rmax to distinguish between dynamics.356

Cross-validation simulations have demonstrated that the jointly use of both estimators as input features, sig-357

nificantly decreases the misclassification rate of a simple linear classifier. Moreover, the conjoint use of both358

estimators enlarges the range of m values that can be chosen to achieve a good classification performance.359

Concerning the data length, we have shown that for short-length signals good discriminating features can be360

achieved using relative small m values if there is no noise. However, in presence of noise the discrimination361

capacity of ApEnmax and rmax can be increased using m values above 2 or 3. Our results encourage the use362

of an estimation of the system’s minimum embedding dimension when it is possible, or the use of a close363

enough value when the data length is a limitation. We assert that as well as ApEnmax, the estimator rmax can364

also be utilized to discern between dynamics even in the presence of noise. Moreover, the use of rmax has365

shown to be helpful in such cases when ApEnmax is unable to contrast between processes that are immersed366

in noise. The link between rmax and system complexity will be addressed in future studies, to reveal the367

nature of this relationship and its physical meaning.368
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