40,845 research outputs found

    Zone-based verification of timed automata: extrapolations, simulations and what next?

    Full text link
    Timed automata have been introduced by Rajeev Alur and David Dill in the early 90's. In the last decades, timed automata have become the de facto model for the verification of real-time systems. Algorithms for timed automata are based on the traversal of their state-space using zones as a symbolic representation. Since the state-space is infinite, termination relies on finite abstractions that yield a finite representation of the reachable states. The first solution to get finite abstractions was based on extrapolations of zones, and has been implemented in the industry-strength tool Uppaal. A different approach based on simulations between zones has emerged in the last ten years, and has been implemented in the fully open source tool TChecker. The simulation-based approach has led to new efficient algorithms for reachability and liveness in timed automata, and has also been extended to richer models like weighted timed automata, and timed automata with diagonal constraints and updates. In this article, we survey the extrapolation and simulation techniques, and discuss some open challenges for the future.Comment: Invited contribution at FORMATS'2

    Continuous cellular automata on irregular tessellations : mimicking steady-state heat flow

    Get PDF
    Leaving a few exceptions aside, cellular automata (CA) and the intimately related coupled-map lattices (CML), commonly known as continuous cellular automata (CCA), as well as models that are based upon one of these paradigms, employ a regular tessellation of an Euclidean space in spite of the various drawbacks this kind of tessellation entails such as its inability to cover surfaces with an intricate geometry, or the anisotropy it causes in the simulation results. Recently, a CCA-based model describing steady-state heat flow has been proposed as an alternative to Laplace's equation that is, among other things, commonly used to describe this process, yet, also this model suffers from the aforementioned drawbacks since it is based on the classical CCA paradigm. To overcome these problems, we first conceive CCA on irregular tessellations of an Euclidean space after which we show how the presented approach allows a straightforward simulation of steady-state heat flow on surfaces with an intricate geometry, and, as such, constitutes an full-fledged alternative for the commonly used and easy-to-implement finite difference method, and the more intricate finite element method

    Automata-theoretic and bounded model checking for linear temporal logic

    Get PDF
    In this work we study methods for model checking the temporal logic LTL. The focus is on the automata-theoretic approach to model checking and bounded model checking. We begin by examining automata-theoretic methods to model check LTL safety properties. The model checking problem can be reduced to checking whether the language of a finite state automaton on finite words is empty. We describe an efficient algorithm for generating small finite state automata for so called non-pathological safety properties. The presented implementation is the first tool able to decide whether a formula is non-pathological. The experimental results show that treating safety properties can benefit model checking at very little cost. In addition, we find supporting evidence for the view that minimising the automaton representing the property does not always lead to a small product state space. A deterministic property automaton can result in a smaller product state space even though it might have a larger number states. Next we investigate modular analysis. Modular analysis is a state space reduction method for modular Petri nets. The method can be used to construct a reduced state space called the synchronisation graph. We devise an on-the-fly automata-theoretic method for model checking the behaviour of a modular Petri net from the synchronisation graph. The solution is based on reducing the model checking problem to an instance of verification with testers. We analyse the tester verification problem and present an efficient on-the-fly algorithm, the first complete solution to tester verification problem, based on generalised nested depth-first search. We have also studied propositional encodings for bounded model checking LTL. A new simple linear sized encoding is developed and experimentally evaluated. The implementation in the NuSMV2 model checker is competitive with previously presented encodings. We show how to generalise the LTL encoding to a more succint logic: LTL with past operators. The generalised encoding compares favourably with previous encodings for LTL with past operators. Links between bounded model checking and the automata-theoretic approach are also explored.reviewe

    Fluid Model Checking of Timed Properties

    Get PDF
    We address the problem of verifying timed properties of Markovian models of large populations of interacting agents, modelled as finite state automata. In particular, we focus on time-bounded properties of (random) individual agents specified by Deterministic Timed Automata (DTA) endowed with a single clock. Exploiting ideas from fluid approximation, we estimate the satisfaction probability of the DTA properties by reducing it to the computation of the transient probability of a subclass of Time-Inhomogeneous Markov Renewal Processes with exponentially and deterministically-timed transitions, and a small state space. For this subclass of models, we show how to derive a set of Delay Differential Equations (DDE), whose numerical solution provides a fast and accurate estimate of the satisfaction probability. In the paper, we also prove the asymptotic convergence of the approach, and exemplify the method on a simple epidemic spreading model. Finally, we also show how to construct a system of DDEs to efficiently approximate the average number of agents that satisfy the DTA specification

    Verification of Complex Real-time Systems using Rewriting Logic

    Get PDF
    This paper presents a method for model checking dense complex real-time systems. This approach is implemented at the meta level of the Rewriting Logic system Maude. The dense complex real-time system is specified using a syntax which has the semantics of timed automata and the property is specified with the temporal logic TLTL (Timed LTL). The well known timed automata model checkers Kronos and Uppaal only support TCTL model checking (a very limited fragment in the case of Uppaal). Specification of the TLTL property is reduced to LTL and its temporal constraints are captured in a new timed automaton. This timed automaton will be composed with the original timed automaton representing the semantics of the complex real-time system under analysis. Then, the product timed automaton will be abstracted using partition refinement of state space based on strong bi-simulation. The result is an untimed automaton modulo the TLTL property which represents an equivalent finite state system to be model checked using Maude LTL model checking. This approach is successfully tested on industrial designs

    Hybrid Compositional Reasoning for Reactive Synthesis from Finite-Horizon Specifications

    Full text link
    LTLf synthesis is the automated construction of a reactive system from a high-level description, expressed in LTLf, of its finite-horizon behavior. So far, the conversion of LTLf formulas to deterministic finite-state automata (DFAs) has been identified as the primary bottleneck to the scalabity of synthesis. Recent investigations have also shown that the size of the DFA state space plays a critical role in synthesis as well. Therefore, effective resolution of the bottleneck for synthesis requires the conversion to be time and memory performant, and prevent state-space explosion. Current conversion approaches, however, which are based either on explicit-state representation or symbolic-state representation, fail to address these necessities adequately at scale: Explicit-state approaches generate minimal DFA but are slow due to expensive DFA minimization. Symbolic-state representations can be succinct, but due to the lack of DFA minimization they generate such large state spaces that even their symbolic representations cannot compensate for the blow-up. This work proposes a hybrid representation approach for the conversion. Our approach utilizes both explicit and symbolic representations of the state-space, and effectively leverages their complementary strengths. In doing so, we offer an LTLf to DFA conversion technique that addresses all three necessities, hence resolving the bottleneck. A comprehensive empirical evaluation on conversion and synthesis benchmarks supports the merits of our hybrid approach.Comment: Accepted by AAAI 2020. Tool Lisa for (a). LTLf to DFA conversion, and (b). LTLf synthesis can be found here: https://github.com/vardigroup/lis

    Language-Emptiness Checking of Alternating Tree Automata Using Symbolic Reachability Analysis

    Get PDF
    AbstractAlternating tree automata and AND/OR graphs provide elegant formalisms that enable branching- time logics to be verified in linear time. The seminal work of Kupferman et al. [Orna Kupferman, Moshe Y. Vardi, and Pierre Wolper. An automata-theoretic approach to branching-time model checking. J. ACM, 47(2):312–360, 2000] showed that 1) branching-time model checking is reducible to the language non-emptiness checking of the product of two alternating automata representing the model and property under verification, and 2) the non-emptiness problem can be solved by performing a search on an AND/OR graph representing this product. Their algorithm, however, can only be implemented in an explicit-state model checker because it needs stacks to detect accept and reject runs. In this paper, we propose a BDD-based approach to check the language non-emptiness of the product automaton. We use a technique called “state recording” from Schuppan and Biere [Viktor Schuppan and Armin Biere. Efficient reduction of finite state model checking to reachability analysis. Int. Journal on Software Tools for Technology Transfer (STTT), 5(2–3):185–204, 2004] to emulate the stack mechanism from explicit-state model checking. This technique allows us to transform the product automaton into a well-defined AND/OR graph. We develop a BDD-based reachability algorithm to efficiently determine whether a solution graph for the AND/OR graph exists and thereby solve the model-checking problem. While “state recording” increases the size of the state space, the advantage of our approach lies in the memory saving BDDs can offer and the potential it opens up for optimisation of the reachability analysis. We remark that this technique always detects the shortest counter-example
    • …
    corecore