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Abstract—Leaving a few exceptions aside, cellular automata drawbacks hampering the widespread use of (C)CA-based
(CA) and the intimately related coupled-map lattices (CML), models as full-fledged alternatives of well-establishedlei®
commonly known as continuous cellular automata (CCA), as pased upon partial differential equations. First, by lingtthe

well as models that are based upon one of these paradigms,d. tizati f th tial d in t lamolvt
employ a regular tessellation of an Euclidean space in spite of ¢/SCr€lization or the spalial domain 1o reguiapolytopes,

the various drawbacks this kind of tessellation entails, such as the applicability of (C)CA-based models becomes restiicte

its inability to cover surfaces with an intricate geometry, or to spatial domains with a rather simple geometry that impose
the anisotropy it causes in the simulation results. Recently, a even elementary boundary conditions [24], [25]. Second, a
CCA-based model describing steady-state heat flow has beengq are tessellation artificially restricts the number aigiiole

proposed as an alternative to Laplace’s equation that is, among . . .
other things, commonly used to describe this process, yet, alsof1oW directions [22] in (C)CA-based mass flow models that are

this model suffers from the aforementioned drawbacks since it getting commonly used in hydrological and geological stadi
is based on the classical CCA paradigm. To overcome these[26], [27], [28], [29]. Third, the use of a regular tessathat

problems, we first conceive CCA on irregular tessellations of an often results in artificially anisotropic patterns [30].Ukth, the
Euclidean space after which we show how the presented approach classical (C)CA paradigm hinders the use of spatio-tempora

allows for a straightforward simulation of steady-state heat flow data i tor f t which is built up f t of tri
on surfaces with an intricate geometry, and, as such, constituse ata In vector format, which 1S bullt up from a set of geonetri

a full-fledged alternative for the commonly used and easy-to- Primitives, as well as the integration of the (C)CA concept
implement finite difference method, and the more intricate finite in existing, vector-based geographical information syste
element method. o software. Fifth, it can be questioned whether (C)CA based
Index Terms—cellular automata; coupled-map lattice; irregu-  ynon g regular tessellation give rise to possible sidestsffe
lar tessellations; heat flow . . .
on the simulation results as a consequence of the regularity
involved in its topology [31], [32], [33].
In order to overcome these barriers, (C)CA on irregular
Ever since the publication of Conway’s ‘Game of Life’ [1],tessellations ofR™ can be conceived. Such tessellations can
cellular automata (CA), originally conceived by von Neumanbe obtained easily by relying on a rich variety of already
in the early 1950s [2], and the closely related coupled-mayell-established tessellation methods, such as the Dajaun
lattices (CML) [3], also known as continuous cellular autdan tessellation, which are often built-in in mathematicaltsafre
(CCA), have aroused numerous researchers’ interest, whdickages or are distributed free of charge as add-ons. By
comes forward by the growing number of publications on theseeans of this paper, in which we formalize CCA on irregular
topics. In fundamental sciences, much attention has beien pssellations and illustrate their usability, we hope ttigate
to the dynamical properties of (C)CA [4], [5], [3], [6], wremas the development of CCA-based models that benefit from
many sound (C)CA-based models have been developed in waeakening the topology constraint that is adhered to by the
ious scientific disciplines, such as epidemiology [7], [Ble classical CCA paradigm.
science [9], [10], [11], geography [12], (micro)biologyJJL In Section Il we briefly present the mathematical formal-
[14], [15], medical science [16], [17], and transportat[@B], ization of CCA on irregular tessellations, while their gnap
[19]. A comprehensive review of the (C)CA-based models thegpresentation is addressed in Section Ill. In the ultimate
have been developed recently in geomorphology can be fowsettion of this paper we illustrate the usability and sttesg
in [20]. of the irregular CCA paradigm for describing steady-staath
Nonetheless a few recent studies have highlighted Claw.
on other regular tessellations of the Euclidean plane [11]II
[21], [22], most of the above-mentioned studies use a square’
tessellation of the two-dimensional Euclidean space owing o
its implementational simplicity and computational effruiy A Definition
[23]. Although such a tessellation allows for a thoroughdgtu  First, we state the definition of a CCA on an arbitrary
of a (C)CAs dynamical properties, it suffers from severdkssellation of am-dimensional Euclidean space, which con-

I. INTRODUCTION

CONTINUOUS CELLULAR AUTOMATA ON IRREGULAR
TESSELLATIONS



stitutes an extension to the classical CCA paradigm thednstitutes the set of vert|ceﬁO from which p? can be
predominantly relies on a square or cuboid tessellatioR’f assembled (Fig. 1(c)), WhereeS UPO is the set of
or R3, respectively.

Definition 2.1: A continuous cellular automaton (CCA&)
can be represented as a sextuple

endpoints necessary to construct all Ime segments.in

In case one is faced with an irregular tessellation of a 3- or
higher-dimensional Euclidean space, the above-outlifresl |
C=(T,S,s,s9,N,P) , of reasoning can be extended by envisaging its tessellation
as a setP™ = {p},p5,...,p?,...} of convexn-polytopes
that are built up from(n — 1)-polytopes, which can be further
decomposed ifn — 2),(n — 3),... ,0-polytopes.

where

(i) 7 is a countably infinite tessellation of arndimensional
Euclidean spac®"™, consisting of non-overlapping cells
¢, 1 € N, that allows for a complete coverage &f'. C. The neighborhood functiol¥

(i) S'is an infinite set of states, oftef C R. In order to streamline the construction of the sequence
(iii) The output function :.TxN - S yields fthe state value ( )Ili(cq)\’ we first introduce the intuitive concept of so-
of cell ¢; at thet-th discrete time step, i.e(c;, t). J=1

) The functi T . ¢ M calledm-dimensional contact.
W) JNe functionso : — 0 assigns fo every cett; an Definition 2.2: Two n-polytopesp?, p? € 7 have m-
initial state, i.e.s(c;,0) = so(c;). J

dimensional contact, withn < n, if they share at least one

(v) The neighborhood functiolv : 7 — |J 7P maps m-polytope.
=1

every celle; to a finite sequence/(c;) = (Ciy)‘ji(lm" Clearly, it follows thatm-dimensional contact between-
consisting ofi N (c;)| distinct cellsc;, . polytopes _|m_plleso, 1,..., (m-l)-dlmensmnal_ contact. The
(Vi) @ = (¢); oy is a family of functions former definition can now be used to unamblgl_Joust setup a
Nie subsetV; C 7, further referred to as a topological neighbor-
¢i: S (el S, hood, containing those cells € 7 that are considered;’s
each¢; governing the dynamics of cel], i.e neighbors. _ _
Definition 2.3: Them-th order topological neighborhood
s(ci, t+1) = ¢4 (3(N(ci) 1)), N;™ of an n-polytopep? € T, with 0 < m < n, contains
B IN(ci)] aII n-polytopesp} € 7 that havem-dimensional contact with
where (N (c;), t) = (s(ci; 1)), - e N = {pr e T | PP #0).

Since the formulation of premises (i), (v) and (vi) in thls
definition differs from the original paradigm as proposed bl tessellations ofR? are considered, Definition 2.3 allows the
Kaneko [3], we elaborate on them in the remainder of th@gnstruction of either a 0-th or 1-st order topological héigr-
section. hood, which are better known as the Moore and von Neumann
i ) neighborhood, respectively. Both neighborhoods aretithtisd
B. Tessellations aR in Fig. 2 for a convex polygom; in an irregular tessellation
Seen the fact that the CCA-based models presentedoiR2. It should be clear that the geometric discrepancies
the subsequent sections describe phenomena occurring ingkisting between cells irf, which can be traced back to
Euclidean plane, we restrict the discussion to tessefiatiodifferences between the position of thepolytopes’ centroids,
of R?. For that purpose, we consider a countably infiniteind, the polygons’ circumference and area are not taken into
irregular tessellatior?” of the Euclidean plane, which canaccount for pinning down a cell's topological neighborhood
be envisaged as a s@® = {p?,p3,...,p?,...} of convex Obviously, these geometric characteristics could be ueed t
2-polytopes,i.e. polygons,p?, which, on their turn, can be exclude cells not fulfilling certain criteria from the topgjical
assembled from a set of line segmepjsthat can be denoted neighborhoods, and, as such, give rise to a restricteddgpol
as ical neighborhoodV;™ T For instance, if tessellations &f2
are at stake, a threshold can be imposed on the minimum
P} = {plll’p,}w . ,p}I} , proportion of¢;’s circumference that must be shared with
l . . . . .
so thatc; is still considered:;'s neighbor. Figure 2(c) shows
where!} indicates the number of line segments needed tee restricted topological neighborhood of a convex potygo
constructp?. Sticking to this notation, the set of line segments; enclosing those cells; belonging toN} that make up at
needed to construct aii? in 7 is then given byS = |JP!. least 20% ofe;’s circumference. Unless stated otherwise, a
: Moore neighborhood is used throughout the remainder of this

Figure 1(b) visualizes this construction for a convex polyg paper

? belonging to a tessellatio of R2. Clearly, every line
segmen;v1 in P} can be formed by connecting two points irp. Transition functiong;

2
R* such that According to Def. 2.1 every; in 7 has its distinct transition

0 function ¢; governing its dynamics. Yet, we can contemplate
P {pu’pwa vpzlo} ) the family of CA for which¢; = © is the same for alt; € 7.
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Fig. 1. Assembly of verticep?] in R2 leading to line segment&})c that on their turn can be joined to form the polygpfl
C7 ‘ C7 ‘
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Fig. 2. Moore (a), von Neumann (b) and (c) restricted topaaigheighborhood of a convex polygen.

Definition 2.4: A homogeneous continuous cellular awprojection onto an undirected gragh is given in Fig. 3(b).
tomaton (CCA) is a CCA fulfilling premises (i)-(v) of Defiaiti Dashed edges only exist if a Moore neighborhood is at stake,
2.1 and for which there exists @ : [ J, <y S* — S such that since a von Neumann neighborhood discards polygons that

Al have O-dimensional contact. Hence, if the latter is at stake
s(eit+1) = 0(3 (N(e:). 1)) - only the non-dashed edges are present.
Essentially, most works on CCA merely concern homogeneous
CCA [34], [35]. IV. M ODELING STEADY-STATE HEAT FLOW
IIl. GRAPH REPRESENTATION OFCCA ON IRREGULAR A. A generalized CCA-based model for steady-state heat flow

TESSELLATIONS As an exemplary diffusion process, we consider in this
In order to simplify their implementation and to elucidatsection the steady-state flow of heat through a two-dimeiasio
the irregular CCA paradigm, a graph representation of CCA éfctangular surfacé’ C R? that is commonly addressed using
irregular tessellations dk™ can be exploited. If a topological Laplace’s equation:
neighborhood is considered (Cfr. Def. 2.3),is mapped on V2T (z,y) = 0 1)
an undirected grapld: (V, E), with vertex setV = 7 and ’ ’
E representing the edge set 6f assembled in accordancewhereT'(z,y) denotes the steady-state temperature expressed
with Definition 2.3. Hence, an edgs,; exists between two in degrees centigrade at every poimty) in S.
verticese; andc; if ¢; € N(¢;). On the other hand, if the For setting up a CCA-based model describing steady-state
geometric characteristics af; must be taken into accountheat flow, which is necessarily based upon discrete spatial
when constructingV(c;), a directed grapliz;(V, E4) should entities {.e. cells ¢;), it can be reasoned that if such a cell
be employed, since; € /\f{”’R does not necessarily implyis surrounded by a given number of neighboring cells, each
thatc; /\/["’R. maintained at constant temperature, it will reach a steady-
Figure 3(a) shows a finite 2D tessellation of a compastate temperature after a sufficient amount of time that is
subset ofR? consisting of 15 irregular polygons, while itscompletely determined by the temperature of its neighbors.
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Fig. 3. Representation of a discrete irregular tessefiatiba compact subset @2 (a) and the grapl@; obtained after mapping this tessellation @n(b).
Dashed vertices only exist when a Moore neighborhood isidered.

More specifically, this steady-state temperature will be th
average value of the temperatures at which the neighboring

cells are maintained. Hence, if we discard the difference I(0,y) = 0, 0<y<s,
in the length of the common line segment through which T(s,y) = 0, 0<y<s,
neighboring cells exchange heat, and which unavoidabbt®xi T(z,0) = Ty, 0<z<s,
between ceII; in an irregular tessellatloriR?ff, the stegdy—;tate T(z,s) = Tp, 0<z<s,
temperature in the cells df can be obtained by iteratively
evaluating where s is the side length of the plate. Since an analytical
S W(e,t) solution can be found for this boundary value problem a
~ c;EN(c:) 7 sound assessment of Eq. (2)'s validity becomes possible. Th
Wit +1) = 05 (N(ci), 1)) = —IN@) (2) latter solution can be found straightforwardly by separatf

] variables, and can be simplified to
for all ¢;, until [W(c;,t+1)—W(e,t)| < ¢,Ve; € T,

where ¢ is a given halting criterion an®’(c;, t) denotes the
temperature expressed in degrees centigrade incceit the
t-th time step. In contrast witf'(, y), W (c;,t) constitutes a T(w,y) =4T; )
discrete function since it yields a value for discrete calsl m=1
time steps only. Taking into account the discrepancies éetw
the length of the exchange ‘surface’, Eq. (2) can be modified
to:

X sinh (m*ys!) sin (m*zs71)

m* sinh (m*)

% sinh (m* (s —y) s_l) sin (m* x s‘l)
o m,z::l m* sinh (m*) )
1
Wi(c,t+1) = @(§ (N(ci)7t)) =& Z W(c;,t) Cij s
" ¢;eN(ei)

where m* = (2m — 1)7 was introduced for reasons of
clarity. In the remainder of this subsection, we consider a
©) steel plate with side length = 1, T, = 50 and T, = 50.
where C;; denotes the length of the line segment that ithe simulations with the CCA-based model were performed

shared bye; and ¢;. It should be clear that Egs. (2) andUsing a regular tessellation consisting 1f0 x 100_square

(3) constitute the transition function of a homogeneous ccgells and a value ofil0™" was selected for, while 200

C = (T,S,s,5,N,0), with T = {c;,cs,...}, S = R, t€rms of the series in Eq. (4) were taken into account. Figure
s(cirt) = Wi, t), so(ci) = W(ei,0), N(e;) = NP, and© 4, depmtmg the steady—sta_lte temperature @stnbuuqmgal
being the right-hand-side of Eq. (2) or (3). Essentiallysgg) three horizontal cross-sections obtained using the doalyt
and Eq. (3) constitute an extension to the CCA proposed Bglution (Eg. (4)) on the one hand, and the CCA-based
Schiff [36] for describing heat flow on a square tessellatigRode! (Ed. (2)) on the other hand, and Fig. 5 visualizing the

that suffers from several drawbacks as discussed in SectiofPsolute difference betwesi (c;, ¢,) and the corresponding
T(xzf,y)), wheret, is the number of time steps needed

B. Assessing the validity of the CCA-based model such that|W(c;,t+1) — W(e;,t)| < ¢,Ye; € T and
In order to demonstrate the validity of Eq. (2), we considér!, y/) represents;’s center of gravity, clearly show the close

the heat flow in a square plate, which is subject to the boyndagreement between the simulated temperature distritsution
conditions obtained with both approaches. The good agreement between




TABLE | 50

AVERAGE ABSOLUTE DIFFERENCEu. BETWEEN W (¢;, t) WHERE L IS
THE NUMBER OF TIME STEPS NEEDED SUCH THAT
W (ciyt+1) — W(ci,t)| < ¢,Ve; € T, AND THE CORRESPONDING o
T(zf,y]), WHERE (27, y]) REPRESENTS:;'S CENTER OF GRAVITY O
TOGETHER WITHt¢. ; 30f
5
©
171 () pe (°C) | tp () 8 20
25 x 25 090 | 1397 E
50 x 50 052 | 4904 10l
100 x 100 | 028 | 17352
150 x 150 | 0.19 | 36308
X (m)
both approaches is further confirmed by Table | that lists e O [ ] A
the average absolute differenge betweenW (c;,t,) and y=090m y=075m y=050m
the corresponding’(z¢,y?) together witht,. As expected, c~r @ W A

it indicates thatu, drops as we are working towards the

continuum limit/7'| — oo. In order to verify the comparability Fig. 4. Steady-state temperature distribution along thieéntal cross-
between the results obtained using the CCA-based modelfﬁ@tlons obtained using the analytical solution (Eq. (4)tfe one hand, and
the one hand, and a finite difference approximation of Eq. (1)

on the other hand, we implemented an implicit finite differen
scheme for this equation, which was solved iteratively fc

100 x 100 nodes located in the centers of gravity of the CCA

cells. As such, we assessed that the mean absolute dif

ence between the simulated temperature of both approac

was only0.01, whereas the maximum discrepancy was.

This clearly indicates the comparability existing betwéerth o
approaches, as such granting reliability to the approach ¥« C) 5
propose.

Figure 5 further shows that the regions in which the dis
crepancies between the simulation results obtained ukiag
approaches at stake are the most pronounced, are locate
the corners of the tessellated surface, whereas the smal
discrepancies can be found in the surface’s center. The 10 0
discrepancies can be attributed to the fact thétc;,t + 1) _
is calculated using the temperature values in cells thateshg9: > r%ki’rs]gz'}%fqd'ff]‘a)revr\}ﬁz’re‘ie”gt‘t*ge(:Sr)ﬁbt;?t‘(’)"fet?;‘]‘ggg ?%eir:jdeéhseuch
an edge withe;, as well as cells that merely share a vertegﬁat‘v[?(%H l)i_"lé%/('chm < Ve, € T and @19 re%resemgiys
with ¢; since a Moore neighborhood is employed. As suchenter of gravity.
neighboring cells that are not directly facing have the
same influence on the determination 1f(c;,¢t + 1) as the

facing ones, which, physically speaking, would entail a flow Ui o o hi )
of heat throughe;’s four corner points that is equally Iargea uid maintained at a temperature 0 This tube is

as the heat flow through its sides. In order to work arourtpmegeneously wrapped up with a lagging material and the
this artifact that is inevitably related to the use of a squal''@PPed tube is contained in a box of which the sides are
tessellation, either the steady-state temperaturellisioh can Mmaintained at a temperature of 2l Seen the fact that the

be computed using Eq. (3) or one can give up the Squa{pénperature of the fluid, as well as the sides of the box

tessellation and resort to a more intricate meshing methBtF maintained con_stapt, '_t IS tF’ be expected_thgt a steady-
ate temperature distribution will be reached inside tbe b

yielding cells which state can be iteratively calculated b __ i i
er a sufficient amount of time. Obviously, the geometry

means of Eq. (3). Yet, the first workaround is not more th L oh ; h q lated h ith th
a stopgap since then it is assumed that cells merely sharing glhe surface that needs to tessellated, together with the

vertex withe; have no influence at all oW (¢;, t+1), which is

ircular boundary condition obstructs the use of a regular
as doubtful as granting them equal importance as cellsranarfessellation, though, a Delaunay tessellation can be erglo
an edge withe;.

CCA-based model (Eg. (2)), on the other hand.

for discretizing. Figure 6 depicts a transversal crossisec

through this construction and shows the Delaunay teskel|at

C. The CCA-based model's strengths exemplified consisting of 12,688 cells, that was used to mesh the space
In the remainder of this section, we consider the flow ¢fnclosed between the box’ sides and the tube.

heat that originates from a tube (radius 0.4 cm) conductingAfter implementing the boundary conditions as indicated



Fig. 6. Schematic overview of a transversal cross-sectioough a box
containing a tube homogeneously wrapped up with lagging maatéfhe
sides of the box are maintained at°Z) while a warm fluid (50C) is flowing
through the tube.

in Fig. 6, the steady-state temperature distribution inléige
filed area was computed iteratively using Eq. (2) and
visualized in Fig. 7(a). In order to satisfy the halting erion,

that also FDM and FEM yield only an approximate solution
of Eqg. (1).

Unavoidably, a thorough comparison between the perfor-
mance of the CCA-based models on the one hand and the
FEM and FDM on the other hand will lead to the question
whether either a continuous model or a discrete model is the
most appropriate starting point for numerical modeling. To
emphasize this dilemma, we may refer to Toffoli [37] who
remarked already in 1984 that is questionable to stick to$?DE
as a starting point for numerical modeling as soon as symboli
manipulations are no longer possible since (1) they reptese
a stylizedform of the process(es) at stake, (2) we need to
discretize them in order to find a numerical approximation,
and (3) real-valued variables are rounded off. Perhapsredes
models might offer a less roundabout way to model natural
processes?

V. CONCLUSION

In this paper we established the mathematical constructs
that are needed to make use of the irregular CCA paradigm
to build models upon that can be of use in applied sciences,
and we illustrated this paradigm’s usability for a CCA-lmhse
model describing steady-state heat flow. Although we obthin
the tessellation used throughout this paper by means of a
well-established meshing method, it could be equally well
deduced from a vector-based geographical informatioresyst

6,048 iterative evaluations of Eq. (2) were needed. Figutat exploits irregular polygons as one of its three majaada
7(b) depicts the temperature distribution along four cros¥Pes. in addition to vertices and line segments, to encode

sections through the medium. For comprehensiveness,

should emphasize that the latter figure was obtained bydakin

spatial information.
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