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Abstract—Leaving a few exceptions aside, cellular automata
(CA) and the intimately related coupled-map lattices (CML),
commonly known as continuous cellular automata (CCA), as
well as models that are based upon one of these paradigms,
employ a regular tessellation of an Euclidean space in spite of
the various drawbacks this kind of tessellation entails, such as
its inability to cover surfaces with an intricate geometry, or
the anisotropy it causes in the simulation results. Recently, a
CCA-based model describing steady-state heat flow has been
proposed as an alternative to Laplace’s equation that is, among
other things, commonly used to describe this process, yet, also
this model suffers from the aforementioned drawbacks since it
is based on the classical CCA paradigm. To overcome these
problems, we first conceive CCA on irregular tessellations of an
Euclidean space after which we show how the presented approach
allows for a straightforward simulation of steady-state heat flow
on surfaces with an intricate geometry, and, as such, constitutes
a full-fledged alternative for the commonly used and easy-to-
implement finite difference method, and the more intricate finite
element method.

Index Terms—cellular automata; coupled-map lattice; irregu-
lar tessellations; heat flow

I. I NTRODUCTION

Ever since the publication of Conway’s ‘Game of Life’ [1],
cellular automata (CA), originally conceived by von Neumann
in the early 1950s [2], and the closely related coupled-map
lattices (CML) [3], also known as continuous cellular automata
(CCA), have aroused numerous researchers’ interest, which
comes forward by the growing number of publications on these
topics. In fundamental sciences, much attention has been paid
to the dynamical properties of (C)CA [4], [5], [3], [6], whereas
many sound (C)CA-based models have been developed in var-
ious scientific disciplines, such as epidemiology [7], [8],fire
science [9], [10], [11], geography [12], (micro)biology [13],
[14], [15], medical science [16], [17], and transportation[18],
[19]. A comprehensive review of the (C)CA-based models that
have been developed recently in geomorphology can be found
in [20].

Nonetheless a few recent studies have highlighted CA
on other regular tessellations of the Euclidean plane [11],
[21], [22], most of the above-mentioned studies use a square
tessellation of the two-dimensional Euclidean space owingto
its implementational simplicity and computational efficiency
[23]. Although such a tessellation allows for a thorough study
of a (C)CA’s dynamical properties, it suffers from several

drawbacks hampering the widespread use of (C)CA-based
models as full-fledged alternatives of well-established models
based upon partial differential equations. First, by limiting the
discretization of the spatial domain to regularn-polytopes,
the applicability of (C)CA-based models becomes restricted
to spatial domains with a rather simple geometry that imposes
even elementary boundary conditions [24], [25]. Second, a
square tessellation artificially restricts the number of possible
flow directions [22] in (C)CA-based mass flow models that are
getting commonly used in hydrological and geological studies
[26], [27], [28], [29]. Third, the use of a regular tessellation
often results in artificially anisotropic patterns [30]. Fourth, the
classical (C)CA paradigm hinders the use of spatio-temporal
data in vector format, which is built up from a set of geometric
primitives, as well as the integration of the (C)CA concept
in existing, vector-based geographical information systems
software. Fifth, it can be questioned whether (C)CA based
upon a regular tessellation give rise to possible side-effects
on the simulation results as a consequence of the regularity
involved in its topology [31], [32], [33].

In order to overcome these barriers, (C)CA on irregular
tessellations ofRn can be conceived. Such tessellations can
be obtained easily by relying on a rich variety of already
well-established tessellation methods, such as the Delaunay
tessellation, which are often built-in in mathematical software
packages or are distributed free of charge as add-ons. By
means of this paper, in which we formalize CCA on irregular
tessellations and illustrate their usability, we hope to instigate
the development of CCA-based models that benefit from
weakening the topology constraint that is adhered to by the
classical CCA paradigm.

In Section II we briefly present the mathematical formal-
ization of CCA on irregular tessellations, while their graph
representation is addressed in Section III. In the ultimate
section of this paper we illustrate the usability and strengths
of the irregular CCA paradigm for describing steady-state heat
flow.

II. CONTINUOUS CELLULAR AUTOMATA ON IRREGULAR

TESSELLATIONS

A. Definition

First, we state the definition of a CCA on an arbitrary
tessellation of ann-dimensional Euclidean space, which con-



stitutes an extension to the classical CCA paradigm that
predominantly relies on a square or cuboid tessellation ofR

2

or R
3, respectively.

Definition 2.1: A continuous cellular automaton (CCA)C
can be represented as a sextuple

C = 〈T , S, s, s0, N,Φ〉 ,

where
(i) T is a countably infinite tessellation of ann-dimensional

Euclidean spaceRn, consisting of non-overlapping cells
ci, i ∈ N, that allows for a complete coverage ofR

n.
(ii) S is an infinite set of states, oftenS ⊆ R.
(iii) The output functions : T ×N → S yields the state value

of cell ci at the t-th discrete time step, i.e.s(ci, t).
(iv) The functions0 : T → S assigns to every cellcj an

initial state, i.e.s(ci, 0) = s0(ci).

(v) The neighborhood functionN : T →
∞
⋃

p=1
T p maps

every cellci to a finite sequenceN(ci) =
(

cij

)|N(ci)|

j=1
,

consisting of|N(ci)| distinct cellscik
.

(vi) Φ = (φi)i∈N
is a family of functions

φi : S|N(ci)| → S ,

eachφi governing the dynamics of cellci, i.e.

s(ci, t + 1) = φi

(

s̃(N(ci), t)
)

,

where s̃(N(ci), t) =
(

s(cij
, t)

)|N(ci)|

j=1
.

Since the formulation of premises (i), (v) and (vi) in this
definition differs from the original paradigm as proposed by
Kaneko [3], we elaborate on them in the remainder of this
section.

B. Tessellations ofR2

Seen the fact that the CCA-based models presented in
the subsequent sections describe phenomena occurring in the
Euclidean plane, we restrict the discussion to tessellations
of R

2. For that purpose, we consider a countably infinite,
irregular tessellationT of the Euclidean plane, which can
be envisaged as a setP2 =

{

p2
1, p

2
2, . . . , p

2
i , . . .

}

of convex
2-polytopes,i.e. polygons,p2

i , which, on their turn, can be
assembled from a set of line segmentsp1

j that can be denoted
as

P1
i =

{

p1
i1

, p1
i2

, . . . , p1
i
l1
i

}

,

where l1i indicates the number of line segments needed to
constructp2

i . Sticking to this notation, the set of line segments
needed to construct allp2

i in T is then given byS =
⋃

i

P1
i .

Figure 1(b) visualizes this construction for a convex polygon
p2

i belonging to a tessellationT of R
2. Clearly, every line

segmentp1
j in P1

i can be formed by connecting two points in
R

2 such that

P0
i =

{

p0
i1

, p0
i2

, . . . , p0
i
l0
i

}

,

constitutes the set of verticesp0
j from which p2

i can be
assembled (Fig. 1(c)), whereasE =

⋃

j

P0
j is the set of

endpoints necessary to construct all line segments inT .
In case one is faced with an irregular tessellation of a 3- or

higher-dimensional Euclidean space, the above-outlined line
of reasoning can be extended by envisaging its tessellation
as a setPn = {pn

1 , pn
2 , . . . , pn

i , . . .} of convex n-polytopes
that are built up from(n−1)-polytopes, which can be further
decomposed in(n − 2) , (n − 3) , . . . , 0-polytopes.

C. The neighborhood functionN

In order to streamline the construction of the sequence
(

cij

)|N(ci)|

j=1
, we first introduce the intuitive concept of so-

calledm-dimensional contact.
Definition 2.2: Two n-polytopes pn

i , pn
j ∈ T have m-

dimensional contact, withm ≤ n, if they share at least one
m-polytope.

Clearly, it follows that m-dimensional contact betweenn-
polytopes implies0, 1, . . . , (m-1)-dimensional contact. The
former definition can now be used to unambiguously set up a
subsetNi ⊂ T , further referred to as a topological neighbor-
hood, containing those cellscj ∈ T that are consideredci’s
neighbors.

Definition 2.3: Them-th order topological neighborhood
Nm

i of an n-polytopepn
i ∈ T , with 0 ≤ m < n, contains

all n-polytopespn
j ∈ T that havem-dimensional contact with

pn
i , i.e. Nm

i =
{

pn
j ∈ T | Pm

i ∩ Pm
j 6= ∅

}

.

If tessellations ofR2 are considered, Definition 2.3 allows the
construction of either a 0-th or 1-st order topological neighbor-
hood, which are better known as the Moore and von Neumann
neighborhood, respectively. Both neighborhoods are illustrated
in Fig. 2 for a convex polygonc1 in an irregular tessellation
of R

2. It should be clear that the geometric discrepancies
existing between cells inT , which can be traced back to
differences between the position of then-polytopes’ centroids,
and, the polygons’ circumference and area are not taken into
account for pinning down a cell’s topological neighborhood.
Obviously, these geometric characteristics could be used to
exclude cells not fulfilling certain criteria from the topological
neighborhoods, and, as such, give rise to a restricted topolog-
ical neighborhoodNm,R

i . For instance, if tessellations ofR
2

are at stake, a threshold can be imposed on the minimum
proportion ofci’s circumference that must be shared withcj

so thatcj is still consideredci’s neighbor. Figure 2(c) shows
the restricted topological neighborhood of a convex polygon
c1 enclosing those cellscj belonging toN 1

1 that make up at
least 20% ofc1’s circumference. Unless stated otherwise, a
Moore neighborhood is used throughout the remainder of this
paper.

D. Transition functionφi

According to Def. 2.1 everyci in T has its distinct transition
function φi governing its dynamics. Yet, we can contemplate
the family of CA for whichφi = Θ is the same for allci ∈ T .
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Fig. 2. Moore (a), von Neumann (b) and (c) restricted topological neighborhood of a convex polygonc1.

Definition 2.4: A homogeneous continuous cellular au-
tomaton (CCA) is a CCA fulfilling premises (i)-(v) of Definition
2.1 and for which there exists aΘ :

⋃

k∈N
Sk → S such that

s(ci, t + 1) = Θ
(

s̃ (N(ci), t)
)

.

Essentially, most works on CCA merely concern homogeneous
CCA [34], [35].

III. G RAPH REPRESENTATION OFCCA ON IRREGULAR

TESSELLATIONS

In order to simplify their implementation and to elucidate
the irregular CCA paradigm, a graph representation of CCA on
irregular tessellations ofRn can be exploited. If a topological
neighborhood is considered (Cfr. Def. 2.3),T is mapped on
an undirected graphG (V,E), with vertex setV = T and
E representing the edge set ofG, assembled in accordance
with Definition 2.3. Hence, an edgeeij exists between two
verticesci and cj if cj ∈ N(ci). On the other hand, if the
geometric characteristics ofci must be taken into account
when constructingN(ci), a directed graphGd(V,Ed) should
be employed, sincecj ∈ Nm,R

i does not necessarily imply
that cj ∈ Nm,R

i .
Figure 3(a) shows a finite 2D tessellation of a compact

subset ofR2 consisting of 15 irregular polygons, while its

projection onto an undirected graphG is given in Fig. 3(b).
Dashed edges only exist if a Moore neighborhood is at stake,
since a von Neumann neighborhood discards polygons that
have 0-dimensional contact. Hence, if the latter is at stake
only the non-dashed edges are present.

IV. M ODELING STEADY-STATE HEAT FLOW

A. A generalized CCA-based model for steady-state heat flow

As an exemplary diffusion process, we consider in this
section the steady-state flow of heat through a two-dimensional
rectangular surfaceS ⊂ R

2 that is commonly addressed using
Laplace’s equation:

∇2T (x, y) = 0 , (1)

whereT (x, y) denotes the steady-state temperature expressed
in degrees centigrade at every point(x, y) in S.

For setting up a CCA-based model describing steady-state
heat flow, which is necessarily based upon discrete spatial
entities (i.e. cells ci), it can be reasoned that if such a cell
is surrounded by a given number of neighboring cells, each
maintained at constant temperature, it will reach a steady-
state temperature after a sufficient amount of time that is
completely determined by the temperature of its neighbors.
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Fig. 3. Representation of a discrete irregular tessellation of a compact subset ofR2 (a) and the graphG obtained after mapping this tessellation onG (b).
Dashed vertices only exist when a Moore neighborhood is considered.

More specifically, this steady-state temperature will be the
average value of the temperatures at which the neighboring
cells are maintained. Hence, if we discard the difference
in the length of the common line segment through which
neighboring cells exchange heat, and which unavoidably exists
between cells in an irregular tessellation ofR

2, the steady-state
temperature in the cells ofT can be obtained by iteratively
evaluating

W (ci, t + 1) = Θ
(

s̃ (N(ci), t)
)

=

∑

cj∈N(ci)

W (cj , t)

|N(ci)|
, (2)

for all ci, until |W (ci, t + 1) − W (ci, t)| ≤ φ ,∀ ci ∈ T ,
whereφ is a given halting criterion andW (ci, t) denotes the
temperature expressed in degrees centigrade in cellci at the
t-th time step. In contrast withT (x, y), W (ci, t) constitutes a
discrete function since it yields a value for discrete cellsand
time steps only. Taking into account the discrepancies between
the length of the exchange ‘surface’, Eq. (2) can be modified
to:

W (ci, t + 1) = Θ
(

s̃ (N(ci), t)
)

=
1

Cii

∑

cj∈N(ci)

W (cj , t)Cij ,

(3)
where Cij denotes the length of the line segment that is
shared byci and cj . It should be clear that Eqs. (2) and
(3) constitute the transition function of a homogeneous CCA
C = 〈T , S, s, s0, N,Θ〉, with T = {c1, c2, . . .}, S = R,
s(ci, t) = W (ci, t), s0(ci) = W (ci, 0), N(ci) = N 0

i , andΘ
being the right-hand-side of Eq. (2) or (3). Essentially, Eqs. (2)
and Eq. (3) constitute an extension to the CCA proposed by
Schiff [36] for describing heat flow on a square tessellation
that suffers from several drawbacks as discussed in SectionI.

B. Assessing the validity of the CCA-based model

In order to demonstrate the validity of Eq. (2), we consider
the heat flow in a square plate, which is subject to the boundary
conditions

T (0, y) = 0 , 0 < y < s ,

T (s, y) = 0 , 0 < y < s ,

T (x, 0) = Tb , 0 ≤ x ≤ s ,

T (x, s) = Tt , 0 ≤ x ≤ s ,

where s is the side length of the plate. Since an analytical
solution can be found for this boundary value problem a
sound assessment of Eq. (2)’s validity becomes possible. The
latter solution can be found straightforwardly by separation of
variables, and can be simplified to

T (x, y) = 4Tt

+∞
∑

m=1

sinh
(

m∗ y s−1
)

sin
(

m∗ x s−1
)

m∗ sinh (m∗)
+

4Tb

+∞
∑

m=1

sinh
(

m∗ (s − y) s−1
)

sin
(

m∗ x s−1
)

m∗ sinh (m∗)
(4)

where m∗ = (2m − 1)π was introduced for reasons of
clarity. In the remainder of this subsection, we consider a
steel plate with side lengths = 1, Tt = 50 and Tb = 50.
The simulations with the CCA-based model were performed
using a regular tessellation consisting of100 × 100 square
cells and a value of10−7 was selected forφ, while 200
terms of the series in Eq. (4) were taken into account. Figure
4, depicting the steady-state temperature distribution along
three horizontal cross-sections obtained using the analytical
solution (Eq. (4)) on the one hand, and the CCA-based
model (Eq. (2)) on the other hand, and Fig. 5 visualizing the
absolute difference betweenW (ci, tφ) and the corresponding
T (xg

i , y
g
i ), where tφ is the number of time steps needed

such that |W (ci, t + 1) − W (ci, t)| ≤ φ ,∀ ci ∈ T and
(xg

i , y
g
i ) representsci’s center of gravity, clearly show the close

agreement between the simulated temperature distributions
obtained with both approaches. The good agreement between



TABLE I
AVERAGE ABSOLUTE DIFFERENCEµe BETWEENW (ci, tφ),WHERE tφ IS

THE NUMBER OF TIME STEPS NEEDED SUCH THAT

|W (ci, t + 1) − W (ci, t)| ≤ φ ,∀ ci ∈ T , AND THE CORRESPONDING

T (xg

i
, y

g

i
), WHERE (xg

i
, y

g

i
) REPRESENTSci ’ S CENTER OF GRAVITY,

TOGETHER WITHtφ .

|T | (-) µe (◦C) tφ (-)

25 × 25 0.90 1397

50 × 50 0.52 4904

100 × 100 0.28 17352

150 × 150 0.19 36308

both approaches is further confirmed by Table I that lists
the average absolute differenceµe betweenW (ci, tφ) and
the correspondingT (xg

i , y
g
i ) together withtφ. As expected,

it indicates thatµφ drops as we are working towards the
continuum limit|T | → ∞. In order to verify the comparability
between the results obtained using the CCA-based model on
the one hand, and a finite difference approximation of Eq. (1)
on the other hand, we implemented an implicit finite difference
scheme for this equation, which was solved iteratively for
100×100 nodes located in the centers of gravity of the CCA’s
cells. As such, we assessed that the mean absolute differ-
ence between the simulated temperature of both approaches
was only 0.01, whereas the maximum discrepancy was3.4.
This clearly indicates the comparability existing betweenboth
approaches, as such granting reliability to the approach we
propose.

Figure 5 further shows that the regions in which the dis-
crepancies between the simulation results obtained using the
approaches at stake are the most pronounced, are located in
the corners of the tessellated surface, whereas the smallest
discrepancies can be found in the surface’s center. These
discrepancies can be attributed to the fact thatW (ci, t + 1)
is calculated using the temperature values in cells that share
an edge withci, as well as cells that merely share a vertex
with ci since a Moore neighborhood is employed. As such,
neighboring cells that are not directly facingci have the
same influence on the determination ofW (ci, t + 1) as the
facing ones, which, physically speaking, would entail a flow
of heat throughci’s four corner points that is equally large
as the heat flow through its sides. In order to work around
this artifact that is inevitably related to the use of a square
tessellation, either the steady-state temperature distribution can
be computed using Eq. (3) or one can give up the square
tessellation and resort to a more intricate meshing method
yielding cells which state can be iteratively calculated by
means of Eq. (3). Yet, the first workaround is not more than
a stopgap since then it is assumed that cells merely sharing a
vertex withci have no influence at all onW (ci, t+1), which is
as doubtful as granting them equal importance as cells sharing
an edge withci.

C. The CCA-based model’s strengths exemplified

In the remainder of this section, we consider the flow of
heat that originates from a tube (radius 0.4 cm) conducting
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Fig. 4. Steady-state temperature distribution along three horizontal cross-
sections obtained using the analytical solution (Eq. (4)) on the one hand, and
the CCA-based model (Eq. (2)), on the other hand.

Fig. 5. Absolute difference, denoted∆ (◦C), betweenW (ci, tφ) and the
correspondingT (xg

i
, y

g
i
), wheretφ is the number of time steps needed such

that |W (ci, t + 1) − W (ci, t)| ≤ φ ,∀ ci ∈ T and (xg
i
, y

g
i
) representsci’s

center of gravity.

a fluid maintained at a temperature of 50◦C. This tube is
homogeneously wrapped up with a lagging material and the
wrapped tube is contained in a box of which the sides are
maintained at a temperature of 20◦C. Seen the fact that the
temperature of the fluid, as well as the sides of the box
are maintained constant, it is to be expected that a steady-
state temperature distribution will be reached inside the box
after a sufficient amount of time. Obviously, the geometry
of the surface that needs to tessellated, together with the
circular boundary condition obstructs the use of a regular
tessellation, though, a Delaunay tessellation can be employed
for discretizing. Figure 6 depicts a transversal cross-section
through this construction and shows the Delaunay tessellation,
consisting of 12,688 cells, that was used to mesh the space
enclosed between the box’ sides and the tube.

After implementing the boundary conditions as indicated
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Fig. 6. Schematic overview of a transversal cross-section through a box
containing a tube homogeneously wrapped up with lagging material. The
sides of the box are maintained at 20◦C, while a warm fluid (50◦C) is flowing
through the tube.

in Fig. 6, the steady-state temperature distribution in thelag-
filled area was computed iteratively using Eq. (2) and is
visualized in Fig. 7(a). In order to satisfy the halting criterion,
6,048 iterative evaluations of Eq. (2) were needed. Figure
7(b) depicts the temperature distribution along four cross-
sections through the medium. For comprehensiveness, we
should emphasize that the latter figure was obtained by taking
the values of the cells of which the center of gravity was
located the closest to the equidistant points along each of the
four cross-sections.

D. Comparison with other numerical techniques

Nonetheless we leave a thorough comparison between the
results obtained using the above presented CCA-based model
on the one hand, and well-established numerical techniques
that have been developed for approximating the solution of
the Laplace equation if intricate boundary conditions and/or
geometries are involved on the other hand, to future work,
we briefly place the former methodology against both the
finite difference method (FDM) and the finite element method
(FEM). Typically, the former method discretizes a PDE based
upon a square tessellation ofR2, which inevitably leads
to the same difficulties as the ones facing when using the
CCA-based model on such a tessellation. Besides, the central
difference approximation of Eq. (1) collapses to Eq. (2) if
the discretization size in both thex- and y-direction are the
same. With regard to the FEM, it is clear that it coincides
with the CCA-based approach in the sense that it relies on the
same meshing methods that are used by FEM, but setting up
a sound finite element approximation of the problem at hand
is certainly not as straightforward as implementing Eq. (2)
or (3). Unavoidably, these equations yield an approximation
of Eq. (1), but likewise, one may not lose sight of the fact

that also FDM and FEM yield only an approximate solution
of Eq. (1).

Unavoidably, a thorough comparison between the perfor-
mance of the CCA-based models on the one hand and the
FEM and FDM on the other hand will lead to the question
whether either a continuous model or a discrete model is the
most appropriate starting point for numerical modeling. To
emphasize this dilemma, we may refer to Toffoli [37] who
remarked already in 1984 that is questionable to stick to PDEs
as a starting point for numerical modeling as soon as symbolic
manipulations are no longer possible since (1) they represent
a stylized form of the process(es) at stake, (2) we need to
discretize them in order to find a numerical approximation,
and (3) real-valued variables are rounded off. Perhaps, discrete
models might offer a less roundabout way to model natural
processes?

V. CONCLUSION

In this paper we established the mathematical constructs
that are needed to make use of the irregular CCA paradigm
to build models upon that can be of use in applied sciences,
and we illustrated this paradigm’s usability for a CCA-based
model describing steady-state heat flow. Although we obtained
the tessellation used throughout this paper by means of a
well-established meshing method, it could be equally well
deduced from a vector-based geographical information system
that exploits irregular polygons as one of its three major data
types, in addition to vertices and line segments, to encode
spatial information.
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