44 research outputs found

    A Survey on Wireless Sensor Network Security

    Full text link
    Wireless sensor networks (WSNs) have recently attracted a lot of interest in the research community due their wide range of applications. Due to distributed nature of these networks and their deployment in remote areas, these networks are vulnerable to numerous security threats that can adversely affect their proper functioning. This problem is more critical if the network is deployed for some mission-critical applications such as in a tactical battlefield. Random failure of nodes is also very likely in real-life deployment scenarios. Due to resource constraints in the sensor nodes, traditional security mechanisms with large overhead of computation and communication are infeasible in WSNs. Security in sensor networks is, therefore, a particularly challenging task. This paper discusses the current state of the art in security mechanisms for WSNs. Various types of attacks are discussed and their countermeasures presented. A brief discussion on the future direction of research in WSN security is also included.Comment: 24 pages, 4 figures, 2 table

    Wireless multimedia sensor networks, security and key management

    Get PDF
    Wireless Multimedia Sensor Networks (WMSNs) have emerged and shifted the focus from the typical scalar wireless sensor networks to networks with multimedia devices that are capable to retrieve video, audio, images, as well as scalar sensor data. WMSNs are able to deliver multimedia content due to the availability of inexpensive CMOS cameras and microphones coupled with the significant progress in distributed signal processing and multimedia source coding techniques. These mentioned characteristics, challenges, and requirements of designing WMSNs open many research issues and future research directions to develop protocols, algorithms, architectures, devices, and testbeds to maximize the network lifetime while satisfying the quality of service requirements of the various applications. In this thesis dissertation, we outline the design challenges of WMSNs and we give a comprehensive discussion of the proposed architectures and protocols for the different layers of the communication protocol stack for WMSNs along with their open research issues. Also, we conduct a comparison among the existing WMSN hardware and testbeds based on their specifications and features along with complete classification based on their functionalities and capabilities. In addition, we introduce our complete classification for content security and contextual privacy in WSNs. Our focus in this field, after conducting a complete survey in WMSNs and event privacy in sensor networks, and earning the necessary knowledge of programming sensor motes such as Micaz and Stargate and running simulation using NS2, is to design suitable protocols meet the challenging requirements of WMSNs targeting especially the routing and MAC layers, secure the wirelessly exchange of data against external attacks using proper security algorithms: key management and secure routing, defend the network from internal attacks by using a light-weight intrusion detection technique, protect the contextual information from being leaked to unauthorized parties by adapting an event unobservability scheme, and evaluate the performance efficiency and energy consumption of employing the security algorithms over WMSNs

    Maintaining trajectory privacy in mobile wireless sensor networks

    Get PDF
    Sensors are tiny, resource-limited devices that are deployed in different areas to gather information for specific purposes. Wireless sensor networks consist of sensors with limited communication range and one or more sink nodes that are responsible for collecting the produced data by the sensors. Mobile wireless sensor networks is a subdomain of wireless sensor networks in which sensors and/or sinks are mobile. Trajectory privacy of the sink node is one of the security issues that are emerged with mobile wireless sensor networks. In this thesis, we propose a scheme for the trajectory privacy of mobile sink nodes. The proposed scheme is based on random distribution of data packets. In this scheme, sensor nodes do not use and need location information of the mobile sink or its trajectory. We performed simulation based and analytical performance evaluations for the proposed scheme. The results show that a network with up to 99% data delivery rate can be obtained by appropriate configuration of the scheme parameters while maintaining the trajectory privacy of the mobile sink node. In addition to that, the proposed scheme has economical resource usage since it does not involve any kind of cryptographic mechanism

    Preserving Source-Location Privacy through Redundant Fog Loop for Wireless Sensor Networks

    Get PDF
    A redundant fog loop-based scheme is proposed to preserve the source node-location privacy and achieve energy efficiency through two important mechanisms in wireless sensor networks (WSNs). The first mechanism is to create fogs with loop paths. The second mechanism creates fogs in the real source node region as well as many interference fogs in other regions of the network. In addition, the fogs are dynamically changing, and the communication among fogs also forms the loop path. The simulation results show that for medium-scale networks, our scheme can improve the privacy security by 8 fold compared to the phantom routing scheme, whereas the energy efficiency can be improved by 4 fold.Location: Liverpool, UNITED KINGDOMDate: OCT 26-28, 201

    Protecting Contextual Information in WSNs: Source- and Receiver-Location Privacy Solutions

    Get PDF
    La privacidad es un derecho fundamental recogido por numerosas leyes y tratados entre los que destaca la Declaración Universal de los Derechos Humanos de las Naciones Unidas. Sin embargo, este derecho fundamental se ha visto vulnerado en numerosas ocasiones a lo largo de la historia; y el desarrollo de la tecnología, en especial la mejora de los sistemas de recolección, analisis y diseminación de información, han tenido gran parte de culpa. En la actualidad nos encontramos en un punto en el que el desarrollo y despliegue de sistemas ubicuos, encabezados por las redes inalámbricas de sensores, puede llegar a suponer un riesgo de privacidad sin precedentes dada su capacidad para recolectar información en cantidades y situaciones hasta el momento insospechadas. Existe, por tanto, una urgente necesidad de desarrollar mecanismos capaces de velar por nuestra información más sensible. Es precisamente éste uno de los objetivos principales de la presente tesis doctoral: facilitar la integración de las redes inalámbricas de sensores en nuestro día a día sin que éstas supongan un grave riesgo de privacidad. Esta tesis se centra en un problema de privacidad particular que viene derivado de la naturaleza inalámbrica de las comunicaciones y de la necesidad imperiosa de ahorrar energía que existe en estas redes de recursos restringidos. Para las redes de sensores, las comunicaciones suponen un gran porcentaje del presupuesto energético y, por ello, los protocolos de encaminamiento empleados tienden a minimizarlas, utilizando protocolos de camino óptimo. Aprovechándose de esta situación, un observador podría, mediante técnicas de análisis de tráfico no demasiado sofisticadas, y sin necesidad de descifrar el contenido de los paquete, determinar el origen y el destino de las comunicaciones. Esto supone, al igual que en los sistemas de comunicación tradicionales, un grave riesgo para la privacidad. Dado que el problema de la privacidad de localización en redes de sensores se reduce a una cuestión de análisis de tráfico, parece razonable pensar que las soluciones desarrolladas a tal fin en redes de computadores pueden ser de utilida. Sin embargo, esta hipótesis ha sido rechazada en varias ocasiones con argumentos vagos al respecto de las limitaciones computacionales y energéticas de las redes de sensores. Nosotros consideramos que esto no es motivo suficiente para descartar estas soluciones ya que, a pesar de la tendencia actual, en el futuro podríamos tener nodos sensores de gran capacidad. Por ello, uno de los objetivos de esta tesis ha sido realizar un análisis exhaustivo sobre la aplicabilidad de estas soluciones al ámbito de las redes de sensores, centrándonos no sólo en los requisitos computacionales sino también en las propiedades de anonimato que se persiguen, en los modelos de atacante y en las posibles limitaciones que podrían derivarse de su aplicación. Por otra parte, se ha realizado un amplio análisis de las soluciones de privacidad de localización existentes para redes de sensores. Este análisis no se ha centrado únicamente en estudiar las técnicas de protección de empleadas sino que además se ha esforzado en destacar las ventajas e inconvenientes de las distintas soluciones. Esto ha permitido desarrollar una completa taxonomía en varios niveles basada en los recursos que se desean proteger, los modelos de adversario a los que hacer frente y las principales características o técnicas empleadas por las diferentes soluciones. Además, a partir de esto se han detectado una serie de problemas abiertos y puntos de mejora del estado del arte actual, que se han plasmado en dos nuevas soluciones; una de las soluciones se ha centrado en la protección de la localización del origen de datos, mientras que la otra se ha enfocado a la protección de la estación base. Ambas soluciones tienen en cuenta atacantes con un rango de escucha parcial y capaces de desplazarse en el terreno para observar las comunicaciones en diferentes zonas de la red. La primera de las soluciones desarrolladas parte de la observación de que los mecanismos actuales se basan principalmente en el envío de paquetes siguiendo caminos aleatorios sin ningún conocimiento acerca de si estos caminos son realmente efectivos para hacer frente a un atacante local. La idea detrás de CALP es aprovechar la capacidad que tienen las redes de sensores para sentir lo que pasa en su entorno para desarrollar mecanismos de protección más inteligentes utilizando información acerca del atacante. De esta forma, se consigue reducir drásticamente el consumo energético de la solución y al mismo tiempo se reduce el retraso de las comunicaciones, ya que el mecanismo sólo se activa ante la presencia de un atacante. Aunque esta idea se ha aplicado únicamente a la protección de los nodos origen de datos, sus características indican que también sería posible aplicarla con éxito a la protección de la estación base. La segunda solución surge tras observar que las soluciones para proteger la estación base son demasiado costosas a nivel energético o, en su defecto, revelan información sobre su localización. Además, hasta la fecha ninguna solución había tenido en cuenta que si un atacante obtiene las tablas de rutas de un nodo obtiene información sobre la estación base. Nuestra solución, HISP-NC, se basa en dos mecanismos complementarios que, por un lado, hacen frente a ataques de análisis de tráfico y, por otro lado, protegen frente al nuevo modelo de atacante desarrollado. El primer mecanismo se basa en la homogeneización del tráfico en el entorno del camino y el segundo en la perturbación de la tabla de rutas, de manera que se dificulta el ataque al tiempo que se asegura la llegada de datos a la estación base

    Fortified Anonymous Communication Protocol for Location Privacy in WSN: A Modular Approach

    Get PDF
    Wireless sensor network (WSN) consists of many hosts called sensors. These sensors can sense a phenomenon (motion, temperature, humidity, average, max, min, etc.) and represent what they sense in a form of data. There are many applications for WSNs including object tracking and monitoring where in most of the cases these objects need protection. In these applications, data privacy itself might not be as important as the privacy of source location. In addition to the source location privacy, sink location privacy should also be provided. Providing an efficient end-to-end privacy solution would be a challenging task to achieve due to the open nature of the WSN. The key schemes needed for end-to-end location privacy are anonymity, observability, capture likelihood, and safety period. We extend this work to allow for countermeasures against multi-local and global adversaries. We present a network model protected against a sophisticated threat model: passive /active and local/multi-local/global attacks. This work provides a solution for end-to-end anonymity and location privacy as well. We will introduce a framework called fortified anonymous communication (FAC) protocol for WSN.http://dx.doi.org/10.3390/s15030582

    Fortified End-to-End Location Privacy and Anonymity in Wireless Sensor Networks: a Modular Approach

    Get PDF
    Wireless sensor network (WSN) consists of many hosts called sensors. These sensors can sense a phenomenon (motion, temperature, humidity, average, max, min, etc.) and represent what they sense in a form of data. There are many applications for WSNs; including object tracking and monitoring where in most of the cases these objects need protection. In these applications, data privacy itself might not be as important as the privacy of source location. In addition to the source location privacy, sink location privacy should also be provided. Providing an efficient end-to-end privacy solution would be a challenging task to achieve due to the open nature of the WSN. The key schemes needed for end-to-end location privacy are anonymity, observability, capture likelihood, and safety period. We extend this work to allow for countermeasures against multi-local and global adversaries. We present a network model that is protected against a sophisticated threat model: passive /active and local/multi-local/global attacks. This work provides a solution for end-to-end anonymity and location privacy as well. We will introduce a framework called fortified anonymous communication (FAC) protocol for WSN

    Security in Distributed, Grid, Mobile, and Pervasive Computing

    Get PDF
    This book addresses the increasing demand to guarantee privacy, integrity, and availability of resources in networks and distributed systems. It first reviews security issues and challenges in content distribution networks, describes key agreement protocols based on the Diffie-Hellman key exchange and key management protocols for complex distributed systems like the Internet, and discusses securing design patterns for distributed systems. The next section focuses on security in mobile computing and wireless networks. After a section on grid computing security, the book presents an overview of security solutions for pervasive healthcare systems and surveys wireless sensor network security
    corecore